Btrfs: keep dropped roots in cache until transaction commit
[deliverable/linux.git] / fs / nfs / file.c
1 /*
2 * linux/fs/nfs/file.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
11 *
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
13 *
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
15 *
16 * nfs regular file handling functions
17 */
18
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31
32 #include <asm/uaccess.h>
33
34 #include "delegation.h"
35 #include "internal.h"
36 #include "iostat.h"
37 #include "fscache.h"
38 #include "pnfs.h"
39
40 #include "nfstrace.h"
41
42 #define NFSDBG_FACILITY NFSDBG_FILE
43
44 static const struct vm_operations_struct nfs_file_vm_ops;
45
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode) (0)
49 #endif
50
51 int nfs_check_flags(int flags)
52 {
53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 return -EINVAL;
55
56 return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59
60 /*
61 * Open file
62 */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 int res;
67
68 dprintk("NFS: open file(%pD2)\n", filp);
69
70 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 res = nfs_check_flags(filp->f_flags);
72 if (res)
73 return res;
74
75 res = nfs_open(inode, filp);
76 return res;
77 }
78
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 dprintk("NFS: release(%pD2)\n", filp);
83
84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 return nfs_release(inode, filp);
86 }
87 EXPORT_SYMBOL_GPL(nfs_file_release);
88
89 /**
90 * nfs_revalidate_size - Revalidate the file size
91 * @inode - pointer to inode struct
92 * @file - pointer to struct file
93 *
94 * Revalidates the file length. This is basically a wrapper around
95 * nfs_revalidate_inode() that takes into account the fact that we may
96 * have cached writes (in which case we don't care about the server's
97 * idea of what the file length is), or O_DIRECT (in which case we
98 * shouldn't trust the cache).
99 */
100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101 {
102 struct nfs_server *server = NFS_SERVER(inode);
103 struct nfs_inode *nfsi = NFS_I(inode);
104
105 if (nfs_have_delegated_attributes(inode))
106 goto out_noreval;
107
108 if (filp->f_flags & O_DIRECT)
109 goto force_reval;
110 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
111 goto force_reval;
112 if (nfs_attribute_timeout(inode))
113 goto force_reval;
114 out_noreval:
115 return 0;
116 force_reval:
117 return __nfs_revalidate_inode(server, inode);
118 }
119
120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
121 {
122 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123 filp, offset, whence);
124
125 /*
126 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127 * the cached file length
128 */
129 if (whence != SEEK_SET && whence != SEEK_CUR) {
130 struct inode *inode = filp->f_mapping->host;
131
132 int retval = nfs_revalidate_file_size(inode, filp);
133 if (retval < 0)
134 return (loff_t)retval;
135 }
136
137 return generic_file_llseek(filp, offset, whence);
138 }
139 EXPORT_SYMBOL_GPL(nfs_file_llseek);
140
141 /*
142 * Flush all dirty pages, and check for write errors.
143 */
144 int
145 nfs_file_flush(struct file *file, fl_owner_t id)
146 {
147 struct inode *inode = file_inode(file);
148
149 dprintk("NFS: flush(%pD2)\n", file);
150
151 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152 if ((file->f_mode & FMODE_WRITE) == 0)
153 return 0;
154
155 /*
156 * If we're holding a write delegation, then just start the i/o
157 * but don't wait for completion (or send a commit).
158 */
159 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160 return filemap_fdatawrite(file->f_mapping);
161
162 /* Flush writes to the server and return any errors */
163 return vfs_fsync(file, 0);
164 }
165 EXPORT_SYMBOL_GPL(nfs_file_flush);
166
167 ssize_t
168 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
169 {
170 struct inode *inode = file_inode(iocb->ki_filp);
171 ssize_t result;
172
173 if (iocb->ki_flags & IOCB_DIRECT)
174 return nfs_file_direct_read(iocb, to, iocb->ki_pos);
175
176 dprintk("NFS: read(%pD2, %zu@%lu)\n",
177 iocb->ki_filp,
178 iov_iter_count(to), (unsigned long) iocb->ki_pos);
179
180 result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
181 if (!result) {
182 result = generic_file_read_iter(iocb, to);
183 if (result > 0)
184 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
185 }
186 return result;
187 }
188 EXPORT_SYMBOL_GPL(nfs_file_read);
189
190 ssize_t
191 nfs_file_splice_read(struct file *filp, loff_t *ppos,
192 struct pipe_inode_info *pipe, size_t count,
193 unsigned int flags)
194 {
195 struct inode *inode = file_inode(filp);
196 ssize_t res;
197
198 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
199 filp, (unsigned long) count, (unsigned long long) *ppos);
200
201 res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
202 if (!res) {
203 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
204 if (res > 0)
205 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
206 }
207 return res;
208 }
209 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
210
211 int
212 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
213 {
214 struct inode *inode = file_inode(file);
215 int status;
216
217 dprintk("NFS: mmap(%pD2)\n", file);
218
219 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
220 * so we call that before revalidating the mapping
221 */
222 status = generic_file_mmap(file, vma);
223 if (!status) {
224 vma->vm_ops = &nfs_file_vm_ops;
225 status = nfs_revalidate_mapping(inode, file->f_mapping);
226 }
227 return status;
228 }
229 EXPORT_SYMBOL_GPL(nfs_file_mmap);
230
231 /*
232 * Flush any dirty pages for this process, and check for write errors.
233 * The return status from this call provides a reliable indication of
234 * whether any write errors occurred for this process.
235 *
236 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
237 * disk, but it retrieves and clears ctx->error after synching, despite
238 * the two being set at the same time in nfs_context_set_write_error().
239 * This is because the former is used to notify the _next_ call to
240 * nfs_file_write() that a write error occurred, and hence cause it to
241 * fall back to doing a synchronous write.
242 */
243 int
244 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
245 {
246 struct nfs_open_context *ctx = nfs_file_open_context(file);
247 struct inode *inode = file_inode(file);
248 int have_error, do_resend, status;
249 int ret = 0;
250
251 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
252
253 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
254 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
255 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
256 status = nfs_commit_inode(inode, FLUSH_SYNC);
257 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
258 if (have_error) {
259 ret = xchg(&ctx->error, 0);
260 if (ret)
261 goto out;
262 }
263 if (status < 0) {
264 ret = status;
265 goto out;
266 }
267 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
268 if (do_resend)
269 ret = -EAGAIN;
270 out:
271 return ret;
272 }
273 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
274
275 static int
276 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
277 {
278 int ret;
279 struct inode *inode = file_inode(file);
280
281 trace_nfs_fsync_enter(inode);
282
283 nfs_inode_dio_wait(inode);
284 do {
285 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
286 if (ret != 0)
287 break;
288 mutex_lock(&inode->i_mutex);
289 ret = nfs_file_fsync_commit(file, start, end, datasync);
290 mutex_unlock(&inode->i_mutex);
291 /*
292 * If nfs_file_fsync_commit detected a server reboot, then
293 * resend all dirty pages that might have been covered by
294 * the NFS_CONTEXT_RESEND_WRITES flag
295 */
296 start = 0;
297 end = LLONG_MAX;
298 } while (ret == -EAGAIN);
299
300 trace_nfs_fsync_exit(inode, ret);
301 return ret;
302 }
303
304 /*
305 * Decide whether a read/modify/write cycle may be more efficient
306 * then a modify/write/read cycle when writing to a page in the
307 * page cache.
308 *
309 * The modify/write/read cycle may occur if a page is read before
310 * being completely filled by the writer. In this situation, the
311 * page must be completely written to stable storage on the server
312 * before it can be refilled by reading in the page from the server.
313 * This can lead to expensive, small, FILE_SYNC mode writes being
314 * done.
315 *
316 * It may be more efficient to read the page first if the file is
317 * open for reading in addition to writing, the page is not marked
318 * as Uptodate, it is not dirty or waiting to be committed,
319 * indicating that it was previously allocated and then modified,
320 * that there were valid bytes of data in that range of the file,
321 * and that the new data won't completely replace the old data in
322 * that range of the file.
323 */
324 static int nfs_want_read_modify_write(struct file *file, struct page *page,
325 loff_t pos, unsigned len)
326 {
327 unsigned int pglen = nfs_page_length(page);
328 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
329 unsigned int end = offset + len;
330
331 if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
332 if (!PageUptodate(page))
333 return 1;
334 return 0;
335 }
336
337 if ((file->f_mode & FMODE_READ) && /* open for read? */
338 !PageUptodate(page) && /* Uptodate? */
339 !PagePrivate(page) && /* i/o request already? */
340 pglen && /* valid bytes of file? */
341 (end < pglen || offset)) /* replace all valid bytes? */
342 return 1;
343 return 0;
344 }
345
346 /*
347 * This does the "real" work of the write. We must allocate and lock the
348 * page to be sent back to the generic routine, which then copies the
349 * data from user space.
350 *
351 * If the writer ends up delaying the write, the writer needs to
352 * increment the page use counts until he is done with the page.
353 */
354 static int nfs_write_begin(struct file *file, struct address_space *mapping,
355 loff_t pos, unsigned len, unsigned flags,
356 struct page **pagep, void **fsdata)
357 {
358 int ret;
359 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
360 struct page *page;
361 int once_thru = 0;
362
363 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
364 file, mapping->host->i_ino, len, (long long) pos);
365
366 start:
367 /*
368 * Prevent starvation issues if someone is doing a consistency
369 * sync-to-disk
370 */
371 ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
372 nfs_wait_bit_killable, TASK_KILLABLE);
373 if (ret)
374 return ret;
375 /*
376 * Wait for O_DIRECT to complete
377 */
378 nfs_inode_dio_wait(mapping->host);
379
380 page = grab_cache_page_write_begin(mapping, index, flags);
381 if (!page)
382 return -ENOMEM;
383 *pagep = page;
384
385 ret = nfs_flush_incompatible(file, page);
386 if (ret) {
387 unlock_page(page);
388 page_cache_release(page);
389 } else if (!once_thru &&
390 nfs_want_read_modify_write(file, page, pos, len)) {
391 once_thru = 1;
392 ret = nfs_readpage(file, page);
393 page_cache_release(page);
394 if (!ret)
395 goto start;
396 }
397 return ret;
398 }
399
400 static int nfs_write_end(struct file *file, struct address_space *mapping,
401 loff_t pos, unsigned len, unsigned copied,
402 struct page *page, void *fsdata)
403 {
404 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
405 struct nfs_open_context *ctx = nfs_file_open_context(file);
406 int status;
407
408 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
409 file, mapping->host->i_ino, len, (long long) pos);
410
411 /*
412 * Zero any uninitialised parts of the page, and then mark the page
413 * as up to date if it turns out that we're extending the file.
414 */
415 if (!PageUptodate(page)) {
416 unsigned pglen = nfs_page_length(page);
417 unsigned end = offset + len;
418
419 if (pglen == 0) {
420 zero_user_segments(page, 0, offset,
421 end, PAGE_CACHE_SIZE);
422 SetPageUptodate(page);
423 } else if (end >= pglen) {
424 zero_user_segment(page, end, PAGE_CACHE_SIZE);
425 if (offset == 0)
426 SetPageUptodate(page);
427 } else
428 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
429 }
430
431 status = nfs_updatepage(file, page, offset, copied);
432
433 unlock_page(page);
434 page_cache_release(page);
435
436 if (status < 0)
437 return status;
438 NFS_I(mapping->host)->write_io += copied;
439
440 if (nfs_ctx_key_to_expire(ctx)) {
441 status = nfs_wb_all(mapping->host);
442 if (status < 0)
443 return status;
444 }
445
446 return copied;
447 }
448
449 /*
450 * Partially or wholly invalidate a page
451 * - Release the private state associated with a page if undergoing complete
452 * page invalidation
453 * - Called if either PG_private or PG_fscache is set on the page
454 * - Caller holds page lock
455 */
456 static void nfs_invalidate_page(struct page *page, unsigned int offset,
457 unsigned int length)
458 {
459 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
460 page, offset, length);
461
462 if (offset != 0 || length < PAGE_CACHE_SIZE)
463 return;
464 /* Cancel any unstarted writes on this page */
465 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
466
467 nfs_fscache_invalidate_page(page, page->mapping->host);
468 }
469
470 /*
471 * Attempt to release the private state associated with a page
472 * - Called if either PG_private or PG_fscache is set on the page
473 * - Caller holds page lock
474 * - Return true (may release page) or false (may not)
475 */
476 static int nfs_release_page(struct page *page, gfp_t gfp)
477 {
478 struct address_space *mapping = page->mapping;
479
480 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
481
482 /* Always try to initiate a 'commit' if relevant, but only
483 * wait for it if __GFP_WAIT is set. Even then, only wait 1
484 * second and only if the 'bdi' is not congested.
485 * Waiting indefinitely can cause deadlocks when the NFS
486 * server is on this machine, when a new TCP connection is
487 * needed and in other rare cases. There is no particular
488 * need to wait extensively here. A short wait has the
489 * benefit that someone else can worry about the freezer.
490 */
491 if (mapping) {
492 struct nfs_server *nfss = NFS_SERVER(mapping->host);
493 nfs_commit_inode(mapping->host, 0);
494 if ((gfp & __GFP_WAIT) &&
495 !bdi_write_congested(&nfss->backing_dev_info)) {
496 wait_on_page_bit_killable_timeout(page, PG_private,
497 HZ);
498 if (PagePrivate(page))
499 set_bdi_congested(&nfss->backing_dev_info,
500 BLK_RW_ASYNC);
501 }
502 }
503 /* If PagePrivate() is set, then the page is not freeable */
504 if (PagePrivate(page))
505 return 0;
506 return nfs_fscache_release_page(page, gfp);
507 }
508
509 static void nfs_check_dirty_writeback(struct page *page,
510 bool *dirty, bool *writeback)
511 {
512 struct nfs_inode *nfsi;
513 struct address_space *mapping = page_file_mapping(page);
514
515 if (!mapping || PageSwapCache(page))
516 return;
517
518 /*
519 * Check if an unstable page is currently being committed and
520 * if so, have the VM treat it as if the page is under writeback
521 * so it will not block due to pages that will shortly be freeable.
522 */
523 nfsi = NFS_I(mapping->host);
524 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
525 *writeback = true;
526 return;
527 }
528
529 /*
530 * If PagePrivate() is set, then the page is not freeable and as the
531 * inode is not being committed, it's not going to be cleaned in the
532 * near future so treat it as dirty
533 */
534 if (PagePrivate(page))
535 *dirty = true;
536 }
537
538 /*
539 * Attempt to clear the private state associated with a page when an error
540 * occurs that requires the cached contents of an inode to be written back or
541 * destroyed
542 * - Called if either PG_private or fscache is set on the page
543 * - Caller holds page lock
544 * - Return 0 if successful, -error otherwise
545 */
546 static int nfs_launder_page(struct page *page)
547 {
548 struct inode *inode = page_file_mapping(page)->host;
549 struct nfs_inode *nfsi = NFS_I(inode);
550
551 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
552 inode->i_ino, (long long)page_offset(page));
553
554 nfs_fscache_wait_on_page_write(nfsi, page);
555 return nfs_wb_page(inode, page);
556 }
557
558 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
559 sector_t *span)
560 {
561 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
562
563 *span = sis->pages;
564
565 return rpc_clnt_swap_activate(clnt);
566 }
567
568 static void nfs_swap_deactivate(struct file *file)
569 {
570 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
571
572 rpc_clnt_swap_deactivate(clnt);
573 }
574
575 const struct address_space_operations nfs_file_aops = {
576 .readpage = nfs_readpage,
577 .readpages = nfs_readpages,
578 .set_page_dirty = __set_page_dirty_nobuffers,
579 .writepage = nfs_writepage,
580 .writepages = nfs_writepages,
581 .write_begin = nfs_write_begin,
582 .write_end = nfs_write_end,
583 .invalidatepage = nfs_invalidate_page,
584 .releasepage = nfs_release_page,
585 .direct_IO = nfs_direct_IO,
586 .migratepage = nfs_migrate_page,
587 .launder_page = nfs_launder_page,
588 .is_dirty_writeback = nfs_check_dirty_writeback,
589 .error_remove_page = generic_error_remove_page,
590 .swap_activate = nfs_swap_activate,
591 .swap_deactivate = nfs_swap_deactivate,
592 };
593
594 /*
595 * Notification that a PTE pointing to an NFS page is about to be made
596 * writable, implying that someone is about to modify the page through a
597 * shared-writable mapping
598 */
599 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
600 {
601 struct page *page = vmf->page;
602 struct file *filp = vma->vm_file;
603 struct inode *inode = file_inode(filp);
604 unsigned pagelen;
605 int ret = VM_FAULT_NOPAGE;
606 struct address_space *mapping;
607
608 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
609 filp, filp->f_mapping->host->i_ino,
610 (long long)page_offset(page));
611
612 /* make sure the cache has finished storing the page */
613 nfs_fscache_wait_on_page_write(NFS_I(inode), page);
614
615 wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
616 nfs_wait_bit_killable, TASK_KILLABLE);
617
618 lock_page(page);
619 mapping = page_file_mapping(page);
620 if (mapping != inode->i_mapping)
621 goto out_unlock;
622
623 wait_on_page_writeback(page);
624
625 pagelen = nfs_page_length(page);
626 if (pagelen == 0)
627 goto out_unlock;
628
629 ret = VM_FAULT_LOCKED;
630 if (nfs_flush_incompatible(filp, page) == 0 &&
631 nfs_updatepage(filp, page, 0, pagelen) == 0)
632 goto out;
633
634 ret = VM_FAULT_SIGBUS;
635 out_unlock:
636 unlock_page(page);
637 out:
638 return ret;
639 }
640
641 static const struct vm_operations_struct nfs_file_vm_ops = {
642 .fault = filemap_fault,
643 .map_pages = filemap_map_pages,
644 .page_mkwrite = nfs_vm_page_mkwrite,
645 };
646
647 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
648 {
649 struct nfs_open_context *ctx;
650
651 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
652 return 1;
653 ctx = nfs_file_open_context(filp);
654 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
655 nfs_ctx_key_to_expire(ctx))
656 return 1;
657 return 0;
658 }
659
660 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
661 {
662 struct file *file = iocb->ki_filp;
663 struct inode *inode = file_inode(file);
664 unsigned long written = 0;
665 ssize_t result;
666 size_t count = iov_iter_count(from);
667
668 result = nfs_key_timeout_notify(file, inode);
669 if (result)
670 return result;
671
672 if (iocb->ki_flags & IOCB_DIRECT) {
673 result = generic_write_checks(iocb, from);
674 if (result <= 0)
675 return result;
676 return nfs_file_direct_write(iocb, from);
677 }
678
679 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
680 file, count, (long long) iocb->ki_pos);
681
682 result = -EBUSY;
683 if (IS_SWAPFILE(inode))
684 goto out_swapfile;
685 /*
686 * O_APPEND implies that we must revalidate the file length.
687 */
688 if (iocb->ki_flags & IOCB_APPEND) {
689 result = nfs_revalidate_file_size(inode, file);
690 if (result)
691 goto out;
692 }
693
694 result = count;
695 if (!count)
696 goto out;
697
698 result = generic_file_write_iter(iocb, from);
699 if (result > 0)
700 written = result;
701
702 /* Return error values for O_DSYNC and IS_SYNC() */
703 if (result >= 0 && nfs_need_sync_write(file, inode)) {
704 int err = vfs_fsync(file, 0);
705 if (err < 0)
706 result = err;
707 }
708 if (result > 0)
709 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
710 out:
711 return result;
712
713 out_swapfile:
714 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
715 goto out;
716 }
717 EXPORT_SYMBOL_GPL(nfs_file_write);
718
719 static int
720 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
721 {
722 struct inode *inode = filp->f_mapping->host;
723 int status = 0;
724 unsigned int saved_type = fl->fl_type;
725
726 /* Try local locking first */
727 posix_test_lock(filp, fl);
728 if (fl->fl_type != F_UNLCK) {
729 /* found a conflict */
730 goto out;
731 }
732 fl->fl_type = saved_type;
733
734 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
735 goto out_noconflict;
736
737 if (is_local)
738 goto out_noconflict;
739
740 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
741 out:
742 return status;
743 out_noconflict:
744 fl->fl_type = F_UNLCK;
745 goto out;
746 }
747
748 static int do_vfs_lock(struct file *file, struct file_lock *fl)
749 {
750 int res = 0;
751 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
752 case FL_POSIX:
753 res = posix_lock_file_wait(file, fl);
754 break;
755 case FL_FLOCK:
756 res = flock_lock_file_wait(file, fl);
757 break;
758 default:
759 BUG();
760 }
761 return res;
762 }
763
764 static int
765 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
766 {
767 struct inode *inode = filp->f_mapping->host;
768 struct nfs_lock_context *l_ctx;
769 int status;
770
771 /*
772 * Flush all pending writes before doing anything
773 * with locks..
774 */
775 vfs_fsync(filp, 0);
776
777 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
778 if (!IS_ERR(l_ctx)) {
779 status = nfs_iocounter_wait(&l_ctx->io_count);
780 nfs_put_lock_context(l_ctx);
781 if (status < 0)
782 return status;
783 }
784
785 /* NOTE: special case
786 * If we're signalled while cleaning up locks on process exit, we
787 * still need to complete the unlock.
788 */
789 /*
790 * Use local locking if mounted with "-onolock" or with appropriate
791 * "-olocal_lock="
792 */
793 if (!is_local)
794 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
795 else
796 status = do_vfs_lock(filp, fl);
797 return status;
798 }
799
800 static int
801 is_time_granular(struct timespec *ts) {
802 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
803 }
804
805 static int
806 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
807 {
808 struct inode *inode = filp->f_mapping->host;
809 int status;
810
811 /*
812 * Flush all pending writes before doing anything
813 * with locks..
814 */
815 status = nfs_sync_mapping(filp->f_mapping);
816 if (status != 0)
817 goto out;
818
819 /*
820 * Use local locking if mounted with "-onolock" or with appropriate
821 * "-olocal_lock="
822 */
823 if (!is_local)
824 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
825 else
826 status = do_vfs_lock(filp, fl);
827 if (status < 0)
828 goto out;
829
830 /*
831 * Revalidate the cache if the server has time stamps granular
832 * enough to detect subsecond changes. Otherwise, clear the
833 * cache to prevent missing any changes.
834 *
835 * This makes locking act as a cache coherency point.
836 */
837 nfs_sync_mapping(filp->f_mapping);
838 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
839 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
840 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
841 else
842 nfs_zap_caches(inode);
843 }
844 out:
845 return status;
846 }
847
848 /*
849 * Lock a (portion of) a file
850 */
851 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
852 {
853 struct inode *inode = filp->f_mapping->host;
854 int ret = -ENOLCK;
855 int is_local = 0;
856
857 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
858 filp, fl->fl_type, fl->fl_flags,
859 (long long)fl->fl_start, (long long)fl->fl_end);
860
861 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
862
863 /* No mandatory locks over NFS */
864 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
865 goto out_err;
866
867 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
868 is_local = 1;
869
870 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
871 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
872 if (ret < 0)
873 goto out_err;
874 }
875
876 if (IS_GETLK(cmd))
877 ret = do_getlk(filp, cmd, fl, is_local);
878 else if (fl->fl_type == F_UNLCK)
879 ret = do_unlk(filp, cmd, fl, is_local);
880 else
881 ret = do_setlk(filp, cmd, fl, is_local);
882 out_err:
883 return ret;
884 }
885 EXPORT_SYMBOL_GPL(nfs_lock);
886
887 /*
888 * Lock a (portion of) a file
889 */
890 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
891 {
892 struct inode *inode = filp->f_mapping->host;
893 int is_local = 0;
894
895 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
896 filp, fl->fl_type, fl->fl_flags);
897
898 if (!(fl->fl_flags & FL_FLOCK))
899 return -ENOLCK;
900
901 /*
902 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
903 * any standard. In principle we might be able to support LOCK_MAND
904 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
905 * NFS code is not set up for it.
906 */
907 if (fl->fl_type & LOCK_MAND)
908 return -EINVAL;
909
910 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
911 is_local = 1;
912
913 /* We're simulating flock() locks using posix locks on the server */
914 if (fl->fl_type == F_UNLCK)
915 return do_unlk(filp, cmd, fl, is_local);
916 return do_setlk(filp, cmd, fl, is_local);
917 }
918 EXPORT_SYMBOL_GPL(nfs_flock);
919
920 const struct file_operations nfs_file_operations = {
921 .llseek = nfs_file_llseek,
922 .read_iter = nfs_file_read,
923 .write_iter = nfs_file_write,
924 .mmap = nfs_file_mmap,
925 .open = nfs_file_open,
926 .flush = nfs_file_flush,
927 .release = nfs_file_release,
928 .fsync = nfs_file_fsync,
929 .lock = nfs_lock,
930 .flock = nfs_flock,
931 .splice_read = nfs_file_splice_read,
932 .splice_write = iter_file_splice_write,
933 .check_flags = nfs_check_flags,
934 .setlease = simple_nosetlease,
935 };
936 EXPORT_SYMBOL_GPL(nfs_file_operations);
This page took 0.060013 seconds and 5 git commands to generate.