NFSv4: SETCLIENTID_CONFIRM should handle NFS4ERR_DELAY/NFS4ERR_RESOURCE
[deliverable/linux.git] / fs / nfs / nfs4proc.c
1 /*
2 * fs/nfs/nfs4proc.c
3 *
4 * Client-side procedure declarations for NFSv4.
5 *
6 * Copyright (c) 2002 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Kendrick Smith <kmsmith@umich.edu>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55
56 #define NFSDBG_FACILITY NFSDBG_PROC
57
58 #define NFS4_POLL_RETRY_MIN (1*HZ)
59 #define NFS4_POLL_RETRY_MAX (15*HZ)
60
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp);
68 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus);
69 extern struct rpc_procinfo nfs4_procedures[];
70
71 /* Prevent leaks of NFSv4 errors into userland */
72 int nfs4_map_errors(int err)
73 {
74 if (err < -1000) {
75 dprintk("%s could not handle NFSv4 error %d\n",
76 __FUNCTION__, -err);
77 return -EIO;
78 }
79 return err;
80 }
81
82 /*
83 * This is our standard bitmap for GETATTR requests.
84 */
85 const u32 nfs4_fattr_bitmap[2] = {
86 FATTR4_WORD0_TYPE
87 | FATTR4_WORD0_CHANGE
88 | FATTR4_WORD0_SIZE
89 | FATTR4_WORD0_FSID
90 | FATTR4_WORD0_FILEID,
91 FATTR4_WORD1_MODE
92 | FATTR4_WORD1_NUMLINKS
93 | FATTR4_WORD1_OWNER
94 | FATTR4_WORD1_OWNER_GROUP
95 | FATTR4_WORD1_RAWDEV
96 | FATTR4_WORD1_SPACE_USED
97 | FATTR4_WORD1_TIME_ACCESS
98 | FATTR4_WORD1_TIME_METADATA
99 | FATTR4_WORD1_TIME_MODIFY
100 };
101
102 const u32 nfs4_statfs_bitmap[2] = {
103 FATTR4_WORD0_FILES_AVAIL
104 | FATTR4_WORD0_FILES_FREE
105 | FATTR4_WORD0_FILES_TOTAL,
106 FATTR4_WORD1_SPACE_AVAIL
107 | FATTR4_WORD1_SPACE_FREE
108 | FATTR4_WORD1_SPACE_TOTAL
109 };
110
111 const u32 nfs4_pathconf_bitmap[2] = {
112 FATTR4_WORD0_MAXLINK
113 | FATTR4_WORD0_MAXNAME,
114 0
115 };
116
117 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
118 | FATTR4_WORD0_MAXREAD
119 | FATTR4_WORD0_MAXWRITE
120 | FATTR4_WORD0_LEASE_TIME,
121 0
122 };
123
124 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
125 struct nfs4_readdir_arg *readdir)
126 {
127 u32 *start, *p;
128
129 BUG_ON(readdir->count < 80);
130 if (cookie > 2) {
131 readdir->cookie = cookie;
132 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
133 return;
134 }
135
136 readdir->cookie = 0;
137 memset(&readdir->verifier, 0, sizeof(readdir->verifier));
138 if (cookie == 2)
139 return;
140
141 /*
142 * NFSv4 servers do not return entries for '.' and '..'
143 * Therefore, we fake these entries here. We let '.'
144 * have cookie 0 and '..' have cookie 1. Note that
145 * when talking to the server, we always send cookie 0
146 * instead of 1 or 2.
147 */
148 start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
149
150 if (cookie == 0) {
151 *p++ = xdr_one; /* next */
152 *p++ = xdr_zero; /* cookie, first word */
153 *p++ = xdr_one; /* cookie, second word */
154 *p++ = xdr_one; /* entry len */
155 memcpy(p, ".\0\0\0", 4); /* entry */
156 p++;
157 *p++ = xdr_one; /* bitmap length */
158 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
159 *p++ = htonl(8); /* attribute buffer length */
160 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
161 }
162
163 *p++ = xdr_one; /* next */
164 *p++ = xdr_zero; /* cookie, first word */
165 *p++ = xdr_two; /* cookie, second word */
166 *p++ = xdr_two; /* entry len */
167 memcpy(p, "..\0\0", 4); /* entry */
168 p++;
169 *p++ = xdr_one; /* bitmap length */
170 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
171 *p++ = htonl(8); /* attribute buffer length */
172 p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
173
174 readdir->pgbase = (char *)p - (char *)start;
175 readdir->count -= readdir->pgbase;
176 kunmap_atomic(start, KM_USER0);
177 }
178
179 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
180 {
181 struct nfs4_client *clp = server->nfs4_state;
182 spin_lock(&clp->cl_lock);
183 if (time_before(clp->cl_last_renewal,timestamp))
184 clp->cl_last_renewal = timestamp;
185 spin_unlock(&clp->cl_lock);
186 }
187
188 static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo)
189 {
190 struct nfs_inode *nfsi = NFS_I(inode);
191
192 spin_lock(&inode->i_lock);
193 nfsi->cache_validity |= NFS_INO_INVALID_ATTR;
194 if (cinfo->before == nfsi->change_attr && cinfo->atomic)
195 nfsi->change_attr = cinfo->after;
196 spin_unlock(&inode->i_lock);
197 }
198
199 struct nfs4_opendata {
200 atomic_t count;
201 struct nfs_openargs o_arg;
202 struct nfs_openres o_res;
203 struct nfs_open_confirmargs c_arg;
204 struct nfs_open_confirmres c_res;
205 struct nfs_fattr f_attr;
206 struct nfs_fattr dir_attr;
207 struct dentry *dentry;
208 struct dentry *dir;
209 struct nfs4_state_owner *owner;
210 struct iattr attrs;
211 unsigned long timestamp;
212 int rpc_status;
213 int cancelled;
214 };
215
216 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
217 struct nfs4_state_owner *sp, int flags,
218 const struct iattr *attrs)
219 {
220 struct dentry *parent = dget_parent(dentry);
221 struct inode *dir = parent->d_inode;
222 struct nfs_server *server = NFS_SERVER(dir);
223 struct nfs4_opendata *p;
224
225 p = kzalloc(sizeof(*p), GFP_KERNEL);
226 if (p == NULL)
227 goto err;
228 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
229 if (p->o_arg.seqid == NULL)
230 goto err_free;
231 atomic_set(&p->count, 1);
232 p->dentry = dget(dentry);
233 p->dir = parent;
234 p->owner = sp;
235 atomic_inc(&sp->so_count);
236 p->o_arg.fh = NFS_FH(dir);
237 p->o_arg.open_flags = flags,
238 p->o_arg.clientid = server->nfs4_state->cl_clientid;
239 p->o_arg.id = sp->so_id;
240 p->o_arg.name = &dentry->d_name;
241 p->o_arg.server = server;
242 p->o_arg.bitmask = server->attr_bitmask;
243 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
244 p->o_res.f_attr = &p->f_attr;
245 p->o_res.dir_attr = &p->dir_attr;
246 p->o_res.server = server;
247 nfs_fattr_init(&p->f_attr);
248 nfs_fattr_init(&p->dir_attr);
249 if (flags & O_EXCL) {
250 u32 *s = (u32 *) p->o_arg.u.verifier.data;
251 s[0] = jiffies;
252 s[1] = current->pid;
253 } else if (flags & O_CREAT) {
254 p->o_arg.u.attrs = &p->attrs;
255 memcpy(&p->attrs, attrs, sizeof(p->attrs));
256 }
257 p->c_arg.fh = &p->o_res.fh;
258 p->c_arg.stateid = &p->o_res.stateid;
259 p->c_arg.seqid = p->o_arg.seqid;
260 return p;
261 err_free:
262 kfree(p);
263 err:
264 dput(parent);
265 return NULL;
266 }
267
268 static void nfs4_opendata_free(struct nfs4_opendata *p)
269 {
270 if (p != NULL && atomic_dec_and_test(&p->count)) {
271 nfs_free_seqid(p->o_arg.seqid);
272 nfs4_put_state_owner(p->owner);
273 dput(p->dir);
274 dput(p->dentry);
275 kfree(p);
276 }
277 }
278
279 /* Helper for asynchronous RPC calls */
280 static int nfs4_call_async(struct rpc_clnt *clnt,
281 const struct rpc_call_ops *tk_ops, void *calldata)
282 {
283 struct rpc_task *task;
284
285 if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
286 return -ENOMEM;
287 rpc_execute(task);
288 return 0;
289 }
290
291 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
292 {
293 sigset_t oldset;
294 int ret;
295
296 rpc_clnt_sigmask(task->tk_client, &oldset);
297 ret = rpc_wait_for_completion_task(task);
298 rpc_clnt_sigunmask(task->tk_client, &oldset);
299 return ret;
300 }
301
302 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
303 {
304 switch (open_flags) {
305 case FMODE_WRITE:
306 state->n_wronly++;
307 break;
308 case FMODE_READ:
309 state->n_rdonly++;
310 break;
311 case FMODE_READ|FMODE_WRITE:
312 state->n_rdwr++;
313 }
314 }
315
316 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
317 {
318 struct inode *inode = state->inode;
319
320 open_flags &= (FMODE_READ|FMODE_WRITE);
321 /* Protect against nfs4_find_state_byowner() */
322 spin_lock(&state->owner->so_lock);
323 spin_lock(&inode->i_lock);
324 memcpy(&state->stateid, stateid, sizeof(state->stateid));
325 update_open_stateflags(state, open_flags);
326 nfs4_state_set_mode_locked(state, state->state | open_flags);
327 spin_unlock(&inode->i_lock);
328 spin_unlock(&state->owner->so_lock);
329 }
330
331 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
332 {
333 struct inode *inode;
334 struct nfs4_state *state = NULL;
335
336 if (!(data->f_attr.valid & NFS_ATTR_FATTR))
337 goto out;
338 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
339 if (inode == NULL)
340 goto out;
341 state = nfs4_get_open_state(inode, data->owner);
342 if (state == NULL)
343 goto put_inode;
344 update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
345 put_inode:
346 iput(inode);
347 out:
348 return state;
349 }
350
351 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
352 {
353 struct nfs_inode *nfsi = NFS_I(state->inode);
354 struct nfs_open_context *ctx;
355
356 spin_lock(&state->inode->i_lock);
357 list_for_each_entry(ctx, &nfsi->open_files, list) {
358 if (ctx->state != state)
359 continue;
360 get_nfs_open_context(ctx);
361 spin_unlock(&state->inode->i_lock);
362 return ctx;
363 }
364 spin_unlock(&state->inode->i_lock);
365 return ERR_PTR(-ENOENT);
366 }
367
368 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
369 {
370 int ret;
371
372 opendata->o_arg.open_flags = openflags;
373 ret = _nfs4_proc_open(opendata);
374 if (ret != 0)
375 return ret;
376 memcpy(stateid->data, opendata->o_res.stateid.data,
377 sizeof(stateid->data));
378 return 0;
379 }
380
381 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
382 {
383 nfs4_stateid stateid;
384 struct nfs4_state *newstate;
385 int mode = 0;
386 int delegation = 0;
387 int ret;
388
389 /* memory barrier prior to reading state->n_* */
390 smp_rmb();
391 if (state->n_rdwr != 0) {
392 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
393 if (ret != 0)
394 return ret;
395 mode |= FMODE_READ|FMODE_WRITE;
396 if (opendata->o_res.delegation_type != 0)
397 delegation = opendata->o_res.delegation_type;
398 smp_rmb();
399 }
400 if (state->n_wronly != 0) {
401 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
402 if (ret != 0)
403 return ret;
404 mode |= FMODE_WRITE;
405 if (opendata->o_res.delegation_type != 0)
406 delegation = opendata->o_res.delegation_type;
407 smp_rmb();
408 }
409 if (state->n_rdonly != 0) {
410 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
411 if (ret != 0)
412 return ret;
413 mode |= FMODE_READ;
414 }
415 clear_bit(NFS_DELEGATED_STATE, &state->flags);
416 if (mode == 0)
417 return 0;
418 if (opendata->o_res.delegation_type == 0)
419 opendata->o_res.delegation_type = delegation;
420 opendata->o_arg.open_flags |= mode;
421 newstate = nfs4_opendata_to_nfs4_state(opendata);
422 if (newstate != NULL) {
423 if (opendata->o_res.delegation_type != 0) {
424 struct nfs_inode *nfsi = NFS_I(newstate->inode);
425 int delegation_flags = 0;
426 if (nfsi->delegation)
427 delegation_flags = nfsi->delegation->flags;
428 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
429 nfs_inode_set_delegation(newstate->inode,
430 opendata->owner->so_cred,
431 &opendata->o_res);
432 else
433 nfs_inode_reclaim_delegation(newstate->inode,
434 opendata->owner->so_cred,
435 &opendata->o_res);
436 }
437 nfs4_close_state(newstate, opendata->o_arg.open_flags);
438 }
439 if (newstate != state)
440 return -ESTALE;
441 return 0;
442 }
443
444 /*
445 * OPEN_RECLAIM:
446 * reclaim state on the server after a reboot.
447 */
448 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
449 {
450 struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
451 struct nfs4_opendata *opendata;
452 int delegation_type = 0;
453 int status;
454
455 if (delegation != NULL) {
456 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
457 memcpy(&state->stateid, &delegation->stateid,
458 sizeof(state->stateid));
459 set_bit(NFS_DELEGATED_STATE, &state->flags);
460 return 0;
461 }
462 delegation_type = delegation->type;
463 }
464 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
465 if (opendata == NULL)
466 return -ENOMEM;
467 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
468 opendata->o_arg.fh = NFS_FH(state->inode);
469 nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
470 opendata->o_arg.u.delegation_type = delegation_type;
471 status = nfs4_open_recover(opendata, state);
472 nfs4_opendata_free(opendata);
473 return status;
474 }
475
476 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
477 {
478 struct nfs_server *server = NFS_SERVER(state->inode);
479 struct nfs4_exception exception = { };
480 int err;
481 do {
482 err = _nfs4_do_open_reclaim(sp, state, dentry);
483 if (err != -NFS4ERR_DELAY)
484 break;
485 nfs4_handle_exception(server, err, &exception);
486 } while (exception.retry);
487 return err;
488 }
489
490 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
491 {
492 struct nfs_open_context *ctx;
493 int ret;
494
495 ctx = nfs4_state_find_open_context(state);
496 if (IS_ERR(ctx))
497 return PTR_ERR(ctx);
498 ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
499 put_nfs_open_context(ctx);
500 return ret;
501 }
502
503 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
504 {
505 struct nfs4_state_owner *sp = state->owner;
506 struct nfs4_opendata *opendata;
507 int ret;
508
509 if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
510 return 0;
511 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
512 if (opendata == NULL)
513 return -ENOMEM;
514 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
515 memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
516 sizeof(opendata->o_arg.u.delegation.data));
517 ret = nfs4_open_recover(opendata, state);
518 nfs4_opendata_free(opendata);
519 return ret;
520 }
521
522 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
523 {
524 struct nfs4_exception exception = { };
525 struct nfs_server *server = NFS_SERVER(dentry->d_inode);
526 int err;
527 do {
528 err = _nfs4_open_delegation_recall(dentry, state);
529 switch (err) {
530 case 0:
531 return err;
532 case -NFS4ERR_STALE_CLIENTID:
533 case -NFS4ERR_STALE_STATEID:
534 case -NFS4ERR_EXPIRED:
535 /* Don't recall a delegation if it was lost */
536 nfs4_schedule_state_recovery(server->nfs4_state);
537 return err;
538 }
539 err = nfs4_handle_exception(server, err, &exception);
540 } while (exception.retry);
541 return err;
542 }
543
544 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
545 {
546 struct nfs4_opendata *data = calldata;
547 struct rpc_message msg = {
548 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
549 .rpc_argp = &data->c_arg,
550 .rpc_resp = &data->c_res,
551 .rpc_cred = data->owner->so_cred,
552 };
553 data->timestamp = jiffies;
554 rpc_call_setup(task, &msg, 0);
555 }
556
557 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
558 {
559 struct nfs4_opendata *data = calldata;
560
561 data->rpc_status = task->tk_status;
562 if (RPC_ASSASSINATED(task))
563 return;
564 if (data->rpc_status == 0) {
565 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
566 sizeof(data->o_res.stateid.data));
567 renew_lease(data->o_res.server, data->timestamp);
568 }
569 nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
570 nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
571 }
572
573 static void nfs4_open_confirm_release(void *calldata)
574 {
575 struct nfs4_opendata *data = calldata;
576 struct nfs4_state *state = NULL;
577
578 /* If this request hasn't been cancelled, do nothing */
579 if (data->cancelled == 0)
580 goto out_free;
581 /* In case of error, no cleanup! */
582 if (data->rpc_status != 0)
583 goto out_free;
584 nfs_confirm_seqid(&data->owner->so_seqid, 0);
585 state = nfs4_opendata_to_nfs4_state(data);
586 if (state != NULL)
587 nfs4_close_state(state, data->o_arg.open_flags);
588 out_free:
589 nfs4_opendata_free(data);
590 }
591
592 static const struct rpc_call_ops nfs4_open_confirm_ops = {
593 .rpc_call_prepare = nfs4_open_confirm_prepare,
594 .rpc_call_done = nfs4_open_confirm_done,
595 .rpc_release = nfs4_open_confirm_release,
596 };
597
598 /*
599 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
600 */
601 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
602 {
603 struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
604 struct rpc_task *task;
605 int status;
606
607 atomic_inc(&data->count);
608 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
609 if (IS_ERR(task)) {
610 nfs4_opendata_free(data);
611 return PTR_ERR(task);
612 }
613 status = nfs4_wait_for_completion_rpc_task(task);
614 if (status != 0) {
615 data->cancelled = 1;
616 smp_wmb();
617 } else
618 status = data->rpc_status;
619 rpc_release_task(task);
620 return status;
621 }
622
623 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
624 {
625 struct nfs4_opendata *data = calldata;
626 struct nfs4_state_owner *sp = data->owner;
627 struct rpc_message msg = {
628 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
629 .rpc_argp = &data->o_arg,
630 .rpc_resp = &data->o_res,
631 .rpc_cred = sp->so_cred,
632 };
633
634 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
635 return;
636 /* Update sequence id. */
637 data->o_arg.id = sp->so_id;
638 data->o_arg.clientid = sp->so_client->cl_clientid;
639 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
640 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
641 data->timestamp = jiffies;
642 rpc_call_setup(task, &msg, 0);
643 }
644
645 static void nfs4_open_done(struct rpc_task *task, void *calldata)
646 {
647 struct nfs4_opendata *data = calldata;
648
649 data->rpc_status = task->tk_status;
650 if (RPC_ASSASSINATED(task))
651 return;
652 if (task->tk_status == 0) {
653 switch (data->o_res.f_attr->mode & S_IFMT) {
654 case S_IFREG:
655 break;
656 case S_IFLNK:
657 data->rpc_status = -ELOOP;
658 break;
659 case S_IFDIR:
660 data->rpc_status = -EISDIR;
661 break;
662 default:
663 data->rpc_status = -ENOTDIR;
664 }
665 renew_lease(data->o_res.server, data->timestamp);
666 }
667 nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
668 }
669
670 static void nfs4_open_release(void *calldata)
671 {
672 struct nfs4_opendata *data = calldata;
673 struct nfs4_state *state = NULL;
674
675 /* If this request hasn't been cancelled, do nothing */
676 if (data->cancelled == 0)
677 goto out_free;
678 /* In case of error, no cleanup! */
679 if (data->rpc_status != 0)
680 goto out_free;
681 /* In case we need an open_confirm, no cleanup! */
682 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
683 goto out_free;
684 nfs_confirm_seqid(&data->owner->so_seqid, 0);
685 state = nfs4_opendata_to_nfs4_state(data);
686 if (state != NULL)
687 nfs4_close_state(state, data->o_arg.open_flags);
688 out_free:
689 nfs4_opendata_free(data);
690 }
691
692 static const struct rpc_call_ops nfs4_open_ops = {
693 .rpc_call_prepare = nfs4_open_prepare,
694 .rpc_call_done = nfs4_open_done,
695 .rpc_release = nfs4_open_release,
696 };
697
698 /*
699 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
700 */
701 static int _nfs4_proc_open(struct nfs4_opendata *data)
702 {
703 struct inode *dir = data->dir->d_inode;
704 struct nfs_server *server = NFS_SERVER(dir);
705 struct nfs_openargs *o_arg = &data->o_arg;
706 struct nfs_openres *o_res = &data->o_res;
707 struct rpc_task *task;
708 int status;
709
710 atomic_inc(&data->count);
711 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
712 if (IS_ERR(task)) {
713 nfs4_opendata_free(data);
714 return PTR_ERR(task);
715 }
716 status = nfs4_wait_for_completion_rpc_task(task);
717 if (status != 0) {
718 data->cancelled = 1;
719 smp_wmb();
720 } else
721 status = data->rpc_status;
722 rpc_release_task(task);
723 if (status != 0)
724 return status;
725
726 if (o_arg->open_flags & O_CREAT) {
727 update_changeattr(dir, &o_res->cinfo);
728 nfs_post_op_update_inode(dir, o_res->dir_attr);
729 } else
730 nfs_refresh_inode(dir, o_res->dir_attr);
731 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
732 status = _nfs4_proc_open_confirm(data);
733 if (status != 0)
734 return status;
735 }
736 nfs_confirm_seqid(&data->owner->so_seqid, 0);
737 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
738 return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
739 return 0;
740 }
741
742 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
743 {
744 struct nfs_access_entry cache;
745 int mask = 0;
746 int status;
747
748 if (openflags & FMODE_READ)
749 mask |= MAY_READ;
750 if (openflags & FMODE_WRITE)
751 mask |= MAY_WRITE;
752 status = nfs_access_get_cached(inode, cred, &cache);
753 if (status == 0)
754 goto out;
755
756 /* Be clever: ask server to check for all possible rights */
757 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
758 cache.cred = cred;
759 cache.jiffies = jiffies;
760 status = _nfs4_proc_access(inode, &cache);
761 if (status != 0)
762 return status;
763 nfs_access_add_cache(inode, &cache);
764 out:
765 if ((cache.mask & mask) == mask)
766 return 0;
767 return -EACCES;
768 }
769
770 int nfs4_recover_expired_lease(struct nfs_server *server)
771 {
772 struct nfs4_client *clp = server->nfs4_state;
773
774 if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
775 nfs4_schedule_state_recovery(clp);
776 return nfs4_wait_clnt_recover(server->client, clp);
777 }
778
779 /*
780 * OPEN_EXPIRED:
781 * reclaim state on the server after a network partition.
782 * Assumes caller holds the appropriate lock
783 */
784 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
785 {
786 struct inode *inode = state->inode;
787 struct nfs_delegation *delegation = NFS_I(inode)->delegation;
788 struct nfs4_opendata *opendata;
789 int openflags = state->state & (FMODE_READ|FMODE_WRITE);
790 int ret;
791
792 if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
793 ret = _nfs4_do_access(inode, sp->so_cred, openflags);
794 if (ret < 0)
795 return ret;
796 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
797 set_bit(NFS_DELEGATED_STATE, &state->flags);
798 return 0;
799 }
800 opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
801 if (opendata == NULL)
802 return -ENOMEM;
803 ret = nfs4_open_recover(opendata, state);
804 if (ret == -ESTALE) {
805 /* Invalidate the state owner so we don't ever use it again */
806 nfs4_drop_state_owner(sp);
807 d_drop(dentry);
808 }
809 nfs4_opendata_free(opendata);
810 return ret;
811 }
812
813 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
814 {
815 struct nfs_server *server = NFS_SERVER(dentry->d_inode);
816 struct nfs4_exception exception = { };
817 int err;
818
819 do {
820 err = _nfs4_open_expired(sp, state, dentry);
821 if (err == -NFS4ERR_DELAY)
822 nfs4_handle_exception(server, err, &exception);
823 } while (exception.retry);
824 return err;
825 }
826
827 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
828 {
829 struct nfs_open_context *ctx;
830 int ret;
831
832 ctx = nfs4_state_find_open_context(state);
833 if (IS_ERR(ctx))
834 return PTR_ERR(ctx);
835 ret = nfs4_do_open_expired(sp, state, ctx->dentry);
836 put_nfs_open_context(ctx);
837 return ret;
838 }
839
840 /*
841 * Returns a referenced nfs4_state if there is an open delegation on the file
842 */
843 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
844 {
845 struct nfs_delegation *delegation;
846 struct nfs_server *server = NFS_SERVER(inode);
847 struct nfs4_client *clp = server->nfs4_state;
848 struct nfs_inode *nfsi = NFS_I(inode);
849 struct nfs4_state_owner *sp = NULL;
850 struct nfs4_state *state = NULL;
851 int open_flags = flags & (FMODE_READ|FMODE_WRITE);
852 int err;
853
854 err = -ENOMEM;
855 if (!(sp = nfs4_get_state_owner(server, cred))) {
856 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
857 return err;
858 }
859 err = nfs4_recover_expired_lease(server);
860 if (err != 0)
861 goto out_put_state_owner;
862 /* Protect against reboot recovery - NOTE ORDER! */
863 down_read(&clp->cl_sem);
864 /* Protect against delegation recall */
865 down_read(&nfsi->rwsem);
866 delegation = NFS_I(inode)->delegation;
867 err = -ENOENT;
868 if (delegation == NULL || (delegation->type & open_flags) != open_flags)
869 goto out_err;
870 err = -ENOMEM;
871 state = nfs4_get_open_state(inode, sp);
872 if (state == NULL)
873 goto out_err;
874
875 err = -ENOENT;
876 if ((state->state & open_flags) == open_flags) {
877 spin_lock(&inode->i_lock);
878 update_open_stateflags(state, open_flags);
879 spin_unlock(&inode->i_lock);
880 goto out_ok;
881 } else if (state->state != 0)
882 goto out_put_open_state;
883
884 lock_kernel();
885 err = _nfs4_do_access(inode, cred, open_flags);
886 unlock_kernel();
887 if (err != 0)
888 goto out_put_open_state;
889 set_bit(NFS_DELEGATED_STATE, &state->flags);
890 update_open_stateid(state, &delegation->stateid, open_flags);
891 out_ok:
892 nfs4_put_state_owner(sp);
893 up_read(&nfsi->rwsem);
894 up_read(&clp->cl_sem);
895 *res = state;
896 return 0;
897 out_put_open_state:
898 nfs4_put_open_state(state);
899 out_err:
900 up_read(&nfsi->rwsem);
901 up_read(&clp->cl_sem);
902 if (err != -EACCES)
903 nfs_inode_return_delegation(inode);
904 out_put_state_owner:
905 nfs4_put_state_owner(sp);
906 return err;
907 }
908
909 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
910 {
911 struct nfs4_exception exception = { };
912 struct nfs4_state *res = ERR_PTR(-EIO);
913 int err;
914
915 do {
916 err = _nfs4_open_delegated(inode, flags, cred, &res);
917 if (err == 0)
918 break;
919 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
920 err, &exception));
921 } while (exception.retry);
922 return res;
923 }
924
925 /*
926 * Returns a referenced nfs4_state
927 */
928 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
929 {
930 struct nfs4_state_owner *sp;
931 struct nfs4_state *state = NULL;
932 struct nfs_server *server = NFS_SERVER(dir);
933 struct nfs4_client *clp = server->nfs4_state;
934 struct nfs4_opendata *opendata;
935 int status;
936
937 /* Protect against reboot recovery conflicts */
938 status = -ENOMEM;
939 if (!(sp = nfs4_get_state_owner(server, cred))) {
940 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
941 goto out_err;
942 }
943 status = nfs4_recover_expired_lease(server);
944 if (status != 0)
945 goto err_put_state_owner;
946 down_read(&clp->cl_sem);
947 status = -ENOMEM;
948 opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
949 if (opendata == NULL)
950 goto err_put_state_owner;
951
952 status = _nfs4_proc_open(opendata);
953 if (status != 0)
954 goto err_opendata_free;
955
956 status = -ENOMEM;
957 state = nfs4_opendata_to_nfs4_state(opendata);
958 if (state == NULL)
959 goto err_opendata_free;
960 if (opendata->o_res.delegation_type != 0)
961 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
962 nfs4_opendata_free(opendata);
963 nfs4_put_state_owner(sp);
964 up_read(&clp->cl_sem);
965 *res = state;
966 return 0;
967 err_opendata_free:
968 nfs4_opendata_free(opendata);
969 err_put_state_owner:
970 nfs4_put_state_owner(sp);
971 out_err:
972 /* Note: clp->cl_sem must be released before nfs4_put_open_state()! */
973 up_read(&clp->cl_sem);
974 *res = NULL;
975 return status;
976 }
977
978
979 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
980 {
981 struct nfs4_exception exception = { };
982 struct nfs4_state *res;
983 int status;
984
985 do {
986 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
987 if (status == 0)
988 break;
989 /* NOTE: BAD_SEQID means the server and client disagree about the
990 * book-keeping w.r.t. state-changing operations
991 * (OPEN/CLOSE/LOCK/LOCKU...)
992 * It is actually a sign of a bug on the client or on the server.
993 *
994 * If we receive a BAD_SEQID error in the particular case of
995 * doing an OPEN, we assume that nfs_increment_open_seqid() will
996 * have unhashed the old state_owner for us, and that we can
997 * therefore safely retry using a new one. We should still warn
998 * the user though...
999 */
1000 if (status == -NFS4ERR_BAD_SEQID) {
1001 printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1002 exception.retry = 1;
1003 continue;
1004 }
1005 /*
1006 * BAD_STATEID on OPEN means that the server cancelled our
1007 * state before it received the OPEN_CONFIRM.
1008 * Recover by retrying the request as per the discussion
1009 * on Page 181 of RFC3530.
1010 */
1011 if (status == -NFS4ERR_BAD_STATEID) {
1012 exception.retry = 1;
1013 continue;
1014 }
1015 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1016 status, &exception));
1017 } while (exception.retry);
1018 return res;
1019 }
1020
1021 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1022 struct iattr *sattr, struct nfs4_state *state)
1023 {
1024 struct nfs_server *server = NFS_SERVER(inode);
1025 struct nfs_setattrargs arg = {
1026 .fh = NFS_FH(inode),
1027 .iap = sattr,
1028 .server = server,
1029 .bitmask = server->attr_bitmask,
1030 };
1031 struct nfs_setattrres res = {
1032 .fattr = fattr,
1033 .server = server,
1034 };
1035 struct rpc_message msg = {
1036 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1037 .rpc_argp = &arg,
1038 .rpc_resp = &res,
1039 };
1040 unsigned long timestamp = jiffies;
1041 int status;
1042
1043 nfs_fattr_init(fattr);
1044
1045 if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1046 /* Use that stateid */
1047 } else if (state != NULL) {
1048 msg.rpc_cred = state->owner->so_cred;
1049 nfs4_copy_stateid(&arg.stateid, state, current->files);
1050 } else
1051 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1052
1053 status = rpc_call_sync(server->client, &msg, 0);
1054 if (status == 0 && state != NULL)
1055 renew_lease(server, timestamp);
1056 return status;
1057 }
1058
1059 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1060 struct iattr *sattr, struct nfs4_state *state)
1061 {
1062 struct nfs_server *server = NFS_SERVER(inode);
1063 struct nfs4_exception exception = { };
1064 int err;
1065 do {
1066 err = nfs4_handle_exception(server,
1067 _nfs4_do_setattr(inode, fattr, sattr, state),
1068 &exception);
1069 } while (exception.retry);
1070 return err;
1071 }
1072
1073 struct nfs4_closedata {
1074 struct inode *inode;
1075 struct nfs4_state *state;
1076 struct nfs_closeargs arg;
1077 struct nfs_closeres res;
1078 struct nfs_fattr fattr;
1079 unsigned long timestamp;
1080 };
1081
1082 static void nfs4_free_closedata(void *data)
1083 {
1084 struct nfs4_closedata *calldata = data;
1085 struct nfs4_state_owner *sp = calldata->state->owner;
1086
1087 nfs4_put_open_state(calldata->state);
1088 nfs_free_seqid(calldata->arg.seqid);
1089 nfs4_put_state_owner(sp);
1090 kfree(calldata);
1091 }
1092
1093 static void nfs4_close_done(struct rpc_task *task, void *data)
1094 {
1095 struct nfs4_closedata *calldata = data;
1096 struct nfs4_state *state = calldata->state;
1097 struct nfs_server *server = NFS_SERVER(calldata->inode);
1098
1099 if (RPC_ASSASSINATED(task))
1100 return;
1101 /* hmm. we are done with the inode, and in the process of freeing
1102 * the state_owner. we keep this around to process errors
1103 */
1104 nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1105 switch (task->tk_status) {
1106 case 0:
1107 memcpy(&state->stateid, &calldata->res.stateid,
1108 sizeof(state->stateid));
1109 renew_lease(server, calldata->timestamp);
1110 break;
1111 case -NFS4ERR_STALE_STATEID:
1112 case -NFS4ERR_EXPIRED:
1113 nfs4_schedule_state_recovery(server->nfs4_state);
1114 break;
1115 default:
1116 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1117 rpc_restart_call(task);
1118 return;
1119 }
1120 }
1121 nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1122 }
1123
1124 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1125 {
1126 struct nfs4_closedata *calldata = data;
1127 struct nfs4_state *state = calldata->state;
1128 struct rpc_message msg = {
1129 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1130 .rpc_argp = &calldata->arg,
1131 .rpc_resp = &calldata->res,
1132 .rpc_cred = state->owner->so_cred,
1133 };
1134 int mode = 0, old_mode;
1135
1136 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1137 return;
1138 /* Recalculate the new open mode in case someone reopened the file
1139 * while we were waiting in line to be scheduled.
1140 */
1141 spin_lock(&state->owner->so_lock);
1142 spin_lock(&calldata->inode->i_lock);
1143 mode = old_mode = state->state;
1144 if (state->n_rdwr == 0) {
1145 if (state->n_rdonly == 0)
1146 mode &= ~FMODE_READ;
1147 if (state->n_wronly == 0)
1148 mode &= ~FMODE_WRITE;
1149 }
1150 nfs4_state_set_mode_locked(state, mode);
1151 spin_unlock(&calldata->inode->i_lock);
1152 spin_unlock(&state->owner->so_lock);
1153 if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1154 /* Note: exit _without_ calling nfs4_close_done */
1155 task->tk_action = NULL;
1156 return;
1157 }
1158 nfs_fattr_init(calldata->res.fattr);
1159 if (mode != 0)
1160 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1161 calldata->arg.open_flags = mode;
1162 calldata->timestamp = jiffies;
1163 rpc_call_setup(task, &msg, 0);
1164 }
1165
1166 static const struct rpc_call_ops nfs4_close_ops = {
1167 .rpc_call_prepare = nfs4_close_prepare,
1168 .rpc_call_done = nfs4_close_done,
1169 .rpc_release = nfs4_free_closedata,
1170 };
1171
1172 /*
1173 * It is possible for data to be read/written from a mem-mapped file
1174 * after the sys_close call (which hits the vfs layer as a flush).
1175 * This means that we can't safely call nfsv4 close on a file until
1176 * the inode is cleared. This in turn means that we are not good
1177 * NFSv4 citizens - we do not indicate to the server to update the file's
1178 * share state even when we are done with one of the three share
1179 * stateid's in the inode.
1180 *
1181 * NOTE: Caller must be holding the sp->so_owner semaphore!
1182 */
1183 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1184 {
1185 struct nfs_server *server = NFS_SERVER(inode);
1186 struct nfs4_closedata *calldata;
1187 int status = -ENOMEM;
1188
1189 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1190 if (calldata == NULL)
1191 goto out;
1192 calldata->inode = inode;
1193 calldata->state = state;
1194 calldata->arg.fh = NFS_FH(inode);
1195 calldata->arg.stateid = &state->stateid;
1196 /* Serialization for the sequence id */
1197 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1198 if (calldata->arg.seqid == NULL)
1199 goto out_free_calldata;
1200 calldata->arg.bitmask = server->attr_bitmask;
1201 calldata->res.fattr = &calldata->fattr;
1202 calldata->res.server = server;
1203
1204 status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1205 if (status == 0)
1206 goto out;
1207
1208 nfs_free_seqid(calldata->arg.seqid);
1209 out_free_calldata:
1210 kfree(calldata);
1211 out:
1212 return status;
1213 }
1214
1215 static void nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1216 {
1217 struct file *filp;
1218
1219 filp = lookup_instantiate_filp(nd, dentry, NULL);
1220 if (!IS_ERR(filp)) {
1221 struct nfs_open_context *ctx;
1222 ctx = (struct nfs_open_context *)filp->private_data;
1223 ctx->state = state;
1224 } else
1225 nfs4_close_state(state, nd->intent.open.flags);
1226 }
1227
1228 struct dentry *
1229 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1230 {
1231 struct iattr attr;
1232 struct rpc_cred *cred;
1233 struct nfs4_state *state;
1234 struct dentry *res;
1235
1236 if (nd->flags & LOOKUP_CREATE) {
1237 attr.ia_mode = nd->intent.open.create_mode;
1238 attr.ia_valid = ATTR_MODE;
1239 if (!IS_POSIXACL(dir))
1240 attr.ia_mode &= ~current->fs->umask;
1241 } else {
1242 attr.ia_valid = 0;
1243 BUG_ON(nd->intent.open.flags & O_CREAT);
1244 }
1245
1246 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1247 if (IS_ERR(cred))
1248 return (struct dentry *)cred;
1249 state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1250 put_rpccred(cred);
1251 if (IS_ERR(state)) {
1252 if (PTR_ERR(state) == -ENOENT)
1253 d_add(dentry, NULL);
1254 return (struct dentry *)state;
1255 }
1256 res = d_add_unique(dentry, igrab(state->inode));
1257 if (res != NULL)
1258 dentry = res;
1259 nfs4_intent_set_file(nd, dentry, state);
1260 return res;
1261 }
1262
1263 int
1264 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1265 {
1266 struct rpc_cred *cred;
1267 struct nfs4_state *state;
1268
1269 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1270 if (IS_ERR(cred))
1271 return PTR_ERR(cred);
1272 state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1273 if (IS_ERR(state))
1274 state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1275 put_rpccred(cred);
1276 if (IS_ERR(state)) {
1277 switch (PTR_ERR(state)) {
1278 case -EPERM:
1279 case -EACCES:
1280 case -EDQUOT:
1281 case -ENOSPC:
1282 case -EROFS:
1283 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1284 return 1;
1285 case -ENOENT:
1286 if (dentry->d_inode == NULL)
1287 return 1;
1288 }
1289 goto out_drop;
1290 }
1291 if (state->inode == dentry->d_inode) {
1292 nfs4_intent_set_file(nd, dentry, state);
1293 return 1;
1294 }
1295 nfs4_close_state(state, openflags);
1296 out_drop:
1297 d_drop(dentry);
1298 return 0;
1299 }
1300
1301
1302 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1303 {
1304 struct nfs4_server_caps_res res = {};
1305 struct rpc_message msg = {
1306 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1307 .rpc_argp = fhandle,
1308 .rpc_resp = &res,
1309 };
1310 int status;
1311
1312 status = rpc_call_sync(server->client, &msg, 0);
1313 if (status == 0) {
1314 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1315 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1316 server->caps |= NFS_CAP_ACLS;
1317 if (res.has_links != 0)
1318 server->caps |= NFS_CAP_HARDLINKS;
1319 if (res.has_symlinks != 0)
1320 server->caps |= NFS_CAP_SYMLINKS;
1321 server->acl_bitmask = res.acl_bitmask;
1322 }
1323 return status;
1324 }
1325
1326 static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1327 {
1328 struct nfs4_exception exception = { };
1329 int err;
1330 do {
1331 err = nfs4_handle_exception(server,
1332 _nfs4_server_capabilities(server, fhandle),
1333 &exception);
1334 } while (exception.retry);
1335 return err;
1336 }
1337
1338 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1339 struct nfs_fsinfo *info)
1340 {
1341 struct nfs4_lookup_root_arg args = {
1342 .bitmask = nfs4_fattr_bitmap,
1343 };
1344 struct nfs4_lookup_res res = {
1345 .server = server,
1346 .fattr = info->fattr,
1347 .fh = fhandle,
1348 };
1349 struct rpc_message msg = {
1350 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1351 .rpc_argp = &args,
1352 .rpc_resp = &res,
1353 };
1354 nfs_fattr_init(info->fattr);
1355 return rpc_call_sync(server->client, &msg, 0);
1356 }
1357
1358 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1359 struct nfs_fsinfo *info)
1360 {
1361 struct nfs4_exception exception = { };
1362 int err;
1363 do {
1364 err = nfs4_handle_exception(server,
1365 _nfs4_lookup_root(server, fhandle, info),
1366 &exception);
1367 } while (exception.retry);
1368 return err;
1369 }
1370
1371 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1372 struct nfs_fsinfo *info)
1373 {
1374 struct nfs_fattr * fattr = info->fattr;
1375 unsigned char * p;
1376 struct qstr q;
1377 struct nfs4_lookup_arg args = {
1378 .dir_fh = fhandle,
1379 .name = &q,
1380 .bitmask = nfs4_fattr_bitmap,
1381 };
1382 struct nfs4_lookup_res res = {
1383 .server = server,
1384 .fattr = fattr,
1385 .fh = fhandle,
1386 };
1387 struct rpc_message msg = {
1388 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1389 .rpc_argp = &args,
1390 .rpc_resp = &res,
1391 };
1392 int status;
1393
1394 /*
1395 * Now we do a separate LOOKUP for each component of the mount path.
1396 * The LOOKUPs are done separately so that we can conveniently
1397 * catch an ERR_WRONGSEC if it occurs along the way...
1398 */
1399 status = nfs4_lookup_root(server, fhandle, info);
1400 if (status)
1401 goto out;
1402
1403 p = server->mnt_path;
1404 for (;;) {
1405 struct nfs4_exception exception = { };
1406
1407 while (*p == '/')
1408 p++;
1409 if (!*p)
1410 break;
1411 q.name = p;
1412 while (*p && (*p != '/'))
1413 p++;
1414 q.len = p - q.name;
1415
1416 do {
1417 nfs_fattr_init(fattr);
1418 status = nfs4_handle_exception(server,
1419 rpc_call_sync(server->client, &msg, 0),
1420 &exception);
1421 } while (exception.retry);
1422 if (status == 0)
1423 continue;
1424 if (status == -ENOENT) {
1425 printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
1426 printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
1427 }
1428 break;
1429 }
1430 if (status == 0)
1431 status = nfs4_server_capabilities(server, fhandle);
1432 if (status == 0)
1433 status = nfs4_do_fsinfo(server, fhandle, info);
1434 out:
1435 return nfs4_map_errors(status);
1436 }
1437
1438 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1439 {
1440 struct nfs4_getattr_arg args = {
1441 .fh = fhandle,
1442 .bitmask = server->attr_bitmask,
1443 };
1444 struct nfs4_getattr_res res = {
1445 .fattr = fattr,
1446 .server = server,
1447 };
1448 struct rpc_message msg = {
1449 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1450 .rpc_argp = &args,
1451 .rpc_resp = &res,
1452 };
1453
1454 nfs_fattr_init(fattr);
1455 return rpc_call_sync(server->client, &msg, 0);
1456 }
1457
1458 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1459 {
1460 struct nfs4_exception exception = { };
1461 int err;
1462 do {
1463 err = nfs4_handle_exception(server,
1464 _nfs4_proc_getattr(server, fhandle, fattr),
1465 &exception);
1466 } while (exception.retry);
1467 return err;
1468 }
1469
1470 /*
1471 * The file is not closed if it is opened due to the a request to change
1472 * the size of the file. The open call will not be needed once the
1473 * VFS layer lookup-intents are implemented.
1474 *
1475 * Close is called when the inode is destroyed.
1476 * If we haven't opened the file for O_WRONLY, we
1477 * need to in the size_change case to obtain a stateid.
1478 *
1479 * Got race?
1480 * Because OPEN is always done by name in nfsv4, it is
1481 * possible that we opened a different file by the same
1482 * name. We can recognize this race condition, but we
1483 * can't do anything about it besides returning an error.
1484 *
1485 * This will be fixed with VFS changes (lookup-intent).
1486 */
1487 static int
1488 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1489 struct iattr *sattr)
1490 {
1491 struct rpc_cred *cred;
1492 struct inode *inode = dentry->d_inode;
1493 struct nfs_open_context *ctx;
1494 struct nfs4_state *state = NULL;
1495 int status;
1496
1497 nfs_fattr_init(fattr);
1498
1499 cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
1500 if (IS_ERR(cred))
1501 return PTR_ERR(cred);
1502
1503 /* Search for an existing open(O_WRITE) file */
1504 ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1505 if (ctx != NULL)
1506 state = ctx->state;
1507
1508 status = nfs4_do_setattr(inode, fattr, sattr, state);
1509 if (status == 0)
1510 nfs_setattr_update_inode(inode, sattr);
1511 if (ctx != NULL)
1512 put_nfs_open_context(ctx);
1513 put_rpccred(cred);
1514 return status;
1515 }
1516
1517 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1518 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1519 {
1520 int status;
1521 struct nfs_server *server = NFS_SERVER(dir);
1522 struct nfs4_lookup_arg args = {
1523 .bitmask = server->attr_bitmask,
1524 .dir_fh = NFS_FH(dir),
1525 .name = name,
1526 };
1527 struct nfs4_lookup_res res = {
1528 .server = server,
1529 .fattr = fattr,
1530 .fh = fhandle,
1531 };
1532 struct rpc_message msg = {
1533 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1534 .rpc_argp = &args,
1535 .rpc_resp = &res,
1536 };
1537
1538 nfs_fattr_init(fattr);
1539
1540 dprintk("NFS call lookup %s\n", name->name);
1541 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1542 dprintk("NFS reply lookup: %d\n", status);
1543 return status;
1544 }
1545
1546 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1547 {
1548 struct nfs4_exception exception = { };
1549 int err;
1550 do {
1551 err = nfs4_handle_exception(NFS_SERVER(dir),
1552 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1553 &exception);
1554 } while (exception.retry);
1555 return err;
1556 }
1557
1558 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1559 {
1560 struct nfs4_accessargs args = {
1561 .fh = NFS_FH(inode),
1562 };
1563 struct nfs4_accessres res = { 0 };
1564 struct rpc_message msg = {
1565 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1566 .rpc_argp = &args,
1567 .rpc_resp = &res,
1568 .rpc_cred = entry->cred,
1569 };
1570 int mode = entry->mask;
1571 int status;
1572
1573 /*
1574 * Determine which access bits we want to ask for...
1575 */
1576 if (mode & MAY_READ)
1577 args.access |= NFS4_ACCESS_READ;
1578 if (S_ISDIR(inode->i_mode)) {
1579 if (mode & MAY_WRITE)
1580 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1581 if (mode & MAY_EXEC)
1582 args.access |= NFS4_ACCESS_LOOKUP;
1583 } else {
1584 if (mode & MAY_WRITE)
1585 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1586 if (mode & MAY_EXEC)
1587 args.access |= NFS4_ACCESS_EXECUTE;
1588 }
1589 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1590 if (!status) {
1591 entry->mask = 0;
1592 if (res.access & NFS4_ACCESS_READ)
1593 entry->mask |= MAY_READ;
1594 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1595 entry->mask |= MAY_WRITE;
1596 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1597 entry->mask |= MAY_EXEC;
1598 }
1599 return status;
1600 }
1601
1602 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1603 {
1604 struct nfs4_exception exception = { };
1605 int err;
1606 do {
1607 err = nfs4_handle_exception(NFS_SERVER(inode),
1608 _nfs4_proc_access(inode, entry),
1609 &exception);
1610 } while (exception.retry);
1611 return err;
1612 }
1613
1614 /*
1615 * TODO: For the time being, we don't try to get any attributes
1616 * along with any of the zero-copy operations READ, READDIR,
1617 * READLINK, WRITE.
1618 *
1619 * In the case of the first three, we want to put the GETATTR
1620 * after the read-type operation -- this is because it is hard
1621 * to predict the length of a GETATTR response in v4, and thus
1622 * align the READ data correctly. This means that the GETATTR
1623 * may end up partially falling into the page cache, and we should
1624 * shift it into the 'tail' of the xdr_buf before processing.
1625 * To do this efficiently, we need to know the total length
1626 * of data received, which doesn't seem to be available outside
1627 * of the RPC layer.
1628 *
1629 * In the case of WRITE, we also want to put the GETATTR after
1630 * the operation -- in this case because we want to make sure
1631 * we get the post-operation mtime and size. This means that
1632 * we can't use xdr_encode_pages() as written: we need a variant
1633 * of it which would leave room in the 'tail' iovec.
1634 *
1635 * Both of these changes to the XDR layer would in fact be quite
1636 * minor, but I decided to leave them for a subsequent patch.
1637 */
1638 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1639 unsigned int pgbase, unsigned int pglen)
1640 {
1641 struct nfs4_readlink args = {
1642 .fh = NFS_FH(inode),
1643 .pgbase = pgbase,
1644 .pglen = pglen,
1645 .pages = &page,
1646 };
1647 struct rpc_message msg = {
1648 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1649 .rpc_argp = &args,
1650 .rpc_resp = NULL,
1651 };
1652
1653 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1654 }
1655
1656 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1657 unsigned int pgbase, unsigned int pglen)
1658 {
1659 struct nfs4_exception exception = { };
1660 int err;
1661 do {
1662 err = nfs4_handle_exception(NFS_SERVER(inode),
1663 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1664 &exception);
1665 } while (exception.retry);
1666 return err;
1667 }
1668
1669 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1670 {
1671 int flags = rdata->flags;
1672 struct inode *inode = rdata->inode;
1673 struct nfs_fattr *fattr = rdata->res.fattr;
1674 struct nfs_server *server = NFS_SERVER(inode);
1675 struct rpc_message msg = {
1676 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
1677 .rpc_argp = &rdata->args,
1678 .rpc_resp = &rdata->res,
1679 .rpc_cred = rdata->cred,
1680 };
1681 unsigned long timestamp = jiffies;
1682 int status;
1683
1684 dprintk("NFS call read %d @ %Ld\n", rdata->args.count,
1685 (long long) rdata->args.offset);
1686
1687 nfs_fattr_init(fattr);
1688 status = rpc_call_sync(server->client, &msg, flags);
1689 if (!status)
1690 renew_lease(server, timestamp);
1691 dprintk("NFS reply read: %d\n", status);
1692 return status;
1693 }
1694
1695 static int nfs4_proc_read(struct nfs_read_data *rdata)
1696 {
1697 struct nfs4_exception exception = { };
1698 int err;
1699 do {
1700 err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1701 _nfs4_proc_read(rdata),
1702 &exception);
1703 } while (exception.retry);
1704 return err;
1705 }
1706
1707 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1708 {
1709 int rpcflags = wdata->flags;
1710 struct inode *inode = wdata->inode;
1711 struct nfs_fattr *fattr = wdata->res.fattr;
1712 struct nfs_server *server = NFS_SERVER(inode);
1713 struct rpc_message msg = {
1714 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1715 .rpc_argp = &wdata->args,
1716 .rpc_resp = &wdata->res,
1717 .rpc_cred = wdata->cred,
1718 };
1719 int status;
1720
1721 dprintk("NFS call write %d @ %Ld\n", wdata->args.count,
1722 (long long) wdata->args.offset);
1723
1724 wdata->args.bitmask = server->attr_bitmask;
1725 wdata->res.server = server;
1726 wdata->timestamp = jiffies;
1727 nfs_fattr_init(fattr);
1728 status = rpc_call_sync(server->client, &msg, rpcflags);
1729 dprintk("NFS reply write: %d\n", status);
1730 if (status < 0)
1731 return status;
1732 renew_lease(server, wdata->timestamp);
1733 nfs_post_op_update_inode(inode, fattr);
1734 return wdata->res.count;
1735 }
1736
1737 static int nfs4_proc_write(struct nfs_write_data *wdata)
1738 {
1739 struct nfs4_exception exception = { };
1740 int err;
1741 do {
1742 err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1743 _nfs4_proc_write(wdata),
1744 &exception);
1745 } while (exception.retry);
1746 return err;
1747 }
1748
1749 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1750 {
1751 struct inode *inode = cdata->inode;
1752 struct nfs_fattr *fattr = cdata->res.fattr;
1753 struct nfs_server *server = NFS_SERVER(inode);
1754 struct rpc_message msg = {
1755 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1756 .rpc_argp = &cdata->args,
1757 .rpc_resp = &cdata->res,
1758 .rpc_cred = cdata->cred,
1759 };
1760 int status;
1761
1762 dprintk("NFS call commit %d @ %Ld\n", cdata->args.count,
1763 (long long) cdata->args.offset);
1764
1765 cdata->args.bitmask = server->attr_bitmask;
1766 cdata->res.server = server;
1767 cdata->timestamp = jiffies;
1768 nfs_fattr_init(fattr);
1769 status = rpc_call_sync(server->client, &msg, 0);
1770 if (status >= 0)
1771 renew_lease(server, cdata->timestamp);
1772 dprintk("NFS reply commit: %d\n", status);
1773 if (status >= 0)
1774 nfs_post_op_update_inode(inode, fattr);
1775 return status;
1776 }
1777
1778 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1779 {
1780 struct nfs4_exception exception = { };
1781 int err;
1782 do {
1783 err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1784 _nfs4_proc_commit(cdata),
1785 &exception);
1786 } while (exception.retry);
1787 return err;
1788 }
1789
1790 /*
1791 * Got race?
1792 * We will need to arrange for the VFS layer to provide an atomic open.
1793 * Until then, this create/open method is prone to inefficiency and race
1794 * conditions due to the lookup, create, and open VFS calls from sys_open()
1795 * placed on the wire.
1796 *
1797 * Given the above sorry state of affairs, I'm simply sending an OPEN.
1798 * The file will be opened again in the subsequent VFS open call
1799 * (nfs4_proc_file_open).
1800 *
1801 * The open for read will just hang around to be used by any process that
1802 * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1803 */
1804
1805 static int
1806 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1807 int flags, struct nameidata *nd)
1808 {
1809 struct nfs4_state *state;
1810 struct rpc_cred *cred;
1811 int status = 0;
1812
1813 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1814 if (IS_ERR(cred)) {
1815 status = PTR_ERR(cred);
1816 goto out;
1817 }
1818 state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1819 put_rpccred(cred);
1820 if (IS_ERR(state)) {
1821 status = PTR_ERR(state);
1822 goto out;
1823 }
1824 d_instantiate(dentry, igrab(state->inode));
1825 if (flags & O_EXCL) {
1826 struct nfs_fattr fattr;
1827 status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1828 if (status == 0)
1829 nfs_setattr_update_inode(state->inode, sattr);
1830 }
1831 if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1832 nfs4_intent_set_file(nd, dentry, state);
1833 else
1834 nfs4_close_state(state, flags);
1835 out:
1836 return status;
1837 }
1838
1839 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1840 {
1841 struct nfs_server *server = NFS_SERVER(dir);
1842 struct nfs4_remove_arg args = {
1843 .fh = NFS_FH(dir),
1844 .name = name,
1845 .bitmask = server->attr_bitmask,
1846 };
1847 struct nfs_fattr dir_attr;
1848 struct nfs4_remove_res res = {
1849 .server = server,
1850 .dir_attr = &dir_attr,
1851 };
1852 struct rpc_message msg = {
1853 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1854 .rpc_argp = &args,
1855 .rpc_resp = &res,
1856 };
1857 int status;
1858
1859 nfs_fattr_init(res.dir_attr);
1860 status = rpc_call_sync(server->client, &msg, 0);
1861 if (status == 0) {
1862 update_changeattr(dir, &res.cinfo);
1863 nfs_post_op_update_inode(dir, res.dir_attr);
1864 }
1865 return status;
1866 }
1867
1868 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1869 {
1870 struct nfs4_exception exception = { };
1871 int err;
1872 do {
1873 err = nfs4_handle_exception(NFS_SERVER(dir),
1874 _nfs4_proc_remove(dir, name),
1875 &exception);
1876 } while (exception.retry);
1877 return err;
1878 }
1879
1880 struct unlink_desc {
1881 struct nfs4_remove_arg args;
1882 struct nfs4_remove_res res;
1883 struct nfs_fattr dir_attr;
1884 };
1885
1886 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1887 struct qstr *name)
1888 {
1889 struct nfs_server *server = NFS_SERVER(dir->d_inode);
1890 struct unlink_desc *up;
1891
1892 up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1893 if (!up)
1894 return -ENOMEM;
1895
1896 up->args.fh = NFS_FH(dir->d_inode);
1897 up->args.name = name;
1898 up->args.bitmask = server->attr_bitmask;
1899 up->res.server = server;
1900 up->res.dir_attr = &up->dir_attr;
1901
1902 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1903 msg->rpc_argp = &up->args;
1904 msg->rpc_resp = &up->res;
1905 return 0;
1906 }
1907
1908 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1909 {
1910 struct rpc_message *msg = &task->tk_msg;
1911 struct unlink_desc *up;
1912
1913 if (msg->rpc_resp != NULL) {
1914 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1915 update_changeattr(dir->d_inode, &up->res.cinfo);
1916 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1917 kfree(up);
1918 msg->rpc_resp = NULL;
1919 msg->rpc_argp = NULL;
1920 }
1921 return 0;
1922 }
1923
1924 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1925 struct inode *new_dir, struct qstr *new_name)
1926 {
1927 struct nfs_server *server = NFS_SERVER(old_dir);
1928 struct nfs4_rename_arg arg = {
1929 .old_dir = NFS_FH(old_dir),
1930 .new_dir = NFS_FH(new_dir),
1931 .old_name = old_name,
1932 .new_name = new_name,
1933 .bitmask = server->attr_bitmask,
1934 };
1935 struct nfs_fattr old_fattr, new_fattr;
1936 struct nfs4_rename_res res = {
1937 .server = server,
1938 .old_fattr = &old_fattr,
1939 .new_fattr = &new_fattr,
1940 };
1941 struct rpc_message msg = {
1942 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1943 .rpc_argp = &arg,
1944 .rpc_resp = &res,
1945 };
1946 int status;
1947
1948 nfs_fattr_init(res.old_fattr);
1949 nfs_fattr_init(res.new_fattr);
1950 status = rpc_call_sync(server->client, &msg, 0);
1951
1952 if (!status) {
1953 update_changeattr(old_dir, &res.old_cinfo);
1954 nfs_post_op_update_inode(old_dir, res.old_fattr);
1955 update_changeattr(new_dir, &res.new_cinfo);
1956 nfs_post_op_update_inode(new_dir, res.new_fattr);
1957 }
1958 return status;
1959 }
1960
1961 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1962 struct inode *new_dir, struct qstr *new_name)
1963 {
1964 struct nfs4_exception exception = { };
1965 int err;
1966 do {
1967 err = nfs4_handle_exception(NFS_SERVER(old_dir),
1968 _nfs4_proc_rename(old_dir, old_name,
1969 new_dir, new_name),
1970 &exception);
1971 } while (exception.retry);
1972 return err;
1973 }
1974
1975 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1976 {
1977 struct nfs_server *server = NFS_SERVER(inode);
1978 struct nfs4_link_arg arg = {
1979 .fh = NFS_FH(inode),
1980 .dir_fh = NFS_FH(dir),
1981 .name = name,
1982 .bitmask = server->attr_bitmask,
1983 };
1984 struct nfs_fattr fattr, dir_attr;
1985 struct nfs4_link_res res = {
1986 .server = server,
1987 .fattr = &fattr,
1988 .dir_attr = &dir_attr,
1989 };
1990 struct rpc_message msg = {
1991 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
1992 .rpc_argp = &arg,
1993 .rpc_resp = &res,
1994 };
1995 int status;
1996
1997 nfs_fattr_init(res.fattr);
1998 nfs_fattr_init(res.dir_attr);
1999 status = rpc_call_sync(server->client, &msg, 0);
2000 if (!status) {
2001 update_changeattr(dir, &res.cinfo);
2002 nfs_post_op_update_inode(dir, res.dir_attr);
2003 nfs_refresh_inode(inode, res.fattr);
2004 }
2005
2006 return status;
2007 }
2008
2009 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2010 {
2011 struct nfs4_exception exception = { };
2012 int err;
2013 do {
2014 err = nfs4_handle_exception(NFS_SERVER(inode),
2015 _nfs4_proc_link(inode, dir, name),
2016 &exception);
2017 } while (exception.retry);
2018 return err;
2019 }
2020
2021 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2022 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2023 struct nfs_fattr *fattr)
2024 {
2025 struct nfs_server *server = NFS_SERVER(dir);
2026 struct nfs_fattr dir_fattr;
2027 struct nfs4_create_arg arg = {
2028 .dir_fh = NFS_FH(dir),
2029 .server = server,
2030 .name = name,
2031 .attrs = sattr,
2032 .ftype = NF4LNK,
2033 .bitmask = server->attr_bitmask,
2034 };
2035 struct nfs4_create_res res = {
2036 .server = server,
2037 .fh = fhandle,
2038 .fattr = fattr,
2039 .dir_fattr = &dir_fattr,
2040 };
2041 struct rpc_message msg = {
2042 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2043 .rpc_argp = &arg,
2044 .rpc_resp = &res,
2045 };
2046 int status;
2047
2048 if (path->len > NFS4_MAXPATHLEN)
2049 return -ENAMETOOLONG;
2050 arg.u.symlink = path;
2051 nfs_fattr_init(fattr);
2052 nfs_fattr_init(&dir_fattr);
2053
2054 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2055 if (!status)
2056 update_changeattr(dir, &res.dir_cinfo);
2057 nfs_post_op_update_inode(dir, res.dir_fattr);
2058 return status;
2059 }
2060
2061 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2062 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2063 struct nfs_fattr *fattr)
2064 {
2065 struct nfs4_exception exception = { };
2066 int err;
2067 do {
2068 err = nfs4_handle_exception(NFS_SERVER(dir),
2069 _nfs4_proc_symlink(dir, name, path, sattr,
2070 fhandle, fattr),
2071 &exception);
2072 } while (exception.retry);
2073 return err;
2074 }
2075
2076 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2077 struct iattr *sattr)
2078 {
2079 struct nfs_server *server = NFS_SERVER(dir);
2080 struct nfs_fh fhandle;
2081 struct nfs_fattr fattr, dir_fattr;
2082 struct nfs4_create_arg arg = {
2083 .dir_fh = NFS_FH(dir),
2084 .server = server,
2085 .name = &dentry->d_name,
2086 .attrs = sattr,
2087 .ftype = NF4DIR,
2088 .bitmask = server->attr_bitmask,
2089 };
2090 struct nfs4_create_res res = {
2091 .server = server,
2092 .fh = &fhandle,
2093 .fattr = &fattr,
2094 .dir_fattr = &dir_fattr,
2095 };
2096 struct rpc_message msg = {
2097 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2098 .rpc_argp = &arg,
2099 .rpc_resp = &res,
2100 };
2101 int status;
2102
2103 nfs_fattr_init(&fattr);
2104 nfs_fattr_init(&dir_fattr);
2105
2106 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2107 if (!status) {
2108 update_changeattr(dir, &res.dir_cinfo);
2109 nfs_post_op_update_inode(dir, res.dir_fattr);
2110 status = nfs_instantiate(dentry, &fhandle, &fattr);
2111 }
2112 return status;
2113 }
2114
2115 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2116 struct iattr *sattr)
2117 {
2118 struct nfs4_exception exception = { };
2119 int err;
2120 do {
2121 err = nfs4_handle_exception(NFS_SERVER(dir),
2122 _nfs4_proc_mkdir(dir, dentry, sattr),
2123 &exception);
2124 } while (exception.retry);
2125 return err;
2126 }
2127
2128 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2129 u64 cookie, struct page *page, unsigned int count, int plus)
2130 {
2131 struct inode *dir = dentry->d_inode;
2132 struct nfs4_readdir_arg args = {
2133 .fh = NFS_FH(dir),
2134 .pages = &page,
2135 .pgbase = 0,
2136 .count = count,
2137 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2138 };
2139 struct nfs4_readdir_res res;
2140 struct rpc_message msg = {
2141 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2142 .rpc_argp = &args,
2143 .rpc_resp = &res,
2144 .rpc_cred = cred,
2145 };
2146 int status;
2147
2148 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2149 dentry->d_parent->d_name.name,
2150 dentry->d_name.name,
2151 (unsigned long long)cookie);
2152 lock_kernel();
2153 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2154 res.pgbase = args.pgbase;
2155 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2156 if (status == 0)
2157 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2158 unlock_kernel();
2159 dprintk("%s: returns %d\n", __FUNCTION__, status);
2160 return status;
2161 }
2162
2163 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2164 u64 cookie, struct page *page, unsigned int count, int plus)
2165 {
2166 struct nfs4_exception exception = { };
2167 int err;
2168 do {
2169 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2170 _nfs4_proc_readdir(dentry, cred, cookie,
2171 page, count, plus),
2172 &exception);
2173 } while (exception.retry);
2174 return err;
2175 }
2176
2177 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2178 struct iattr *sattr, dev_t rdev)
2179 {
2180 struct nfs_server *server = NFS_SERVER(dir);
2181 struct nfs_fh fh;
2182 struct nfs_fattr fattr, dir_fattr;
2183 struct nfs4_create_arg arg = {
2184 .dir_fh = NFS_FH(dir),
2185 .server = server,
2186 .name = &dentry->d_name,
2187 .attrs = sattr,
2188 .bitmask = server->attr_bitmask,
2189 };
2190 struct nfs4_create_res res = {
2191 .server = server,
2192 .fh = &fh,
2193 .fattr = &fattr,
2194 .dir_fattr = &dir_fattr,
2195 };
2196 struct rpc_message msg = {
2197 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2198 .rpc_argp = &arg,
2199 .rpc_resp = &res,
2200 };
2201 int status;
2202 int mode = sattr->ia_mode;
2203
2204 nfs_fattr_init(&fattr);
2205 nfs_fattr_init(&dir_fattr);
2206
2207 BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2208 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2209 if (S_ISFIFO(mode))
2210 arg.ftype = NF4FIFO;
2211 else if (S_ISBLK(mode)) {
2212 arg.ftype = NF4BLK;
2213 arg.u.device.specdata1 = MAJOR(rdev);
2214 arg.u.device.specdata2 = MINOR(rdev);
2215 }
2216 else if (S_ISCHR(mode)) {
2217 arg.ftype = NF4CHR;
2218 arg.u.device.specdata1 = MAJOR(rdev);
2219 arg.u.device.specdata2 = MINOR(rdev);
2220 }
2221 else
2222 arg.ftype = NF4SOCK;
2223
2224 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2225 if (status == 0) {
2226 update_changeattr(dir, &res.dir_cinfo);
2227 nfs_post_op_update_inode(dir, res.dir_fattr);
2228 status = nfs_instantiate(dentry, &fh, &fattr);
2229 }
2230 return status;
2231 }
2232
2233 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2234 struct iattr *sattr, dev_t rdev)
2235 {
2236 struct nfs4_exception exception = { };
2237 int err;
2238 do {
2239 err = nfs4_handle_exception(NFS_SERVER(dir),
2240 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2241 &exception);
2242 } while (exception.retry);
2243 return err;
2244 }
2245
2246 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2247 struct nfs_fsstat *fsstat)
2248 {
2249 struct nfs4_statfs_arg args = {
2250 .fh = fhandle,
2251 .bitmask = server->attr_bitmask,
2252 };
2253 struct rpc_message msg = {
2254 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2255 .rpc_argp = &args,
2256 .rpc_resp = fsstat,
2257 };
2258
2259 nfs_fattr_init(fsstat->fattr);
2260 return rpc_call_sync(server->client, &msg, 0);
2261 }
2262
2263 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2264 {
2265 struct nfs4_exception exception = { };
2266 int err;
2267 do {
2268 err = nfs4_handle_exception(server,
2269 _nfs4_proc_statfs(server, fhandle, fsstat),
2270 &exception);
2271 } while (exception.retry);
2272 return err;
2273 }
2274
2275 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2276 struct nfs_fsinfo *fsinfo)
2277 {
2278 struct nfs4_fsinfo_arg args = {
2279 .fh = fhandle,
2280 .bitmask = server->attr_bitmask,
2281 };
2282 struct rpc_message msg = {
2283 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2284 .rpc_argp = &args,
2285 .rpc_resp = fsinfo,
2286 };
2287
2288 return rpc_call_sync(server->client, &msg, 0);
2289 }
2290
2291 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2292 {
2293 struct nfs4_exception exception = { };
2294 int err;
2295
2296 do {
2297 err = nfs4_handle_exception(server,
2298 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2299 &exception);
2300 } while (exception.retry);
2301 return err;
2302 }
2303
2304 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2305 {
2306 nfs_fattr_init(fsinfo->fattr);
2307 return nfs4_do_fsinfo(server, fhandle, fsinfo);
2308 }
2309
2310 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2311 struct nfs_pathconf *pathconf)
2312 {
2313 struct nfs4_pathconf_arg args = {
2314 .fh = fhandle,
2315 .bitmask = server->attr_bitmask,
2316 };
2317 struct rpc_message msg = {
2318 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2319 .rpc_argp = &args,
2320 .rpc_resp = pathconf,
2321 };
2322
2323 /* None of the pathconf attributes are mandatory to implement */
2324 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2325 memset(pathconf, 0, sizeof(*pathconf));
2326 return 0;
2327 }
2328
2329 nfs_fattr_init(pathconf->fattr);
2330 return rpc_call_sync(server->client, &msg, 0);
2331 }
2332
2333 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2334 struct nfs_pathconf *pathconf)
2335 {
2336 struct nfs4_exception exception = { };
2337 int err;
2338
2339 do {
2340 err = nfs4_handle_exception(server,
2341 _nfs4_proc_pathconf(server, fhandle, pathconf),
2342 &exception);
2343 } while (exception.retry);
2344 return err;
2345 }
2346
2347 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2348 {
2349 struct nfs_server *server = NFS_SERVER(data->inode);
2350
2351 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2352 rpc_restart_call(task);
2353 return -EAGAIN;
2354 }
2355 if (task->tk_status > 0)
2356 renew_lease(server, data->timestamp);
2357 return 0;
2358 }
2359
2360 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2361 {
2362 struct rpc_message msg = {
2363 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2364 .rpc_argp = &data->args,
2365 .rpc_resp = &data->res,
2366 .rpc_cred = data->cred,
2367 };
2368
2369 data->timestamp = jiffies;
2370
2371 rpc_call_setup(&data->task, &msg, 0);
2372 }
2373
2374 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2375 {
2376 struct inode *inode = data->inode;
2377
2378 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2379 rpc_restart_call(task);
2380 return -EAGAIN;
2381 }
2382 if (task->tk_status >= 0) {
2383 renew_lease(NFS_SERVER(inode), data->timestamp);
2384 nfs_post_op_update_inode(inode, data->res.fattr);
2385 }
2386 return 0;
2387 }
2388
2389 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2390 {
2391 struct rpc_message msg = {
2392 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2393 .rpc_argp = &data->args,
2394 .rpc_resp = &data->res,
2395 .rpc_cred = data->cred,
2396 };
2397 struct inode *inode = data->inode;
2398 struct nfs_server *server = NFS_SERVER(inode);
2399 int stable;
2400
2401 if (how & FLUSH_STABLE) {
2402 if (!NFS_I(inode)->ncommit)
2403 stable = NFS_FILE_SYNC;
2404 else
2405 stable = NFS_DATA_SYNC;
2406 } else
2407 stable = NFS_UNSTABLE;
2408 data->args.stable = stable;
2409 data->args.bitmask = server->attr_bitmask;
2410 data->res.server = server;
2411
2412 data->timestamp = jiffies;
2413
2414 /* Finalize the task. */
2415 rpc_call_setup(&data->task, &msg, 0);
2416 }
2417
2418 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2419 {
2420 struct inode *inode = data->inode;
2421
2422 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2423 rpc_restart_call(task);
2424 return -EAGAIN;
2425 }
2426 if (task->tk_status >= 0)
2427 nfs_post_op_update_inode(inode, data->res.fattr);
2428 return 0;
2429 }
2430
2431 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2432 {
2433 struct rpc_message msg = {
2434 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2435 .rpc_argp = &data->args,
2436 .rpc_resp = &data->res,
2437 .rpc_cred = data->cred,
2438 };
2439 struct nfs_server *server = NFS_SERVER(data->inode);
2440
2441 data->args.bitmask = server->attr_bitmask;
2442 data->res.server = server;
2443
2444 rpc_call_setup(&data->task, &msg, 0);
2445 }
2446
2447 /*
2448 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2449 * standalone procedure for queueing an asynchronous RENEW.
2450 */
2451 static void nfs4_renew_done(struct rpc_task *task, void *data)
2452 {
2453 struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
2454 unsigned long timestamp = (unsigned long)data;
2455
2456 if (task->tk_status < 0) {
2457 switch (task->tk_status) {
2458 case -NFS4ERR_STALE_CLIENTID:
2459 case -NFS4ERR_EXPIRED:
2460 case -NFS4ERR_CB_PATH_DOWN:
2461 nfs4_schedule_state_recovery(clp);
2462 }
2463 return;
2464 }
2465 spin_lock(&clp->cl_lock);
2466 if (time_before(clp->cl_last_renewal,timestamp))
2467 clp->cl_last_renewal = timestamp;
2468 spin_unlock(&clp->cl_lock);
2469 }
2470
2471 static const struct rpc_call_ops nfs4_renew_ops = {
2472 .rpc_call_done = nfs4_renew_done,
2473 };
2474
2475 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2476 {
2477 struct rpc_message msg = {
2478 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2479 .rpc_argp = clp,
2480 .rpc_cred = cred,
2481 };
2482
2483 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2484 &nfs4_renew_ops, (void *)jiffies);
2485 }
2486
2487 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2488 {
2489 struct rpc_message msg = {
2490 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2491 .rpc_argp = clp,
2492 .rpc_cred = cred,
2493 };
2494 unsigned long now = jiffies;
2495 int status;
2496
2497 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2498 if (status < 0)
2499 return status;
2500 spin_lock(&clp->cl_lock);
2501 if (time_before(clp->cl_last_renewal,now))
2502 clp->cl_last_renewal = now;
2503 spin_unlock(&clp->cl_lock);
2504 return 0;
2505 }
2506
2507 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2508 {
2509 return (server->caps & NFS_CAP_ACLS)
2510 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2511 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2512 }
2513
2514 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2515 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2516 * the stack.
2517 */
2518 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2519
2520 static void buf_to_pages(const void *buf, size_t buflen,
2521 struct page **pages, unsigned int *pgbase)
2522 {
2523 const void *p = buf;
2524
2525 *pgbase = offset_in_page(buf);
2526 p -= *pgbase;
2527 while (p < buf + buflen) {
2528 *(pages++) = virt_to_page(p);
2529 p += PAGE_CACHE_SIZE;
2530 }
2531 }
2532
2533 struct nfs4_cached_acl {
2534 int cached;
2535 size_t len;
2536 char data[0];
2537 };
2538
2539 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2540 {
2541 struct nfs_inode *nfsi = NFS_I(inode);
2542
2543 spin_lock(&inode->i_lock);
2544 kfree(nfsi->nfs4_acl);
2545 nfsi->nfs4_acl = acl;
2546 spin_unlock(&inode->i_lock);
2547 }
2548
2549 static void nfs4_zap_acl_attr(struct inode *inode)
2550 {
2551 nfs4_set_cached_acl(inode, NULL);
2552 }
2553
2554 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2555 {
2556 struct nfs_inode *nfsi = NFS_I(inode);
2557 struct nfs4_cached_acl *acl;
2558 int ret = -ENOENT;
2559
2560 spin_lock(&inode->i_lock);
2561 acl = nfsi->nfs4_acl;
2562 if (acl == NULL)
2563 goto out;
2564 if (buf == NULL) /* user is just asking for length */
2565 goto out_len;
2566 if (acl->cached == 0)
2567 goto out;
2568 ret = -ERANGE; /* see getxattr(2) man page */
2569 if (acl->len > buflen)
2570 goto out;
2571 memcpy(buf, acl->data, acl->len);
2572 out_len:
2573 ret = acl->len;
2574 out:
2575 spin_unlock(&inode->i_lock);
2576 return ret;
2577 }
2578
2579 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2580 {
2581 struct nfs4_cached_acl *acl;
2582
2583 if (buf && acl_len <= PAGE_SIZE) {
2584 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2585 if (acl == NULL)
2586 goto out;
2587 acl->cached = 1;
2588 memcpy(acl->data, buf, acl_len);
2589 } else {
2590 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2591 if (acl == NULL)
2592 goto out;
2593 acl->cached = 0;
2594 }
2595 acl->len = acl_len;
2596 out:
2597 nfs4_set_cached_acl(inode, acl);
2598 }
2599
2600 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2601 {
2602 struct page *pages[NFS4ACL_MAXPAGES];
2603 struct nfs_getaclargs args = {
2604 .fh = NFS_FH(inode),
2605 .acl_pages = pages,
2606 .acl_len = buflen,
2607 };
2608 size_t resp_len = buflen;
2609 void *resp_buf;
2610 struct rpc_message msg = {
2611 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2612 .rpc_argp = &args,
2613 .rpc_resp = &resp_len,
2614 };
2615 struct page *localpage = NULL;
2616 int ret;
2617
2618 if (buflen < PAGE_SIZE) {
2619 /* As long as we're doing a round trip to the server anyway,
2620 * let's be prepared for a page of acl data. */
2621 localpage = alloc_page(GFP_KERNEL);
2622 resp_buf = page_address(localpage);
2623 if (localpage == NULL)
2624 return -ENOMEM;
2625 args.acl_pages[0] = localpage;
2626 args.acl_pgbase = 0;
2627 resp_len = args.acl_len = PAGE_SIZE;
2628 } else {
2629 resp_buf = buf;
2630 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2631 }
2632 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2633 if (ret)
2634 goto out_free;
2635 if (resp_len > args.acl_len)
2636 nfs4_write_cached_acl(inode, NULL, resp_len);
2637 else
2638 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2639 if (buf) {
2640 ret = -ERANGE;
2641 if (resp_len > buflen)
2642 goto out_free;
2643 if (localpage)
2644 memcpy(buf, resp_buf, resp_len);
2645 }
2646 ret = resp_len;
2647 out_free:
2648 if (localpage)
2649 __free_page(localpage);
2650 return ret;
2651 }
2652
2653 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2654 {
2655 struct nfs_server *server = NFS_SERVER(inode);
2656 int ret;
2657
2658 if (!nfs4_server_supports_acls(server))
2659 return -EOPNOTSUPP;
2660 ret = nfs_revalidate_inode(server, inode);
2661 if (ret < 0)
2662 return ret;
2663 ret = nfs4_read_cached_acl(inode, buf, buflen);
2664 if (ret != -ENOENT)
2665 return ret;
2666 return nfs4_get_acl_uncached(inode, buf, buflen);
2667 }
2668
2669 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2670 {
2671 struct nfs_server *server = NFS_SERVER(inode);
2672 struct page *pages[NFS4ACL_MAXPAGES];
2673 struct nfs_setaclargs arg = {
2674 .fh = NFS_FH(inode),
2675 .acl_pages = pages,
2676 .acl_len = buflen,
2677 };
2678 struct rpc_message msg = {
2679 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2680 .rpc_argp = &arg,
2681 .rpc_resp = NULL,
2682 };
2683 int ret;
2684
2685 if (!nfs4_server_supports_acls(server))
2686 return -EOPNOTSUPP;
2687 nfs_inode_return_delegation(inode);
2688 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2689 ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
2690 if (ret == 0)
2691 nfs4_write_cached_acl(inode, buf, buflen);
2692 return ret;
2693 }
2694
2695 static int
2696 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2697 {
2698 struct nfs4_client *clp = server->nfs4_state;
2699
2700 if (!clp || task->tk_status >= 0)
2701 return 0;
2702 switch(task->tk_status) {
2703 case -NFS4ERR_STALE_CLIENTID:
2704 case -NFS4ERR_STALE_STATEID:
2705 case -NFS4ERR_EXPIRED:
2706 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2707 nfs4_schedule_state_recovery(clp);
2708 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2709 rpc_wake_up_task(task);
2710 task->tk_status = 0;
2711 return -EAGAIN;
2712 case -NFS4ERR_DELAY:
2713 nfs_inc_server_stats((struct nfs_server *) server,
2714 NFSIOS_DELAY);
2715 case -NFS4ERR_GRACE:
2716 rpc_delay(task, NFS4_POLL_RETRY_MAX);
2717 task->tk_status = 0;
2718 return -EAGAIN;
2719 case -NFS4ERR_OLD_STATEID:
2720 task->tk_status = 0;
2721 return -EAGAIN;
2722 }
2723 task->tk_status = nfs4_map_errors(task->tk_status);
2724 return 0;
2725 }
2726
2727 static int nfs4_wait_bit_interruptible(void *word)
2728 {
2729 if (signal_pending(current))
2730 return -ERESTARTSYS;
2731 schedule();
2732 return 0;
2733 }
2734
2735 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
2736 {
2737 sigset_t oldset;
2738 int res;
2739
2740 might_sleep();
2741
2742 rpc_clnt_sigmask(clnt, &oldset);
2743 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2744 nfs4_wait_bit_interruptible,
2745 TASK_INTERRUPTIBLE);
2746 rpc_clnt_sigunmask(clnt, &oldset);
2747 return res;
2748 }
2749
2750 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2751 {
2752 sigset_t oldset;
2753 int res = 0;
2754
2755 might_sleep();
2756
2757 if (*timeout <= 0)
2758 *timeout = NFS4_POLL_RETRY_MIN;
2759 if (*timeout > NFS4_POLL_RETRY_MAX)
2760 *timeout = NFS4_POLL_RETRY_MAX;
2761 rpc_clnt_sigmask(clnt, &oldset);
2762 if (clnt->cl_intr) {
2763 schedule_timeout_interruptible(*timeout);
2764 if (signalled())
2765 res = -ERESTARTSYS;
2766 } else
2767 schedule_timeout_uninterruptible(*timeout);
2768 rpc_clnt_sigunmask(clnt, &oldset);
2769 *timeout <<= 1;
2770 return res;
2771 }
2772
2773 /* This is the error handling routine for processes that are allowed
2774 * to sleep.
2775 */
2776 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2777 {
2778 struct nfs4_client *clp = server->nfs4_state;
2779 int ret = errorcode;
2780
2781 exception->retry = 0;
2782 switch(errorcode) {
2783 case 0:
2784 return 0;
2785 case -NFS4ERR_STALE_CLIENTID:
2786 case -NFS4ERR_STALE_STATEID:
2787 case -NFS4ERR_EXPIRED:
2788 nfs4_schedule_state_recovery(clp);
2789 ret = nfs4_wait_clnt_recover(server->client, clp);
2790 if (ret == 0)
2791 exception->retry = 1;
2792 break;
2793 case -NFS4ERR_GRACE:
2794 case -NFS4ERR_DELAY:
2795 ret = nfs4_delay(server->client, &exception->timeout);
2796 if (ret != 0)
2797 break;
2798 case -NFS4ERR_OLD_STATEID:
2799 exception->retry = 1;
2800 }
2801 /* We failed to handle the error */
2802 return nfs4_map_errors(ret);
2803 }
2804
2805 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2806 {
2807 nfs4_verifier sc_verifier;
2808 struct nfs4_setclientid setclientid = {
2809 .sc_verifier = &sc_verifier,
2810 .sc_prog = program,
2811 };
2812 struct rpc_message msg = {
2813 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2814 .rpc_argp = &setclientid,
2815 .rpc_resp = clp,
2816 .rpc_cred = cred,
2817 };
2818 u32 *p;
2819 int loop = 0;
2820 int status;
2821
2822 p = (u32*)sc_verifier.data;
2823 *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2824 *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2825
2826 for(;;) {
2827 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2828 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2829 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
2830 cred->cr_ops->cr_name,
2831 clp->cl_id_uniquifier);
2832 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2833 sizeof(setclientid.sc_netid), "tcp");
2834 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2835 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2836 clp->cl_ipaddr, port >> 8, port & 255);
2837
2838 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2839 if (status != -NFS4ERR_CLID_INUSE)
2840 break;
2841 if (signalled())
2842 break;
2843 if (loop++ & 1)
2844 ssleep(clp->cl_lease_time + 1);
2845 else
2846 if (++clp->cl_id_uniquifier == 0)
2847 break;
2848 }
2849 return status;
2850 }
2851
2852 static int _nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2853 {
2854 struct nfs_fsinfo fsinfo;
2855 struct rpc_message msg = {
2856 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2857 .rpc_argp = clp,
2858 .rpc_resp = &fsinfo,
2859 .rpc_cred = cred,
2860 };
2861 unsigned long now;
2862 int status;
2863
2864 now = jiffies;
2865 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2866 if (status == 0) {
2867 spin_lock(&clp->cl_lock);
2868 clp->cl_lease_time = fsinfo.lease_time * HZ;
2869 clp->cl_last_renewal = now;
2870 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2871 spin_unlock(&clp->cl_lock);
2872 }
2873 return status;
2874 }
2875
2876 int nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2877 {
2878 long timeout;
2879 int err;
2880 do {
2881 err = _nfs4_proc_setclientid_confirm(clp, cred);
2882 switch (err) {
2883 case 0:
2884 return err;
2885 case -NFS4ERR_RESOURCE:
2886 /* The IBM lawyers misread another document! */
2887 case -NFS4ERR_DELAY:
2888 err = nfs4_delay(clp->cl_rpcclient, &timeout);
2889 }
2890 } while (err == 0);
2891 return err;
2892 }
2893
2894 struct nfs4_delegreturndata {
2895 struct nfs4_delegreturnargs args;
2896 struct nfs4_delegreturnres res;
2897 struct nfs_fh fh;
2898 nfs4_stateid stateid;
2899 struct rpc_cred *cred;
2900 unsigned long timestamp;
2901 struct nfs_fattr fattr;
2902 int rpc_status;
2903 };
2904
2905 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2906 {
2907 struct nfs4_delegreturndata *data = calldata;
2908 struct rpc_message msg = {
2909 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2910 .rpc_argp = &data->args,
2911 .rpc_resp = &data->res,
2912 .rpc_cred = data->cred,
2913 };
2914 nfs_fattr_init(data->res.fattr);
2915 rpc_call_setup(task, &msg, 0);
2916 }
2917
2918 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2919 {
2920 struct nfs4_delegreturndata *data = calldata;
2921 data->rpc_status = task->tk_status;
2922 if (data->rpc_status == 0)
2923 renew_lease(data->res.server, data->timestamp);
2924 }
2925
2926 static void nfs4_delegreturn_release(void *calldata)
2927 {
2928 struct nfs4_delegreturndata *data = calldata;
2929
2930 put_rpccred(data->cred);
2931 kfree(calldata);
2932 }
2933
2934 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2935 .rpc_call_prepare = nfs4_delegreturn_prepare,
2936 .rpc_call_done = nfs4_delegreturn_done,
2937 .rpc_release = nfs4_delegreturn_release,
2938 };
2939
2940 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2941 {
2942 struct nfs4_delegreturndata *data;
2943 struct nfs_server *server = NFS_SERVER(inode);
2944 struct rpc_task *task;
2945 int status;
2946
2947 data = kmalloc(sizeof(*data), GFP_KERNEL);
2948 if (data == NULL)
2949 return -ENOMEM;
2950 data->args.fhandle = &data->fh;
2951 data->args.stateid = &data->stateid;
2952 data->args.bitmask = server->attr_bitmask;
2953 nfs_copy_fh(&data->fh, NFS_FH(inode));
2954 memcpy(&data->stateid, stateid, sizeof(data->stateid));
2955 data->res.fattr = &data->fattr;
2956 data->res.server = server;
2957 data->cred = get_rpccred(cred);
2958 data->timestamp = jiffies;
2959 data->rpc_status = 0;
2960
2961 task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2962 if (IS_ERR(task)) {
2963 nfs4_delegreturn_release(data);
2964 return PTR_ERR(task);
2965 }
2966 status = nfs4_wait_for_completion_rpc_task(task);
2967 if (status == 0) {
2968 status = data->rpc_status;
2969 if (status == 0)
2970 nfs_post_op_update_inode(inode, &data->fattr);
2971 }
2972 rpc_release_task(task);
2973 return status;
2974 }
2975
2976 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2977 {
2978 struct nfs_server *server = NFS_SERVER(inode);
2979 struct nfs4_exception exception = { };
2980 int err;
2981 do {
2982 err = _nfs4_proc_delegreturn(inode, cred, stateid);
2983 switch (err) {
2984 case -NFS4ERR_STALE_STATEID:
2985 case -NFS4ERR_EXPIRED:
2986 nfs4_schedule_state_recovery(server->nfs4_state);
2987 case 0:
2988 return 0;
2989 }
2990 err = nfs4_handle_exception(server, err, &exception);
2991 } while (exception.retry);
2992 return err;
2993 }
2994
2995 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
2996 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
2997
2998 /*
2999 * sleep, with exponential backoff, and retry the LOCK operation.
3000 */
3001 static unsigned long
3002 nfs4_set_lock_task_retry(unsigned long timeout)
3003 {
3004 schedule_timeout_interruptible(timeout);
3005 timeout <<= 1;
3006 if (timeout > NFS4_LOCK_MAXTIMEOUT)
3007 return NFS4_LOCK_MAXTIMEOUT;
3008 return timeout;
3009 }
3010
3011 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3012 {
3013 struct inode *inode = state->inode;
3014 struct nfs_server *server = NFS_SERVER(inode);
3015 struct nfs4_client *clp = server->nfs4_state;
3016 struct nfs_lockt_args arg = {
3017 .fh = NFS_FH(inode),
3018 .fl = request,
3019 };
3020 struct nfs_lockt_res res = {
3021 .denied = request,
3022 };
3023 struct rpc_message msg = {
3024 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3025 .rpc_argp = &arg,
3026 .rpc_resp = &res,
3027 .rpc_cred = state->owner->so_cred,
3028 };
3029 struct nfs4_lock_state *lsp;
3030 int status;
3031
3032 down_read(&clp->cl_sem);
3033 arg.lock_owner.clientid = clp->cl_clientid;
3034 status = nfs4_set_lock_state(state, request);
3035 if (status != 0)
3036 goto out;
3037 lsp = request->fl_u.nfs4_fl.owner;
3038 arg.lock_owner.id = lsp->ls_id;
3039 status = rpc_call_sync(server->client, &msg, 0);
3040 switch (status) {
3041 case 0:
3042 request->fl_type = F_UNLCK;
3043 break;
3044 case -NFS4ERR_DENIED:
3045 status = 0;
3046 }
3047 out:
3048 up_read(&clp->cl_sem);
3049 return status;
3050 }
3051
3052 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3053 {
3054 struct nfs4_exception exception = { };
3055 int err;
3056
3057 do {
3058 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3059 _nfs4_proc_getlk(state, cmd, request),
3060 &exception);
3061 } while (exception.retry);
3062 return err;
3063 }
3064
3065 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3066 {
3067 int res = 0;
3068 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3069 case FL_POSIX:
3070 res = posix_lock_file_wait(file, fl);
3071 break;
3072 case FL_FLOCK:
3073 res = flock_lock_file_wait(file, fl);
3074 break;
3075 default:
3076 BUG();
3077 }
3078 if (res < 0)
3079 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n",
3080 __FUNCTION__);
3081 return res;
3082 }
3083
3084 struct nfs4_unlockdata {
3085 struct nfs_locku_args arg;
3086 struct nfs_locku_res res;
3087 struct nfs4_lock_state *lsp;
3088 struct nfs_open_context *ctx;
3089 struct file_lock fl;
3090 const struct nfs_server *server;
3091 unsigned long timestamp;
3092 };
3093
3094 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3095 struct nfs_open_context *ctx,
3096 struct nfs4_lock_state *lsp,
3097 struct nfs_seqid *seqid)
3098 {
3099 struct nfs4_unlockdata *p;
3100 struct inode *inode = lsp->ls_state->inode;
3101
3102 p = kmalloc(sizeof(*p), GFP_KERNEL);
3103 if (p == NULL)
3104 return NULL;
3105 p->arg.fh = NFS_FH(inode);
3106 p->arg.fl = &p->fl;
3107 p->arg.seqid = seqid;
3108 p->arg.stateid = &lsp->ls_stateid;
3109 p->lsp = lsp;
3110 atomic_inc(&lsp->ls_count);
3111 /* Ensure we don't close file until we're done freeing locks! */
3112 p->ctx = get_nfs_open_context(ctx);
3113 memcpy(&p->fl, fl, sizeof(p->fl));
3114 p->server = NFS_SERVER(inode);
3115 return p;
3116 }
3117
3118 static void nfs4_locku_release_calldata(void *data)
3119 {
3120 struct nfs4_unlockdata *calldata = data;
3121 nfs_free_seqid(calldata->arg.seqid);
3122 nfs4_put_lock_state(calldata->lsp);
3123 put_nfs_open_context(calldata->ctx);
3124 kfree(calldata);
3125 }
3126
3127 static void nfs4_locku_done(struct rpc_task *task, void *data)
3128 {
3129 struct nfs4_unlockdata *calldata = data;
3130
3131 if (RPC_ASSASSINATED(task))
3132 return;
3133 nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3134 switch (task->tk_status) {
3135 case 0:
3136 memcpy(calldata->lsp->ls_stateid.data,
3137 calldata->res.stateid.data,
3138 sizeof(calldata->lsp->ls_stateid.data));
3139 renew_lease(calldata->server, calldata->timestamp);
3140 break;
3141 case -NFS4ERR_STALE_STATEID:
3142 case -NFS4ERR_EXPIRED:
3143 nfs4_schedule_state_recovery(calldata->server->nfs4_state);
3144 break;
3145 default:
3146 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3147 rpc_restart_call(task);
3148 }
3149 }
3150 }
3151
3152 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3153 {
3154 struct nfs4_unlockdata *calldata = data;
3155 struct rpc_message msg = {
3156 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3157 .rpc_argp = &calldata->arg,
3158 .rpc_resp = &calldata->res,
3159 .rpc_cred = calldata->lsp->ls_state->owner->so_cred,
3160 };
3161
3162 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3163 return;
3164 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3165 /* Note: exit _without_ running nfs4_locku_done */
3166 task->tk_action = NULL;
3167 return;
3168 }
3169 calldata->timestamp = jiffies;
3170 rpc_call_setup(task, &msg, 0);
3171 }
3172
3173 static const struct rpc_call_ops nfs4_locku_ops = {
3174 .rpc_call_prepare = nfs4_locku_prepare,
3175 .rpc_call_done = nfs4_locku_done,
3176 .rpc_release = nfs4_locku_release_calldata,
3177 };
3178
3179 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3180 struct nfs_open_context *ctx,
3181 struct nfs4_lock_state *lsp,
3182 struct nfs_seqid *seqid)
3183 {
3184 struct nfs4_unlockdata *data;
3185 struct rpc_task *task;
3186
3187 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3188 if (data == NULL) {
3189 nfs_free_seqid(seqid);
3190 return ERR_PTR(-ENOMEM);
3191 }
3192
3193 /* Unlock _before_ we do the RPC call */
3194 do_vfs_lock(fl->fl_file, fl);
3195 task = rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3196 if (IS_ERR(task))
3197 nfs4_locku_release_calldata(data);
3198 return task;
3199 }
3200
3201 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3202 {
3203 struct nfs_seqid *seqid;
3204 struct nfs4_lock_state *lsp;
3205 struct rpc_task *task;
3206 int status = 0;
3207
3208 /* Is this a delegated lock? */
3209 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3210 goto out_unlock;
3211 /* Is this open_owner holding any locks on the server? */
3212 if (test_bit(LK_STATE_IN_USE, &state->flags) == 0)
3213 goto out_unlock;
3214
3215 status = nfs4_set_lock_state(state, request);
3216 if (status != 0)
3217 goto out_unlock;
3218 lsp = request->fl_u.nfs4_fl.owner;
3219 status = -ENOMEM;
3220 seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3221 if (seqid == NULL)
3222 goto out_unlock;
3223 task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3224 status = PTR_ERR(task);
3225 if (IS_ERR(task))
3226 goto out_unlock;
3227 status = nfs4_wait_for_completion_rpc_task(task);
3228 rpc_release_task(task);
3229 return status;
3230 out_unlock:
3231 do_vfs_lock(request->fl_file, request);
3232 return status;
3233 }
3234
3235 struct nfs4_lockdata {
3236 struct nfs_lock_args arg;
3237 struct nfs_lock_res res;
3238 struct nfs4_lock_state *lsp;
3239 struct nfs_open_context *ctx;
3240 struct file_lock fl;
3241 unsigned long timestamp;
3242 int rpc_status;
3243 int cancelled;
3244 };
3245
3246 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3247 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3248 {
3249 struct nfs4_lockdata *p;
3250 struct inode *inode = lsp->ls_state->inode;
3251 struct nfs_server *server = NFS_SERVER(inode);
3252
3253 p = kzalloc(sizeof(*p), GFP_KERNEL);
3254 if (p == NULL)
3255 return NULL;
3256
3257 p->arg.fh = NFS_FH(inode);
3258 p->arg.fl = &p->fl;
3259 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3260 if (p->arg.lock_seqid == NULL)
3261 goto out_free;
3262 p->arg.lock_stateid = &lsp->ls_stateid;
3263 p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid;
3264 p->arg.lock_owner.id = lsp->ls_id;
3265 p->lsp = lsp;
3266 atomic_inc(&lsp->ls_count);
3267 p->ctx = get_nfs_open_context(ctx);
3268 memcpy(&p->fl, fl, sizeof(p->fl));
3269 return p;
3270 out_free:
3271 kfree(p);
3272 return NULL;
3273 }
3274
3275 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3276 {
3277 struct nfs4_lockdata *data = calldata;
3278 struct nfs4_state *state = data->lsp->ls_state;
3279 struct nfs4_state_owner *sp = state->owner;
3280 struct rpc_message msg = {
3281 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3282 .rpc_argp = &data->arg,
3283 .rpc_resp = &data->res,
3284 .rpc_cred = sp->so_cred,
3285 };
3286
3287 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3288 return;
3289 dprintk("%s: begin!\n", __FUNCTION__);
3290 /* Do we need to do an open_to_lock_owner? */
3291 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3292 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3293 if (data->arg.open_seqid == NULL) {
3294 data->rpc_status = -ENOMEM;
3295 task->tk_action = NULL;
3296 goto out;
3297 }
3298 data->arg.open_stateid = &state->stateid;
3299 data->arg.new_lock_owner = 1;
3300 }
3301 data->timestamp = jiffies;
3302 rpc_call_setup(task, &msg, 0);
3303 out:
3304 dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3305 }
3306
3307 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3308 {
3309 struct nfs4_lockdata *data = calldata;
3310
3311 dprintk("%s: begin!\n", __FUNCTION__);
3312
3313 data->rpc_status = task->tk_status;
3314 if (RPC_ASSASSINATED(task))
3315 goto out;
3316 if (data->arg.new_lock_owner != 0) {
3317 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3318 if (data->rpc_status == 0)
3319 nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3320 else
3321 goto out;
3322 }
3323 if (data->rpc_status == 0) {
3324 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3325 sizeof(data->lsp->ls_stateid.data));
3326 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3327 renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3328 }
3329 nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3330 out:
3331 dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3332 }
3333
3334 static void nfs4_lock_release(void *calldata)
3335 {
3336 struct nfs4_lockdata *data = calldata;
3337
3338 dprintk("%s: begin!\n", __FUNCTION__);
3339 if (data->arg.open_seqid != NULL)
3340 nfs_free_seqid(data->arg.open_seqid);
3341 if (data->cancelled != 0) {
3342 struct rpc_task *task;
3343 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3344 data->arg.lock_seqid);
3345 if (!IS_ERR(task))
3346 rpc_release_task(task);
3347 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3348 } else
3349 nfs_free_seqid(data->arg.lock_seqid);
3350 nfs4_put_lock_state(data->lsp);
3351 put_nfs_open_context(data->ctx);
3352 kfree(data);
3353 dprintk("%s: done!\n", __FUNCTION__);
3354 }
3355
3356 static const struct rpc_call_ops nfs4_lock_ops = {
3357 .rpc_call_prepare = nfs4_lock_prepare,
3358 .rpc_call_done = nfs4_lock_done,
3359 .rpc_release = nfs4_lock_release,
3360 };
3361
3362 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3363 {
3364 struct nfs4_lockdata *data;
3365 struct rpc_task *task;
3366 int ret;
3367
3368 dprintk("%s: begin!\n", __FUNCTION__);
3369 data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3370 fl->fl_u.nfs4_fl.owner);
3371 if (data == NULL)
3372 return -ENOMEM;
3373 if (IS_SETLKW(cmd))
3374 data->arg.block = 1;
3375 if (reclaim != 0)
3376 data->arg.reclaim = 1;
3377 task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3378 &nfs4_lock_ops, data);
3379 if (IS_ERR(task)) {
3380 nfs4_lock_release(data);
3381 return PTR_ERR(task);
3382 }
3383 ret = nfs4_wait_for_completion_rpc_task(task);
3384 if (ret == 0) {
3385 ret = data->rpc_status;
3386 if (ret == -NFS4ERR_DENIED)
3387 ret = -EAGAIN;
3388 } else
3389 data->cancelled = 1;
3390 rpc_release_task(task);
3391 dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3392 return ret;
3393 }
3394
3395 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3396 {
3397 struct nfs_server *server = NFS_SERVER(state->inode);
3398 struct nfs4_exception exception = { };
3399 int err;
3400
3401 /* Cache the lock if possible... */
3402 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3403 return 0;
3404 do {
3405 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3406 if (err != -NFS4ERR_DELAY)
3407 break;
3408 nfs4_handle_exception(server, err, &exception);
3409 } while (exception.retry);
3410 return err;
3411 }
3412
3413 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3414 {
3415 struct nfs_server *server = NFS_SERVER(state->inode);
3416 struct nfs4_exception exception = { };
3417 int err;
3418
3419 err = nfs4_set_lock_state(state, request);
3420 if (err != 0)
3421 return err;
3422 do {
3423 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3424 if (err != -NFS4ERR_DELAY)
3425 break;
3426 nfs4_handle_exception(server, err, &exception);
3427 } while (exception.retry);
3428 return err;
3429 }
3430
3431 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3432 {
3433 struct nfs4_client *clp = state->owner->so_client;
3434 int status;
3435
3436 /* Is this a delegated open? */
3437 if (NFS_I(state->inode)->delegation_state != 0) {
3438 /* Yes: cache locks! */
3439 status = do_vfs_lock(request->fl_file, request);
3440 /* ...but avoid races with delegation recall... */
3441 if (status < 0 || test_bit(NFS_DELEGATED_STATE, &state->flags))
3442 return status;
3443 }
3444 down_read(&clp->cl_sem);
3445 status = nfs4_set_lock_state(state, request);
3446 if (status != 0)
3447 goto out;
3448 status = _nfs4_do_setlk(state, cmd, request, 0);
3449 if (status != 0)
3450 goto out;
3451 /* Note: we always want to sleep here! */
3452 request->fl_flags |= FL_SLEEP;
3453 if (do_vfs_lock(request->fl_file, request) < 0)
3454 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3455 out:
3456 up_read(&clp->cl_sem);
3457 return status;
3458 }
3459
3460 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3461 {
3462 struct nfs4_exception exception = { };
3463 int err;
3464
3465 do {
3466 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3467 _nfs4_proc_setlk(state, cmd, request),
3468 &exception);
3469 } while (exception.retry);
3470 return err;
3471 }
3472
3473 static int
3474 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3475 {
3476 struct nfs_open_context *ctx;
3477 struct nfs4_state *state;
3478 unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3479 int status;
3480
3481 /* verify open state */
3482 ctx = (struct nfs_open_context *)filp->private_data;
3483 state = ctx->state;
3484
3485 if (request->fl_start < 0 || request->fl_end < 0)
3486 return -EINVAL;
3487
3488 if (IS_GETLK(cmd))
3489 return nfs4_proc_getlk(state, F_GETLK, request);
3490
3491 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3492 return -EINVAL;
3493
3494 if (request->fl_type == F_UNLCK)
3495 return nfs4_proc_unlck(state, cmd, request);
3496
3497 do {
3498 status = nfs4_proc_setlk(state, cmd, request);
3499 if ((status != -EAGAIN) || IS_SETLK(cmd))
3500 break;
3501 timeout = nfs4_set_lock_task_retry(timeout);
3502 status = -ERESTARTSYS;
3503 if (signalled())
3504 break;
3505 } while(status < 0);
3506 return status;
3507 }
3508
3509 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3510 {
3511 struct nfs_server *server = NFS_SERVER(state->inode);
3512 struct nfs4_exception exception = { };
3513 int err;
3514
3515 err = nfs4_set_lock_state(state, fl);
3516 if (err != 0)
3517 goto out;
3518 do {
3519 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3520 if (err != -NFS4ERR_DELAY)
3521 break;
3522 err = nfs4_handle_exception(server, err, &exception);
3523 } while (exception.retry);
3524 out:
3525 return err;
3526 }
3527
3528 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3529
3530 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3531 size_t buflen, int flags)
3532 {
3533 struct inode *inode = dentry->d_inode;
3534
3535 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3536 return -EOPNOTSUPP;
3537
3538 if (!S_ISREG(inode->i_mode) &&
3539 (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3540 return -EPERM;
3541
3542 return nfs4_proc_set_acl(inode, buf, buflen);
3543 }
3544
3545 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3546 * and that's what we'll do for e.g. user attributes that haven't been set.
3547 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3548 * attributes in kernel-managed attribute namespaces. */
3549 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3550 size_t buflen)
3551 {
3552 struct inode *inode = dentry->d_inode;
3553
3554 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3555 return -EOPNOTSUPP;
3556
3557 return nfs4_proc_get_acl(inode, buf, buflen);
3558 }
3559
3560 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3561 {
3562 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3563
3564 if (buf && buflen < len)
3565 return -ERANGE;
3566 if (buf)
3567 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3568 return len;
3569 }
3570
3571 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3572 .recover_open = nfs4_open_reclaim,
3573 .recover_lock = nfs4_lock_reclaim,
3574 };
3575
3576 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3577 .recover_open = nfs4_open_expired,
3578 .recover_lock = nfs4_lock_expired,
3579 };
3580
3581 static struct inode_operations nfs4_file_inode_operations = {
3582 .permission = nfs_permission,
3583 .getattr = nfs_getattr,
3584 .setattr = nfs_setattr,
3585 .getxattr = nfs4_getxattr,
3586 .setxattr = nfs4_setxattr,
3587 .listxattr = nfs4_listxattr,
3588 };
3589
3590 struct nfs_rpc_ops nfs_v4_clientops = {
3591 .version = 4, /* protocol version */
3592 .dentry_ops = &nfs4_dentry_operations,
3593 .dir_inode_ops = &nfs4_dir_inode_operations,
3594 .file_inode_ops = &nfs4_file_inode_operations,
3595 .getroot = nfs4_proc_get_root,
3596 .getattr = nfs4_proc_getattr,
3597 .setattr = nfs4_proc_setattr,
3598 .lookup = nfs4_proc_lookup,
3599 .access = nfs4_proc_access,
3600 .readlink = nfs4_proc_readlink,
3601 .read = nfs4_proc_read,
3602 .write = nfs4_proc_write,
3603 .commit = nfs4_proc_commit,
3604 .create = nfs4_proc_create,
3605 .remove = nfs4_proc_remove,
3606 .unlink_setup = nfs4_proc_unlink_setup,
3607 .unlink_done = nfs4_proc_unlink_done,
3608 .rename = nfs4_proc_rename,
3609 .link = nfs4_proc_link,
3610 .symlink = nfs4_proc_symlink,
3611 .mkdir = nfs4_proc_mkdir,
3612 .rmdir = nfs4_proc_remove,
3613 .readdir = nfs4_proc_readdir,
3614 .mknod = nfs4_proc_mknod,
3615 .statfs = nfs4_proc_statfs,
3616 .fsinfo = nfs4_proc_fsinfo,
3617 .pathconf = nfs4_proc_pathconf,
3618 .decode_dirent = nfs4_decode_dirent,
3619 .read_setup = nfs4_proc_read_setup,
3620 .read_done = nfs4_read_done,
3621 .write_setup = nfs4_proc_write_setup,
3622 .write_done = nfs4_write_done,
3623 .commit_setup = nfs4_proc_commit_setup,
3624 .commit_done = nfs4_commit_done,
3625 .file_open = nfs_open,
3626 .file_release = nfs_release,
3627 .lock = nfs4_proc_lock,
3628 .clear_acl_cache = nfs4_zap_acl_attr,
3629 };
3630
3631 /*
3632 * Local variables:
3633 * c-basic-offset: 8
3634 * End:
3635 */
This page took 0.103847 seconds and 5 git commands to generate.