NFSv4: Define an fs_locations bitmap
[deliverable/linux.git] / fs / nfs / nfs4proc.c
1 /*
2 * fs/nfs/nfs4proc.c
3 *
4 * Client-side procedure declarations for NFSv4.
5 *
6 * Copyright (c) 2002 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Kendrick Smith <kmsmith@umich.edu>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55
56 #define NFSDBG_FACILITY NFSDBG_PROC
57
58 #define NFS4_POLL_RETRY_MIN (1*HZ)
59 #define NFS4_POLL_RETRY_MAX (15*HZ)
60
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp);
68 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus);
69 extern struct rpc_procinfo nfs4_procedures[];
70
71 /* Prevent leaks of NFSv4 errors into userland */
72 int nfs4_map_errors(int err)
73 {
74 if (err < -1000) {
75 dprintk("%s could not handle NFSv4 error %d\n",
76 __FUNCTION__, -err);
77 return -EIO;
78 }
79 return err;
80 }
81
82 /*
83 * This is our standard bitmap for GETATTR requests.
84 */
85 const u32 nfs4_fattr_bitmap[2] = {
86 FATTR4_WORD0_TYPE
87 | FATTR4_WORD0_CHANGE
88 | FATTR4_WORD0_SIZE
89 | FATTR4_WORD0_FSID
90 | FATTR4_WORD0_FILEID,
91 FATTR4_WORD1_MODE
92 | FATTR4_WORD1_NUMLINKS
93 | FATTR4_WORD1_OWNER
94 | FATTR4_WORD1_OWNER_GROUP
95 | FATTR4_WORD1_RAWDEV
96 | FATTR4_WORD1_SPACE_USED
97 | FATTR4_WORD1_TIME_ACCESS
98 | FATTR4_WORD1_TIME_METADATA
99 | FATTR4_WORD1_TIME_MODIFY
100 };
101
102 const u32 nfs4_statfs_bitmap[2] = {
103 FATTR4_WORD0_FILES_AVAIL
104 | FATTR4_WORD0_FILES_FREE
105 | FATTR4_WORD0_FILES_TOTAL,
106 FATTR4_WORD1_SPACE_AVAIL
107 | FATTR4_WORD1_SPACE_FREE
108 | FATTR4_WORD1_SPACE_TOTAL
109 };
110
111 const u32 nfs4_pathconf_bitmap[2] = {
112 FATTR4_WORD0_MAXLINK
113 | FATTR4_WORD0_MAXNAME,
114 0
115 };
116
117 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
118 | FATTR4_WORD0_MAXREAD
119 | FATTR4_WORD0_MAXWRITE
120 | FATTR4_WORD0_LEASE_TIME,
121 0
122 };
123
124 const u32 nfs4_fs_locations_bitmap[2] = {
125 FATTR4_WORD0_TYPE
126 | FATTR4_WORD0_CHANGE
127 | FATTR4_WORD0_SIZE
128 | FATTR4_WORD0_FSID
129 | FATTR4_WORD0_FILEID
130 | FATTR4_WORD0_FS_LOCATIONS,
131 FATTR4_WORD1_MODE
132 | FATTR4_WORD1_NUMLINKS
133 | FATTR4_WORD1_OWNER
134 | FATTR4_WORD1_OWNER_GROUP
135 | FATTR4_WORD1_RAWDEV
136 | FATTR4_WORD1_SPACE_USED
137 | FATTR4_WORD1_TIME_ACCESS
138 | FATTR4_WORD1_TIME_METADATA
139 | FATTR4_WORD1_TIME_MODIFY
140 | FATTR4_WORD1_MOUNTED_ON_FILEID
141 };
142
143 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
144 struct nfs4_readdir_arg *readdir)
145 {
146 u32 *start, *p;
147
148 BUG_ON(readdir->count < 80);
149 if (cookie > 2) {
150 readdir->cookie = cookie;
151 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
152 return;
153 }
154
155 readdir->cookie = 0;
156 memset(&readdir->verifier, 0, sizeof(readdir->verifier));
157 if (cookie == 2)
158 return;
159
160 /*
161 * NFSv4 servers do not return entries for '.' and '..'
162 * Therefore, we fake these entries here. We let '.'
163 * have cookie 0 and '..' have cookie 1. Note that
164 * when talking to the server, we always send cookie 0
165 * instead of 1 or 2.
166 */
167 start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
168
169 if (cookie == 0) {
170 *p++ = xdr_one; /* next */
171 *p++ = xdr_zero; /* cookie, first word */
172 *p++ = xdr_one; /* cookie, second word */
173 *p++ = xdr_one; /* entry len */
174 memcpy(p, ".\0\0\0", 4); /* entry */
175 p++;
176 *p++ = xdr_one; /* bitmap length */
177 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
178 *p++ = htonl(8); /* attribute buffer length */
179 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
180 }
181
182 *p++ = xdr_one; /* next */
183 *p++ = xdr_zero; /* cookie, first word */
184 *p++ = xdr_two; /* cookie, second word */
185 *p++ = xdr_two; /* entry len */
186 memcpy(p, "..\0\0", 4); /* entry */
187 p++;
188 *p++ = xdr_one; /* bitmap length */
189 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
190 *p++ = htonl(8); /* attribute buffer length */
191 p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
192
193 readdir->pgbase = (char *)p - (char *)start;
194 readdir->count -= readdir->pgbase;
195 kunmap_atomic(start, KM_USER0);
196 }
197
198 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
199 {
200 struct nfs4_client *clp = server->nfs4_state;
201 spin_lock(&clp->cl_lock);
202 if (time_before(clp->cl_last_renewal,timestamp))
203 clp->cl_last_renewal = timestamp;
204 spin_unlock(&clp->cl_lock);
205 }
206
207 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
208 {
209 struct nfs_inode *nfsi = NFS_I(dir);
210
211 spin_lock(&dir->i_lock);
212 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
213 if (cinfo->before == nfsi->change_attr && cinfo->atomic)
214 nfsi->change_attr = cinfo->after;
215 spin_unlock(&dir->i_lock);
216 }
217
218 struct nfs4_opendata {
219 atomic_t count;
220 struct nfs_openargs o_arg;
221 struct nfs_openres o_res;
222 struct nfs_open_confirmargs c_arg;
223 struct nfs_open_confirmres c_res;
224 struct nfs_fattr f_attr;
225 struct nfs_fattr dir_attr;
226 struct dentry *dentry;
227 struct dentry *dir;
228 struct nfs4_state_owner *owner;
229 struct iattr attrs;
230 unsigned long timestamp;
231 int rpc_status;
232 int cancelled;
233 };
234
235 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
236 struct nfs4_state_owner *sp, int flags,
237 const struct iattr *attrs)
238 {
239 struct dentry *parent = dget_parent(dentry);
240 struct inode *dir = parent->d_inode;
241 struct nfs_server *server = NFS_SERVER(dir);
242 struct nfs4_opendata *p;
243
244 p = kzalloc(sizeof(*p), GFP_KERNEL);
245 if (p == NULL)
246 goto err;
247 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
248 if (p->o_arg.seqid == NULL)
249 goto err_free;
250 atomic_set(&p->count, 1);
251 p->dentry = dget(dentry);
252 p->dir = parent;
253 p->owner = sp;
254 atomic_inc(&sp->so_count);
255 p->o_arg.fh = NFS_FH(dir);
256 p->o_arg.open_flags = flags,
257 p->o_arg.clientid = server->nfs4_state->cl_clientid;
258 p->o_arg.id = sp->so_id;
259 p->o_arg.name = &dentry->d_name;
260 p->o_arg.server = server;
261 p->o_arg.bitmask = server->attr_bitmask;
262 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
263 p->o_res.f_attr = &p->f_attr;
264 p->o_res.dir_attr = &p->dir_attr;
265 p->o_res.server = server;
266 nfs_fattr_init(&p->f_attr);
267 nfs_fattr_init(&p->dir_attr);
268 if (flags & O_EXCL) {
269 u32 *s = (u32 *) p->o_arg.u.verifier.data;
270 s[0] = jiffies;
271 s[1] = current->pid;
272 } else if (flags & O_CREAT) {
273 p->o_arg.u.attrs = &p->attrs;
274 memcpy(&p->attrs, attrs, sizeof(p->attrs));
275 }
276 p->c_arg.fh = &p->o_res.fh;
277 p->c_arg.stateid = &p->o_res.stateid;
278 p->c_arg.seqid = p->o_arg.seqid;
279 return p;
280 err_free:
281 kfree(p);
282 err:
283 dput(parent);
284 return NULL;
285 }
286
287 static void nfs4_opendata_free(struct nfs4_opendata *p)
288 {
289 if (p != NULL && atomic_dec_and_test(&p->count)) {
290 nfs_free_seqid(p->o_arg.seqid);
291 nfs4_put_state_owner(p->owner);
292 dput(p->dir);
293 dput(p->dentry);
294 kfree(p);
295 }
296 }
297
298 /* Helper for asynchronous RPC calls */
299 static int nfs4_call_async(struct rpc_clnt *clnt,
300 const struct rpc_call_ops *tk_ops, void *calldata)
301 {
302 struct rpc_task *task;
303
304 if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
305 return -ENOMEM;
306 rpc_execute(task);
307 return 0;
308 }
309
310 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
311 {
312 sigset_t oldset;
313 int ret;
314
315 rpc_clnt_sigmask(task->tk_client, &oldset);
316 ret = rpc_wait_for_completion_task(task);
317 rpc_clnt_sigunmask(task->tk_client, &oldset);
318 return ret;
319 }
320
321 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
322 {
323 switch (open_flags) {
324 case FMODE_WRITE:
325 state->n_wronly++;
326 break;
327 case FMODE_READ:
328 state->n_rdonly++;
329 break;
330 case FMODE_READ|FMODE_WRITE:
331 state->n_rdwr++;
332 }
333 }
334
335 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
336 {
337 struct inode *inode = state->inode;
338
339 open_flags &= (FMODE_READ|FMODE_WRITE);
340 /* Protect against nfs4_find_state_byowner() */
341 spin_lock(&state->owner->so_lock);
342 spin_lock(&inode->i_lock);
343 memcpy(&state->stateid, stateid, sizeof(state->stateid));
344 update_open_stateflags(state, open_flags);
345 nfs4_state_set_mode_locked(state, state->state | open_flags);
346 spin_unlock(&inode->i_lock);
347 spin_unlock(&state->owner->so_lock);
348 }
349
350 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
351 {
352 struct inode *inode;
353 struct nfs4_state *state = NULL;
354
355 if (!(data->f_attr.valid & NFS_ATTR_FATTR))
356 goto out;
357 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
358 if (IS_ERR(inode))
359 goto out;
360 state = nfs4_get_open_state(inode, data->owner);
361 if (state == NULL)
362 goto put_inode;
363 update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
364 put_inode:
365 iput(inode);
366 out:
367 return state;
368 }
369
370 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
371 {
372 struct nfs_inode *nfsi = NFS_I(state->inode);
373 struct nfs_open_context *ctx;
374
375 spin_lock(&state->inode->i_lock);
376 list_for_each_entry(ctx, &nfsi->open_files, list) {
377 if (ctx->state != state)
378 continue;
379 get_nfs_open_context(ctx);
380 spin_unlock(&state->inode->i_lock);
381 return ctx;
382 }
383 spin_unlock(&state->inode->i_lock);
384 return ERR_PTR(-ENOENT);
385 }
386
387 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
388 {
389 int ret;
390
391 opendata->o_arg.open_flags = openflags;
392 ret = _nfs4_proc_open(opendata);
393 if (ret != 0)
394 return ret;
395 memcpy(stateid->data, opendata->o_res.stateid.data,
396 sizeof(stateid->data));
397 return 0;
398 }
399
400 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
401 {
402 nfs4_stateid stateid;
403 struct nfs4_state *newstate;
404 int mode = 0;
405 int delegation = 0;
406 int ret;
407
408 /* memory barrier prior to reading state->n_* */
409 smp_rmb();
410 if (state->n_rdwr != 0) {
411 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
412 if (ret != 0)
413 return ret;
414 mode |= FMODE_READ|FMODE_WRITE;
415 if (opendata->o_res.delegation_type != 0)
416 delegation = opendata->o_res.delegation_type;
417 smp_rmb();
418 }
419 if (state->n_wronly != 0) {
420 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
421 if (ret != 0)
422 return ret;
423 mode |= FMODE_WRITE;
424 if (opendata->o_res.delegation_type != 0)
425 delegation = opendata->o_res.delegation_type;
426 smp_rmb();
427 }
428 if (state->n_rdonly != 0) {
429 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
430 if (ret != 0)
431 return ret;
432 mode |= FMODE_READ;
433 }
434 clear_bit(NFS_DELEGATED_STATE, &state->flags);
435 if (mode == 0)
436 return 0;
437 if (opendata->o_res.delegation_type == 0)
438 opendata->o_res.delegation_type = delegation;
439 opendata->o_arg.open_flags |= mode;
440 newstate = nfs4_opendata_to_nfs4_state(opendata);
441 if (newstate != NULL) {
442 if (opendata->o_res.delegation_type != 0) {
443 struct nfs_inode *nfsi = NFS_I(newstate->inode);
444 int delegation_flags = 0;
445 if (nfsi->delegation)
446 delegation_flags = nfsi->delegation->flags;
447 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
448 nfs_inode_set_delegation(newstate->inode,
449 opendata->owner->so_cred,
450 &opendata->o_res);
451 else
452 nfs_inode_reclaim_delegation(newstate->inode,
453 opendata->owner->so_cred,
454 &opendata->o_res);
455 }
456 nfs4_close_state(newstate, opendata->o_arg.open_flags);
457 }
458 if (newstate != state)
459 return -ESTALE;
460 return 0;
461 }
462
463 /*
464 * OPEN_RECLAIM:
465 * reclaim state on the server after a reboot.
466 */
467 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
468 {
469 struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
470 struct nfs4_opendata *opendata;
471 int delegation_type = 0;
472 int status;
473
474 if (delegation != NULL) {
475 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
476 memcpy(&state->stateid, &delegation->stateid,
477 sizeof(state->stateid));
478 set_bit(NFS_DELEGATED_STATE, &state->flags);
479 return 0;
480 }
481 delegation_type = delegation->type;
482 }
483 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
484 if (opendata == NULL)
485 return -ENOMEM;
486 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
487 opendata->o_arg.fh = NFS_FH(state->inode);
488 nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
489 opendata->o_arg.u.delegation_type = delegation_type;
490 status = nfs4_open_recover(opendata, state);
491 nfs4_opendata_free(opendata);
492 return status;
493 }
494
495 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
496 {
497 struct nfs_server *server = NFS_SERVER(state->inode);
498 struct nfs4_exception exception = { };
499 int err;
500 do {
501 err = _nfs4_do_open_reclaim(sp, state, dentry);
502 if (err != -NFS4ERR_DELAY)
503 break;
504 nfs4_handle_exception(server, err, &exception);
505 } while (exception.retry);
506 return err;
507 }
508
509 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
510 {
511 struct nfs_open_context *ctx;
512 int ret;
513
514 ctx = nfs4_state_find_open_context(state);
515 if (IS_ERR(ctx))
516 return PTR_ERR(ctx);
517 ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
518 put_nfs_open_context(ctx);
519 return ret;
520 }
521
522 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
523 {
524 struct nfs4_state_owner *sp = state->owner;
525 struct nfs4_opendata *opendata;
526 int ret;
527
528 if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
529 return 0;
530 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
531 if (opendata == NULL)
532 return -ENOMEM;
533 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
534 memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
535 sizeof(opendata->o_arg.u.delegation.data));
536 ret = nfs4_open_recover(opendata, state);
537 nfs4_opendata_free(opendata);
538 return ret;
539 }
540
541 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
542 {
543 struct nfs4_exception exception = { };
544 struct nfs_server *server = NFS_SERVER(dentry->d_inode);
545 int err;
546 do {
547 err = _nfs4_open_delegation_recall(dentry, state);
548 switch (err) {
549 case 0:
550 return err;
551 case -NFS4ERR_STALE_CLIENTID:
552 case -NFS4ERR_STALE_STATEID:
553 case -NFS4ERR_EXPIRED:
554 /* Don't recall a delegation if it was lost */
555 nfs4_schedule_state_recovery(server->nfs4_state);
556 return err;
557 }
558 err = nfs4_handle_exception(server, err, &exception);
559 } while (exception.retry);
560 return err;
561 }
562
563 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
564 {
565 struct nfs4_opendata *data = calldata;
566 struct rpc_message msg = {
567 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
568 .rpc_argp = &data->c_arg,
569 .rpc_resp = &data->c_res,
570 .rpc_cred = data->owner->so_cred,
571 };
572 data->timestamp = jiffies;
573 rpc_call_setup(task, &msg, 0);
574 }
575
576 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
577 {
578 struct nfs4_opendata *data = calldata;
579
580 data->rpc_status = task->tk_status;
581 if (RPC_ASSASSINATED(task))
582 return;
583 if (data->rpc_status == 0) {
584 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
585 sizeof(data->o_res.stateid.data));
586 renew_lease(data->o_res.server, data->timestamp);
587 }
588 nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
589 nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
590 }
591
592 static void nfs4_open_confirm_release(void *calldata)
593 {
594 struct nfs4_opendata *data = calldata;
595 struct nfs4_state *state = NULL;
596
597 /* If this request hasn't been cancelled, do nothing */
598 if (data->cancelled == 0)
599 goto out_free;
600 /* In case of error, no cleanup! */
601 if (data->rpc_status != 0)
602 goto out_free;
603 nfs_confirm_seqid(&data->owner->so_seqid, 0);
604 state = nfs4_opendata_to_nfs4_state(data);
605 if (state != NULL)
606 nfs4_close_state(state, data->o_arg.open_flags);
607 out_free:
608 nfs4_opendata_free(data);
609 }
610
611 static const struct rpc_call_ops nfs4_open_confirm_ops = {
612 .rpc_call_prepare = nfs4_open_confirm_prepare,
613 .rpc_call_done = nfs4_open_confirm_done,
614 .rpc_release = nfs4_open_confirm_release,
615 };
616
617 /*
618 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
619 */
620 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
621 {
622 struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
623 struct rpc_task *task;
624 int status;
625
626 atomic_inc(&data->count);
627 /*
628 * If rpc_run_task() ends up calling ->rpc_release(), we
629 * want to ensure that it takes the 'error' code path.
630 */
631 data->rpc_status = -ENOMEM;
632 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
633 if (IS_ERR(task))
634 return PTR_ERR(task);
635 status = nfs4_wait_for_completion_rpc_task(task);
636 if (status != 0) {
637 data->cancelled = 1;
638 smp_wmb();
639 } else
640 status = data->rpc_status;
641 rpc_release_task(task);
642 return status;
643 }
644
645 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
646 {
647 struct nfs4_opendata *data = calldata;
648 struct nfs4_state_owner *sp = data->owner;
649 struct rpc_message msg = {
650 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
651 .rpc_argp = &data->o_arg,
652 .rpc_resp = &data->o_res,
653 .rpc_cred = sp->so_cred,
654 };
655
656 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
657 return;
658 /* Update sequence id. */
659 data->o_arg.id = sp->so_id;
660 data->o_arg.clientid = sp->so_client->cl_clientid;
661 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
662 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
663 data->timestamp = jiffies;
664 rpc_call_setup(task, &msg, 0);
665 }
666
667 static void nfs4_open_done(struct rpc_task *task, void *calldata)
668 {
669 struct nfs4_opendata *data = calldata;
670
671 data->rpc_status = task->tk_status;
672 if (RPC_ASSASSINATED(task))
673 return;
674 if (task->tk_status == 0) {
675 switch (data->o_res.f_attr->mode & S_IFMT) {
676 case S_IFREG:
677 break;
678 case S_IFLNK:
679 data->rpc_status = -ELOOP;
680 break;
681 case S_IFDIR:
682 data->rpc_status = -EISDIR;
683 break;
684 default:
685 data->rpc_status = -ENOTDIR;
686 }
687 renew_lease(data->o_res.server, data->timestamp);
688 }
689 nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
690 }
691
692 static void nfs4_open_release(void *calldata)
693 {
694 struct nfs4_opendata *data = calldata;
695 struct nfs4_state *state = NULL;
696
697 /* If this request hasn't been cancelled, do nothing */
698 if (data->cancelled == 0)
699 goto out_free;
700 /* In case of error, no cleanup! */
701 if (data->rpc_status != 0)
702 goto out_free;
703 /* In case we need an open_confirm, no cleanup! */
704 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
705 goto out_free;
706 nfs_confirm_seqid(&data->owner->so_seqid, 0);
707 state = nfs4_opendata_to_nfs4_state(data);
708 if (state != NULL)
709 nfs4_close_state(state, data->o_arg.open_flags);
710 out_free:
711 nfs4_opendata_free(data);
712 }
713
714 static const struct rpc_call_ops nfs4_open_ops = {
715 .rpc_call_prepare = nfs4_open_prepare,
716 .rpc_call_done = nfs4_open_done,
717 .rpc_release = nfs4_open_release,
718 };
719
720 /*
721 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
722 */
723 static int _nfs4_proc_open(struct nfs4_opendata *data)
724 {
725 struct inode *dir = data->dir->d_inode;
726 struct nfs_server *server = NFS_SERVER(dir);
727 struct nfs_openargs *o_arg = &data->o_arg;
728 struct nfs_openres *o_res = &data->o_res;
729 struct rpc_task *task;
730 int status;
731
732 atomic_inc(&data->count);
733 /*
734 * If rpc_run_task() ends up calling ->rpc_release(), we
735 * want to ensure that it takes the 'error' code path.
736 */
737 data->rpc_status = -ENOMEM;
738 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
739 if (IS_ERR(task))
740 return PTR_ERR(task);
741 status = nfs4_wait_for_completion_rpc_task(task);
742 if (status != 0) {
743 data->cancelled = 1;
744 smp_wmb();
745 } else
746 status = data->rpc_status;
747 rpc_release_task(task);
748 if (status != 0)
749 return status;
750
751 if (o_arg->open_flags & O_CREAT) {
752 update_changeattr(dir, &o_res->cinfo);
753 nfs_post_op_update_inode(dir, o_res->dir_attr);
754 } else
755 nfs_refresh_inode(dir, o_res->dir_attr);
756 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
757 status = _nfs4_proc_open_confirm(data);
758 if (status != 0)
759 return status;
760 }
761 nfs_confirm_seqid(&data->owner->so_seqid, 0);
762 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
763 return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
764 return 0;
765 }
766
767 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
768 {
769 struct nfs_access_entry cache;
770 int mask = 0;
771 int status;
772
773 if (openflags & FMODE_READ)
774 mask |= MAY_READ;
775 if (openflags & FMODE_WRITE)
776 mask |= MAY_WRITE;
777 status = nfs_access_get_cached(inode, cred, &cache);
778 if (status == 0)
779 goto out;
780
781 /* Be clever: ask server to check for all possible rights */
782 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
783 cache.cred = cred;
784 cache.jiffies = jiffies;
785 status = _nfs4_proc_access(inode, &cache);
786 if (status != 0)
787 return status;
788 nfs_access_add_cache(inode, &cache);
789 out:
790 if ((cache.mask & mask) == mask)
791 return 0;
792 return -EACCES;
793 }
794
795 int nfs4_recover_expired_lease(struct nfs_server *server)
796 {
797 struct nfs4_client *clp = server->nfs4_state;
798
799 if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
800 nfs4_schedule_state_recovery(clp);
801 return nfs4_wait_clnt_recover(server->client, clp);
802 }
803
804 /*
805 * OPEN_EXPIRED:
806 * reclaim state on the server after a network partition.
807 * Assumes caller holds the appropriate lock
808 */
809 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
810 {
811 struct inode *inode = state->inode;
812 struct nfs_delegation *delegation = NFS_I(inode)->delegation;
813 struct nfs4_opendata *opendata;
814 int openflags = state->state & (FMODE_READ|FMODE_WRITE);
815 int ret;
816
817 if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
818 ret = _nfs4_do_access(inode, sp->so_cred, openflags);
819 if (ret < 0)
820 return ret;
821 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
822 set_bit(NFS_DELEGATED_STATE, &state->flags);
823 return 0;
824 }
825 opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
826 if (opendata == NULL)
827 return -ENOMEM;
828 ret = nfs4_open_recover(opendata, state);
829 if (ret == -ESTALE) {
830 /* Invalidate the state owner so we don't ever use it again */
831 nfs4_drop_state_owner(sp);
832 d_drop(dentry);
833 }
834 nfs4_opendata_free(opendata);
835 return ret;
836 }
837
838 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
839 {
840 struct nfs_server *server = NFS_SERVER(dentry->d_inode);
841 struct nfs4_exception exception = { };
842 int err;
843
844 do {
845 err = _nfs4_open_expired(sp, state, dentry);
846 if (err == -NFS4ERR_DELAY)
847 nfs4_handle_exception(server, err, &exception);
848 } while (exception.retry);
849 return err;
850 }
851
852 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
853 {
854 struct nfs_open_context *ctx;
855 int ret;
856
857 ctx = nfs4_state_find_open_context(state);
858 if (IS_ERR(ctx))
859 return PTR_ERR(ctx);
860 ret = nfs4_do_open_expired(sp, state, ctx->dentry);
861 put_nfs_open_context(ctx);
862 return ret;
863 }
864
865 /*
866 * Returns a referenced nfs4_state if there is an open delegation on the file
867 */
868 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
869 {
870 struct nfs_delegation *delegation;
871 struct nfs_server *server = NFS_SERVER(inode);
872 struct nfs4_client *clp = server->nfs4_state;
873 struct nfs_inode *nfsi = NFS_I(inode);
874 struct nfs4_state_owner *sp = NULL;
875 struct nfs4_state *state = NULL;
876 int open_flags = flags & (FMODE_READ|FMODE_WRITE);
877 int err;
878
879 err = -ENOMEM;
880 if (!(sp = nfs4_get_state_owner(server, cred))) {
881 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
882 return err;
883 }
884 err = nfs4_recover_expired_lease(server);
885 if (err != 0)
886 goto out_put_state_owner;
887 /* Protect against reboot recovery - NOTE ORDER! */
888 down_read(&clp->cl_sem);
889 /* Protect against delegation recall */
890 down_read(&nfsi->rwsem);
891 delegation = NFS_I(inode)->delegation;
892 err = -ENOENT;
893 if (delegation == NULL || (delegation->type & open_flags) != open_flags)
894 goto out_err;
895 err = -ENOMEM;
896 state = nfs4_get_open_state(inode, sp);
897 if (state == NULL)
898 goto out_err;
899
900 err = -ENOENT;
901 if ((state->state & open_flags) == open_flags) {
902 spin_lock(&inode->i_lock);
903 update_open_stateflags(state, open_flags);
904 spin_unlock(&inode->i_lock);
905 goto out_ok;
906 } else if (state->state != 0)
907 goto out_put_open_state;
908
909 lock_kernel();
910 err = _nfs4_do_access(inode, cred, open_flags);
911 unlock_kernel();
912 if (err != 0)
913 goto out_put_open_state;
914 set_bit(NFS_DELEGATED_STATE, &state->flags);
915 update_open_stateid(state, &delegation->stateid, open_flags);
916 out_ok:
917 nfs4_put_state_owner(sp);
918 up_read(&nfsi->rwsem);
919 up_read(&clp->cl_sem);
920 *res = state;
921 return 0;
922 out_put_open_state:
923 nfs4_put_open_state(state);
924 out_err:
925 up_read(&nfsi->rwsem);
926 up_read(&clp->cl_sem);
927 if (err != -EACCES)
928 nfs_inode_return_delegation(inode);
929 out_put_state_owner:
930 nfs4_put_state_owner(sp);
931 return err;
932 }
933
934 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
935 {
936 struct nfs4_exception exception = { };
937 struct nfs4_state *res = ERR_PTR(-EIO);
938 int err;
939
940 do {
941 err = _nfs4_open_delegated(inode, flags, cred, &res);
942 if (err == 0)
943 break;
944 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
945 err, &exception));
946 } while (exception.retry);
947 return res;
948 }
949
950 /*
951 * Returns a referenced nfs4_state
952 */
953 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
954 {
955 struct nfs4_state_owner *sp;
956 struct nfs4_state *state = NULL;
957 struct nfs_server *server = NFS_SERVER(dir);
958 struct nfs4_client *clp = server->nfs4_state;
959 struct nfs4_opendata *opendata;
960 int status;
961
962 /* Protect against reboot recovery conflicts */
963 status = -ENOMEM;
964 if (!(sp = nfs4_get_state_owner(server, cred))) {
965 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
966 goto out_err;
967 }
968 status = nfs4_recover_expired_lease(server);
969 if (status != 0)
970 goto err_put_state_owner;
971 down_read(&clp->cl_sem);
972 status = -ENOMEM;
973 opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
974 if (opendata == NULL)
975 goto err_put_state_owner;
976
977 status = _nfs4_proc_open(opendata);
978 if (status != 0)
979 goto err_opendata_free;
980
981 status = -ENOMEM;
982 state = nfs4_opendata_to_nfs4_state(opendata);
983 if (state == NULL)
984 goto err_opendata_free;
985 if (opendata->o_res.delegation_type != 0)
986 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
987 nfs4_opendata_free(opendata);
988 nfs4_put_state_owner(sp);
989 up_read(&clp->cl_sem);
990 *res = state;
991 return 0;
992 err_opendata_free:
993 nfs4_opendata_free(opendata);
994 err_put_state_owner:
995 nfs4_put_state_owner(sp);
996 out_err:
997 /* Note: clp->cl_sem must be released before nfs4_put_open_state()! */
998 up_read(&clp->cl_sem);
999 *res = NULL;
1000 return status;
1001 }
1002
1003
1004 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
1005 {
1006 struct nfs4_exception exception = { };
1007 struct nfs4_state *res;
1008 int status;
1009
1010 do {
1011 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
1012 if (status == 0)
1013 break;
1014 /* NOTE: BAD_SEQID means the server and client disagree about the
1015 * book-keeping w.r.t. state-changing operations
1016 * (OPEN/CLOSE/LOCK/LOCKU...)
1017 * It is actually a sign of a bug on the client or on the server.
1018 *
1019 * If we receive a BAD_SEQID error in the particular case of
1020 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1021 * have unhashed the old state_owner for us, and that we can
1022 * therefore safely retry using a new one. We should still warn
1023 * the user though...
1024 */
1025 if (status == -NFS4ERR_BAD_SEQID) {
1026 printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1027 exception.retry = 1;
1028 continue;
1029 }
1030 /*
1031 * BAD_STATEID on OPEN means that the server cancelled our
1032 * state before it received the OPEN_CONFIRM.
1033 * Recover by retrying the request as per the discussion
1034 * on Page 181 of RFC3530.
1035 */
1036 if (status == -NFS4ERR_BAD_STATEID) {
1037 exception.retry = 1;
1038 continue;
1039 }
1040 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1041 status, &exception));
1042 } while (exception.retry);
1043 return res;
1044 }
1045
1046 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1047 struct iattr *sattr, struct nfs4_state *state)
1048 {
1049 struct nfs_server *server = NFS_SERVER(inode);
1050 struct nfs_setattrargs arg = {
1051 .fh = NFS_FH(inode),
1052 .iap = sattr,
1053 .server = server,
1054 .bitmask = server->attr_bitmask,
1055 };
1056 struct nfs_setattrres res = {
1057 .fattr = fattr,
1058 .server = server,
1059 };
1060 struct rpc_message msg = {
1061 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1062 .rpc_argp = &arg,
1063 .rpc_resp = &res,
1064 };
1065 unsigned long timestamp = jiffies;
1066 int status;
1067
1068 nfs_fattr_init(fattr);
1069
1070 if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1071 /* Use that stateid */
1072 } else if (state != NULL) {
1073 msg.rpc_cred = state->owner->so_cred;
1074 nfs4_copy_stateid(&arg.stateid, state, current->files);
1075 } else
1076 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1077
1078 status = rpc_call_sync(server->client, &msg, 0);
1079 if (status == 0 && state != NULL)
1080 renew_lease(server, timestamp);
1081 return status;
1082 }
1083
1084 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1085 struct iattr *sattr, struct nfs4_state *state)
1086 {
1087 struct nfs_server *server = NFS_SERVER(inode);
1088 struct nfs4_exception exception = { };
1089 int err;
1090 do {
1091 err = nfs4_handle_exception(server,
1092 _nfs4_do_setattr(inode, fattr, sattr, state),
1093 &exception);
1094 } while (exception.retry);
1095 return err;
1096 }
1097
1098 struct nfs4_closedata {
1099 struct inode *inode;
1100 struct nfs4_state *state;
1101 struct nfs_closeargs arg;
1102 struct nfs_closeres res;
1103 struct nfs_fattr fattr;
1104 unsigned long timestamp;
1105 };
1106
1107 static void nfs4_free_closedata(void *data)
1108 {
1109 struct nfs4_closedata *calldata = data;
1110 struct nfs4_state_owner *sp = calldata->state->owner;
1111
1112 nfs4_put_open_state(calldata->state);
1113 nfs_free_seqid(calldata->arg.seqid);
1114 nfs4_put_state_owner(sp);
1115 kfree(calldata);
1116 }
1117
1118 static void nfs4_close_done(struct rpc_task *task, void *data)
1119 {
1120 struct nfs4_closedata *calldata = data;
1121 struct nfs4_state *state = calldata->state;
1122 struct nfs_server *server = NFS_SERVER(calldata->inode);
1123
1124 if (RPC_ASSASSINATED(task))
1125 return;
1126 /* hmm. we are done with the inode, and in the process of freeing
1127 * the state_owner. we keep this around to process errors
1128 */
1129 nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1130 switch (task->tk_status) {
1131 case 0:
1132 memcpy(&state->stateid, &calldata->res.stateid,
1133 sizeof(state->stateid));
1134 renew_lease(server, calldata->timestamp);
1135 break;
1136 case -NFS4ERR_STALE_STATEID:
1137 case -NFS4ERR_EXPIRED:
1138 nfs4_schedule_state_recovery(server->nfs4_state);
1139 break;
1140 default:
1141 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1142 rpc_restart_call(task);
1143 return;
1144 }
1145 }
1146 nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1147 }
1148
1149 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1150 {
1151 struct nfs4_closedata *calldata = data;
1152 struct nfs4_state *state = calldata->state;
1153 struct rpc_message msg = {
1154 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1155 .rpc_argp = &calldata->arg,
1156 .rpc_resp = &calldata->res,
1157 .rpc_cred = state->owner->so_cred,
1158 };
1159 int mode = 0, old_mode;
1160
1161 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1162 return;
1163 /* Recalculate the new open mode in case someone reopened the file
1164 * while we were waiting in line to be scheduled.
1165 */
1166 spin_lock(&state->owner->so_lock);
1167 spin_lock(&calldata->inode->i_lock);
1168 mode = old_mode = state->state;
1169 if (state->n_rdwr == 0) {
1170 if (state->n_rdonly == 0)
1171 mode &= ~FMODE_READ;
1172 if (state->n_wronly == 0)
1173 mode &= ~FMODE_WRITE;
1174 }
1175 nfs4_state_set_mode_locked(state, mode);
1176 spin_unlock(&calldata->inode->i_lock);
1177 spin_unlock(&state->owner->so_lock);
1178 if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1179 /* Note: exit _without_ calling nfs4_close_done */
1180 task->tk_action = NULL;
1181 return;
1182 }
1183 nfs_fattr_init(calldata->res.fattr);
1184 if (mode != 0)
1185 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1186 calldata->arg.open_flags = mode;
1187 calldata->timestamp = jiffies;
1188 rpc_call_setup(task, &msg, 0);
1189 }
1190
1191 static const struct rpc_call_ops nfs4_close_ops = {
1192 .rpc_call_prepare = nfs4_close_prepare,
1193 .rpc_call_done = nfs4_close_done,
1194 .rpc_release = nfs4_free_closedata,
1195 };
1196
1197 /*
1198 * It is possible for data to be read/written from a mem-mapped file
1199 * after the sys_close call (which hits the vfs layer as a flush).
1200 * This means that we can't safely call nfsv4 close on a file until
1201 * the inode is cleared. This in turn means that we are not good
1202 * NFSv4 citizens - we do not indicate to the server to update the file's
1203 * share state even when we are done with one of the three share
1204 * stateid's in the inode.
1205 *
1206 * NOTE: Caller must be holding the sp->so_owner semaphore!
1207 */
1208 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1209 {
1210 struct nfs_server *server = NFS_SERVER(inode);
1211 struct nfs4_closedata *calldata;
1212 int status = -ENOMEM;
1213
1214 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1215 if (calldata == NULL)
1216 goto out;
1217 calldata->inode = inode;
1218 calldata->state = state;
1219 calldata->arg.fh = NFS_FH(inode);
1220 calldata->arg.stateid = &state->stateid;
1221 /* Serialization for the sequence id */
1222 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1223 if (calldata->arg.seqid == NULL)
1224 goto out_free_calldata;
1225 calldata->arg.bitmask = server->attr_bitmask;
1226 calldata->res.fattr = &calldata->fattr;
1227 calldata->res.server = server;
1228
1229 status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1230 if (status == 0)
1231 goto out;
1232
1233 nfs_free_seqid(calldata->arg.seqid);
1234 out_free_calldata:
1235 kfree(calldata);
1236 out:
1237 return status;
1238 }
1239
1240 static int nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1241 {
1242 struct file *filp;
1243
1244 filp = lookup_instantiate_filp(nd, dentry, NULL);
1245 if (!IS_ERR(filp)) {
1246 struct nfs_open_context *ctx;
1247 ctx = (struct nfs_open_context *)filp->private_data;
1248 ctx->state = state;
1249 return 0;
1250 }
1251 nfs4_close_state(state, nd->intent.open.flags);
1252 return PTR_ERR(filp);
1253 }
1254
1255 struct dentry *
1256 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1257 {
1258 struct iattr attr;
1259 struct rpc_cred *cred;
1260 struct nfs4_state *state;
1261 struct dentry *res;
1262
1263 if (nd->flags & LOOKUP_CREATE) {
1264 attr.ia_mode = nd->intent.open.create_mode;
1265 attr.ia_valid = ATTR_MODE;
1266 if (!IS_POSIXACL(dir))
1267 attr.ia_mode &= ~current->fs->umask;
1268 } else {
1269 attr.ia_valid = 0;
1270 BUG_ON(nd->intent.open.flags & O_CREAT);
1271 }
1272
1273 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1274 if (IS_ERR(cred))
1275 return (struct dentry *)cred;
1276 state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1277 put_rpccred(cred);
1278 if (IS_ERR(state)) {
1279 if (PTR_ERR(state) == -ENOENT)
1280 d_add(dentry, NULL);
1281 return (struct dentry *)state;
1282 }
1283 res = d_add_unique(dentry, igrab(state->inode));
1284 if (res != NULL)
1285 dentry = res;
1286 nfs4_intent_set_file(nd, dentry, state);
1287 return res;
1288 }
1289
1290 int
1291 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1292 {
1293 struct rpc_cred *cred;
1294 struct nfs4_state *state;
1295
1296 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1297 if (IS_ERR(cred))
1298 return PTR_ERR(cred);
1299 state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1300 if (IS_ERR(state))
1301 state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1302 put_rpccred(cred);
1303 if (IS_ERR(state)) {
1304 switch (PTR_ERR(state)) {
1305 case -EPERM:
1306 case -EACCES:
1307 case -EDQUOT:
1308 case -ENOSPC:
1309 case -EROFS:
1310 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1311 return 1;
1312 case -ENOENT:
1313 if (dentry->d_inode == NULL)
1314 return 1;
1315 }
1316 goto out_drop;
1317 }
1318 if (state->inode == dentry->d_inode) {
1319 nfs4_intent_set_file(nd, dentry, state);
1320 return 1;
1321 }
1322 nfs4_close_state(state, openflags);
1323 out_drop:
1324 d_drop(dentry);
1325 return 0;
1326 }
1327
1328
1329 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1330 {
1331 struct nfs4_server_caps_res res = {};
1332 struct rpc_message msg = {
1333 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1334 .rpc_argp = fhandle,
1335 .rpc_resp = &res,
1336 };
1337 int status;
1338
1339 status = rpc_call_sync(server->client, &msg, 0);
1340 if (status == 0) {
1341 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1342 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1343 server->caps |= NFS_CAP_ACLS;
1344 if (res.has_links != 0)
1345 server->caps |= NFS_CAP_HARDLINKS;
1346 if (res.has_symlinks != 0)
1347 server->caps |= NFS_CAP_SYMLINKS;
1348 server->acl_bitmask = res.acl_bitmask;
1349 }
1350 return status;
1351 }
1352
1353 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1354 {
1355 struct nfs4_exception exception = { };
1356 int err;
1357 do {
1358 err = nfs4_handle_exception(server,
1359 _nfs4_server_capabilities(server, fhandle),
1360 &exception);
1361 } while (exception.retry);
1362 return err;
1363 }
1364
1365 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1366 struct nfs_fsinfo *info)
1367 {
1368 struct nfs4_lookup_root_arg args = {
1369 .bitmask = nfs4_fattr_bitmap,
1370 };
1371 struct nfs4_lookup_res res = {
1372 .server = server,
1373 .fattr = info->fattr,
1374 .fh = fhandle,
1375 };
1376 struct rpc_message msg = {
1377 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1378 .rpc_argp = &args,
1379 .rpc_resp = &res,
1380 };
1381 nfs_fattr_init(info->fattr);
1382 return rpc_call_sync(server->client, &msg, 0);
1383 }
1384
1385 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1386 struct nfs_fsinfo *info)
1387 {
1388 struct nfs4_exception exception = { };
1389 int err;
1390 do {
1391 err = nfs4_handle_exception(server,
1392 _nfs4_lookup_root(server, fhandle, info),
1393 &exception);
1394 } while (exception.retry);
1395 return err;
1396 }
1397
1398 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1399 struct nfs_fsinfo *info)
1400 {
1401 struct nfs_fattr * fattr = info->fattr;
1402 unsigned char * p;
1403 struct qstr q;
1404 struct nfs4_lookup_arg args = {
1405 .dir_fh = fhandle,
1406 .name = &q,
1407 .bitmask = nfs4_fattr_bitmap,
1408 };
1409 struct nfs4_lookup_res res = {
1410 .server = server,
1411 .fattr = fattr,
1412 .fh = fhandle,
1413 };
1414 struct rpc_message msg = {
1415 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1416 .rpc_argp = &args,
1417 .rpc_resp = &res,
1418 };
1419 int status;
1420
1421 /*
1422 * Now we do a separate LOOKUP for each component of the mount path.
1423 * The LOOKUPs are done separately so that we can conveniently
1424 * catch an ERR_WRONGSEC if it occurs along the way...
1425 */
1426 status = nfs4_lookup_root(server, fhandle, info);
1427 if (status)
1428 goto out;
1429
1430 p = server->mnt_path;
1431 for (;;) {
1432 struct nfs4_exception exception = { };
1433
1434 while (*p == '/')
1435 p++;
1436 if (!*p)
1437 break;
1438 q.name = p;
1439 while (*p && (*p != '/'))
1440 p++;
1441 q.len = p - q.name;
1442
1443 do {
1444 nfs_fattr_init(fattr);
1445 status = nfs4_handle_exception(server,
1446 rpc_call_sync(server->client, &msg, 0),
1447 &exception);
1448 } while (exception.retry);
1449 if (status == 0)
1450 continue;
1451 if (status == -ENOENT) {
1452 printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
1453 printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
1454 }
1455 break;
1456 }
1457 if (status == 0)
1458 status = nfs4_server_capabilities(server, fhandle);
1459 if (status == 0)
1460 status = nfs4_do_fsinfo(server, fhandle, info);
1461 out:
1462 return nfs4_map_errors(status);
1463 }
1464
1465 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1466 {
1467 struct nfs4_getattr_arg args = {
1468 .fh = fhandle,
1469 .bitmask = server->attr_bitmask,
1470 };
1471 struct nfs4_getattr_res res = {
1472 .fattr = fattr,
1473 .server = server,
1474 };
1475 struct rpc_message msg = {
1476 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1477 .rpc_argp = &args,
1478 .rpc_resp = &res,
1479 };
1480
1481 nfs_fattr_init(fattr);
1482 return rpc_call_sync(server->client, &msg, 0);
1483 }
1484
1485 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1486 {
1487 struct nfs4_exception exception = { };
1488 int err;
1489 do {
1490 err = nfs4_handle_exception(server,
1491 _nfs4_proc_getattr(server, fhandle, fattr),
1492 &exception);
1493 } while (exception.retry);
1494 return err;
1495 }
1496
1497 /*
1498 * The file is not closed if it is opened due to the a request to change
1499 * the size of the file. The open call will not be needed once the
1500 * VFS layer lookup-intents are implemented.
1501 *
1502 * Close is called when the inode is destroyed.
1503 * If we haven't opened the file for O_WRONLY, we
1504 * need to in the size_change case to obtain a stateid.
1505 *
1506 * Got race?
1507 * Because OPEN is always done by name in nfsv4, it is
1508 * possible that we opened a different file by the same
1509 * name. We can recognize this race condition, but we
1510 * can't do anything about it besides returning an error.
1511 *
1512 * This will be fixed with VFS changes (lookup-intent).
1513 */
1514 static int
1515 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1516 struct iattr *sattr)
1517 {
1518 struct rpc_cred *cred;
1519 struct inode *inode = dentry->d_inode;
1520 struct nfs_open_context *ctx;
1521 struct nfs4_state *state = NULL;
1522 int status;
1523
1524 nfs_fattr_init(fattr);
1525
1526 cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
1527 if (IS_ERR(cred))
1528 return PTR_ERR(cred);
1529
1530 /* Search for an existing open(O_WRITE) file */
1531 ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1532 if (ctx != NULL)
1533 state = ctx->state;
1534
1535 status = nfs4_do_setattr(inode, fattr, sattr, state);
1536 if (status == 0)
1537 nfs_setattr_update_inode(inode, sattr);
1538 if (ctx != NULL)
1539 put_nfs_open_context(ctx);
1540 put_rpccred(cred);
1541 return status;
1542 }
1543
1544 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1545 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1546 {
1547 int status;
1548 struct nfs_server *server = NFS_SERVER(dir);
1549 struct nfs4_lookup_arg args = {
1550 .bitmask = server->attr_bitmask,
1551 .dir_fh = NFS_FH(dir),
1552 .name = name,
1553 };
1554 struct nfs4_lookup_res res = {
1555 .server = server,
1556 .fattr = fattr,
1557 .fh = fhandle,
1558 };
1559 struct rpc_message msg = {
1560 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1561 .rpc_argp = &args,
1562 .rpc_resp = &res,
1563 };
1564
1565 nfs_fattr_init(fattr);
1566
1567 dprintk("NFS call lookup %s\n", name->name);
1568 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1569 dprintk("NFS reply lookup: %d\n", status);
1570 return status;
1571 }
1572
1573 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1574 {
1575 struct nfs4_exception exception = { };
1576 int err;
1577 do {
1578 err = nfs4_handle_exception(NFS_SERVER(dir),
1579 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1580 &exception);
1581 } while (exception.retry);
1582 return err;
1583 }
1584
1585 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1586 {
1587 struct nfs4_accessargs args = {
1588 .fh = NFS_FH(inode),
1589 };
1590 struct nfs4_accessres res = { 0 };
1591 struct rpc_message msg = {
1592 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1593 .rpc_argp = &args,
1594 .rpc_resp = &res,
1595 .rpc_cred = entry->cred,
1596 };
1597 int mode = entry->mask;
1598 int status;
1599
1600 /*
1601 * Determine which access bits we want to ask for...
1602 */
1603 if (mode & MAY_READ)
1604 args.access |= NFS4_ACCESS_READ;
1605 if (S_ISDIR(inode->i_mode)) {
1606 if (mode & MAY_WRITE)
1607 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1608 if (mode & MAY_EXEC)
1609 args.access |= NFS4_ACCESS_LOOKUP;
1610 } else {
1611 if (mode & MAY_WRITE)
1612 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1613 if (mode & MAY_EXEC)
1614 args.access |= NFS4_ACCESS_EXECUTE;
1615 }
1616 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1617 if (!status) {
1618 entry->mask = 0;
1619 if (res.access & NFS4_ACCESS_READ)
1620 entry->mask |= MAY_READ;
1621 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1622 entry->mask |= MAY_WRITE;
1623 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1624 entry->mask |= MAY_EXEC;
1625 }
1626 return status;
1627 }
1628
1629 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1630 {
1631 struct nfs4_exception exception = { };
1632 int err;
1633 do {
1634 err = nfs4_handle_exception(NFS_SERVER(inode),
1635 _nfs4_proc_access(inode, entry),
1636 &exception);
1637 } while (exception.retry);
1638 return err;
1639 }
1640
1641 /*
1642 * TODO: For the time being, we don't try to get any attributes
1643 * along with any of the zero-copy operations READ, READDIR,
1644 * READLINK, WRITE.
1645 *
1646 * In the case of the first three, we want to put the GETATTR
1647 * after the read-type operation -- this is because it is hard
1648 * to predict the length of a GETATTR response in v4, and thus
1649 * align the READ data correctly. This means that the GETATTR
1650 * may end up partially falling into the page cache, and we should
1651 * shift it into the 'tail' of the xdr_buf before processing.
1652 * To do this efficiently, we need to know the total length
1653 * of data received, which doesn't seem to be available outside
1654 * of the RPC layer.
1655 *
1656 * In the case of WRITE, we also want to put the GETATTR after
1657 * the operation -- in this case because we want to make sure
1658 * we get the post-operation mtime and size. This means that
1659 * we can't use xdr_encode_pages() as written: we need a variant
1660 * of it which would leave room in the 'tail' iovec.
1661 *
1662 * Both of these changes to the XDR layer would in fact be quite
1663 * minor, but I decided to leave them for a subsequent patch.
1664 */
1665 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1666 unsigned int pgbase, unsigned int pglen)
1667 {
1668 struct nfs4_readlink args = {
1669 .fh = NFS_FH(inode),
1670 .pgbase = pgbase,
1671 .pglen = pglen,
1672 .pages = &page,
1673 };
1674 struct rpc_message msg = {
1675 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1676 .rpc_argp = &args,
1677 .rpc_resp = NULL,
1678 };
1679
1680 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1681 }
1682
1683 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1684 unsigned int pgbase, unsigned int pglen)
1685 {
1686 struct nfs4_exception exception = { };
1687 int err;
1688 do {
1689 err = nfs4_handle_exception(NFS_SERVER(inode),
1690 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1691 &exception);
1692 } while (exception.retry);
1693 return err;
1694 }
1695
1696 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1697 {
1698 int flags = rdata->flags;
1699 struct inode *inode = rdata->inode;
1700 struct nfs_fattr *fattr = rdata->res.fattr;
1701 struct nfs_server *server = NFS_SERVER(inode);
1702 struct rpc_message msg = {
1703 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
1704 .rpc_argp = &rdata->args,
1705 .rpc_resp = &rdata->res,
1706 .rpc_cred = rdata->cred,
1707 };
1708 unsigned long timestamp = jiffies;
1709 int status;
1710
1711 dprintk("NFS call read %d @ %Ld\n", rdata->args.count,
1712 (long long) rdata->args.offset);
1713
1714 nfs_fattr_init(fattr);
1715 status = rpc_call_sync(server->client, &msg, flags);
1716 if (!status)
1717 renew_lease(server, timestamp);
1718 dprintk("NFS reply read: %d\n", status);
1719 return status;
1720 }
1721
1722 static int nfs4_proc_read(struct nfs_read_data *rdata)
1723 {
1724 struct nfs4_exception exception = { };
1725 int err;
1726 do {
1727 err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1728 _nfs4_proc_read(rdata),
1729 &exception);
1730 } while (exception.retry);
1731 return err;
1732 }
1733
1734 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1735 {
1736 int rpcflags = wdata->flags;
1737 struct inode *inode = wdata->inode;
1738 struct nfs_fattr *fattr = wdata->res.fattr;
1739 struct nfs_server *server = NFS_SERVER(inode);
1740 struct rpc_message msg = {
1741 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1742 .rpc_argp = &wdata->args,
1743 .rpc_resp = &wdata->res,
1744 .rpc_cred = wdata->cred,
1745 };
1746 int status;
1747
1748 dprintk("NFS call write %d @ %Ld\n", wdata->args.count,
1749 (long long) wdata->args.offset);
1750
1751 wdata->args.bitmask = server->attr_bitmask;
1752 wdata->res.server = server;
1753 wdata->timestamp = jiffies;
1754 nfs_fattr_init(fattr);
1755 status = rpc_call_sync(server->client, &msg, rpcflags);
1756 dprintk("NFS reply write: %d\n", status);
1757 if (status < 0)
1758 return status;
1759 renew_lease(server, wdata->timestamp);
1760 nfs_post_op_update_inode(inode, fattr);
1761 return wdata->res.count;
1762 }
1763
1764 static int nfs4_proc_write(struct nfs_write_data *wdata)
1765 {
1766 struct nfs4_exception exception = { };
1767 int err;
1768 do {
1769 err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1770 _nfs4_proc_write(wdata),
1771 &exception);
1772 } while (exception.retry);
1773 return err;
1774 }
1775
1776 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1777 {
1778 struct inode *inode = cdata->inode;
1779 struct nfs_fattr *fattr = cdata->res.fattr;
1780 struct nfs_server *server = NFS_SERVER(inode);
1781 struct rpc_message msg = {
1782 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1783 .rpc_argp = &cdata->args,
1784 .rpc_resp = &cdata->res,
1785 .rpc_cred = cdata->cred,
1786 };
1787 int status;
1788
1789 dprintk("NFS call commit %d @ %Ld\n", cdata->args.count,
1790 (long long) cdata->args.offset);
1791
1792 cdata->args.bitmask = server->attr_bitmask;
1793 cdata->res.server = server;
1794 cdata->timestamp = jiffies;
1795 nfs_fattr_init(fattr);
1796 status = rpc_call_sync(server->client, &msg, 0);
1797 if (status >= 0)
1798 renew_lease(server, cdata->timestamp);
1799 dprintk("NFS reply commit: %d\n", status);
1800 if (status >= 0)
1801 nfs_post_op_update_inode(inode, fattr);
1802 return status;
1803 }
1804
1805 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1806 {
1807 struct nfs4_exception exception = { };
1808 int err;
1809 do {
1810 err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1811 _nfs4_proc_commit(cdata),
1812 &exception);
1813 } while (exception.retry);
1814 return err;
1815 }
1816
1817 /*
1818 * Got race?
1819 * We will need to arrange for the VFS layer to provide an atomic open.
1820 * Until then, this create/open method is prone to inefficiency and race
1821 * conditions due to the lookup, create, and open VFS calls from sys_open()
1822 * placed on the wire.
1823 *
1824 * Given the above sorry state of affairs, I'm simply sending an OPEN.
1825 * The file will be opened again in the subsequent VFS open call
1826 * (nfs4_proc_file_open).
1827 *
1828 * The open for read will just hang around to be used by any process that
1829 * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1830 */
1831
1832 static int
1833 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1834 int flags, struct nameidata *nd)
1835 {
1836 struct nfs4_state *state;
1837 struct rpc_cred *cred;
1838 int status = 0;
1839
1840 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1841 if (IS_ERR(cred)) {
1842 status = PTR_ERR(cred);
1843 goto out;
1844 }
1845 state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1846 put_rpccred(cred);
1847 if (IS_ERR(state)) {
1848 status = PTR_ERR(state);
1849 goto out;
1850 }
1851 d_instantiate(dentry, igrab(state->inode));
1852 if (flags & O_EXCL) {
1853 struct nfs_fattr fattr;
1854 status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1855 if (status == 0)
1856 nfs_setattr_update_inode(state->inode, sattr);
1857 }
1858 if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1859 status = nfs4_intent_set_file(nd, dentry, state);
1860 else
1861 nfs4_close_state(state, flags);
1862 out:
1863 return status;
1864 }
1865
1866 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1867 {
1868 struct nfs_server *server = NFS_SERVER(dir);
1869 struct nfs4_remove_arg args = {
1870 .fh = NFS_FH(dir),
1871 .name = name,
1872 .bitmask = server->attr_bitmask,
1873 };
1874 struct nfs_fattr dir_attr;
1875 struct nfs4_remove_res res = {
1876 .server = server,
1877 .dir_attr = &dir_attr,
1878 };
1879 struct rpc_message msg = {
1880 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1881 .rpc_argp = &args,
1882 .rpc_resp = &res,
1883 };
1884 int status;
1885
1886 nfs_fattr_init(res.dir_attr);
1887 status = rpc_call_sync(server->client, &msg, 0);
1888 if (status == 0) {
1889 update_changeattr(dir, &res.cinfo);
1890 nfs_post_op_update_inode(dir, res.dir_attr);
1891 }
1892 return status;
1893 }
1894
1895 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1896 {
1897 struct nfs4_exception exception = { };
1898 int err;
1899 do {
1900 err = nfs4_handle_exception(NFS_SERVER(dir),
1901 _nfs4_proc_remove(dir, name),
1902 &exception);
1903 } while (exception.retry);
1904 return err;
1905 }
1906
1907 struct unlink_desc {
1908 struct nfs4_remove_arg args;
1909 struct nfs4_remove_res res;
1910 struct nfs_fattr dir_attr;
1911 };
1912
1913 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1914 struct qstr *name)
1915 {
1916 struct nfs_server *server = NFS_SERVER(dir->d_inode);
1917 struct unlink_desc *up;
1918
1919 up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1920 if (!up)
1921 return -ENOMEM;
1922
1923 up->args.fh = NFS_FH(dir->d_inode);
1924 up->args.name = name;
1925 up->args.bitmask = server->attr_bitmask;
1926 up->res.server = server;
1927 up->res.dir_attr = &up->dir_attr;
1928
1929 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1930 msg->rpc_argp = &up->args;
1931 msg->rpc_resp = &up->res;
1932 return 0;
1933 }
1934
1935 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1936 {
1937 struct rpc_message *msg = &task->tk_msg;
1938 struct unlink_desc *up;
1939
1940 if (msg->rpc_resp != NULL) {
1941 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1942 update_changeattr(dir->d_inode, &up->res.cinfo);
1943 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1944 kfree(up);
1945 msg->rpc_resp = NULL;
1946 msg->rpc_argp = NULL;
1947 }
1948 return 0;
1949 }
1950
1951 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1952 struct inode *new_dir, struct qstr *new_name)
1953 {
1954 struct nfs_server *server = NFS_SERVER(old_dir);
1955 struct nfs4_rename_arg arg = {
1956 .old_dir = NFS_FH(old_dir),
1957 .new_dir = NFS_FH(new_dir),
1958 .old_name = old_name,
1959 .new_name = new_name,
1960 .bitmask = server->attr_bitmask,
1961 };
1962 struct nfs_fattr old_fattr, new_fattr;
1963 struct nfs4_rename_res res = {
1964 .server = server,
1965 .old_fattr = &old_fattr,
1966 .new_fattr = &new_fattr,
1967 };
1968 struct rpc_message msg = {
1969 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1970 .rpc_argp = &arg,
1971 .rpc_resp = &res,
1972 };
1973 int status;
1974
1975 nfs_fattr_init(res.old_fattr);
1976 nfs_fattr_init(res.new_fattr);
1977 status = rpc_call_sync(server->client, &msg, 0);
1978
1979 if (!status) {
1980 update_changeattr(old_dir, &res.old_cinfo);
1981 nfs_post_op_update_inode(old_dir, res.old_fattr);
1982 update_changeattr(new_dir, &res.new_cinfo);
1983 nfs_post_op_update_inode(new_dir, res.new_fattr);
1984 }
1985 return status;
1986 }
1987
1988 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1989 struct inode *new_dir, struct qstr *new_name)
1990 {
1991 struct nfs4_exception exception = { };
1992 int err;
1993 do {
1994 err = nfs4_handle_exception(NFS_SERVER(old_dir),
1995 _nfs4_proc_rename(old_dir, old_name,
1996 new_dir, new_name),
1997 &exception);
1998 } while (exception.retry);
1999 return err;
2000 }
2001
2002 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2003 {
2004 struct nfs_server *server = NFS_SERVER(inode);
2005 struct nfs4_link_arg arg = {
2006 .fh = NFS_FH(inode),
2007 .dir_fh = NFS_FH(dir),
2008 .name = name,
2009 .bitmask = server->attr_bitmask,
2010 };
2011 struct nfs_fattr fattr, dir_attr;
2012 struct nfs4_link_res res = {
2013 .server = server,
2014 .fattr = &fattr,
2015 .dir_attr = &dir_attr,
2016 };
2017 struct rpc_message msg = {
2018 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2019 .rpc_argp = &arg,
2020 .rpc_resp = &res,
2021 };
2022 int status;
2023
2024 nfs_fattr_init(res.fattr);
2025 nfs_fattr_init(res.dir_attr);
2026 status = rpc_call_sync(server->client, &msg, 0);
2027 if (!status) {
2028 update_changeattr(dir, &res.cinfo);
2029 nfs_post_op_update_inode(dir, res.dir_attr);
2030 nfs_post_op_update_inode(inode, res.fattr);
2031 }
2032
2033 return status;
2034 }
2035
2036 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2037 {
2038 struct nfs4_exception exception = { };
2039 int err;
2040 do {
2041 err = nfs4_handle_exception(NFS_SERVER(inode),
2042 _nfs4_proc_link(inode, dir, name),
2043 &exception);
2044 } while (exception.retry);
2045 return err;
2046 }
2047
2048 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2049 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2050 struct nfs_fattr *fattr)
2051 {
2052 struct nfs_server *server = NFS_SERVER(dir);
2053 struct nfs_fattr dir_fattr;
2054 struct nfs4_create_arg arg = {
2055 .dir_fh = NFS_FH(dir),
2056 .server = server,
2057 .name = name,
2058 .attrs = sattr,
2059 .ftype = NF4LNK,
2060 .bitmask = server->attr_bitmask,
2061 };
2062 struct nfs4_create_res res = {
2063 .server = server,
2064 .fh = fhandle,
2065 .fattr = fattr,
2066 .dir_fattr = &dir_fattr,
2067 };
2068 struct rpc_message msg = {
2069 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2070 .rpc_argp = &arg,
2071 .rpc_resp = &res,
2072 };
2073 int status;
2074
2075 if (path->len > NFS4_MAXPATHLEN)
2076 return -ENAMETOOLONG;
2077 arg.u.symlink = path;
2078 nfs_fattr_init(fattr);
2079 nfs_fattr_init(&dir_fattr);
2080
2081 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2082 if (!status)
2083 update_changeattr(dir, &res.dir_cinfo);
2084 nfs_post_op_update_inode(dir, res.dir_fattr);
2085 return status;
2086 }
2087
2088 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2089 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2090 struct nfs_fattr *fattr)
2091 {
2092 struct nfs4_exception exception = { };
2093 int err;
2094 do {
2095 err = nfs4_handle_exception(NFS_SERVER(dir),
2096 _nfs4_proc_symlink(dir, name, path, sattr,
2097 fhandle, fattr),
2098 &exception);
2099 } while (exception.retry);
2100 return err;
2101 }
2102
2103 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2104 struct iattr *sattr)
2105 {
2106 struct nfs_server *server = NFS_SERVER(dir);
2107 struct nfs_fh fhandle;
2108 struct nfs_fattr fattr, dir_fattr;
2109 struct nfs4_create_arg arg = {
2110 .dir_fh = NFS_FH(dir),
2111 .server = server,
2112 .name = &dentry->d_name,
2113 .attrs = sattr,
2114 .ftype = NF4DIR,
2115 .bitmask = server->attr_bitmask,
2116 };
2117 struct nfs4_create_res res = {
2118 .server = server,
2119 .fh = &fhandle,
2120 .fattr = &fattr,
2121 .dir_fattr = &dir_fattr,
2122 };
2123 struct rpc_message msg = {
2124 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2125 .rpc_argp = &arg,
2126 .rpc_resp = &res,
2127 };
2128 int status;
2129
2130 nfs_fattr_init(&fattr);
2131 nfs_fattr_init(&dir_fattr);
2132
2133 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2134 if (!status) {
2135 update_changeattr(dir, &res.dir_cinfo);
2136 nfs_post_op_update_inode(dir, res.dir_fattr);
2137 status = nfs_instantiate(dentry, &fhandle, &fattr);
2138 }
2139 return status;
2140 }
2141
2142 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2143 struct iattr *sattr)
2144 {
2145 struct nfs4_exception exception = { };
2146 int err;
2147 do {
2148 err = nfs4_handle_exception(NFS_SERVER(dir),
2149 _nfs4_proc_mkdir(dir, dentry, sattr),
2150 &exception);
2151 } while (exception.retry);
2152 return err;
2153 }
2154
2155 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2156 u64 cookie, struct page *page, unsigned int count, int plus)
2157 {
2158 struct inode *dir = dentry->d_inode;
2159 struct nfs4_readdir_arg args = {
2160 .fh = NFS_FH(dir),
2161 .pages = &page,
2162 .pgbase = 0,
2163 .count = count,
2164 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2165 };
2166 struct nfs4_readdir_res res;
2167 struct rpc_message msg = {
2168 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2169 .rpc_argp = &args,
2170 .rpc_resp = &res,
2171 .rpc_cred = cred,
2172 };
2173 int status;
2174
2175 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2176 dentry->d_parent->d_name.name,
2177 dentry->d_name.name,
2178 (unsigned long long)cookie);
2179 lock_kernel();
2180 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2181 res.pgbase = args.pgbase;
2182 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2183 if (status == 0)
2184 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2185 unlock_kernel();
2186 dprintk("%s: returns %d\n", __FUNCTION__, status);
2187 return status;
2188 }
2189
2190 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2191 u64 cookie, struct page *page, unsigned int count, int plus)
2192 {
2193 struct nfs4_exception exception = { };
2194 int err;
2195 do {
2196 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2197 _nfs4_proc_readdir(dentry, cred, cookie,
2198 page, count, plus),
2199 &exception);
2200 } while (exception.retry);
2201 return err;
2202 }
2203
2204 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2205 struct iattr *sattr, dev_t rdev)
2206 {
2207 struct nfs_server *server = NFS_SERVER(dir);
2208 struct nfs_fh fh;
2209 struct nfs_fattr fattr, dir_fattr;
2210 struct nfs4_create_arg arg = {
2211 .dir_fh = NFS_FH(dir),
2212 .server = server,
2213 .name = &dentry->d_name,
2214 .attrs = sattr,
2215 .bitmask = server->attr_bitmask,
2216 };
2217 struct nfs4_create_res res = {
2218 .server = server,
2219 .fh = &fh,
2220 .fattr = &fattr,
2221 .dir_fattr = &dir_fattr,
2222 };
2223 struct rpc_message msg = {
2224 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2225 .rpc_argp = &arg,
2226 .rpc_resp = &res,
2227 };
2228 int status;
2229 int mode = sattr->ia_mode;
2230
2231 nfs_fattr_init(&fattr);
2232 nfs_fattr_init(&dir_fattr);
2233
2234 BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2235 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2236 if (S_ISFIFO(mode))
2237 arg.ftype = NF4FIFO;
2238 else if (S_ISBLK(mode)) {
2239 arg.ftype = NF4BLK;
2240 arg.u.device.specdata1 = MAJOR(rdev);
2241 arg.u.device.specdata2 = MINOR(rdev);
2242 }
2243 else if (S_ISCHR(mode)) {
2244 arg.ftype = NF4CHR;
2245 arg.u.device.specdata1 = MAJOR(rdev);
2246 arg.u.device.specdata2 = MINOR(rdev);
2247 }
2248 else
2249 arg.ftype = NF4SOCK;
2250
2251 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2252 if (status == 0) {
2253 update_changeattr(dir, &res.dir_cinfo);
2254 nfs_post_op_update_inode(dir, res.dir_fattr);
2255 status = nfs_instantiate(dentry, &fh, &fattr);
2256 }
2257 return status;
2258 }
2259
2260 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2261 struct iattr *sattr, dev_t rdev)
2262 {
2263 struct nfs4_exception exception = { };
2264 int err;
2265 do {
2266 err = nfs4_handle_exception(NFS_SERVER(dir),
2267 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2268 &exception);
2269 } while (exception.retry);
2270 return err;
2271 }
2272
2273 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2274 struct nfs_fsstat *fsstat)
2275 {
2276 struct nfs4_statfs_arg args = {
2277 .fh = fhandle,
2278 .bitmask = server->attr_bitmask,
2279 };
2280 struct rpc_message msg = {
2281 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2282 .rpc_argp = &args,
2283 .rpc_resp = fsstat,
2284 };
2285
2286 nfs_fattr_init(fsstat->fattr);
2287 return rpc_call_sync(server->client, &msg, 0);
2288 }
2289
2290 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2291 {
2292 struct nfs4_exception exception = { };
2293 int err;
2294 do {
2295 err = nfs4_handle_exception(server,
2296 _nfs4_proc_statfs(server, fhandle, fsstat),
2297 &exception);
2298 } while (exception.retry);
2299 return err;
2300 }
2301
2302 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2303 struct nfs_fsinfo *fsinfo)
2304 {
2305 struct nfs4_fsinfo_arg args = {
2306 .fh = fhandle,
2307 .bitmask = server->attr_bitmask,
2308 };
2309 struct rpc_message msg = {
2310 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2311 .rpc_argp = &args,
2312 .rpc_resp = fsinfo,
2313 };
2314
2315 return rpc_call_sync(server->client, &msg, 0);
2316 }
2317
2318 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2319 {
2320 struct nfs4_exception exception = { };
2321 int err;
2322
2323 do {
2324 err = nfs4_handle_exception(server,
2325 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2326 &exception);
2327 } while (exception.retry);
2328 return err;
2329 }
2330
2331 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2332 {
2333 nfs_fattr_init(fsinfo->fattr);
2334 return nfs4_do_fsinfo(server, fhandle, fsinfo);
2335 }
2336
2337 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2338 struct nfs_pathconf *pathconf)
2339 {
2340 struct nfs4_pathconf_arg args = {
2341 .fh = fhandle,
2342 .bitmask = server->attr_bitmask,
2343 };
2344 struct rpc_message msg = {
2345 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2346 .rpc_argp = &args,
2347 .rpc_resp = pathconf,
2348 };
2349
2350 /* None of the pathconf attributes are mandatory to implement */
2351 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2352 memset(pathconf, 0, sizeof(*pathconf));
2353 return 0;
2354 }
2355
2356 nfs_fattr_init(pathconf->fattr);
2357 return rpc_call_sync(server->client, &msg, 0);
2358 }
2359
2360 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2361 struct nfs_pathconf *pathconf)
2362 {
2363 struct nfs4_exception exception = { };
2364 int err;
2365
2366 do {
2367 err = nfs4_handle_exception(server,
2368 _nfs4_proc_pathconf(server, fhandle, pathconf),
2369 &exception);
2370 } while (exception.retry);
2371 return err;
2372 }
2373
2374 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2375 {
2376 struct nfs_server *server = NFS_SERVER(data->inode);
2377
2378 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2379 rpc_restart_call(task);
2380 return -EAGAIN;
2381 }
2382 if (task->tk_status > 0)
2383 renew_lease(server, data->timestamp);
2384 return 0;
2385 }
2386
2387 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2388 {
2389 struct rpc_message msg = {
2390 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2391 .rpc_argp = &data->args,
2392 .rpc_resp = &data->res,
2393 .rpc_cred = data->cred,
2394 };
2395
2396 data->timestamp = jiffies;
2397
2398 rpc_call_setup(&data->task, &msg, 0);
2399 }
2400
2401 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2402 {
2403 struct inode *inode = data->inode;
2404
2405 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2406 rpc_restart_call(task);
2407 return -EAGAIN;
2408 }
2409 if (task->tk_status >= 0) {
2410 renew_lease(NFS_SERVER(inode), data->timestamp);
2411 nfs_post_op_update_inode(inode, data->res.fattr);
2412 }
2413 return 0;
2414 }
2415
2416 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2417 {
2418 struct rpc_message msg = {
2419 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2420 .rpc_argp = &data->args,
2421 .rpc_resp = &data->res,
2422 .rpc_cred = data->cred,
2423 };
2424 struct inode *inode = data->inode;
2425 struct nfs_server *server = NFS_SERVER(inode);
2426 int stable;
2427
2428 if (how & FLUSH_STABLE) {
2429 if (!NFS_I(inode)->ncommit)
2430 stable = NFS_FILE_SYNC;
2431 else
2432 stable = NFS_DATA_SYNC;
2433 } else
2434 stable = NFS_UNSTABLE;
2435 data->args.stable = stable;
2436 data->args.bitmask = server->attr_bitmask;
2437 data->res.server = server;
2438
2439 data->timestamp = jiffies;
2440
2441 /* Finalize the task. */
2442 rpc_call_setup(&data->task, &msg, 0);
2443 }
2444
2445 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2446 {
2447 struct inode *inode = data->inode;
2448
2449 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2450 rpc_restart_call(task);
2451 return -EAGAIN;
2452 }
2453 if (task->tk_status >= 0)
2454 nfs_post_op_update_inode(inode, data->res.fattr);
2455 return 0;
2456 }
2457
2458 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2459 {
2460 struct rpc_message msg = {
2461 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2462 .rpc_argp = &data->args,
2463 .rpc_resp = &data->res,
2464 .rpc_cred = data->cred,
2465 };
2466 struct nfs_server *server = NFS_SERVER(data->inode);
2467
2468 data->args.bitmask = server->attr_bitmask;
2469 data->res.server = server;
2470
2471 rpc_call_setup(&data->task, &msg, 0);
2472 }
2473
2474 /*
2475 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2476 * standalone procedure for queueing an asynchronous RENEW.
2477 */
2478 static void nfs4_renew_done(struct rpc_task *task, void *data)
2479 {
2480 struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
2481 unsigned long timestamp = (unsigned long)data;
2482
2483 if (task->tk_status < 0) {
2484 switch (task->tk_status) {
2485 case -NFS4ERR_STALE_CLIENTID:
2486 case -NFS4ERR_EXPIRED:
2487 case -NFS4ERR_CB_PATH_DOWN:
2488 nfs4_schedule_state_recovery(clp);
2489 }
2490 return;
2491 }
2492 spin_lock(&clp->cl_lock);
2493 if (time_before(clp->cl_last_renewal,timestamp))
2494 clp->cl_last_renewal = timestamp;
2495 spin_unlock(&clp->cl_lock);
2496 }
2497
2498 static const struct rpc_call_ops nfs4_renew_ops = {
2499 .rpc_call_done = nfs4_renew_done,
2500 };
2501
2502 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2503 {
2504 struct rpc_message msg = {
2505 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2506 .rpc_argp = clp,
2507 .rpc_cred = cred,
2508 };
2509
2510 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2511 &nfs4_renew_ops, (void *)jiffies);
2512 }
2513
2514 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2515 {
2516 struct rpc_message msg = {
2517 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2518 .rpc_argp = clp,
2519 .rpc_cred = cred,
2520 };
2521 unsigned long now = jiffies;
2522 int status;
2523
2524 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2525 if (status < 0)
2526 return status;
2527 spin_lock(&clp->cl_lock);
2528 if (time_before(clp->cl_last_renewal,now))
2529 clp->cl_last_renewal = now;
2530 spin_unlock(&clp->cl_lock);
2531 return 0;
2532 }
2533
2534 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2535 {
2536 return (server->caps & NFS_CAP_ACLS)
2537 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2538 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2539 }
2540
2541 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2542 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2543 * the stack.
2544 */
2545 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2546
2547 static void buf_to_pages(const void *buf, size_t buflen,
2548 struct page **pages, unsigned int *pgbase)
2549 {
2550 const void *p = buf;
2551
2552 *pgbase = offset_in_page(buf);
2553 p -= *pgbase;
2554 while (p < buf + buflen) {
2555 *(pages++) = virt_to_page(p);
2556 p += PAGE_CACHE_SIZE;
2557 }
2558 }
2559
2560 struct nfs4_cached_acl {
2561 int cached;
2562 size_t len;
2563 char data[0];
2564 };
2565
2566 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2567 {
2568 struct nfs_inode *nfsi = NFS_I(inode);
2569
2570 spin_lock(&inode->i_lock);
2571 kfree(nfsi->nfs4_acl);
2572 nfsi->nfs4_acl = acl;
2573 spin_unlock(&inode->i_lock);
2574 }
2575
2576 static void nfs4_zap_acl_attr(struct inode *inode)
2577 {
2578 nfs4_set_cached_acl(inode, NULL);
2579 }
2580
2581 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2582 {
2583 struct nfs_inode *nfsi = NFS_I(inode);
2584 struct nfs4_cached_acl *acl;
2585 int ret = -ENOENT;
2586
2587 spin_lock(&inode->i_lock);
2588 acl = nfsi->nfs4_acl;
2589 if (acl == NULL)
2590 goto out;
2591 if (buf == NULL) /* user is just asking for length */
2592 goto out_len;
2593 if (acl->cached == 0)
2594 goto out;
2595 ret = -ERANGE; /* see getxattr(2) man page */
2596 if (acl->len > buflen)
2597 goto out;
2598 memcpy(buf, acl->data, acl->len);
2599 out_len:
2600 ret = acl->len;
2601 out:
2602 spin_unlock(&inode->i_lock);
2603 return ret;
2604 }
2605
2606 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2607 {
2608 struct nfs4_cached_acl *acl;
2609
2610 if (buf && acl_len <= PAGE_SIZE) {
2611 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2612 if (acl == NULL)
2613 goto out;
2614 acl->cached = 1;
2615 memcpy(acl->data, buf, acl_len);
2616 } else {
2617 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2618 if (acl == NULL)
2619 goto out;
2620 acl->cached = 0;
2621 }
2622 acl->len = acl_len;
2623 out:
2624 nfs4_set_cached_acl(inode, acl);
2625 }
2626
2627 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2628 {
2629 struct page *pages[NFS4ACL_MAXPAGES];
2630 struct nfs_getaclargs args = {
2631 .fh = NFS_FH(inode),
2632 .acl_pages = pages,
2633 .acl_len = buflen,
2634 };
2635 size_t resp_len = buflen;
2636 void *resp_buf;
2637 struct rpc_message msg = {
2638 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2639 .rpc_argp = &args,
2640 .rpc_resp = &resp_len,
2641 };
2642 struct page *localpage = NULL;
2643 int ret;
2644
2645 if (buflen < PAGE_SIZE) {
2646 /* As long as we're doing a round trip to the server anyway,
2647 * let's be prepared for a page of acl data. */
2648 localpage = alloc_page(GFP_KERNEL);
2649 resp_buf = page_address(localpage);
2650 if (localpage == NULL)
2651 return -ENOMEM;
2652 args.acl_pages[0] = localpage;
2653 args.acl_pgbase = 0;
2654 resp_len = args.acl_len = PAGE_SIZE;
2655 } else {
2656 resp_buf = buf;
2657 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2658 }
2659 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2660 if (ret)
2661 goto out_free;
2662 if (resp_len > args.acl_len)
2663 nfs4_write_cached_acl(inode, NULL, resp_len);
2664 else
2665 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2666 if (buf) {
2667 ret = -ERANGE;
2668 if (resp_len > buflen)
2669 goto out_free;
2670 if (localpage)
2671 memcpy(buf, resp_buf, resp_len);
2672 }
2673 ret = resp_len;
2674 out_free:
2675 if (localpage)
2676 __free_page(localpage);
2677 return ret;
2678 }
2679
2680 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2681 {
2682 struct nfs_server *server = NFS_SERVER(inode);
2683 int ret;
2684
2685 if (!nfs4_server_supports_acls(server))
2686 return -EOPNOTSUPP;
2687 ret = nfs_revalidate_inode(server, inode);
2688 if (ret < 0)
2689 return ret;
2690 ret = nfs4_read_cached_acl(inode, buf, buflen);
2691 if (ret != -ENOENT)
2692 return ret;
2693 return nfs4_get_acl_uncached(inode, buf, buflen);
2694 }
2695
2696 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2697 {
2698 struct nfs_server *server = NFS_SERVER(inode);
2699 struct page *pages[NFS4ACL_MAXPAGES];
2700 struct nfs_setaclargs arg = {
2701 .fh = NFS_FH(inode),
2702 .acl_pages = pages,
2703 .acl_len = buflen,
2704 };
2705 struct rpc_message msg = {
2706 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2707 .rpc_argp = &arg,
2708 .rpc_resp = NULL,
2709 };
2710 int ret;
2711
2712 if (!nfs4_server_supports_acls(server))
2713 return -EOPNOTSUPP;
2714 nfs_inode_return_delegation(inode);
2715 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2716 ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
2717 if (ret == 0)
2718 nfs4_write_cached_acl(inode, buf, buflen);
2719 return ret;
2720 }
2721
2722 static int
2723 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2724 {
2725 struct nfs4_client *clp = server->nfs4_state;
2726
2727 if (!clp || task->tk_status >= 0)
2728 return 0;
2729 switch(task->tk_status) {
2730 case -NFS4ERR_STALE_CLIENTID:
2731 case -NFS4ERR_STALE_STATEID:
2732 case -NFS4ERR_EXPIRED:
2733 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2734 nfs4_schedule_state_recovery(clp);
2735 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2736 rpc_wake_up_task(task);
2737 task->tk_status = 0;
2738 return -EAGAIN;
2739 case -NFS4ERR_DELAY:
2740 nfs_inc_server_stats((struct nfs_server *) server,
2741 NFSIOS_DELAY);
2742 case -NFS4ERR_GRACE:
2743 rpc_delay(task, NFS4_POLL_RETRY_MAX);
2744 task->tk_status = 0;
2745 return -EAGAIN;
2746 case -NFS4ERR_OLD_STATEID:
2747 task->tk_status = 0;
2748 return -EAGAIN;
2749 }
2750 task->tk_status = nfs4_map_errors(task->tk_status);
2751 return 0;
2752 }
2753
2754 static int nfs4_wait_bit_interruptible(void *word)
2755 {
2756 if (signal_pending(current))
2757 return -ERESTARTSYS;
2758 schedule();
2759 return 0;
2760 }
2761
2762 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
2763 {
2764 sigset_t oldset;
2765 int res;
2766
2767 might_sleep();
2768
2769 rpc_clnt_sigmask(clnt, &oldset);
2770 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2771 nfs4_wait_bit_interruptible,
2772 TASK_INTERRUPTIBLE);
2773 rpc_clnt_sigunmask(clnt, &oldset);
2774 return res;
2775 }
2776
2777 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2778 {
2779 sigset_t oldset;
2780 int res = 0;
2781
2782 might_sleep();
2783
2784 if (*timeout <= 0)
2785 *timeout = NFS4_POLL_RETRY_MIN;
2786 if (*timeout > NFS4_POLL_RETRY_MAX)
2787 *timeout = NFS4_POLL_RETRY_MAX;
2788 rpc_clnt_sigmask(clnt, &oldset);
2789 if (clnt->cl_intr) {
2790 schedule_timeout_interruptible(*timeout);
2791 if (signalled())
2792 res = -ERESTARTSYS;
2793 } else
2794 schedule_timeout_uninterruptible(*timeout);
2795 rpc_clnt_sigunmask(clnt, &oldset);
2796 *timeout <<= 1;
2797 return res;
2798 }
2799
2800 /* This is the error handling routine for processes that are allowed
2801 * to sleep.
2802 */
2803 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2804 {
2805 struct nfs4_client *clp = server->nfs4_state;
2806 int ret = errorcode;
2807
2808 exception->retry = 0;
2809 switch(errorcode) {
2810 case 0:
2811 return 0;
2812 case -NFS4ERR_STALE_CLIENTID:
2813 case -NFS4ERR_STALE_STATEID:
2814 case -NFS4ERR_EXPIRED:
2815 nfs4_schedule_state_recovery(clp);
2816 ret = nfs4_wait_clnt_recover(server->client, clp);
2817 if (ret == 0)
2818 exception->retry = 1;
2819 break;
2820 case -NFS4ERR_GRACE:
2821 case -NFS4ERR_DELAY:
2822 ret = nfs4_delay(server->client, &exception->timeout);
2823 if (ret != 0)
2824 break;
2825 case -NFS4ERR_OLD_STATEID:
2826 exception->retry = 1;
2827 }
2828 /* We failed to handle the error */
2829 return nfs4_map_errors(ret);
2830 }
2831
2832 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2833 {
2834 nfs4_verifier sc_verifier;
2835 struct nfs4_setclientid setclientid = {
2836 .sc_verifier = &sc_verifier,
2837 .sc_prog = program,
2838 };
2839 struct rpc_message msg = {
2840 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2841 .rpc_argp = &setclientid,
2842 .rpc_resp = clp,
2843 .rpc_cred = cred,
2844 };
2845 u32 *p;
2846 int loop = 0;
2847 int status;
2848
2849 p = (u32*)sc_verifier.data;
2850 *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2851 *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2852
2853 for(;;) {
2854 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2855 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2856 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
2857 cred->cr_ops->cr_name,
2858 clp->cl_id_uniquifier);
2859 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2860 sizeof(setclientid.sc_netid), "tcp");
2861 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2862 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2863 clp->cl_ipaddr, port >> 8, port & 255);
2864
2865 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2866 if (status != -NFS4ERR_CLID_INUSE)
2867 break;
2868 if (signalled())
2869 break;
2870 if (loop++ & 1)
2871 ssleep(clp->cl_lease_time + 1);
2872 else
2873 if (++clp->cl_id_uniquifier == 0)
2874 break;
2875 }
2876 return status;
2877 }
2878
2879 static int _nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2880 {
2881 struct nfs_fsinfo fsinfo;
2882 struct rpc_message msg = {
2883 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2884 .rpc_argp = clp,
2885 .rpc_resp = &fsinfo,
2886 .rpc_cred = cred,
2887 };
2888 unsigned long now;
2889 int status;
2890
2891 now = jiffies;
2892 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2893 if (status == 0) {
2894 spin_lock(&clp->cl_lock);
2895 clp->cl_lease_time = fsinfo.lease_time * HZ;
2896 clp->cl_last_renewal = now;
2897 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2898 spin_unlock(&clp->cl_lock);
2899 }
2900 return status;
2901 }
2902
2903 int nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2904 {
2905 long timeout;
2906 int err;
2907 do {
2908 err = _nfs4_proc_setclientid_confirm(clp, cred);
2909 switch (err) {
2910 case 0:
2911 return err;
2912 case -NFS4ERR_RESOURCE:
2913 /* The IBM lawyers misread another document! */
2914 case -NFS4ERR_DELAY:
2915 err = nfs4_delay(clp->cl_rpcclient, &timeout);
2916 }
2917 } while (err == 0);
2918 return err;
2919 }
2920
2921 struct nfs4_delegreturndata {
2922 struct nfs4_delegreturnargs args;
2923 struct nfs4_delegreturnres res;
2924 struct nfs_fh fh;
2925 nfs4_stateid stateid;
2926 struct rpc_cred *cred;
2927 unsigned long timestamp;
2928 struct nfs_fattr fattr;
2929 int rpc_status;
2930 };
2931
2932 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2933 {
2934 struct nfs4_delegreturndata *data = calldata;
2935 struct rpc_message msg = {
2936 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2937 .rpc_argp = &data->args,
2938 .rpc_resp = &data->res,
2939 .rpc_cred = data->cred,
2940 };
2941 nfs_fattr_init(data->res.fattr);
2942 rpc_call_setup(task, &msg, 0);
2943 }
2944
2945 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2946 {
2947 struct nfs4_delegreturndata *data = calldata;
2948 data->rpc_status = task->tk_status;
2949 if (data->rpc_status == 0)
2950 renew_lease(data->res.server, data->timestamp);
2951 }
2952
2953 static void nfs4_delegreturn_release(void *calldata)
2954 {
2955 struct nfs4_delegreturndata *data = calldata;
2956
2957 put_rpccred(data->cred);
2958 kfree(calldata);
2959 }
2960
2961 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2962 .rpc_call_prepare = nfs4_delegreturn_prepare,
2963 .rpc_call_done = nfs4_delegreturn_done,
2964 .rpc_release = nfs4_delegreturn_release,
2965 };
2966
2967 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2968 {
2969 struct nfs4_delegreturndata *data;
2970 struct nfs_server *server = NFS_SERVER(inode);
2971 struct rpc_task *task;
2972 int status;
2973
2974 data = kmalloc(sizeof(*data), GFP_KERNEL);
2975 if (data == NULL)
2976 return -ENOMEM;
2977 data->args.fhandle = &data->fh;
2978 data->args.stateid = &data->stateid;
2979 data->args.bitmask = server->attr_bitmask;
2980 nfs_copy_fh(&data->fh, NFS_FH(inode));
2981 memcpy(&data->stateid, stateid, sizeof(data->stateid));
2982 data->res.fattr = &data->fattr;
2983 data->res.server = server;
2984 data->cred = get_rpccred(cred);
2985 data->timestamp = jiffies;
2986 data->rpc_status = 0;
2987
2988 task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2989 if (IS_ERR(task))
2990 return PTR_ERR(task);
2991 status = nfs4_wait_for_completion_rpc_task(task);
2992 if (status == 0) {
2993 status = data->rpc_status;
2994 if (status == 0)
2995 nfs_post_op_update_inode(inode, &data->fattr);
2996 }
2997 rpc_release_task(task);
2998 return status;
2999 }
3000
3001 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3002 {
3003 struct nfs_server *server = NFS_SERVER(inode);
3004 struct nfs4_exception exception = { };
3005 int err;
3006 do {
3007 err = _nfs4_proc_delegreturn(inode, cred, stateid);
3008 switch (err) {
3009 case -NFS4ERR_STALE_STATEID:
3010 case -NFS4ERR_EXPIRED:
3011 nfs4_schedule_state_recovery(server->nfs4_state);
3012 case 0:
3013 return 0;
3014 }
3015 err = nfs4_handle_exception(server, err, &exception);
3016 } while (exception.retry);
3017 return err;
3018 }
3019
3020 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3021 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3022
3023 /*
3024 * sleep, with exponential backoff, and retry the LOCK operation.
3025 */
3026 static unsigned long
3027 nfs4_set_lock_task_retry(unsigned long timeout)
3028 {
3029 schedule_timeout_interruptible(timeout);
3030 timeout <<= 1;
3031 if (timeout > NFS4_LOCK_MAXTIMEOUT)
3032 return NFS4_LOCK_MAXTIMEOUT;
3033 return timeout;
3034 }
3035
3036 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3037 {
3038 struct inode *inode = state->inode;
3039 struct nfs_server *server = NFS_SERVER(inode);
3040 struct nfs4_client *clp = server->nfs4_state;
3041 struct nfs_lockt_args arg = {
3042 .fh = NFS_FH(inode),
3043 .fl = request,
3044 };
3045 struct nfs_lockt_res res = {
3046 .denied = request,
3047 };
3048 struct rpc_message msg = {
3049 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3050 .rpc_argp = &arg,
3051 .rpc_resp = &res,
3052 .rpc_cred = state->owner->so_cred,
3053 };
3054 struct nfs4_lock_state *lsp;
3055 int status;
3056
3057 down_read(&clp->cl_sem);
3058 arg.lock_owner.clientid = clp->cl_clientid;
3059 status = nfs4_set_lock_state(state, request);
3060 if (status != 0)
3061 goto out;
3062 lsp = request->fl_u.nfs4_fl.owner;
3063 arg.lock_owner.id = lsp->ls_id;
3064 status = rpc_call_sync(server->client, &msg, 0);
3065 switch (status) {
3066 case 0:
3067 request->fl_type = F_UNLCK;
3068 break;
3069 case -NFS4ERR_DENIED:
3070 status = 0;
3071 }
3072 out:
3073 up_read(&clp->cl_sem);
3074 return status;
3075 }
3076
3077 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3078 {
3079 struct nfs4_exception exception = { };
3080 int err;
3081
3082 do {
3083 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3084 _nfs4_proc_getlk(state, cmd, request),
3085 &exception);
3086 } while (exception.retry);
3087 return err;
3088 }
3089
3090 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3091 {
3092 int res = 0;
3093 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3094 case FL_POSIX:
3095 res = posix_lock_file_wait(file, fl);
3096 break;
3097 case FL_FLOCK:
3098 res = flock_lock_file_wait(file, fl);
3099 break;
3100 default:
3101 BUG();
3102 }
3103 if (res < 0)
3104 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n",
3105 __FUNCTION__);
3106 return res;
3107 }
3108
3109 struct nfs4_unlockdata {
3110 struct nfs_locku_args arg;
3111 struct nfs_locku_res res;
3112 struct nfs4_lock_state *lsp;
3113 struct nfs_open_context *ctx;
3114 struct file_lock fl;
3115 const struct nfs_server *server;
3116 unsigned long timestamp;
3117 };
3118
3119 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3120 struct nfs_open_context *ctx,
3121 struct nfs4_lock_state *lsp,
3122 struct nfs_seqid *seqid)
3123 {
3124 struct nfs4_unlockdata *p;
3125 struct inode *inode = lsp->ls_state->inode;
3126
3127 p = kmalloc(sizeof(*p), GFP_KERNEL);
3128 if (p == NULL)
3129 return NULL;
3130 p->arg.fh = NFS_FH(inode);
3131 p->arg.fl = &p->fl;
3132 p->arg.seqid = seqid;
3133 p->arg.stateid = &lsp->ls_stateid;
3134 p->lsp = lsp;
3135 atomic_inc(&lsp->ls_count);
3136 /* Ensure we don't close file until we're done freeing locks! */
3137 p->ctx = get_nfs_open_context(ctx);
3138 memcpy(&p->fl, fl, sizeof(p->fl));
3139 p->server = NFS_SERVER(inode);
3140 return p;
3141 }
3142
3143 static void nfs4_locku_release_calldata(void *data)
3144 {
3145 struct nfs4_unlockdata *calldata = data;
3146 nfs_free_seqid(calldata->arg.seqid);
3147 nfs4_put_lock_state(calldata->lsp);
3148 put_nfs_open_context(calldata->ctx);
3149 kfree(calldata);
3150 }
3151
3152 static void nfs4_locku_done(struct rpc_task *task, void *data)
3153 {
3154 struct nfs4_unlockdata *calldata = data;
3155
3156 if (RPC_ASSASSINATED(task))
3157 return;
3158 nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3159 switch (task->tk_status) {
3160 case 0:
3161 memcpy(calldata->lsp->ls_stateid.data,
3162 calldata->res.stateid.data,
3163 sizeof(calldata->lsp->ls_stateid.data));
3164 renew_lease(calldata->server, calldata->timestamp);
3165 break;
3166 case -NFS4ERR_STALE_STATEID:
3167 case -NFS4ERR_EXPIRED:
3168 nfs4_schedule_state_recovery(calldata->server->nfs4_state);
3169 break;
3170 default:
3171 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3172 rpc_restart_call(task);
3173 }
3174 }
3175 }
3176
3177 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3178 {
3179 struct nfs4_unlockdata *calldata = data;
3180 struct rpc_message msg = {
3181 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3182 .rpc_argp = &calldata->arg,
3183 .rpc_resp = &calldata->res,
3184 .rpc_cred = calldata->lsp->ls_state->owner->so_cred,
3185 };
3186
3187 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3188 return;
3189 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3190 /* Note: exit _without_ running nfs4_locku_done */
3191 task->tk_action = NULL;
3192 return;
3193 }
3194 calldata->timestamp = jiffies;
3195 rpc_call_setup(task, &msg, 0);
3196 }
3197
3198 static const struct rpc_call_ops nfs4_locku_ops = {
3199 .rpc_call_prepare = nfs4_locku_prepare,
3200 .rpc_call_done = nfs4_locku_done,
3201 .rpc_release = nfs4_locku_release_calldata,
3202 };
3203
3204 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3205 struct nfs_open_context *ctx,
3206 struct nfs4_lock_state *lsp,
3207 struct nfs_seqid *seqid)
3208 {
3209 struct nfs4_unlockdata *data;
3210
3211 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3212 if (data == NULL) {
3213 nfs_free_seqid(seqid);
3214 return ERR_PTR(-ENOMEM);
3215 }
3216
3217 /* Unlock _before_ we do the RPC call */
3218 do_vfs_lock(fl->fl_file, fl);
3219 return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3220 }
3221
3222 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3223 {
3224 struct nfs_seqid *seqid;
3225 struct nfs4_lock_state *lsp;
3226 struct rpc_task *task;
3227 int status = 0;
3228
3229 /* Is this a delegated lock? */
3230 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3231 goto out_unlock;
3232 /* Is this open_owner holding any locks on the server? */
3233 if (test_bit(LK_STATE_IN_USE, &state->flags) == 0)
3234 goto out_unlock;
3235
3236 status = nfs4_set_lock_state(state, request);
3237 if (status != 0)
3238 goto out_unlock;
3239 lsp = request->fl_u.nfs4_fl.owner;
3240 status = -ENOMEM;
3241 seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3242 if (seqid == NULL)
3243 goto out_unlock;
3244 task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3245 status = PTR_ERR(task);
3246 if (IS_ERR(task))
3247 goto out_unlock;
3248 status = nfs4_wait_for_completion_rpc_task(task);
3249 rpc_release_task(task);
3250 return status;
3251 out_unlock:
3252 do_vfs_lock(request->fl_file, request);
3253 return status;
3254 }
3255
3256 struct nfs4_lockdata {
3257 struct nfs_lock_args arg;
3258 struct nfs_lock_res res;
3259 struct nfs4_lock_state *lsp;
3260 struct nfs_open_context *ctx;
3261 struct file_lock fl;
3262 unsigned long timestamp;
3263 int rpc_status;
3264 int cancelled;
3265 };
3266
3267 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3268 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3269 {
3270 struct nfs4_lockdata *p;
3271 struct inode *inode = lsp->ls_state->inode;
3272 struct nfs_server *server = NFS_SERVER(inode);
3273
3274 p = kzalloc(sizeof(*p), GFP_KERNEL);
3275 if (p == NULL)
3276 return NULL;
3277
3278 p->arg.fh = NFS_FH(inode);
3279 p->arg.fl = &p->fl;
3280 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3281 if (p->arg.lock_seqid == NULL)
3282 goto out_free;
3283 p->arg.lock_stateid = &lsp->ls_stateid;
3284 p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid;
3285 p->arg.lock_owner.id = lsp->ls_id;
3286 p->lsp = lsp;
3287 atomic_inc(&lsp->ls_count);
3288 p->ctx = get_nfs_open_context(ctx);
3289 memcpy(&p->fl, fl, sizeof(p->fl));
3290 return p;
3291 out_free:
3292 kfree(p);
3293 return NULL;
3294 }
3295
3296 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3297 {
3298 struct nfs4_lockdata *data = calldata;
3299 struct nfs4_state *state = data->lsp->ls_state;
3300 struct nfs4_state_owner *sp = state->owner;
3301 struct rpc_message msg = {
3302 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3303 .rpc_argp = &data->arg,
3304 .rpc_resp = &data->res,
3305 .rpc_cred = sp->so_cred,
3306 };
3307
3308 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3309 return;
3310 dprintk("%s: begin!\n", __FUNCTION__);
3311 /* Do we need to do an open_to_lock_owner? */
3312 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3313 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3314 if (data->arg.open_seqid == NULL) {
3315 data->rpc_status = -ENOMEM;
3316 task->tk_action = NULL;
3317 goto out;
3318 }
3319 data->arg.open_stateid = &state->stateid;
3320 data->arg.new_lock_owner = 1;
3321 }
3322 data->timestamp = jiffies;
3323 rpc_call_setup(task, &msg, 0);
3324 out:
3325 dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3326 }
3327
3328 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3329 {
3330 struct nfs4_lockdata *data = calldata;
3331
3332 dprintk("%s: begin!\n", __FUNCTION__);
3333
3334 data->rpc_status = task->tk_status;
3335 if (RPC_ASSASSINATED(task))
3336 goto out;
3337 if (data->arg.new_lock_owner != 0) {
3338 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3339 if (data->rpc_status == 0)
3340 nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3341 else
3342 goto out;
3343 }
3344 if (data->rpc_status == 0) {
3345 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3346 sizeof(data->lsp->ls_stateid.data));
3347 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3348 renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3349 }
3350 nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3351 out:
3352 dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3353 }
3354
3355 static void nfs4_lock_release(void *calldata)
3356 {
3357 struct nfs4_lockdata *data = calldata;
3358
3359 dprintk("%s: begin!\n", __FUNCTION__);
3360 if (data->arg.open_seqid != NULL)
3361 nfs_free_seqid(data->arg.open_seqid);
3362 if (data->cancelled != 0) {
3363 struct rpc_task *task;
3364 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3365 data->arg.lock_seqid);
3366 if (!IS_ERR(task))
3367 rpc_release_task(task);
3368 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3369 } else
3370 nfs_free_seqid(data->arg.lock_seqid);
3371 nfs4_put_lock_state(data->lsp);
3372 put_nfs_open_context(data->ctx);
3373 kfree(data);
3374 dprintk("%s: done!\n", __FUNCTION__);
3375 }
3376
3377 static const struct rpc_call_ops nfs4_lock_ops = {
3378 .rpc_call_prepare = nfs4_lock_prepare,
3379 .rpc_call_done = nfs4_lock_done,
3380 .rpc_release = nfs4_lock_release,
3381 };
3382
3383 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3384 {
3385 struct nfs4_lockdata *data;
3386 struct rpc_task *task;
3387 int ret;
3388
3389 dprintk("%s: begin!\n", __FUNCTION__);
3390 data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3391 fl->fl_u.nfs4_fl.owner);
3392 if (data == NULL)
3393 return -ENOMEM;
3394 if (IS_SETLKW(cmd))
3395 data->arg.block = 1;
3396 if (reclaim != 0)
3397 data->arg.reclaim = 1;
3398 task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3399 &nfs4_lock_ops, data);
3400 if (IS_ERR(task))
3401 return PTR_ERR(task);
3402 ret = nfs4_wait_for_completion_rpc_task(task);
3403 if (ret == 0) {
3404 ret = data->rpc_status;
3405 if (ret == -NFS4ERR_DENIED)
3406 ret = -EAGAIN;
3407 } else
3408 data->cancelled = 1;
3409 rpc_release_task(task);
3410 dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3411 return ret;
3412 }
3413
3414 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3415 {
3416 struct nfs_server *server = NFS_SERVER(state->inode);
3417 struct nfs4_exception exception = { };
3418 int err;
3419
3420 /* Cache the lock if possible... */
3421 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3422 return 0;
3423 do {
3424 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3425 if (err != -NFS4ERR_DELAY)
3426 break;
3427 nfs4_handle_exception(server, err, &exception);
3428 } while (exception.retry);
3429 return err;
3430 }
3431
3432 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3433 {
3434 struct nfs_server *server = NFS_SERVER(state->inode);
3435 struct nfs4_exception exception = { };
3436 int err;
3437
3438 err = nfs4_set_lock_state(state, request);
3439 if (err != 0)
3440 return err;
3441 do {
3442 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3443 if (err != -NFS4ERR_DELAY)
3444 break;
3445 nfs4_handle_exception(server, err, &exception);
3446 } while (exception.retry);
3447 return err;
3448 }
3449
3450 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3451 {
3452 struct nfs4_client *clp = state->owner->so_client;
3453 int status;
3454
3455 /* Is this a delegated open? */
3456 if (NFS_I(state->inode)->delegation_state != 0) {
3457 /* Yes: cache locks! */
3458 status = do_vfs_lock(request->fl_file, request);
3459 /* ...but avoid races with delegation recall... */
3460 if (status < 0 || test_bit(NFS_DELEGATED_STATE, &state->flags))
3461 return status;
3462 }
3463 down_read(&clp->cl_sem);
3464 status = nfs4_set_lock_state(state, request);
3465 if (status != 0)
3466 goto out;
3467 status = _nfs4_do_setlk(state, cmd, request, 0);
3468 if (status != 0)
3469 goto out;
3470 /* Note: we always want to sleep here! */
3471 request->fl_flags |= FL_SLEEP;
3472 if (do_vfs_lock(request->fl_file, request) < 0)
3473 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3474 out:
3475 up_read(&clp->cl_sem);
3476 return status;
3477 }
3478
3479 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3480 {
3481 struct nfs4_exception exception = { };
3482 int err;
3483
3484 do {
3485 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3486 _nfs4_proc_setlk(state, cmd, request),
3487 &exception);
3488 } while (exception.retry);
3489 return err;
3490 }
3491
3492 static int
3493 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3494 {
3495 struct nfs_open_context *ctx;
3496 struct nfs4_state *state;
3497 unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3498 int status;
3499
3500 /* verify open state */
3501 ctx = (struct nfs_open_context *)filp->private_data;
3502 state = ctx->state;
3503
3504 if (request->fl_start < 0 || request->fl_end < 0)
3505 return -EINVAL;
3506
3507 if (IS_GETLK(cmd))
3508 return nfs4_proc_getlk(state, F_GETLK, request);
3509
3510 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3511 return -EINVAL;
3512
3513 if (request->fl_type == F_UNLCK)
3514 return nfs4_proc_unlck(state, cmd, request);
3515
3516 do {
3517 status = nfs4_proc_setlk(state, cmd, request);
3518 if ((status != -EAGAIN) || IS_SETLK(cmd))
3519 break;
3520 timeout = nfs4_set_lock_task_retry(timeout);
3521 status = -ERESTARTSYS;
3522 if (signalled())
3523 break;
3524 } while(status < 0);
3525 return status;
3526 }
3527
3528 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3529 {
3530 struct nfs_server *server = NFS_SERVER(state->inode);
3531 struct nfs4_exception exception = { };
3532 int err;
3533
3534 err = nfs4_set_lock_state(state, fl);
3535 if (err != 0)
3536 goto out;
3537 do {
3538 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3539 if (err != -NFS4ERR_DELAY)
3540 break;
3541 err = nfs4_handle_exception(server, err, &exception);
3542 } while (exception.retry);
3543 out:
3544 return err;
3545 }
3546
3547 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3548
3549 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3550 size_t buflen, int flags)
3551 {
3552 struct inode *inode = dentry->d_inode;
3553
3554 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3555 return -EOPNOTSUPP;
3556
3557 if (!S_ISREG(inode->i_mode) &&
3558 (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3559 return -EPERM;
3560
3561 return nfs4_proc_set_acl(inode, buf, buflen);
3562 }
3563
3564 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3565 * and that's what we'll do for e.g. user attributes that haven't been set.
3566 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3567 * attributes in kernel-managed attribute namespaces. */
3568 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3569 size_t buflen)
3570 {
3571 struct inode *inode = dentry->d_inode;
3572
3573 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3574 return -EOPNOTSUPP;
3575
3576 return nfs4_proc_get_acl(inode, buf, buflen);
3577 }
3578
3579 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3580 {
3581 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3582
3583 if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3584 return 0;
3585 if (buf && buflen < len)
3586 return -ERANGE;
3587 if (buf)
3588 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3589 return len;
3590 }
3591
3592 int nfs4_proc_fs_locations(struct inode *dir, struct dentry *dentry,
3593 struct nfs4_fs_locations *fs_locations, struct page *page)
3594 {
3595 struct nfs_server *server = NFS_SERVER(dir);
3596 u32 bitmask[2] = {
3597 [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3598 [1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3599 };
3600 struct nfs4_fs_locations_arg args = {
3601 .dir_fh = NFS_FH(dir),
3602 .name = &dentry->d_name,
3603 .page = page,
3604 .bitmask = bitmask,
3605 };
3606 struct rpc_message msg = {
3607 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3608 .rpc_argp = &args,
3609 .rpc_resp = fs_locations,
3610 };
3611 int status;
3612
3613 dprintk("%s: start\n", __FUNCTION__);
3614 fs_locations->fattr.valid = 0;
3615 fs_locations->server = server;
3616 fs_locations->nlocations = 0;
3617 status = rpc_call_sync(server->client, &msg, 0);
3618 dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3619 return status;
3620 }
3621
3622 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3623 .recover_open = nfs4_open_reclaim,
3624 .recover_lock = nfs4_lock_reclaim,
3625 };
3626
3627 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3628 .recover_open = nfs4_open_expired,
3629 .recover_lock = nfs4_lock_expired,
3630 };
3631
3632 static struct inode_operations nfs4_file_inode_operations = {
3633 .permission = nfs_permission,
3634 .getattr = nfs_getattr,
3635 .setattr = nfs_setattr,
3636 .getxattr = nfs4_getxattr,
3637 .setxattr = nfs4_setxattr,
3638 .listxattr = nfs4_listxattr,
3639 };
3640
3641 struct nfs_rpc_ops nfs_v4_clientops = {
3642 .version = 4, /* protocol version */
3643 .dentry_ops = &nfs4_dentry_operations,
3644 .dir_inode_ops = &nfs4_dir_inode_operations,
3645 .file_inode_ops = &nfs4_file_inode_operations,
3646 .getroot = nfs4_proc_get_root,
3647 .getattr = nfs4_proc_getattr,
3648 .setattr = nfs4_proc_setattr,
3649 .lookup = nfs4_proc_lookup,
3650 .access = nfs4_proc_access,
3651 .readlink = nfs4_proc_readlink,
3652 .read = nfs4_proc_read,
3653 .write = nfs4_proc_write,
3654 .commit = nfs4_proc_commit,
3655 .create = nfs4_proc_create,
3656 .remove = nfs4_proc_remove,
3657 .unlink_setup = nfs4_proc_unlink_setup,
3658 .unlink_done = nfs4_proc_unlink_done,
3659 .rename = nfs4_proc_rename,
3660 .link = nfs4_proc_link,
3661 .symlink = nfs4_proc_symlink,
3662 .mkdir = nfs4_proc_mkdir,
3663 .rmdir = nfs4_proc_remove,
3664 .readdir = nfs4_proc_readdir,
3665 .mknod = nfs4_proc_mknod,
3666 .statfs = nfs4_proc_statfs,
3667 .fsinfo = nfs4_proc_fsinfo,
3668 .pathconf = nfs4_proc_pathconf,
3669 .decode_dirent = nfs4_decode_dirent,
3670 .read_setup = nfs4_proc_read_setup,
3671 .read_done = nfs4_read_done,
3672 .write_setup = nfs4_proc_write_setup,
3673 .write_done = nfs4_write_done,
3674 .commit_setup = nfs4_proc_commit_setup,
3675 .commit_done = nfs4_commit_done,
3676 .file_open = nfs_open,
3677 .file_release = nfs_release,
3678 .lock = nfs4_proc_lock,
3679 .clear_acl_cache = nfs4_zap_acl_attr,
3680 };
3681
3682 /*
3683 * Local variables:
3684 * c-basic-offset: 8
3685 * End:
3686 */
This page took 0.106072 seconds and 6 git commands to generate.