Merge branch 'for_paulus' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc
[deliverable/linux.git] / fs / nfs / read.c
1 /*
2 * linux/fs/nfs/read.c
3 *
4 * Block I/O for NFS
5 *
6 * Partial copy of Linus' read cache modifications to fs/nfs/file.c
7 * modified for async RPC by okir@monad.swb.de
8 *
9 * We do an ugly hack here in order to return proper error codes to the
10 * user program when a read request failed: since generic_file_read
11 * only checks the return value of inode->i_op->readpage() which is always 0
12 * for async RPC, we set the error bit of the page to 1 when an error occurs,
13 * and make nfs_readpage transmit requests synchronously when encountering this.
14 * This is only a small problem, though, since we now retry all operations
15 * within the RPC code when root squashing is suspected.
16 */
17
18 #include <linux/config.h>
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/fcntl.h>
23 #include <linux/stat.h>
24 #include <linux/mm.h>
25 #include <linux/slab.h>
26 #include <linux/pagemap.h>
27 #include <linux/sunrpc/clnt.h>
28 #include <linux/nfs_fs.h>
29 #include <linux/nfs_page.h>
30 #include <linux/smp_lock.h>
31
32 #include <asm/system.h>
33
34 #include "iostat.h"
35
36 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
37
38 static int nfs_pagein_one(struct list_head *, struct inode *);
39 static const struct rpc_call_ops nfs_read_partial_ops;
40 static const struct rpc_call_ops nfs_read_full_ops;
41
42 static kmem_cache_t *nfs_rdata_cachep;
43 static mempool_t *nfs_rdata_mempool;
44
45 #define MIN_POOL_READ (32)
46
47 struct nfs_read_data *nfs_readdata_alloc(unsigned int pagecount)
48 {
49 struct nfs_read_data *p = mempool_alloc(nfs_rdata_mempool, SLAB_NOFS);
50
51 if (p) {
52 memset(p, 0, sizeof(*p));
53 INIT_LIST_HEAD(&p->pages);
54 if (pagecount <= ARRAY_SIZE(p->page_array))
55 p->pagevec = p->page_array;
56 else {
57 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
58 if (!p->pagevec) {
59 mempool_free(p, nfs_rdata_mempool);
60 p = NULL;
61 }
62 }
63 }
64 return p;
65 }
66
67 void nfs_readdata_free(struct nfs_read_data *p)
68 {
69 if (p && (p->pagevec != &p->page_array[0]))
70 kfree(p->pagevec);
71 mempool_free(p, nfs_rdata_mempool);
72 }
73
74 void nfs_readdata_release(void *data)
75 {
76 nfs_readdata_free(data);
77 }
78
79 static
80 unsigned int nfs_page_length(struct inode *inode, struct page *page)
81 {
82 loff_t i_size = i_size_read(inode);
83 unsigned long idx;
84
85 if (i_size <= 0)
86 return 0;
87 idx = (i_size - 1) >> PAGE_CACHE_SHIFT;
88 if (page->index > idx)
89 return 0;
90 if (page->index != idx)
91 return PAGE_CACHE_SIZE;
92 return 1 + ((i_size - 1) & (PAGE_CACHE_SIZE - 1));
93 }
94
95 static
96 int nfs_return_empty_page(struct page *page)
97 {
98 memclear_highpage_flush(page, 0, PAGE_CACHE_SIZE);
99 SetPageUptodate(page);
100 unlock_page(page);
101 return 0;
102 }
103
104 static void nfs_readpage_truncate_uninitialised_page(struct nfs_read_data *data)
105 {
106 unsigned int remainder = data->args.count - data->res.count;
107 unsigned int base = data->args.pgbase + data->res.count;
108 unsigned int pglen;
109 struct page **pages;
110
111 if (data->res.eof == 0 || remainder == 0)
112 return;
113 /*
114 * Note: "remainder" can never be negative, since we check for
115 * this in the XDR code.
116 */
117 pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
118 base &= ~PAGE_CACHE_MASK;
119 pglen = PAGE_CACHE_SIZE - base;
120 if (pglen < remainder)
121 memclear_highpage_flush(*pages, base, pglen);
122 else
123 memclear_highpage_flush(*pages, base, remainder);
124 }
125
126 /*
127 * Read a page synchronously.
128 */
129 static int nfs_readpage_sync(struct nfs_open_context *ctx, struct inode *inode,
130 struct page *page)
131 {
132 unsigned int rsize = NFS_SERVER(inode)->rsize;
133 unsigned int count = PAGE_CACHE_SIZE;
134 int result;
135 struct nfs_read_data *rdata;
136
137 rdata = nfs_readdata_alloc(1);
138 if (!rdata)
139 return -ENOMEM;
140
141 memset(rdata, 0, sizeof(*rdata));
142 rdata->flags = (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
143 rdata->cred = ctx->cred;
144 rdata->inode = inode;
145 INIT_LIST_HEAD(&rdata->pages);
146 rdata->args.fh = NFS_FH(inode);
147 rdata->args.context = ctx;
148 rdata->args.pages = &page;
149 rdata->args.pgbase = 0UL;
150 rdata->args.count = rsize;
151 rdata->res.fattr = &rdata->fattr;
152
153 dprintk("NFS: nfs_readpage_sync(%p)\n", page);
154
155 /*
156 * This works now because the socket layer never tries to DMA
157 * into this buffer directly.
158 */
159 do {
160 if (count < rsize)
161 rdata->args.count = count;
162 rdata->res.count = rdata->args.count;
163 rdata->args.offset = page_offset(page) + rdata->args.pgbase;
164
165 dprintk("NFS: nfs_proc_read(%s, (%s/%Ld), %Lu, %u)\n",
166 NFS_SERVER(inode)->hostname,
167 inode->i_sb->s_id,
168 (long long)NFS_FILEID(inode),
169 (unsigned long long)rdata->args.pgbase,
170 rdata->args.count);
171
172 lock_kernel();
173 result = NFS_PROTO(inode)->read(rdata);
174 unlock_kernel();
175
176 /*
177 * Even if we had a partial success we can't mark the page
178 * cache valid.
179 */
180 if (result < 0) {
181 if (result == -EISDIR)
182 result = -EINVAL;
183 goto io_error;
184 }
185 count -= result;
186 rdata->args.pgbase += result;
187 nfs_add_stats(inode, NFSIOS_SERVERREADBYTES, result);
188
189 /* Note: result == 0 should only happen if we're caching
190 * a write that extends the file and punches a hole.
191 */
192 if (rdata->res.eof != 0 || result == 0)
193 break;
194 } while (count);
195 spin_lock(&inode->i_lock);
196 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
197 spin_unlock(&inode->i_lock);
198
199 nfs_readpage_truncate_uninitialised_page(rdata);
200 if (rdata->res.eof || rdata->res.count == rdata->args.count)
201 SetPageUptodate(page);
202 result = 0;
203
204 io_error:
205 unlock_page(page);
206 nfs_readdata_free(rdata);
207 return result;
208 }
209
210 static int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
211 struct page *page)
212 {
213 LIST_HEAD(one_request);
214 struct nfs_page *new;
215 unsigned int len;
216
217 len = nfs_page_length(inode, page);
218 if (len == 0)
219 return nfs_return_empty_page(page);
220 new = nfs_create_request(ctx, inode, page, 0, len);
221 if (IS_ERR(new)) {
222 unlock_page(page);
223 return PTR_ERR(new);
224 }
225 if (len < PAGE_CACHE_SIZE)
226 memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
227
228 nfs_list_add_request(new, &one_request);
229 nfs_pagein_one(&one_request, inode);
230 return 0;
231 }
232
233 static void nfs_readpage_release(struct nfs_page *req)
234 {
235 unlock_page(req->wb_page);
236
237 dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
238 req->wb_context->dentry->d_inode->i_sb->s_id,
239 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
240 req->wb_bytes,
241 (long long)req_offset(req));
242 nfs_clear_request(req);
243 nfs_release_request(req);
244 }
245
246 /*
247 * Set up the NFS read request struct
248 */
249 static void nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
250 const struct rpc_call_ops *call_ops,
251 unsigned int count, unsigned int offset)
252 {
253 struct inode *inode;
254 int flags;
255
256 data->req = req;
257 data->inode = inode = req->wb_context->dentry->d_inode;
258 data->cred = req->wb_context->cred;
259
260 data->args.fh = NFS_FH(inode);
261 data->args.offset = req_offset(req) + offset;
262 data->args.pgbase = req->wb_pgbase + offset;
263 data->args.pages = data->pagevec;
264 data->args.count = count;
265 data->args.context = req->wb_context;
266
267 data->res.fattr = &data->fattr;
268 data->res.count = count;
269 data->res.eof = 0;
270 nfs_fattr_init(&data->fattr);
271
272 /* Set up the initial task struct. */
273 flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
274 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
275 NFS_PROTO(inode)->read_setup(data);
276
277 data->task.tk_cookie = (unsigned long)inode;
278
279 dprintk("NFS: %4d initiated read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
280 data->task.tk_pid,
281 inode->i_sb->s_id,
282 (long long)NFS_FILEID(inode),
283 count,
284 (unsigned long long)data->args.offset);
285 }
286
287 static void
288 nfs_async_read_error(struct list_head *head)
289 {
290 struct nfs_page *req;
291
292 while (!list_empty(head)) {
293 req = nfs_list_entry(head->next);
294 nfs_list_remove_request(req);
295 SetPageError(req->wb_page);
296 nfs_readpage_release(req);
297 }
298 }
299
300 /*
301 * Start an async read operation
302 */
303 static void nfs_execute_read(struct nfs_read_data *data)
304 {
305 struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
306 sigset_t oldset;
307
308 rpc_clnt_sigmask(clnt, &oldset);
309 lock_kernel();
310 rpc_execute(&data->task);
311 unlock_kernel();
312 rpc_clnt_sigunmask(clnt, &oldset);
313 }
314
315 /*
316 * Generate multiple requests to fill a single page.
317 *
318 * We optimize to reduce the number of read operations on the wire. If we
319 * detect that we're reading a page, or an area of a page, that is past the
320 * end of file, we do not generate NFS read operations but just clear the
321 * parts of the page that would have come back zero from the server anyway.
322 *
323 * We rely on the cached value of i_size to make this determination; another
324 * client can fill pages on the server past our cached end-of-file, but we
325 * won't see the new data until our attribute cache is updated. This is more
326 * or less conventional NFS client behavior.
327 */
328 static int nfs_pagein_multi(struct list_head *head, struct inode *inode)
329 {
330 struct nfs_page *req = nfs_list_entry(head->next);
331 struct page *page = req->wb_page;
332 struct nfs_read_data *data;
333 unsigned int rsize = NFS_SERVER(inode)->rsize;
334 unsigned int nbytes, offset;
335 int requests = 0;
336 LIST_HEAD(list);
337
338 nfs_list_remove_request(req);
339
340 nbytes = req->wb_bytes;
341 for(;;) {
342 data = nfs_readdata_alloc(1);
343 if (!data)
344 goto out_bad;
345 INIT_LIST_HEAD(&data->pages);
346 list_add(&data->pages, &list);
347 requests++;
348 if (nbytes <= rsize)
349 break;
350 nbytes -= rsize;
351 }
352 atomic_set(&req->wb_complete, requests);
353
354 ClearPageError(page);
355 offset = 0;
356 nbytes = req->wb_bytes;
357 do {
358 data = list_entry(list.next, struct nfs_read_data, pages);
359 list_del_init(&data->pages);
360
361 data->pagevec[0] = page;
362
363 if (nbytes > rsize) {
364 nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
365 rsize, offset);
366 offset += rsize;
367 nbytes -= rsize;
368 } else {
369 nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
370 nbytes, offset);
371 nbytes = 0;
372 }
373 nfs_execute_read(data);
374 } while (nbytes != 0);
375
376 return 0;
377
378 out_bad:
379 while (!list_empty(&list)) {
380 data = list_entry(list.next, struct nfs_read_data, pages);
381 list_del(&data->pages);
382 nfs_readdata_free(data);
383 }
384 SetPageError(page);
385 nfs_readpage_release(req);
386 return -ENOMEM;
387 }
388
389 static int nfs_pagein_one(struct list_head *head, struct inode *inode)
390 {
391 struct nfs_page *req;
392 struct page **pages;
393 struct nfs_read_data *data;
394 unsigned int count;
395
396 if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
397 return nfs_pagein_multi(head, inode);
398
399 data = nfs_readdata_alloc(NFS_SERVER(inode)->rpages);
400 if (!data)
401 goto out_bad;
402
403 INIT_LIST_HEAD(&data->pages);
404 pages = data->pagevec;
405 count = 0;
406 while (!list_empty(head)) {
407 req = nfs_list_entry(head->next);
408 nfs_list_remove_request(req);
409 nfs_list_add_request(req, &data->pages);
410 ClearPageError(req->wb_page);
411 *pages++ = req->wb_page;
412 count += req->wb_bytes;
413 }
414 req = nfs_list_entry(data->pages.next);
415
416 nfs_read_rpcsetup(req, data, &nfs_read_full_ops, count, 0);
417
418 nfs_execute_read(data);
419 return 0;
420 out_bad:
421 nfs_async_read_error(head);
422 return -ENOMEM;
423 }
424
425 static int
426 nfs_pagein_list(struct list_head *head, int rpages)
427 {
428 LIST_HEAD(one_request);
429 struct nfs_page *req;
430 int error = 0;
431 unsigned int pages = 0;
432
433 while (!list_empty(head)) {
434 pages += nfs_coalesce_requests(head, &one_request, rpages);
435 req = nfs_list_entry(one_request.next);
436 error = nfs_pagein_one(&one_request, req->wb_context->dentry->d_inode);
437 if (error < 0)
438 break;
439 }
440 if (error >= 0)
441 return pages;
442
443 nfs_async_read_error(head);
444 return error;
445 }
446
447 /*
448 * Handle a read reply that fills part of a page.
449 */
450 static void nfs_readpage_result_partial(struct rpc_task *task, void *calldata)
451 {
452 struct nfs_read_data *data = calldata;
453 struct nfs_page *req = data->req;
454 struct page *page = req->wb_page;
455
456 if (likely(task->tk_status >= 0))
457 nfs_readpage_truncate_uninitialised_page(data);
458 else
459 SetPageError(page);
460 if (nfs_readpage_result(task, data) != 0)
461 return;
462 if (atomic_dec_and_test(&req->wb_complete)) {
463 if (!PageError(page))
464 SetPageUptodate(page);
465 nfs_readpage_release(req);
466 }
467 }
468
469 static const struct rpc_call_ops nfs_read_partial_ops = {
470 .rpc_call_done = nfs_readpage_result_partial,
471 .rpc_release = nfs_readdata_release,
472 };
473
474 static void nfs_readpage_set_pages_uptodate(struct nfs_read_data *data)
475 {
476 unsigned int count = data->res.count;
477 unsigned int base = data->args.pgbase;
478 struct page **pages;
479
480 if (unlikely(count == 0))
481 return;
482 pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
483 base &= ~PAGE_CACHE_MASK;
484 count += base;
485 for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
486 SetPageUptodate(*pages);
487 /*
488 * Was this an eof or a short read? If the latter, don't mark the page
489 * as uptodate yet.
490 */
491 if (count > 0 && (data->res.eof || data->args.count == data->res.count))
492 SetPageUptodate(*pages);
493 }
494
495 static void nfs_readpage_set_pages_error(struct nfs_read_data *data)
496 {
497 unsigned int count = data->args.count;
498 unsigned int base = data->args.pgbase;
499 struct page **pages;
500
501 pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
502 base &= ~PAGE_CACHE_MASK;
503 count += base;
504 for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
505 SetPageError(*pages);
506 }
507
508 /*
509 * This is the callback from RPC telling us whether a reply was
510 * received or some error occurred (timeout or socket shutdown).
511 */
512 static void nfs_readpage_result_full(struct rpc_task *task, void *calldata)
513 {
514 struct nfs_read_data *data = calldata;
515
516 /*
517 * Note: nfs_readpage_result may change the values of
518 * data->args. In the multi-page case, we therefore need
519 * to ensure that we call the next nfs_readpage_set_page_uptodate()
520 * first in the multi-page case.
521 */
522 if (likely(task->tk_status >= 0)) {
523 nfs_readpage_truncate_uninitialised_page(data);
524 nfs_readpage_set_pages_uptodate(data);
525 } else
526 nfs_readpage_set_pages_error(data);
527 if (nfs_readpage_result(task, data) != 0)
528 return;
529 while (!list_empty(&data->pages)) {
530 struct nfs_page *req = nfs_list_entry(data->pages.next);
531
532 nfs_list_remove_request(req);
533 nfs_readpage_release(req);
534 }
535 }
536
537 static const struct rpc_call_ops nfs_read_full_ops = {
538 .rpc_call_done = nfs_readpage_result_full,
539 .rpc_release = nfs_readdata_release,
540 };
541
542 /*
543 * This is the callback from RPC telling us whether a reply was
544 * received or some error occurred (timeout or socket shutdown).
545 */
546 int nfs_readpage_result(struct rpc_task *task, struct nfs_read_data *data)
547 {
548 struct nfs_readargs *argp = &data->args;
549 struct nfs_readres *resp = &data->res;
550 int status;
551
552 dprintk("NFS: %4d nfs_readpage_result, (status %d)\n",
553 task->tk_pid, task->tk_status);
554
555 status = NFS_PROTO(data->inode)->read_done(task, data);
556 if (status != 0)
557 return status;
558
559 nfs_add_stats(data->inode, NFSIOS_SERVERREADBYTES, resp->count);
560
561 /* Is this a short read? */
562 if (task->tk_status >= 0 && resp->count < argp->count && !resp->eof) {
563 nfs_inc_stats(data->inode, NFSIOS_SHORTREAD);
564 /* Has the server at least made some progress? */
565 if (resp->count != 0) {
566 /* Yes, so retry the read at the end of the data */
567 argp->offset += resp->count;
568 argp->pgbase += resp->count;
569 argp->count -= resp->count;
570 rpc_restart_call(task);
571 return -EAGAIN;
572 }
573 task->tk_status = -EIO;
574 }
575 spin_lock(&data->inode->i_lock);
576 NFS_I(data->inode)->cache_validity |= NFS_INO_INVALID_ATIME;
577 spin_unlock(&data->inode->i_lock);
578 return 0;
579 }
580
581 /*
582 * Read a page over NFS.
583 * We read the page synchronously in the following case:
584 * - The error flag is set for this page. This happens only when a
585 * previous async read operation failed.
586 */
587 int nfs_readpage(struct file *file, struct page *page)
588 {
589 struct nfs_open_context *ctx;
590 struct inode *inode = page->mapping->host;
591 int error;
592
593 dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
594 page, PAGE_CACHE_SIZE, page->index);
595 nfs_inc_stats(inode, NFSIOS_VFSREADPAGE);
596 nfs_add_stats(inode, NFSIOS_READPAGES, 1);
597
598 /*
599 * Try to flush any pending writes to the file..
600 *
601 * NOTE! Because we own the page lock, there cannot
602 * be any new pending writes generated at this point
603 * for this page (other pages can be written to).
604 */
605 error = nfs_wb_page(inode, page);
606 if (error)
607 goto out_error;
608
609 if (file == NULL) {
610 ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
611 if (ctx == NULL)
612 return -EBADF;
613 } else
614 ctx = get_nfs_open_context((struct nfs_open_context *)
615 file->private_data);
616 if (!IS_SYNC(inode)) {
617 error = nfs_readpage_async(ctx, inode, page);
618 goto out;
619 }
620
621 error = nfs_readpage_sync(ctx, inode, page);
622 if (error < 0 && IS_SWAPFILE(inode))
623 printk("Aiee.. nfs swap-in of page failed!\n");
624 out:
625 put_nfs_open_context(ctx);
626 return error;
627
628 out_error:
629 unlock_page(page);
630 return error;
631 }
632
633 struct nfs_readdesc {
634 struct list_head *head;
635 struct nfs_open_context *ctx;
636 };
637
638 static int
639 readpage_async_filler(void *data, struct page *page)
640 {
641 struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
642 struct inode *inode = page->mapping->host;
643 struct nfs_page *new;
644 unsigned int len;
645
646 nfs_wb_page(inode, page);
647 len = nfs_page_length(inode, page);
648 if (len == 0)
649 return nfs_return_empty_page(page);
650 new = nfs_create_request(desc->ctx, inode, page, 0, len);
651 if (IS_ERR(new)) {
652 SetPageError(page);
653 unlock_page(page);
654 return PTR_ERR(new);
655 }
656 if (len < PAGE_CACHE_SIZE)
657 memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
658 nfs_list_add_request(new, desc->head);
659 return 0;
660 }
661
662 int nfs_readpages(struct file *filp, struct address_space *mapping,
663 struct list_head *pages, unsigned nr_pages)
664 {
665 LIST_HEAD(head);
666 struct nfs_readdesc desc = {
667 .head = &head,
668 };
669 struct inode *inode = mapping->host;
670 struct nfs_server *server = NFS_SERVER(inode);
671 int ret;
672
673 dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
674 inode->i_sb->s_id,
675 (long long)NFS_FILEID(inode),
676 nr_pages);
677 nfs_inc_stats(inode, NFSIOS_VFSREADPAGES);
678
679 if (filp == NULL) {
680 desc.ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
681 if (desc.ctx == NULL)
682 return -EBADF;
683 } else
684 desc.ctx = get_nfs_open_context((struct nfs_open_context *)
685 filp->private_data);
686 ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
687 if (!list_empty(&head)) {
688 int err = nfs_pagein_list(&head, server->rpages);
689 if (!ret)
690 nfs_add_stats(inode, NFSIOS_READPAGES, err);
691 ret = err;
692 }
693 put_nfs_open_context(desc.ctx);
694 return ret;
695 }
696
697 int __init nfs_init_readpagecache(void)
698 {
699 nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
700 sizeof(struct nfs_read_data),
701 0, SLAB_HWCACHE_ALIGN,
702 NULL, NULL);
703 if (nfs_rdata_cachep == NULL)
704 return -ENOMEM;
705
706 nfs_rdata_mempool = mempool_create_slab_pool(MIN_POOL_READ,
707 nfs_rdata_cachep);
708 if (nfs_rdata_mempool == NULL)
709 return -ENOMEM;
710
711 return 0;
712 }
713
714 void nfs_destroy_readpagecache(void)
715 {
716 mempool_destroy(nfs_rdata_mempool);
717 if (kmem_cache_destroy(nfs_rdata_cachep))
718 printk(KERN_INFO "nfs_read_data: not all structures were freed\n");
719 }
This page took 0.069535 seconds and 6 git commands to generate.