Merge branch 'merge'
[deliverable/linux.git] / fs / nfs / read.c
1 /*
2 * linux/fs/nfs/read.c
3 *
4 * Block I/O for NFS
5 *
6 * Partial copy of Linus' read cache modifications to fs/nfs/file.c
7 * modified for async RPC by okir@monad.swb.de
8 *
9 * We do an ugly hack here in order to return proper error codes to the
10 * user program when a read request failed: since generic_file_read
11 * only checks the return value of inode->i_op->readpage() which is always 0
12 * for async RPC, we set the error bit of the page to 1 when an error occurs,
13 * and make nfs_readpage transmit requests synchronously when encountering this.
14 * This is only a small problem, though, since we now retry all operations
15 * within the RPC code when root squashing is suspected.
16 */
17
18 #include <linux/time.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/fcntl.h>
22 #include <linux/stat.h>
23 #include <linux/mm.h>
24 #include <linux/slab.h>
25 #include <linux/pagemap.h>
26 #include <linux/sunrpc/clnt.h>
27 #include <linux/nfs_fs.h>
28 #include <linux/nfs_page.h>
29 #include <linux/smp_lock.h>
30
31 #include <asm/system.h>
32
33 #include "iostat.h"
34
35 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
36
37 static int nfs_pagein_one(struct list_head *, struct inode *);
38 static const struct rpc_call_ops nfs_read_partial_ops;
39 static const struct rpc_call_ops nfs_read_full_ops;
40
41 static kmem_cache_t *nfs_rdata_cachep;
42 static mempool_t *nfs_rdata_mempool;
43
44 #define MIN_POOL_READ (32)
45
46 struct nfs_read_data *nfs_readdata_alloc(unsigned int pagecount)
47 {
48 struct nfs_read_data *p = mempool_alloc(nfs_rdata_mempool, SLAB_NOFS);
49
50 if (p) {
51 memset(p, 0, sizeof(*p));
52 INIT_LIST_HEAD(&p->pages);
53 if (pagecount <= ARRAY_SIZE(p->page_array))
54 p->pagevec = p->page_array;
55 else {
56 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
57 if (!p->pagevec) {
58 mempool_free(p, nfs_rdata_mempool);
59 p = NULL;
60 }
61 }
62 }
63 return p;
64 }
65
66 static void nfs_readdata_free(struct nfs_read_data *p)
67 {
68 if (p && (p->pagevec != &p->page_array[0]))
69 kfree(p->pagevec);
70 mempool_free(p, nfs_rdata_mempool);
71 }
72
73 void nfs_readdata_release(void *data)
74 {
75 nfs_readdata_free(data);
76 }
77
78 static
79 unsigned int nfs_page_length(struct inode *inode, struct page *page)
80 {
81 loff_t i_size = i_size_read(inode);
82 unsigned long idx;
83
84 if (i_size <= 0)
85 return 0;
86 idx = (i_size - 1) >> PAGE_CACHE_SHIFT;
87 if (page->index > idx)
88 return 0;
89 if (page->index != idx)
90 return PAGE_CACHE_SIZE;
91 return 1 + ((i_size - 1) & (PAGE_CACHE_SIZE - 1));
92 }
93
94 static
95 int nfs_return_empty_page(struct page *page)
96 {
97 memclear_highpage_flush(page, 0, PAGE_CACHE_SIZE);
98 SetPageUptodate(page);
99 unlock_page(page);
100 return 0;
101 }
102
103 static void nfs_readpage_truncate_uninitialised_page(struct nfs_read_data *data)
104 {
105 unsigned int remainder = data->args.count - data->res.count;
106 unsigned int base = data->args.pgbase + data->res.count;
107 unsigned int pglen;
108 struct page **pages;
109
110 if (data->res.eof == 0 || remainder == 0)
111 return;
112 /*
113 * Note: "remainder" can never be negative, since we check for
114 * this in the XDR code.
115 */
116 pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
117 base &= ~PAGE_CACHE_MASK;
118 pglen = PAGE_CACHE_SIZE - base;
119 for (;;) {
120 if (remainder <= pglen) {
121 memclear_highpage_flush(*pages, base, remainder);
122 break;
123 }
124 memclear_highpage_flush(*pages, base, pglen);
125 pages++;
126 remainder -= pglen;
127 pglen = PAGE_CACHE_SIZE;
128 base = 0;
129 }
130 }
131
132 /*
133 * Read a page synchronously.
134 */
135 static int nfs_readpage_sync(struct nfs_open_context *ctx, struct inode *inode,
136 struct page *page)
137 {
138 unsigned int rsize = NFS_SERVER(inode)->rsize;
139 unsigned int count = PAGE_CACHE_SIZE;
140 int result;
141 struct nfs_read_data *rdata;
142
143 rdata = nfs_readdata_alloc(1);
144 if (!rdata)
145 return -ENOMEM;
146
147 memset(rdata, 0, sizeof(*rdata));
148 rdata->flags = (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
149 rdata->cred = ctx->cred;
150 rdata->inode = inode;
151 INIT_LIST_HEAD(&rdata->pages);
152 rdata->args.fh = NFS_FH(inode);
153 rdata->args.context = ctx;
154 rdata->args.pages = &page;
155 rdata->args.pgbase = 0UL;
156 rdata->args.count = rsize;
157 rdata->res.fattr = &rdata->fattr;
158
159 dprintk("NFS: nfs_readpage_sync(%p)\n", page);
160
161 /*
162 * This works now because the socket layer never tries to DMA
163 * into this buffer directly.
164 */
165 do {
166 if (count < rsize)
167 rdata->args.count = count;
168 rdata->res.count = rdata->args.count;
169 rdata->args.offset = page_offset(page) + rdata->args.pgbase;
170
171 dprintk("NFS: nfs_proc_read(%s, (%s/%Ld), %Lu, %u)\n",
172 NFS_SERVER(inode)->hostname,
173 inode->i_sb->s_id,
174 (long long)NFS_FILEID(inode),
175 (unsigned long long)rdata->args.pgbase,
176 rdata->args.count);
177
178 lock_kernel();
179 result = NFS_PROTO(inode)->read(rdata);
180 unlock_kernel();
181
182 /*
183 * Even if we had a partial success we can't mark the page
184 * cache valid.
185 */
186 if (result < 0) {
187 if (result == -EISDIR)
188 result = -EINVAL;
189 goto io_error;
190 }
191 count -= result;
192 rdata->args.pgbase += result;
193 nfs_add_stats(inode, NFSIOS_SERVERREADBYTES, result);
194
195 /* Note: result == 0 should only happen if we're caching
196 * a write that extends the file and punches a hole.
197 */
198 if (rdata->res.eof != 0 || result == 0)
199 break;
200 } while (count);
201 spin_lock(&inode->i_lock);
202 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
203 spin_unlock(&inode->i_lock);
204
205 nfs_readpage_truncate_uninitialised_page(rdata);
206 if (rdata->res.eof || rdata->res.count == rdata->args.count)
207 SetPageUptodate(page);
208 result = 0;
209
210 io_error:
211 unlock_page(page);
212 nfs_readdata_free(rdata);
213 return result;
214 }
215
216 static int nfs_readpage_async(struct nfs_open_context *ctx, struct inode *inode,
217 struct page *page)
218 {
219 LIST_HEAD(one_request);
220 struct nfs_page *new;
221 unsigned int len;
222
223 len = nfs_page_length(inode, page);
224 if (len == 0)
225 return nfs_return_empty_page(page);
226 new = nfs_create_request(ctx, inode, page, 0, len);
227 if (IS_ERR(new)) {
228 unlock_page(page);
229 return PTR_ERR(new);
230 }
231 if (len < PAGE_CACHE_SIZE)
232 memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
233
234 nfs_list_add_request(new, &one_request);
235 nfs_pagein_one(&one_request, inode);
236 return 0;
237 }
238
239 static void nfs_readpage_release(struct nfs_page *req)
240 {
241 unlock_page(req->wb_page);
242
243 dprintk("NFS: read done (%s/%Ld %d@%Ld)\n",
244 req->wb_context->dentry->d_inode->i_sb->s_id,
245 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
246 req->wb_bytes,
247 (long long)req_offset(req));
248 nfs_clear_request(req);
249 nfs_release_request(req);
250 }
251
252 /*
253 * Set up the NFS read request struct
254 */
255 static void nfs_read_rpcsetup(struct nfs_page *req, struct nfs_read_data *data,
256 const struct rpc_call_ops *call_ops,
257 unsigned int count, unsigned int offset)
258 {
259 struct inode *inode;
260 int flags;
261
262 data->req = req;
263 data->inode = inode = req->wb_context->dentry->d_inode;
264 data->cred = req->wb_context->cred;
265
266 data->args.fh = NFS_FH(inode);
267 data->args.offset = req_offset(req) + offset;
268 data->args.pgbase = req->wb_pgbase + offset;
269 data->args.pages = data->pagevec;
270 data->args.count = count;
271 data->args.context = req->wb_context;
272
273 data->res.fattr = &data->fattr;
274 data->res.count = count;
275 data->res.eof = 0;
276 nfs_fattr_init(&data->fattr);
277
278 /* Set up the initial task struct. */
279 flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0);
280 rpc_init_task(&data->task, NFS_CLIENT(inode), flags, call_ops, data);
281 NFS_PROTO(inode)->read_setup(data);
282
283 data->task.tk_cookie = (unsigned long)inode;
284
285 dprintk("NFS: %4d initiated read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
286 data->task.tk_pid,
287 inode->i_sb->s_id,
288 (long long)NFS_FILEID(inode),
289 count,
290 (unsigned long long)data->args.offset);
291 }
292
293 static void
294 nfs_async_read_error(struct list_head *head)
295 {
296 struct nfs_page *req;
297
298 while (!list_empty(head)) {
299 req = nfs_list_entry(head->next);
300 nfs_list_remove_request(req);
301 SetPageError(req->wb_page);
302 nfs_readpage_release(req);
303 }
304 }
305
306 /*
307 * Start an async read operation
308 */
309 static void nfs_execute_read(struct nfs_read_data *data)
310 {
311 struct rpc_clnt *clnt = NFS_CLIENT(data->inode);
312 sigset_t oldset;
313
314 rpc_clnt_sigmask(clnt, &oldset);
315 lock_kernel();
316 rpc_execute(&data->task);
317 unlock_kernel();
318 rpc_clnt_sigunmask(clnt, &oldset);
319 }
320
321 /*
322 * Generate multiple requests to fill a single page.
323 *
324 * We optimize to reduce the number of read operations on the wire. If we
325 * detect that we're reading a page, or an area of a page, that is past the
326 * end of file, we do not generate NFS read operations but just clear the
327 * parts of the page that would have come back zero from the server anyway.
328 *
329 * We rely on the cached value of i_size to make this determination; another
330 * client can fill pages on the server past our cached end-of-file, but we
331 * won't see the new data until our attribute cache is updated. This is more
332 * or less conventional NFS client behavior.
333 */
334 static int nfs_pagein_multi(struct list_head *head, struct inode *inode)
335 {
336 struct nfs_page *req = nfs_list_entry(head->next);
337 struct page *page = req->wb_page;
338 struct nfs_read_data *data;
339 unsigned int rsize = NFS_SERVER(inode)->rsize;
340 unsigned int nbytes, offset;
341 int requests = 0;
342 LIST_HEAD(list);
343
344 nfs_list_remove_request(req);
345
346 nbytes = req->wb_bytes;
347 for(;;) {
348 data = nfs_readdata_alloc(1);
349 if (!data)
350 goto out_bad;
351 INIT_LIST_HEAD(&data->pages);
352 list_add(&data->pages, &list);
353 requests++;
354 if (nbytes <= rsize)
355 break;
356 nbytes -= rsize;
357 }
358 atomic_set(&req->wb_complete, requests);
359
360 ClearPageError(page);
361 offset = 0;
362 nbytes = req->wb_bytes;
363 do {
364 data = list_entry(list.next, struct nfs_read_data, pages);
365 list_del_init(&data->pages);
366
367 data->pagevec[0] = page;
368
369 if (nbytes > rsize) {
370 nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
371 rsize, offset);
372 offset += rsize;
373 nbytes -= rsize;
374 } else {
375 nfs_read_rpcsetup(req, data, &nfs_read_partial_ops,
376 nbytes, offset);
377 nbytes = 0;
378 }
379 nfs_execute_read(data);
380 } while (nbytes != 0);
381
382 return 0;
383
384 out_bad:
385 while (!list_empty(&list)) {
386 data = list_entry(list.next, struct nfs_read_data, pages);
387 list_del(&data->pages);
388 nfs_readdata_free(data);
389 }
390 SetPageError(page);
391 nfs_readpage_release(req);
392 return -ENOMEM;
393 }
394
395 static int nfs_pagein_one(struct list_head *head, struct inode *inode)
396 {
397 struct nfs_page *req;
398 struct page **pages;
399 struct nfs_read_data *data;
400 unsigned int count;
401
402 if (NFS_SERVER(inode)->rsize < PAGE_CACHE_SIZE)
403 return nfs_pagein_multi(head, inode);
404
405 data = nfs_readdata_alloc(NFS_SERVER(inode)->rpages);
406 if (!data)
407 goto out_bad;
408
409 INIT_LIST_HEAD(&data->pages);
410 pages = data->pagevec;
411 count = 0;
412 while (!list_empty(head)) {
413 req = nfs_list_entry(head->next);
414 nfs_list_remove_request(req);
415 nfs_list_add_request(req, &data->pages);
416 ClearPageError(req->wb_page);
417 *pages++ = req->wb_page;
418 count += req->wb_bytes;
419 }
420 req = nfs_list_entry(data->pages.next);
421
422 nfs_read_rpcsetup(req, data, &nfs_read_full_ops, count, 0);
423
424 nfs_execute_read(data);
425 return 0;
426 out_bad:
427 nfs_async_read_error(head);
428 return -ENOMEM;
429 }
430
431 static int
432 nfs_pagein_list(struct list_head *head, int rpages)
433 {
434 LIST_HEAD(one_request);
435 struct nfs_page *req;
436 int error = 0;
437 unsigned int pages = 0;
438
439 while (!list_empty(head)) {
440 pages += nfs_coalesce_requests(head, &one_request, rpages);
441 req = nfs_list_entry(one_request.next);
442 error = nfs_pagein_one(&one_request, req->wb_context->dentry->d_inode);
443 if (error < 0)
444 break;
445 }
446 if (error >= 0)
447 return pages;
448
449 nfs_async_read_error(head);
450 return error;
451 }
452
453 /*
454 * Handle a read reply that fills part of a page.
455 */
456 static void nfs_readpage_result_partial(struct rpc_task *task, void *calldata)
457 {
458 struct nfs_read_data *data = calldata;
459 struct nfs_page *req = data->req;
460 struct page *page = req->wb_page;
461
462 if (likely(task->tk_status >= 0))
463 nfs_readpage_truncate_uninitialised_page(data);
464 else
465 SetPageError(page);
466 if (nfs_readpage_result(task, data) != 0)
467 return;
468 if (atomic_dec_and_test(&req->wb_complete)) {
469 if (!PageError(page))
470 SetPageUptodate(page);
471 nfs_readpage_release(req);
472 }
473 }
474
475 static const struct rpc_call_ops nfs_read_partial_ops = {
476 .rpc_call_done = nfs_readpage_result_partial,
477 .rpc_release = nfs_readdata_release,
478 };
479
480 static void nfs_readpage_set_pages_uptodate(struct nfs_read_data *data)
481 {
482 unsigned int count = data->res.count;
483 unsigned int base = data->args.pgbase;
484 struct page **pages;
485
486 if (data->res.eof)
487 count = data->args.count;
488 if (unlikely(count == 0))
489 return;
490 pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
491 base &= ~PAGE_CACHE_MASK;
492 count += base;
493 for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
494 SetPageUptodate(*pages);
495 if (count != 0)
496 SetPageUptodate(*pages);
497 }
498
499 static void nfs_readpage_set_pages_error(struct nfs_read_data *data)
500 {
501 unsigned int count = data->args.count;
502 unsigned int base = data->args.pgbase;
503 struct page **pages;
504
505 pages = &data->args.pages[base >> PAGE_CACHE_SHIFT];
506 base &= ~PAGE_CACHE_MASK;
507 count += base;
508 for (;count >= PAGE_CACHE_SIZE; count -= PAGE_CACHE_SIZE, pages++)
509 SetPageError(*pages);
510 if (count != 0)
511 SetPageError(*pages);
512 }
513
514 /*
515 * This is the callback from RPC telling us whether a reply was
516 * received or some error occurred (timeout or socket shutdown).
517 */
518 static void nfs_readpage_result_full(struct rpc_task *task, void *calldata)
519 {
520 struct nfs_read_data *data = calldata;
521
522 /*
523 * Note: nfs_readpage_result may change the values of
524 * data->args. In the multi-page case, we therefore need
525 * to ensure that we call the next nfs_readpage_set_page_uptodate()
526 * first in the multi-page case.
527 */
528 if (likely(task->tk_status >= 0)) {
529 nfs_readpage_truncate_uninitialised_page(data);
530 nfs_readpage_set_pages_uptodate(data);
531 } else
532 nfs_readpage_set_pages_error(data);
533 if (nfs_readpage_result(task, data) != 0)
534 return;
535 while (!list_empty(&data->pages)) {
536 struct nfs_page *req = nfs_list_entry(data->pages.next);
537
538 nfs_list_remove_request(req);
539 nfs_readpage_release(req);
540 }
541 }
542
543 static const struct rpc_call_ops nfs_read_full_ops = {
544 .rpc_call_done = nfs_readpage_result_full,
545 .rpc_release = nfs_readdata_release,
546 };
547
548 /*
549 * This is the callback from RPC telling us whether a reply was
550 * received or some error occurred (timeout or socket shutdown).
551 */
552 int nfs_readpage_result(struct rpc_task *task, struct nfs_read_data *data)
553 {
554 struct nfs_readargs *argp = &data->args;
555 struct nfs_readres *resp = &data->res;
556 int status;
557
558 dprintk("NFS: %4d nfs_readpage_result, (status %d)\n",
559 task->tk_pid, task->tk_status);
560
561 status = NFS_PROTO(data->inode)->read_done(task, data);
562 if (status != 0)
563 return status;
564
565 nfs_add_stats(data->inode, NFSIOS_SERVERREADBYTES, resp->count);
566
567 /* Is this a short read? */
568 if (task->tk_status >= 0 && resp->count < argp->count && !resp->eof) {
569 nfs_inc_stats(data->inode, NFSIOS_SHORTREAD);
570 /* Has the server at least made some progress? */
571 if (resp->count != 0) {
572 /* Yes, so retry the read at the end of the data */
573 argp->offset += resp->count;
574 argp->pgbase += resp->count;
575 argp->count -= resp->count;
576 rpc_restart_call(task);
577 return -EAGAIN;
578 }
579 task->tk_status = -EIO;
580 }
581 spin_lock(&data->inode->i_lock);
582 NFS_I(data->inode)->cache_validity |= NFS_INO_INVALID_ATIME;
583 spin_unlock(&data->inode->i_lock);
584 return 0;
585 }
586
587 /*
588 * Read a page over NFS.
589 * We read the page synchronously in the following case:
590 * - The error flag is set for this page. This happens only when a
591 * previous async read operation failed.
592 */
593 int nfs_readpage(struct file *file, struct page *page)
594 {
595 struct nfs_open_context *ctx;
596 struct inode *inode = page->mapping->host;
597 int error;
598
599 dprintk("NFS: nfs_readpage (%p %ld@%lu)\n",
600 page, PAGE_CACHE_SIZE, page->index);
601 nfs_inc_stats(inode, NFSIOS_VFSREADPAGE);
602 nfs_add_stats(inode, NFSIOS_READPAGES, 1);
603
604 /*
605 * Try to flush any pending writes to the file..
606 *
607 * NOTE! Because we own the page lock, there cannot
608 * be any new pending writes generated at this point
609 * for this page (other pages can be written to).
610 */
611 error = nfs_wb_page(inode, page);
612 if (error)
613 goto out_error;
614
615 if (file == NULL) {
616 ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
617 if (ctx == NULL)
618 return -EBADF;
619 } else
620 ctx = get_nfs_open_context((struct nfs_open_context *)
621 file->private_data);
622 if (!IS_SYNC(inode)) {
623 error = nfs_readpage_async(ctx, inode, page);
624 goto out;
625 }
626
627 error = nfs_readpage_sync(ctx, inode, page);
628 if (error < 0 && IS_SWAPFILE(inode))
629 printk("Aiee.. nfs swap-in of page failed!\n");
630 out:
631 put_nfs_open_context(ctx);
632 return error;
633
634 out_error:
635 unlock_page(page);
636 return error;
637 }
638
639 struct nfs_readdesc {
640 struct list_head *head;
641 struct nfs_open_context *ctx;
642 };
643
644 static int
645 readpage_async_filler(void *data, struct page *page)
646 {
647 struct nfs_readdesc *desc = (struct nfs_readdesc *)data;
648 struct inode *inode = page->mapping->host;
649 struct nfs_page *new;
650 unsigned int len;
651
652 nfs_wb_page(inode, page);
653 len = nfs_page_length(inode, page);
654 if (len == 0)
655 return nfs_return_empty_page(page);
656 new = nfs_create_request(desc->ctx, inode, page, 0, len);
657 if (IS_ERR(new)) {
658 SetPageError(page);
659 unlock_page(page);
660 return PTR_ERR(new);
661 }
662 if (len < PAGE_CACHE_SIZE)
663 memclear_highpage_flush(page, len, PAGE_CACHE_SIZE - len);
664 nfs_list_add_request(new, desc->head);
665 return 0;
666 }
667
668 int nfs_readpages(struct file *filp, struct address_space *mapping,
669 struct list_head *pages, unsigned nr_pages)
670 {
671 LIST_HEAD(head);
672 struct nfs_readdesc desc = {
673 .head = &head,
674 };
675 struct inode *inode = mapping->host;
676 struct nfs_server *server = NFS_SERVER(inode);
677 int ret;
678
679 dprintk("NFS: nfs_readpages (%s/%Ld %d)\n",
680 inode->i_sb->s_id,
681 (long long)NFS_FILEID(inode),
682 nr_pages);
683 nfs_inc_stats(inode, NFSIOS_VFSREADPAGES);
684
685 if (filp == NULL) {
686 desc.ctx = nfs_find_open_context(inode, NULL, FMODE_READ);
687 if (desc.ctx == NULL)
688 return -EBADF;
689 } else
690 desc.ctx = get_nfs_open_context((struct nfs_open_context *)
691 filp->private_data);
692 ret = read_cache_pages(mapping, pages, readpage_async_filler, &desc);
693 if (!list_empty(&head)) {
694 int err = nfs_pagein_list(&head, server->rpages);
695 if (!ret)
696 nfs_add_stats(inode, NFSIOS_READPAGES, err);
697 ret = err;
698 }
699 put_nfs_open_context(desc.ctx);
700 return ret;
701 }
702
703 int __init nfs_init_readpagecache(void)
704 {
705 nfs_rdata_cachep = kmem_cache_create("nfs_read_data",
706 sizeof(struct nfs_read_data),
707 0, SLAB_HWCACHE_ALIGN,
708 NULL, NULL);
709 if (nfs_rdata_cachep == NULL)
710 return -ENOMEM;
711
712 nfs_rdata_mempool = mempool_create_slab_pool(MIN_POOL_READ,
713 nfs_rdata_cachep);
714 if (nfs_rdata_mempool == NULL)
715 return -ENOMEM;
716
717 return 0;
718 }
719
720 void nfs_destroy_readpagecache(void)
721 {
722 mempool_destroy(nfs_rdata_mempool);
723 if (kmem_cache_destroy(nfs_rdata_cachep))
724 printk(KERN_INFO "nfs_read_data: not all structures were freed\n");
725 }
This page took 0.048057 seconds and 6 git commands to generate.