NFS: Cleanup of the nfs_pageio code in preparation for a pnfs bugfix
[deliverable/linux.git] / fs / nfs / write.c
1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23
24 #include <asm/uaccess.h>
25
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 #include "pnfs.h"
32
33 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34
35 #define MIN_POOL_WRITE (32)
36 #define MIN_POOL_COMMIT (4)
37
38 /*
39 * Local function declarations
40 */
41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
42 struct inode *inode, int ioflags);
43 static void nfs_redirty_request(struct nfs_page *req);
44 static const struct rpc_call_ops nfs_write_partial_ops;
45 static const struct rpc_call_ops nfs_write_full_ops;
46 static const struct rpc_call_ops nfs_commit_ops;
47
48 static struct kmem_cache *nfs_wdata_cachep;
49 static mempool_t *nfs_wdata_mempool;
50 static mempool_t *nfs_commit_mempool;
51
52 struct nfs_write_data *nfs_commitdata_alloc(void)
53 {
54 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55
56 if (p) {
57 memset(p, 0, sizeof(*p));
58 INIT_LIST_HEAD(&p->pages);
59 }
60 return p;
61 }
62 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
63
64 void nfs_commit_free(struct nfs_write_data *p)
65 {
66 if (p && (p->pagevec != &p->page_array[0]))
67 kfree(p->pagevec);
68 mempool_free(p, nfs_commit_mempool);
69 }
70 EXPORT_SYMBOL_GPL(nfs_commit_free);
71
72 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
73 {
74 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
75
76 if (p) {
77 memset(p, 0, sizeof(*p));
78 INIT_LIST_HEAD(&p->pages);
79 p->npages = pagecount;
80 if (pagecount <= ARRAY_SIZE(p->page_array))
81 p->pagevec = p->page_array;
82 else {
83 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
84 if (!p->pagevec) {
85 mempool_free(p, nfs_wdata_mempool);
86 p = NULL;
87 }
88 }
89 }
90 return p;
91 }
92
93 void nfs_writedata_free(struct nfs_write_data *p)
94 {
95 if (p && (p->pagevec != &p->page_array[0]))
96 kfree(p->pagevec);
97 mempool_free(p, nfs_wdata_mempool);
98 }
99
100 static void nfs_writedata_release(struct nfs_write_data *wdata)
101 {
102 put_lseg(wdata->lseg);
103 put_nfs_open_context(wdata->args.context);
104 nfs_writedata_free(wdata);
105 }
106
107 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
108 {
109 ctx->error = error;
110 smp_wmb();
111 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 }
113
114 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
115 {
116 struct nfs_page *req = NULL;
117
118 if (PagePrivate(page)) {
119 req = (struct nfs_page *)page_private(page);
120 if (req != NULL)
121 kref_get(&req->wb_kref);
122 }
123 return req;
124 }
125
126 static struct nfs_page *nfs_page_find_request(struct page *page)
127 {
128 struct inode *inode = page->mapping->host;
129 struct nfs_page *req = NULL;
130
131 spin_lock(&inode->i_lock);
132 req = nfs_page_find_request_locked(page);
133 spin_unlock(&inode->i_lock);
134 return req;
135 }
136
137 /* Adjust the file length if we're writing beyond the end */
138 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
139 {
140 struct inode *inode = page->mapping->host;
141 loff_t end, i_size;
142 pgoff_t end_index;
143
144 spin_lock(&inode->i_lock);
145 i_size = i_size_read(inode);
146 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
147 if (i_size > 0 && page->index < end_index)
148 goto out;
149 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
150 if (i_size >= end)
151 goto out;
152 i_size_write(inode, end);
153 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
154 out:
155 spin_unlock(&inode->i_lock);
156 }
157
158 /* A writeback failed: mark the page as bad, and invalidate the page cache */
159 static void nfs_set_pageerror(struct page *page)
160 {
161 SetPageError(page);
162 nfs_zap_mapping(page->mapping->host, page->mapping);
163 }
164
165 /* We can set the PG_uptodate flag if we see that a write request
166 * covers the full page.
167 */
168 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
169 {
170 if (PageUptodate(page))
171 return;
172 if (base != 0)
173 return;
174 if (count != nfs_page_length(page))
175 return;
176 SetPageUptodate(page);
177 }
178
179 static int wb_priority(struct writeback_control *wbc)
180 {
181 if (wbc->for_reclaim)
182 return FLUSH_HIGHPRI | FLUSH_STABLE;
183 if (wbc->for_kupdate || wbc->for_background)
184 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
185 return FLUSH_COND_STABLE;
186 }
187
188 /*
189 * NFS congestion control
190 */
191
192 int nfs_congestion_kb;
193
194 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
195 #define NFS_CONGESTION_OFF_THRESH \
196 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
197
198 static int nfs_set_page_writeback(struct page *page)
199 {
200 int ret = test_set_page_writeback(page);
201
202 if (!ret) {
203 struct inode *inode = page->mapping->host;
204 struct nfs_server *nfss = NFS_SERVER(inode);
205
206 page_cache_get(page);
207 if (atomic_long_inc_return(&nfss->writeback) >
208 NFS_CONGESTION_ON_THRESH) {
209 set_bdi_congested(&nfss->backing_dev_info,
210 BLK_RW_ASYNC);
211 }
212 }
213 return ret;
214 }
215
216 static void nfs_end_page_writeback(struct page *page)
217 {
218 struct inode *inode = page->mapping->host;
219 struct nfs_server *nfss = NFS_SERVER(inode);
220
221 end_page_writeback(page);
222 page_cache_release(page);
223 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
224 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
225 }
226
227 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
228 {
229 struct inode *inode = page->mapping->host;
230 struct nfs_page *req;
231 int ret;
232
233 spin_lock(&inode->i_lock);
234 for (;;) {
235 req = nfs_page_find_request_locked(page);
236 if (req == NULL)
237 break;
238 if (nfs_set_page_tag_locked(req))
239 break;
240 /* Note: If we hold the page lock, as is the case in nfs_writepage,
241 * then the call to nfs_set_page_tag_locked() will always
242 * succeed provided that someone hasn't already marked the
243 * request as dirty (in which case we don't care).
244 */
245 spin_unlock(&inode->i_lock);
246 if (!nonblock)
247 ret = nfs_wait_on_request(req);
248 else
249 ret = -EAGAIN;
250 nfs_release_request(req);
251 if (ret != 0)
252 return ERR_PTR(ret);
253 spin_lock(&inode->i_lock);
254 }
255 spin_unlock(&inode->i_lock);
256 return req;
257 }
258
259 /*
260 * Find an associated nfs write request, and prepare to flush it out
261 * May return an error if the user signalled nfs_wait_on_request().
262 */
263 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
264 struct page *page, bool nonblock)
265 {
266 struct nfs_page *req;
267 int ret = 0;
268
269 req = nfs_find_and_lock_request(page, nonblock);
270 if (!req)
271 goto out;
272 ret = PTR_ERR(req);
273 if (IS_ERR(req))
274 goto out;
275
276 ret = nfs_set_page_writeback(page);
277 BUG_ON(ret != 0);
278 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
279
280 if (!nfs_pageio_add_request(pgio, req)) {
281 nfs_redirty_request(req);
282 ret = pgio->pg_error;
283 }
284 out:
285 return ret;
286 }
287
288 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
289 {
290 struct inode *inode = page->mapping->host;
291 int ret;
292
293 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
294 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
295
296 nfs_pageio_cond_complete(pgio, page->index);
297 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
298 if (ret == -EAGAIN) {
299 redirty_page_for_writepage(wbc, page);
300 ret = 0;
301 }
302 return ret;
303 }
304
305 /*
306 * Write an mmapped page to the server.
307 */
308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
309 {
310 struct nfs_pageio_descriptor pgio;
311 int err;
312
313 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
314 err = nfs_do_writepage(page, wbc, &pgio);
315 nfs_pageio_complete(&pgio);
316 if (err < 0)
317 return err;
318 if (pgio.pg_error < 0)
319 return pgio.pg_error;
320 return 0;
321 }
322
323 int nfs_writepage(struct page *page, struct writeback_control *wbc)
324 {
325 int ret;
326
327 ret = nfs_writepage_locked(page, wbc);
328 unlock_page(page);
329 return ret;
330 }
331
332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
333 {
334 int ret;
335
336 ret = nfs_do_writepage(page, wbc, data);
337 unlock_page(page);
338 return ret;
339 }
340
341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
342 {
343 struct inode *inode = mapping->host;
344 unsigned long *bitlock = &NFS_I(inode)->flags;
345 struct nfs_pageio_descriptor pgio;
346 int err;
347
348 /* Stop dirtying of new pages while we sync */
349 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
350 nfs_wait_bit_killable, TASK_KILLABLE);
351 if (err)
352 goto out_err;
353
354 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
355
356 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
357 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
358 nfs_pageio_complete(&pgio);
359
360 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
361 smp_mb__after_clear_bit();
362 wake_up_bit(bitlock, NFS_INO_FLUSHING);
363
364 if (err < 0)
365 goto out_err;
366 err = pgio.pg_error;
367 if (err < 0)
368 goto out_err;
369 return 0;
370 out_err:
371 return err;
372 }
373
374 /*
375 * Insert a write request into an inode
376 */
377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
378 {
379 struct nfs_inode *nfsi = NFS_I(inode);
380 int error;
381
382 error = radix_tree_preload(GFP_NOFS);
383 if (error != 0)
384 goto out;
385
386 /* Lock the request! */
387 nfs_lock_request_dontget(req);
388
389 spin_lock(&inode->i_lock);
390 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
391 BUG_ON(error);
392 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
393 nfsi->change_attr++;
394 set_bit(PG_MAPPED, &req->wb_flags);
395 SetPagePrivate(req->wb_page);
396 set_page_private(req->wb_page, (unsigned long)req);
397 nfsi->npages++;
398 kref_get(&req->wb_kref);
399 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
400 NFS_PAGE_TAG_LOCKED);
401 spin_unlock(&inode->i_lock);
402 radix_tree_preload_end();
403 out:
404 return error;
405 }
406
407 /*
408 * Remove a write request from an inode
409 */
410 static void nfs_inode_remove_request(struct nfs_page *req)
411 {
412 struct inode *inode = req->wb_context->path.dentry->d_inode;
413 struct nfs_inode *nfsi = NFS_I(inode);
414
415 BUG_ON (!NFS_WBACK_BUSY(req));
416
417 spin_lock(&inode->i_lock);
418 set_page_private(req->wb_page, 0);
419 ClearPagePrivate(req->wb_page);
420 clear_bit(PG_MAPPED, &req->wb_flags);
421 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
422 nfsi->npages--;
423 spin_unlock(&inode->i_lock);
424 nfs_release_request(req);
425 }
426
427 static void
428 nfs_mark_request_dirty(struct nfs_page *req)
429 {
430 __set_page_dirty_nobuffers(req->wb_page);
431 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
432 }
433
434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
435 /*
436 * Add a request to the inode's commit list.
437 */
438 static void
439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
440 {
441 struct inode *inode = req->wb_context->path.dentry->d_inode;
442 struct nfs_inode *nfsi = NFS_I(inode);
443
444 spin_lock(&inode->i_lock);
445 set_bit(PG_CLEAN, &(req)->wb_flags);
446 radix_tree_tag_set(&nfsi->nfs_page_tree,
447 req->wb_index,
448 NFS_PAGE_TAG_COMMIT);
449 nfsi->ncommit++;
450 spin_unlock(&inode->i_lock);
451 pnfs_mark_request_commit(req, lseg);
452 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
453 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
454 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
455 }
456
457 static int
458 nfs_clear_request_commit(struct nfs_page *req)
459 {
460 struct page *page = req->wb_page;
461
462 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
463 dec_zone_page_state(page, NR_UNSTABLE_NFS);
464 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
465 return 1;
466 }
467 return 0;
468 }
469
470 static inline
471 int nfs_write_need_commit(struct nfs_write_data *data)
472 {
473 if (data->verf.committed == NFS_DATA_SYNC)
474 return data->lseg == NULL;
475 else
476 return data->verf.committed != NFS_FILE_SYNC;
477 }
478
479 static inline
480 int nfs_reschedule_unstable_write(struct nfs_page *req,
481 struct nfs_write_data *data)
482 {
483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
484 nfs_mark_request_commit(req, data->lseg);
485 return 1;
486 }
487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
488 nfs_mark_request_dirty(req);
489 return 1;
490 }
491 return 0;
492 }
493 #else
494 static inline void
495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
496 {
497 }
498
499 static inline int
500 nfs_clear_request_commit(struct nfs_page *req)
501 {
502 return 0;
503 }
504
505 static inline
506 int nfs_write_need_commit(struct nfs_write_data *data)
507 {
508 return 0;
509 }
510
511 static inline
512 int nfs_reschedule_unstable_write(struct nfs_page *req,
513 struct nfs_write_data *data)
514 {
515 return 0;
516 }
517 #endif
518
519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
520 static int
521 nfs_need_commit(struct nfs_inode *nfsi)
522 {
523 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
524 }
525
526 /*
527 * nfs_scan_commit - Scan an inode for commit requests
528 * @inode: NFS inode to scan
529 * @dst: destination list
530 * @idx_start: lower bound of page->index to scan.
531 * @npages: idx_start + npages sets the upper bound to scan.
532 *
533 * Moves requests from the inode's 'commit' request list.
534 * The requests are *not* checked to ensure that they form a contiguous set.
535 */
536 static int
537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
538 {
539 struct nfs_inode *nfsi = NFS_I(inode);
540 int ret;
541
542 if (!nfs_need_commit(nfsi))
543 return 0;
544
545 spin_lock(&inode->i_lock);
546 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
547 if (ret > 0)
548 nfsi->ncommit -= ret;
549 spin_unlock(&inode->i_lock);
550
551 if (nfs_need_commit(NFS_I(inode)))
552 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
553
554 return ret;
555 }
556 #else
557 static inline int nfs_need_commit(struct nfs_inode *nfsi)
558 {
559 return 0;
560 }
561
562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
563 {
564 return 0;
565 }
566 #endif
567
568 /*
569 * Search for an existing write request, and attempt to update
570 * it to reflect a new dirty region on a given page.
571 *
572 * If the attempt fails, then the existing request is flushed out
573 * to disk.
574 */
575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
576 struct page *page,
577 unsigned int offset,
578 unsigned int bytes)
579 {
580 struct nfs_page *req;
581 unsigned int rqend;
582 unsigned int end;
583 int error;
584
585 if (!PagePrivate(page))
586 return NULL;
587
588 end = offset + bytes;
589 spin_lock(&inode->i_lock);
590
591 for (;;) {
592 req = nfs_page_find_request_locked(page);
593 if (req == NULL)
594 goto out_unlock;
595
596 rqend = req->wb_offset + req->wb_bytes;
597 /*
598 * Tell the caller to flush out the request if
599 * the offsets are non-contiguous.
600 * Note: nfs_flush_incompatible() will already
601 * have flushed out requests having wrong owners.
602 */
603 if (offset > rqend
604 || end < req->wb_offset)
605 goto out_flushme;
606
607 if (nfs_set_page_tag_locked(req))
608 break;
609
610 /* The request is locked, so wait and then retry */
611 spin_unlock(&inode->i_lock);
612 error = nfs_wait_on_request(req);
613 nfs_release_request(req);
614 if (error != 0)
615 goto out_err;
616 spin_lock(&inode->i_lock);
617 }
618
619 if (nfs_clear_request_commit(req) &&
620 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
621 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
622 NFS_I(inode)->ncommit--;
623 pnfs_clear_request_commit(req);
624 }
625
626 /* Okay, the request matches. Update the region */
627 if (offset < req->wb_offset) {
628 req->wb_offset = offset;
629 req->wb_pgbase = offset;
630 }
631 if (end > rqend)
632 req->wb_bytes = end - req->wb_offset;
633 else
634 req->wb_bytes = rqend - req->wb_offset;
635 out_unlock:
636 spin_unlock(&inode->i_lock);
637 return req;
638 out_flushme:
639 spin_unlock(&inode->i_lock);
640 nfs_release_request(req);
641 error = nfs_wb_page(inode, page);
642 out_err:
643 return ERR_PTR(error);
644 }
645
646 /*
647 * Try to update an existing write request, or create one if there is none.
648 *
649 * Note: Should always be called with the Page Lock held to prevent races
650 * if we have to add a new request. Also assumes that the caller has
651 * already called nfs_flush_incompatible() if necessary.
652 */
653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
654 struct page *page, unsigned int offset, unsigned int bytes)
655 {
656 struct inode *inode = page->mapping->host;
657 struct nfs_page *req;
658 int error;
659
660 req = nfs_try_to_update_request(inode, page, offset, bytes);
661 if (req != NULL)
662 goto out;
663 req = nfs_create_request(ctx, inode, page, offset, bytes);
664 if (IS_ERR(req))
665 goto out;
666 error = nfs_inode_add_request(inode, req);
667 if (error != 0) {
668 nfs_release_request(req);
669 req = ERR_PTR(error);
670 }
671 out:
672 return req;
673 }
674
675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
676 unsigned int offset, unsigned int count)
677 {
678 struct nfs_page *req;
679
680 req = nfs_setup_write_request(ctx, page, offset, count);
681 if (IS_ERR(req))
682 return PTR_ERR(req);
683 /* Update file length */
684 nfs_grow_file(page, offset, count);
685 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
686 nfs_mark_request_dirty(req);
687 nfs_clear_page_tag_locked(req);
688 return 0;
689 }
690
691 int nfs_flush_incompatible(struct file *file, struct page *page)
692 {
693 struct nfs_open_context *ctx = nfs_file_open_context(file);
694 struct nfs_page *req;
695 int do_flush, status;
696 /*
697 * Look for a request corresponding to this page. If there
698 * is one, and it belongs to another file, we flush it out
699 * before we try to copy anything into the page. Do this
700 * due to the lack of an ACCESS-type call in NFSv2.
701 * Also do the same if we find a request from an existing
702 * dropped page.
703 */
704 do {
705 req = nfs_page_find_request(page);
706 if (req == NULL)
707 return 0;
708 do_flush = req->wb_page != page || req->wb_context != ctx ||
709 req->wb_lock_context->lockowner != current->files ||
710 req->wb_lock_context->pid != current->tgid;
711 nfs_release_request(req);
712 if (!do_flush)
713 return 0;
714 status = nfs_wb_page(page->mapping->host, page);
715 } while (status == 0);
716 return status;
717 }
718
719 /*
720 * If the page cache is marked as unsafe or invalid, then we can't rely on
721 * the PageUptodate() flag. In this case, we will need to turn off
722 * write optimisations that depend on the page contents being correct.
723 */
724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
725 {
726 return PageUptodate(page) &&
727 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
728 }
729
730 /*
731 * Update and possibly write a cached page of an NFS file.
732 *
733 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
734 * things with a page scheduled for an RPC call (e.g. invalidate it).
735 */
736 int nfs_updatepage(struct file *file, struct page *page,
737 unsigned int offset, unsigned int count)
738 {
739 struct nfs_open_context *ctx = nfs_file_open_context(file);
740 struct inode *inode = page->mapping->host;
741 int status = 0;
742
743 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
744
745 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
746 file->f_path.dentry->d_parent->d_name.name,
747 file->f_path.dentry->d_name.name, count,
748 (long long)(page_offset(page) + offset));
749
750 /* If we're not using byte range locks, and we know the page
751 * is up to date, it may be more efficient to extend the write
752 * to cover the entire page in order to avoid fragmentation
753 * inefficiencies.
754 */
755 if (nfs_write_pageuptodate(page, inode) &&
756 inode->i_flock == NULL &&
757 !(file->f_flags & O_DSYNC)) {
758 count = max(count + offset, nfs_page_length(page));
759 offset = 0;
760 }
761
762 status = nfs_writepage_setup(ctx, page, offset, count);
763 if (status < 0)
764 nfs_set_pageerror(page);
765
766 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
767 status, (long long)i_size_read(inode));
768 return status;
769 }
770
771 static void nfs_writepage_release(struct nfs_page *req,
772 struct nfs_write_data *data)
773 {
774 struct page *page = req->wb_page;
775
776 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
777 nfs_inode_remove_request(req);
778 nfs_clear_page_tag_locked(req);
779 nfs_end_page_writeback(page);
780 }
781
782 static int flush_task_priority(int how)
783 {
784 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
785 case FLUSH_HIGHPRI:
786 return RPC_PRIORITY_HIGH;
787 case FLUSH_LOWPRI:
788 return RPC_PRIORITY_LOW;
789 }
790 return RPC_PRIORITY_NORMAL;
791 }
792
793 int nfs_initiate_write(struct nfs_write_data *data,
794 struct rpc_clnt *clnt,
795 const struct rpc_call_ops *call_ops,
796 int how)
797 {
798 struct inode *inode = data->inode;
799 int priority = flush_task_priority(how);
800 struct rpc_task *task;
801 struct rpc_message msg = {
802 .rpc_argp = &data->args,
803 .rpc_resp = &data->res,
804 .rpc_cred = data->cred,
805 };
806 struct rpc_task_setup task_setup_data = {
807 .rpc_client = clnt,
808 .task = &data->task,
809 .rpc_message = &msg,
810 .callback_ops = call_ops,
811 .callback_data = data,
812 .workqueue = nfsiod_workqueue,
813 .flags = RPC_TASK_ASYNC,
814 .priority = priority,
815 };
816 int ret = 0;
817
818 /* Set up the initial task struct. */
819 NFS_PROTO(inode)->write_setup(data, &msg);
820
821 dprintk("NFS: %5u initiated write call "
822 "(req %s/%lld, %u bytes @ offset %llu)\n",
823 data->task.tk_pid,
824 inode->i_sb->s_id,
825 (long long)NFS_FILEID(inode),
826 data->args.count,
827 (unsigned long long)data->args.offset);
828
829 task = rpc_run_task(&task_setup_data);
830 if (IS_ERR(task)) {
831 ret = PTR_ERR(task);
832 goto out;
833 }
834 if (how & FLUSH_SYNC) {
835 ret = rpc_wait_for_completion_task(task);
836 if (ret == 0)
837 ret = task->tk_status;
838 }
839 rpc_put_task(task);
840 out:
841 return ret;
842 }
843 EXPORT_SYMBOL_GPL(nfs_initiate_write);
844
845 /*
846 * Set up the argument/result storage required for the RPC call.
847 */
848 static int nfs_write_rpcsetup(struct nfs_page *req,
849 struct nfs_write_data *data,
850 const struct rpc_call_ops *call_ops,
851 unsigned int count, unsigned int offset,
852 struct pnfs_layout_segment *lseg,
853 int how)
854 {
855 struct inode *inode = req->wb_context->path.dentry->d_inode;
856
857 /* Set up the RPC argument and reply structs
858 * NB: take care not to mess about with data->commit et al. */
859
860 data->req = req;
861 data->inode = inode = req->wb_context->path.dentry->d_inode;
862 data->cred = req->wb_context->cred;
863 data->lseg = get_lseg(lseg);
864
865 data->args.fh = NFS_FH(inode);
866 data->args.offset = req_offset(req) + offset;
867 /* pnfs_set_layoutcommit needs this */
868 data->mds_offset = data->args.offset;
869 data->args.pgbase = req->wb_pgbase + offset;
870 data->args.pages = data->pagevec;
871 data->args.count = count;
872 data->args.context = get_nfs_open_context(req->wb_context);
873 data->args.lock_context = req->wb_lock_context;
874 data->args.stable = NFS_UNSTABLE;
875 if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
876 data->args.stable = NFS_DATA_SYNC;
877 if (!nfs_need_commit(NFS_I(inode)))
878 data->args.stable = NFS_FILE_SYNC;
879 }
880
881 data->res.fattr = &data->fattr;
882 data->res.count = count;
883 data->res.verf = &data->verf;
884 nfs_fattr_init(&data->fattr);
885
886 if (data->lseg &&
887 (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
888 return 0;
889
890 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
891 }
892
893 /* If a nfs_flush_* function fails, it should remove reqs from @head and
894 * call this on each, which will prepare them to be retried on next
895 * writeback using standard nfs.
896 */
897 static void nfs_redirty_request(struct nfs_page *req)
898 {
899 struct page *page = req->wb_page;
900
901 nfs_mark_request_dirty(req);
902 nfs_clear_page_tag_locked(req);
903 nfs_end_page_writeback(page);
904 }
905
906 /*
907 * Generate multiple small requests to write out a single
908 * contiguous dirty area on one page.
909 */
910 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
911 {
912 struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
913 struct page *page = req->wb_page;
914 struct nfs_write_data *data;
915 size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
916 unsigned int offset;
917 int requests = 0;
918 int ret = 0;
919 struct pnfs_layout_segment *lseg;
920 LIST_HEAD(list);
921
922 nfs_list_remove_request(req);
923
924 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
925 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
926 desc->pg_count > wsize))
927 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
928
929
930 nbytes = desc->pg_count;
931 do {
932 size_t len = min(nbytes, wsize);
933
934 data = nfs_writedata_alloc(1);
935 if (!data)
936 goto out_bad;
937 list_add(&data->pages, &list);
938 requests++;
939 nbytes -= len;
940 } while (nbytes != 0);
941 atomic_set(&req->wb_complete, requests);
942
943 BUG_ON(desc->pg_lseg);
944 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context,
945 req_offset(req), desc->pg_count,
946 IOMODE_RW, GFP_NOFS);
947 ClearPageError(page);
948 offset = 0;
949 nbytes = desc->pg_count;
950 do {
951 int ret2;
952
953 data = list_entry(list.next, struct nfs_write_data, pages);
954 list_del_init(&data->pages);
955
956 data->pagevec[0] = page;
957
958 if (nbytes < wsize)
959 wsize = nbytes;
960 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
961 wsize, offset, lseg, desc->pg_ioflags);
962 if (ret == 0)
963 ret = ret2;
964 offset += wsize;
965 nbytes -= wsize;
966 } while (nbytes != 0);
967
968 put_lseg(lseg);
969 desc->pg_lseg = NULL;
970 return ret;
971
972 out_bad:
973 while (!list_empty(&list)) {
974 data = list_entry(list.next, struct nfs_write_data, pages);
975 list_del(&data->pages);
976 nfs_writedata_free(data);
977 }
978 nfs_redirty_request(req);
979 return -ENOMEM;
980 }
981
982 /*
983 * Create an RPC task for the given write request and kick it.
984 * The page must have been locked by the caller.
985 *
986 * It may happen that the page we're passed is not marked dirty.
987 * This is the case if nfs_updatepage detects a conflicting request
988 * that has been written but not committed.
989 */
990 static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
991 {
992 struct nfs_page *req;
993 struct page **pages;
994 struct nfs_write_data *data;
995 struct list_head *head = &desc->pg_list;
996 struct pnfs_layout_segment *lseg = desc->pg_lseg;
997 int ret;
998
999 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
1000 desc->pg_count));
1001 if (!data) {
1002 while (!list_empty(head)) {
1003 req = nfs_list_entry(head->next);
1004 nfs_list_remove_request(req);
1005 nfs_redirty_request(req);
1006 }
1007 ret = -ENOMEM;
1008 goto out;
1009 }
1010 pages = data->pagevec;
1011 while (!list_empty(head)) {
1012 req = nfs_list_entry(head->next);
1013 nfs_list_remove_request(req);
1014 nfs_list_add_request(req, &data->pages);
1015 ClearPageError(req->wb_page);
1016 *pages++ = req->wb_page;
1017 }
1018 req = nfs_list_entry(data->pages.next);
1019 if ((!lseg) && list_is_singular(&data->pages))
1020 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context,
1021 req_offset(req), desc->pg_count,
1022 IOMODE_RW, GFP_NOFS);
1023
1024 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1025 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1026 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1027
1028 /* Set up the argument struct */
1029 ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
1030 out:
1031 put_lseg(lseg); /* Cleans any gotten in ->pg_test */
1032 desc->pg_lseg = NULL;
1033 return ret;
1034 }
1035
1036 int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1037 {
1038 if (desc->pg_bsize < PAGE_CACHE_SIZE)
1039 return nfs_flush_multi(desc);
1040 return nfs_flush_one(desc);
1041 }
1042 EXPORT_SYMBOL_GPL(nfs_generic_pg_writepages);
1043
1044 static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1045 .pg_test = nfs_generic_pg_test,
1046 .pg_doio = nfs_generic_pg_writepages,
1047 };
1048
1049 static void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
1050 struct inode *inode, int ioflags)
1051 {
1052 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
1053 NFS_SERVER(inode)->wsize, ioflags);
1054 }
1055
1056 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1057 struct inode *inode, int ioflags)
1058 {
1059 if (!pnfs_pageio_init_write(pgio, inode, ioflags))
1060 nfs_pageio_init_write_mds(pgio, inode, ioflags);
1061 }
1062
1063 /*
1064 * Handle a write reply that flushed part of a page.
1065 */
1066 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1067 {
1068 struct nfs_write_data *data = calldata;
1069
1070 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1071 task->tk_pid,
1072 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1073 (long long)
1074 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1075 data->req->wb_bytes, (long long)req_offset(data->req));
1076
1077 nfs_writeback_done(task, data);
1078 }
1079
1080 static void nfs_writeback_release_partial(void *calldata)
1081 {
1082 struct nfs_write_data *data = calldata;
1083 struct nfs_page *req = data->req;
1084 struct page *page = req->wb_page;
1085 int status = data->task.tk_status;
1086
1087 if (status < 0) {
1088 nfs_set_pageerror(page);
1089 nfs_context_set_write_error(req->wb_context, status);
1090 dprintk(", error = %d\n", status);
1091 goto out;
1092 }
1093
1094 if (nfs_write_need_commit(data)) {
1095 struct inode *inode = page->mapping->host;
1096
1097 spin_lock(&inode->i_lock);
1098 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1099 /* Do nothing we need to resend the writes */
1100 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1101 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1102 dprintk(" defer commit\n");
1103 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1104 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1105 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1106 dprintk(" server reboot detected\n");
1107 }
1108 spin_unlock(&inode->i_lock);
1109 } else
1110 dprintk(" OK\n");
1111
1112 out:
1113 if (atomic_dec_and_test(&req->wb_complete))
1114 nfs_writepage_release(req, data);
1115 nfs_writedata_release(calldata);
1116 }
1117
1118 #if defined(CONFIG_NFS_V4_1)
1119 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1120 {
1121 struct nfs_write_data *data = calldata;
1122
1123 if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1124 &data->args.seq_args,
1125 &data->res.seq_res, 1, task))
1126 return;
1127 rpc_call_start(task);
1128 }
1129 #endif /* CONFIG_NFS_V4_1 */
1130
1131 static const struct rpc_call_ops nfs_write_partial_ops = {
1132 #if defined(CONFIG_NFS_V4_1)
1133 .rpc_call_prepare = nfs_write_prepare,
1134 #endif /* CONFIG_NFS_V4_1 */
1135 .rpc_call_done = nfs_writeback_done_partial,
1136 .rpc_release = nfs_writeback_release_partial,
1137 };
1138
1139 /*
1140 * Handle a write reply that flushes a whole page.
1141 *
1142 * FIXME: There is an inherent race with invalidate_inode_pages and
1143 * writebacks since the page->count is kept > 1 for as long
1144 * as the page has a write request pending.
1145 */
1146 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1147 {
1148 struct nfs_write_data *data = calldata;
1149
1150 nfs_writeback_done(task, data);
1151 }
1152
1153 static void nfs_writeback_release_full(void *calldata)
1154 {
1155 struct nfs_write_data *data = calldata;
1156 int status = data->task.tk_status;
1157
1158 /* Update attributes as result of writeback. */
1159 while (!list_empty(&data->pages)) {
1160 struct nfs_page *req = nfs_list_entry(data->pages.next);
1161 struct page *page = req->wb_page;
1162
1163 nfs_list_remove_request(req);
1164
1165 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1166 data->task.tk_pid,
1167 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1168 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1169 req->wb_bytes,
1170 (long long)req_offset(req));
1171
1172 if (status < 0) {
1173 nfs_set_pageerror(page);
1174 nfs_context_set_write_error(req->wb_context, status);
1175 dprintk(", error = %d\n", status);
1176 goto remove_request;
1177 }
1178
1179 if (nfs_write_need_commit(data)) {
1180 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1181 nfs_mark_request_commit(req, data->lseg);
1182 dprintk(" marked for commit\n");
1183 goto next;
1184 }
1185 dprintk(" OK\n");
1186 remove_request:
1187 nfs_inode_remove_request(req);
1188 next:
1189 nfs_clear_page_tag_locked(req);
1190 nfs_end_page_writeback(page);
1191 }
1192 nfs_writedata_release(calldata);
1193 }
1194
1195 static const struct rpc_call_ops nfs_write_full_ops = {
1196 #if defined(CONFIG_NFS_V4_1)
1197 .rpc_call_prepare = nfs_write_prepare,
1198 #endif /* CONFIG_NFS_V4_1 */
1199 .rpc_call_done = nfs_writeback_done_full,
1200 .rpc_release = nfs_writeback_release_full,
1201 };
1202
1203
1204 /*
1205 * This function is called when the WRITE call is complete.
1206 */
1207 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1208 {
1209 struct nfs_writeargs *argp = &data->args;
1210 struct nfs_writeres *resp = &data->res;
1211 struct nfs_server *server = NFS_SERVER(data->inode);
1212 int status;
1213
1214 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1215 task->tk_pid, task->tk_status);
1216
1217 /*
1218 * ->write_done will attempt to use post-op attributes to detect
1219 * conflicting writes by other clients. A strict interpretation
1220 * of close-to-open would allow us to continue caching even if
1221 * another writer had changed the file, but some applications
1222 * depend on tighter cache coherency when writing.
1223 */
1224 status = NFS_PROTO(data->inode)->write_done(task, data);
1225 if (status != 0)
1226 return;
1227 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1228
1229 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1230 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1231 /* We tried a write call, but the server did not
1232 * commit data to stable storage even though we
1233 * requested it.
1234 * Note: There is a known bug in Tru64 < 5.0 in which
1235 * the server reports NFS_DATA_SYNC, but performs
1236 * NFS_FILE_SYNC. We therefore implement this checking
1237 * as a dprintk() in order to avoid filling syslog.
1238 */
1239 static unsigned long complain;
1240
1241 /* Note this will print the MDS for a DS write */
1242 if (time_before(complain, jiffies)) {
1243 dprintk("NFS: faulty NFS server %s:"
1244 " (committed = %d) != (stable = %d)\n",
1245 server->nfs_client->cl_hostname,
1246 resp->verf->committed, argp->stable);
1247 complain = jiffies + 300 * HZ;
1248 }
1249 }
1250 #endif
1251 /* Is this a short write? */
1252 if (task->tk_status >= 0 && resp->count < argp->count) {
1253 static unsigned long complain;
1254
1255 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1256
1257 /* Has the server at least made some progress? */
1258 if (resp->count != 0) {
1259 /* Was this an NFSv2 write or an NFSv3 stable write? */
1260 if (resp->verf->committed != NFS_UNSTABLE) {
1261 /* Resend from where the server left off */
1262 data->mds_offset += resp->count;
1263 argp->offset += resp->count;
1264 argp->pgbase += resp->count;
1265 argp->count -= resp->count;
1266 } else {
1267 /* Resend as a stable write in order to avoid
1268 * headaches in the case of a server crash.
1269 */
1270 argp->stable = NFS_FILE_SYNC;
1271 }
1272 nfs_restart_rpc(task, server->nfs_client);
1273 return;
1274 }
1275 if (time_before(complain, jiffies)) {
1276 printk(KERN_WARNING
1277 "NFS: Server wrote zero bytes, expected %u.\n",
1278 argp->count);
1279 complain = jiffies + 300 * HZ;
1280 }
1281 /* Can't do anything about it except throw an error. */
1282 task->tk_status = -EIO;
1283 }
1284 return;
1285 }
1286
1287
1288 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1289 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1290 {
1291 int ret;
1292
1293 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1294 return 1;
1295 if (!may_wait)
1296 return 0;
1297 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1298 NFS_INO_COMMIT,
1299 nfs_wait_bit_killable,
1300 TASK_KILLABLE);
1301 return (ret < 0) ? ret : 1;
1302 }
1303
1304 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1305 {
1306 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1307 smp_mb__after_clear_bit();
1308 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1309 }
1310 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1311
1312 void nfs_commitdata_release(void *data)
1313 {
1314 struct nfs_write_data *wdata = data;
1315
1316 put_lseg(wdata->lseg);
1317 put_nfs_open_context(wdata->args.context);
1318 nfs_commit_free(wdata);
1319 }
1320 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1321
1322 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1323 const struct rpc_call_ops *call_ops,
1324 int how)
1325 {
1326 struct rpc_task *task;
1327 int priority = flush_task_priority(how);
1328 struct rpc_message msg = {
1329 .rpc_argp = &data->args,
1330 .rpc_resp = &data->res,
1331 .rpc_cred = data->cred,
1332 };
1333 struct rpc_task_setup task_setup_data = {
1334 .task = &data->task,
1335 .rpc_client = clnt,
1336 .rpc_message = &msg,
1337 .callback_ops = call_ops,
1338 .callback_data = data,
1339 .workqueue = nfsiod_workqueue,
1340 .flags = RPC_TASK_ASYNC,
1341 .priority = priority,
1342 };
1343 /* Set up the initial task struct. */
1344 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1345
1346 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1347
1348 task = rpc_run_task(&task_setup_data);
1349 if (IS_ERR(task))
1350 return PTR_ERR(task);
1351 if (how & FLUSH_SYNC)
1352 rpc_wait_for_completion_task(task);
1353 rpc_put_task(task);
1354 return 0;
1355 }
1356 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1357
1358 /*
1359 * Set up the argument/result storage required for the RPC call.
1360 */
1361 void nfs_init_commit(struct nfs_write_data *data,
1362 struct list_head *head,
1363 struct pnfs_layout_segment *lseg)
1364 {
1365 struct nfs_page *first = nfs_list_entry(head->next);
1366 struct inode *inode = first->wb_context->path.dentry->d_inode;
1367
1368 /* Set up the RPC argument and reply structs
1369 * NB: take care not to mess about with data->commit et al. */
1370
1371 list_splice_init(head, &data->pages);
1372
1373 data->inode = inode;
1374 data->cred = first->wb_context->cred;
1375 data->lseg = lseg; /* reference transferred */
1376 data->mds_ops = &nfs_commit_ops;
1377
1378 data->args.fh = NFS_FH(data->inode);
1379 /* Note: we always request a commit of the entire inode */
1380 data->args.offset = 0;
1381 data->args.count = 0;
1382 data->args.context = get_nfs_open_context(first->wb_context);
1383 data->res.count = 0;
1384 data->res.fattr = &data->fattr;
1385 data->res.verf = &data->verf;
1386 nfs_fattr_init(&data->fattr);
1387 }
1388 EXPORT_SYMBOL_GPL(nfs_init_commit);
1389
1390 void nfs_retry_commit(struct list_head *page_list,
1391 struct pnfs_layout_segment *lseg)
1392 {
1393 struct nfs_page *req;
1394
1395 while (!list_empty(page_list)) {
1396 req = nfs_list_entry(page_list->next);
1397 nfs_list_remove_request(req);
1398 nfs_mark_request_commit(req, lseg);
1399 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1400 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1401 BDI_RECLAIMABLE);
1402 nfs_clear_page_tag_locked(req);
1403 }
1404 }
1405 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1406
1407 /*
1408 * Commit dirty pages
1409 */
1410 static int
1411 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1412 {
1413 struct nfs_write_data *data;
1414
1415 data = nfs_commitdata_alloc();
1416
1417 if (!data)
1418 goto out_bad;
1419
1420 /* Set up the argument struct */
1421 nfs_init_commit(data, head, NULL);
1422 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1423 out_bad:
1424 nfs_retry_commit(head, NULL);
1425 nfs_commit_clear_lock(NFS_I(inode));
1426 return -ENOMEM;
1427 }
1428
1429 /*
1430 * COMMIT call returned
1431 */
1432 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1433 {
1434 struct nfs_write_data *data = calldata;
1435
1436 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1437 task->tk_pid, task->tk_status);
1438
1439 /* Call the NFS version-specific code */
1440 NFS_PROTO(data->inode)->commit_done(task, data);
1441 }
1442
1443 void nfs_commit_release_pages(struct nfs_write_data *data)
1444 {
1445 struct nfs_page *req;
1446 int status = data->task.tk_status;
1447
1448 while (!list_empty(&data->pages)) {
1449 req = nfs_list_entry(data->pages.next);
1450 nfs_list_remove_request(req);
1451 nfs_clear_request_commit(req);
1452
1453 dprintk("NFS: commit (%s/%lld %d@%lld)",
1454 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1455 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1456 req->wb_bytes,
1457 (long long)req_offset(req));
1458 if (status < 0) {
1459 nfs_context_set_write_error(req->wb_context, status);
1460 nfs_inode_remove_request(req);
1461 dprintk(", error = %d\n", status);
1462 goto next;
1463 }
1464
1465 /* Okay, COMMIT succeeded, apparently. Check the verifier
1466 * returned by the server against all stored verfs. */
1467 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1468 /* We have a match */
1469 nfs_inode_remove_request(req);
1470 dprintk(" OK\n");
1471 goto next;
1472 }
1473 /* We have a mismatch. Write the page again */
1474 dprintk(" mismatch\n");
1475 nfs_mark_request_dirty(req);
1476 next:
1477 nfs_clear_page_tag_locked(req);
1478 }
1479 }
1480 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1481
1482 static void nfs_commit_release(void *calldata)
1483 {
1484 struct nfs_write_data *data = calldata;
1485
1486 nfs_commit_release_pages(data);
1487 nfs_commit_clear_lock(NFS_I(data->inode));
1488 nfs_commitdata_release(calldata);
1489 }
1490
1491 static const struct rpc_call_ops nfs_commit_ops = {
1492 #if defined(CONFIG_NFS_V4_1)
1493 .rpc_call_prepare = nfs_write_prepare,
1494 #endif /* CONFIG_NFS_V4_1 */
1495 .rpc_call_done = nfs_commit_done,
1496 .rpc_release = nfs_commit_release,
1497 };
1498
1499 int nfs_commit_inode(struct inode *inode, int how)
1500 {
1501 LIST_HEAD(head);
1502 int may_wait = how & FLUSH_SYNC;
1503 int res;
1504
1505 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1506 if (res <= 0)
1507 goto out_mark_dirty;
1508 res = nfs_scan_commit(inode, &head, 0, 0);
1509 if (res) {
1510 int error;
1511
1512 error = pnfs_commit_list(inode, &head, how);
1513 if (error == PNFS_NOT_ATTEMPTED)
1514 error = nfs_commit_list(inode, &head, how);
1515 if (error < 0)
1516 return error;
1517 if (!may_wait)
1518 goto out_mark_dirty;
1519 error = wait_on_bit(&NFS_I(inode)->flags,
1520 NFS_INO_COMMIT,
1521 nfs_wait_bit_killable,
1522 TASK_KILLABLE);
1523 if (error < 0)
1524 return error;
1525 } else
1526 nfs_commit_clear_lock(NFS_I(inode));
1527 return res;
1528 /* Note: If we exit without ensuring that the commit is complete,
1529 * we must mark the inode as dirty. Otherwise, future calls to
1530 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1531 * that the data is on the disk.
1532 */
1533 out_mark_dirty:
1534 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1535 return res;
1536 }
1537
1538 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1539 {
1540 struct nfs_inode *nfsi = NFS_I(inode);
1541 int flags = FLUSH_SYNC;
1542 int ret = 0;
1543
1544 if (wbc->sync_mode == WB_SYNC_NONE) {
1545 /* Don't commit yet if this is a non-blocking flush and there
1546 * are a lot of outstanding writes for this mapping.
1547 */
1548 if (nfsi->ncommit <= (nfsi->npages >> 1))
1549 goto out_mark_dirty;
1550
1551 /* don't wait for the COMMIT response */
1552 flags = 0;
1553 }
1554
1555 ret = nfs_commit_inode(inode, flags);
1556 if (ret >= 0) {
1557 if (wbc->sync_mode == WB_SYNC_NONE) {
1558 if (ret < wbc->nr_to_write)
1559 wbc->nr_to_write -= ret;
1560 else
1561 wbc->nr_to_write = 0;
1562 }
1563 return 0;
1564 }
1565 out_mark_dirty:
1566 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1567 return ret;
1568 }
1569 #else
1570 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1571 {
1572 return 0;
1573 }
1574 #endif
1575
1576 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1577 {
1578 int ret;
1579
1580 ret = nfs_commit_unstable_pages(inode, wbc);
1581 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1582 int status;
1583 bool sync = true;
1584
1585 if (wbc->sync_mode == WB_SYNC_NONE || wbc->nonblocking ||
1586 wbc->for_background)
1587 sync = false;
1588
1589 status = pnfs_layoutcommit_inode(inode, sync);
1590 if (status < 0)
1591 return status;
1592 }
1593 return ret;
1594 }
1595
1596 /*
1597 * flush the inode to disk.
1598 */
1599 int nfs_wb_all(struct inode *inode)
1600 {
1601 struct writeback_control wbc = {
1602 .sync_mode = WB_SYNC_ALL,
1603 .nr_to_write = LONG_MAX,
1604 .range_start = 0,
1605 .range_end = LLONG_MAX,
1606 };
1607
1608 return sync_inode(inode, &wbc);
1609 }
1610
1611 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1612 {
1613 struct nfs_page *req;
1614 int ret = 0;
1615
1616 BUG_ON(!PageLocked(page));
1617 for (;;) {
1618 wait_on_page_writeback(page);
1619 req = nfs_page_find_request(page);
1620 if (req == NULL)
1621 break;
1622 if (nfs_lock_request_dontget(req)) {
1623 nfs_inode_remove_request(req);
1624 /*
1625 * In case nfs_inode_remove_request has marked the
1626 * page as being dirty
1627 */
1628 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1629 nfs_unlock_request(req);
1630 break;
1631 }
1632 ret = nfs_wait_on_request(req);
1633 nfs_release_request(req);
1634 if (ret < 0)
1635 break;
1636 }
1637 return ret;
1638 }
1639
1640 /*
1641 * Write back all requests on one page - we do this before reading it.
1642 */
1643 int nfs_wb_page(struct inode *inode, struct page *page)
1644 {
1645 loff_t range_start = page_offset(page);
1646 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1647 struct writeback_control wbc = {
1648 .sync_mode = WB_SYNC_ALL,
1649 .nr_to_write = 0,
1650 .range_start = range_start,
1651 .range_end = range_end,
1652 };
1653 int ret;
1654
1655 for (;;) {
1656 wait_on_page_writeback(page);
1657 if (clear_page_dirty_for_io(page)) {
1658 ret = nfs_writepage_locked(page, &wbc);
1659 if (ret < 0)
1660 goto out_error;
1661 continue;
1662 }
1663 if (!PagePrivate(page))
1664 break;
1665 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1666 if (ret < 0)
1667 goto out_error;
1668 }
1669 return 0;
1670 out_error:
1671 return ret;
1672 }
1673
1674 #ifdef CONFIG_MIGRATION
1675 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1676 struct page *page)
1677 {
1678 struct nfs_page *req;
1679 int ret;
1680
1681 nfs_fscache_release_page(page, GFP_KERNEL);
1682
1683 req = nfs_find_and_lock_request(page, false);
1684 ret = PTR_ERR(req);
1685 if (IS_ERR(req))
1686 goto out;
1687
1688 ret = migrate_page(mapping, newpage, page);
1689 if (!req)
1690 goto out;
1691 if (ret)
1692 goto out_unlock;
1693 page_cache_get(newpage);
1694 spin_lock(&mapping->host->i_lock);
1695 req->wb_page = newpage;
1696 SetPagePrivate(newpage);
1697 set_page_private(newpage, (unsigned long)req);
1698 ClearPagePrivate(page);
1699 set_page_private(page, 0);
1700 spin_unlock(&mapping->host->i_lock);
1701 page_cache_release(page);
1702 out_unlock:
1703 nfs_clear_page_tag_locked(req);
1704 out:
1705 return ret;
1706 }
1707 #endif
1708
1709 int __init nfs_init_writepagecache(void)
1710 {
1711 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1712 sizeof(struct nfs_write_data),
1713 0, SLAB_HWCACHE_ALIGN,
1714 NULL);
1715 if (nfs_wdata_cachep == NULL)
1716 return -ENOMEM;
1717
1718 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1719 nfs_wdata_cachep);
1720 if (nfs_wdata_mempool == NULL)
1721 return -ENOMEM;
1722
1723 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1724 nfs_wdata_cachep);
1725 if (nfs_commit_mempool == NULL)
1726 return -ENOMEM;
1727
1728 /*
1729 * NFS congestion size, scale with available memory.
1730 *
1731 * 64MB: 8192k
1732 * 128MB: 11585k
1733 * 256MB: 16384k
1734 * 512MB: 23170k
1735 * 1GB: 32768k
1736 * 2GB: 46340k
1737 * 4GB: 65536k
1738 * 8GB: 92681k
1739 * 16GB: 131072k
1740 *
1741 * This allows larger machines to have larger/more transfers.
1742 * Limit the default to 256M
1743 */
1744 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1745 if (nfs_congestion_kb > 256*1024)
1746 nfs_congestion_kb = 256*1024;
1747
1748 return 0;
1749 }
1750
1751 void nfs_destroy_writepagecache(void)
1752 {
1753 mempool_destroy(nfs_commit_mempool);
1754 mempool_destroy(nfs_wdata_mempool);
1755 kmem_cache_destroy(nfs_wdata_cachep);
1756 }
1757
This page took 0.095224 seconds and 5 git commands to generate.