[2.6 patch] fs/ocfs2/: possible cleanups
[deliverable/linux.git] / fs / nfs / write.c
1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
22
23 #include <asm/uaccess.h>
24
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
28
29 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
30
31 #define MIN_POOL_WRITE (32)
32 #define MIN_POOL_COMMIT (4)
33
34 /*
35 * Local function declarations
36 */
37 static struct nfs_page * nfs_update_request(struct nfs_open_context*,
38 struct page *,
39 unsigned int, unsigned int);
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 struct inode *inode, int ioflags);
42 static const struct rpc_call_ops nfs_write_partial_ops;
43 static const struct rpc_call_ops nfs_write_full_ops;
44 static const struct rpc_call_ops nfs_commit_ops;
45
46 static struct kmem_cache *nfs_wdata_cachep;
47 static mempool_t *nfs_wdata_mempool;
48 static mempool_t *nfs_commit_mempool;
49
50 struct nfs_write_data *nfs_commit_alloc(void)
51 {
52 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
53
54 if (p) {
55 memset(p, 0, sizeof(*p));
56 INIT_LIST_HEAD(&p->pages);
57 }
58 return p;
59 }
60
61 static void nfs_commit_rcu_free(struct rcu_head *head)
62 {
63 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
64 if (p && (p->pagevec != &p->page_array[0]))
65 kfree(p->pagevec);
66 mempool_free(p, nfs_commit_mempool);
67 }
68
69 void nfs_commit_free(struct nfs_write_data *wdata)
70 {
71 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_commit_rcu_free);
72 }
73
74 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
75 {
76 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
77
78 if (p) {
79 memset(p, 0, sizeof(*p));
80 INIT_LIST_HEAD(&p->pages);
81 p->npages = pagecount;
82 if (pagecount <= ARRAY_SIZE(p->page_array))
83 p->pagevec = p->page_array;
84 else {
85 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
86 if (!p->pagevec) {
87 mempool_free(p, nfs_wdata_mempool);
88 p = NULL;
89 }
90 }
91 }
92 return p;
93 }
94
95 static void nfs_writedata_rcu_free(struct rcu_head *head)
96 {
97 struct nfs_write_data *p = container_of(head, struct nfs_write_data, task.u.tk_rcu);
98 if (p && (p->pagevec != &p->page_array[0]))
99 kfree(p->pagevec);
100 mempool_free(p, nfs_wdata_mempool);
101 }
102
103 static void nfs_writedata_free(struct nfs_write_data *wdata)
104 {
105 call_rcu_bh(&wdata->task.u.tk_rcu, nfs_writedata_rcu_free);
106 }
107
108 void nfs_writedata_release(void *wdata)
109 {
110 nfs_writedata_free(wdata);
111 }
112
113 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
114 {
115 ctx->error = error;
116 smp_wmb();
117 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
118 }
119
120 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
121 {
122 struct nfs_page *req = NULL;
123
124 if (PagePrivate(page)) {
125 req = (struct nfs_page *)page_private(page);
126 if (req != NULL)
127 kref_get(&req->wb_kref);
128 }
129 return req;
130 }
131
132 static struct nfs_page *nfs_page_find_request(struct page *page)
133 {
134 struct inode *inode = page->mapping->host;
135 struct nfs_page *req = NULL;
136
137 spin_lock(&inode->i_lock);
138 req = nfs_page_find_request_locked(page);
139 spin_unlock(&inode->i_lock);
140 return req;
141 }
142
143 /* Adjust the file length if we're writing beyond the end */
144 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
145 {
146 struct inode *inode = page->mapping->host;
147 loff_t end, i_size = i_size_read(inode);
148 pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
149
150 if (i_size > 0 && page->index < end_index)
151 return;
152 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
153 if (i_size >= end)
154 return;
155 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
156 i_size_write(inode, end);
157 }
158
159 /* A writeback failed: mark the page as bad, and invalidate the page cache */
160 static void nfs_set_pageerror(struct page *page)
161 {
162 SetPageError(page);
163 nfs_zap_mapping(page->mapping->host, page->mapping);
164 }
165
166 /* We can set the PG_uptodate flag if we see that a write request
167 * covers the full page.
168 */
169 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
170 {
171 if (PageUptodate(page))
172 return;
173 if (base != 0)
174 return;
175 if (count != nfs_page_length(page))
176 return;
177 SetPageUptodate(page);
178 }
179
180 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
181 unsigned int offset, unsigned int count)
182 {
183 struct nfs_page *req;
184 int ret;
185
186 for (;;) {
187 req = nfs_update_request(ctx, page, offset, count);
188 if (!IS_ERR(req))
189 break;
190 ret = PTR_ERR(req);
191 if (ret != -EBUSY)
192 return ret;
193 ret = nfs_wb_page(page->mapping->host, page);
194 if (ret != 0)
195 return ret;
196 }
197 /* Update file length */
198 nfs_grow_file(page, offset, count);
199 nfs_clear_page_tag_locked(req);
200 return 0;
201 }
202
203 static int wb_priority(struct writeback_control *wbc)
204 {
205 if (wbc->for_reclaim)
206 return FLUSH_HIGHPRI | FLUSH_STABLE;
207 if (wbc->for_kupdate)
208 return FLUSH_LOWPRI;
209 return 0;
210 }
211
212 /*
213 * NFS congestion control
214 */
215
216 int nfs_congestion_kb;
217
218 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
219 #define NFS_CONGESTION_OFF_THRESH \
220 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
221
222 static int nfs_set_page_writeback(struct page *page)
223 {
224 int ret = test_set_page_writeback(page);
225
226 if (!ret) {
227 struct inode *inode = page->mapping->host;
228 struct nfs_server *nfss = NFS_SERVER(inode);
229
230 if (atomic_long_inc_return(&nfss->writeback) >
231 NFS_CONGESTION_ON_THRESH)
232 set_bdi_congested(&nfss->backing_dev_info, WRITE);
233 }
234 return ret;
235 }
236
237 static void nfs_end_page_writeback(struct page *page)
238 {
239 struct inode *inode = page->mapping->host;
240 struct nfs_server *nfss = NFS_SERVER(inode);
241
242 end_page_writeback(page);
243 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
244 clear_bdi_congested(&nfss->backing_dev_info, WRITE);
245 }
246
247 /*
248 * Find an associated nfs write request, and prepare to flush it out
249 * May return an error if the user signalled nfs_wait_on_request().
250 */
251 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
252 struct page *page)
253 {
254 struct inode *inode = page->mapping->host;
255 struct nfs_page *req;
256 int ret;
257
258 spin_lock(&inode->i_lock);
259 for(;;) {
260 req = nfs_page_find_request_locked(page);
261 if (req == NULL) {
262 spin_unlock(&inode->i_lock);
263 return 0;
264 }
265 if (nfs_set_page_tag_locked(req))
266 break;
267 /* Note: If we hold the page lock, as is the case in nfs_writepage,
268 * then the call to nfs_set_page_tag_locked() will always
269 * succeed provided that someone hasn't already marked the
270 * request as dirty (in which case we don't care).
271 */
272 spin_unlock(&inode->i_lock);
273 ret = nfs_wait_on_request(req);
274 nfs_release_request(req);
275 if (ret != 0)
276 return ret;
277 spin_lock(&inode->i_lock);
278 }
279 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
280 /* This request is marked for commit */
281 spin_unlock(&inode->i_lock);
282 nfs_clear_page_tag_locked(req);
283 nfs_pageio_complete(pgio);
284 return 0;
285 }
286 if (nfs_set_page_writeback(page) != 0) {
287 spin_unlock(&inode->i_lock);
288 BUG();
289 }
290 spin_unlock(&inode->i_lock);
291 nfs_pageio_add_request(pgio, req);
292 return 0;
293 }
294
295 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
296 {
297 struct inode *inode = page->mapping->host;
298
299 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
300 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
301
302 nfs_pageio_cond_complete(pgio, page->index);
303 return nfs_page_async_flush(pgio, page);
304 }
305
306 /*
307 * Write an mmapped page to the server.
308 */
309 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
310 {
311 struct nfs_pageio_descriptor pgio;
312 int err;
313
314 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
315 err = nfs_do_writepage(page, wbc, &pgio);
316 nfs_pageio_complete(&pgio);
317 if (err < 0)
318 return err;
319 if (pgio.pg_error < 0)
320 return pgio.pg_error;
321 return 0;
322 }
323
324 int nfs_writepage(struct page *page, struct writeback_control *wbc)
325 {
326 int ret;
327
328 ret = nfs_writepage_locked(page, wbc);
329 unlock_page(page);
330 return ret;
331 }
332
333 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
334 {
335 int ret;
336
337 ret = nfs_do_writepage(page, wbc, data);
338 unlock_page(page);
339 return ret;
340 }
341
342 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
343 {
344 struct inode *inode = mapping->host;
345 struct nfs_pageio_descriptor pgio;
346 int err;
347
348 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
349
350 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
351 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
352 nfs_pageio_complete(&pgio);
353 if (err < 0)
354 return err;
355 if (pgio.pg_error < 0)
356 return pgio.pg_error;
357 return 0;
358 }
359
360 /*
361 * Insert a write request into an inode
362 */
363 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
364 {
365 struct nfs_inode *nfsi = NFS_I(inode);
366 int error;
367
368 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
369 BUG_ON(error == -EEXIST);
370 if (error)
371 return error;
372 if (!nfsi->npages) {
373 igrab(inode);
374 if (nfs_have_delegation(inode, FMODE_WRITE))
375 nfsi->change_attr++;
376 }
377 SetPagePrivate(req->wb_page);
378 set_page_private(req->wb_page, (unsigned long)req);
379 nfsi->npages++;
380 kref_get(&req->wb_kref);
381 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index, NFS_PAGE_TAG_LOCKED);
382 return 0;
383 }
384
385 /*
386 * Remove a write request from an inode
387 */
388 static void nfs_inode_remove_request(struct nfs_page *req)
389 {
390 struct inode *inode = req->wb_context->path.dentry->d_inode;
391 struct nfs_inode *nfsi = NFS_I(inode);
392
393 BUG_ON (!NFS_WBACK_BUSY(req));
394
395 spin_lock(&inode->i_lock);
396 set_page_private(req->wb_page, 0);
397 ClearPagePrivate(req->wb_page);
398 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
399 nfsi->npages--;
400 if (!nfsi->npages) {
401 spin_unlock(&inode->i_lock);
402 iput(inode);
403 } else
404 spin_unlock(&inode->i_lock);
405 nfs_clear_request(req);
406 nfs_release_request(req);
407 }
408
409 static void
410 nfs_redirty_request(struct nfs_page *req)
411 {
412 __set_page_dirty_nobuffers(req->wb_page);
413 }
414
415 /*
416 * Check if a request is dirty
417 */
418 static inline int
419 nfs_dirty_request(struct nfs_page *req)
420 {
421 struct page *page = req->wb_page;
422
423 if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags))
424 return 0;
425 return !PageWriteback(req->wb_page);
426 }
427
428 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
429 /*
430 * Add a request to the inode's commit list.
431 */
432 static void
433 nfs_mark_request_commit(struct nfs_page *req)
434 {
435 struct inode *inode = req->wb_context->path.dentry->d_inode;
436 struct nfs_inode *nfsi = NFS_I(inode);
437
438 spin_lock(&inode->i_lock);
439 nfsi->ncommit++;
440 set_bit(PG_NEED_COMMIT, &(req)->wb_flags);
441 radix_tree_tag_set(&nfsi->nfs_page_tree,
442 req->wb_index,
443 NFS_PAGE_TAG_COMMIT);
444 spin_unlock(&inode->i_lock);
445 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
446 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
447 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
448 }
449
450 static inline
451 int nfs_write_need_commit(struct nfs_write_data *data)
452 {
453 return data->verf.committed != NFS_FILE_SYNC;
454 }
455
456 static inline
457 int nfs_reschedule_unstable_write(struct nfs_page *req)
458 {
459 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
460 nfs_mark_request_commit(req);
461 return 1;
462 }
463 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
464 nfs_redirty_request(req);
465 return 1;
466 }
467 return 0;
468 }
469 #else
470 static inline void
471 nfs_mark_request_commit(struct nfs_page *req)
472 {
473 }
474
475 static inline
476 int nfs_write_need_commit(struct nfs_write_data *data)
477 {
478 return 0;
479 }
480
481 static inline
482 int nfs_reschedule_unstable_write(struct nfs_page *req)
483 {
484 return 0;
485 }
486 #endif
487
488 /*
489 * Wait for a request to complete.
490 *
491 * Interruptible by fatal signals only.
492 */
493 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
494 {
495 struct nfs_inode *nfsi = NFS_I(inode);
496 struct nfs_page *req;
497 pgoff_t idx_end, next;
498 unsigned int res = 0;
499 int error;
500
501 if (npages == 0)
502 idx_end = ~0;
503 else
504 idx_end = idx_start + npages - 1;
505
506 next = idx_start;
507 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
508 if (req->wb_index > idx_end)
509 break;
510
511 next = req->wb_index + 1;
512 BUG_ON(!NFS_WBACK_BUSY(req));
513
514 kref_get(&req->wb_kref);
515 spin_unlock(&inode->i_lock);
516 error = nfs_wait_on_request(req);
517 nfs_release_request(req);
518 spin_lock(&inode->i_lock);
519 if (error < 0)
520 return error;
521 res++;
522 }
523 return res;
524 }
525
526 static void nfs_cancel_commit_list(struct list_head *head)
527 {
528 struct nfs_page *req;
529
530 while(!list_empty(head)) {
531 req = nfs_list_entry(head->next);
532 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
533 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
534 BDI_RECLAIMABLE);
535 nfs_list_remove_request(req);
536 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
537 nfs_inode_remove_request(req);
538 nfs_unlock_request(req);
539 }
540 }
541
542 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
543 /*
544 * nfs_scan_commit - Scan an inode for commit requests
545 * @inode: NFS inode to scan
546 * @dst: destination list
547 * @idx_start: lower bound of page->index to scan.
548 * @npages: idx_start + npages sets the upper bound to scan.
549 *
550 * Moves requests from the inode's 'commit' request list.
551 * The requests are *not* checked to ensure that they form a contiguous set.
552 */
553 static int
554 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
555 {
556 struct nfs_inode *nfsi = NFS_I(inode);
557 int res = 0;
558
559 if (nfsi->ncommit != 0) {
560 res = nfs_scan_list(nfsi, dst, idx_start, npages,
561 NFS_PAGE_TAG_COMMIT);
562 nfsi->ncommit -= res;
563 }
564 return res;
565 }
566 #else
567 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
568 {
569 return 0;
570 }
571 #endif
572
573 /*
574 * Try to update any existing write request, or create one if there is none.
575 * In order to match, the request's credentials must match those of
576 * the calling process.
577 *
578 * Note: Should always be called with the Page Lock held!
579 */
580 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx,
581 struct page *page, unsigned int offset, unsigned int bytes)
582 {
583 struct address_space *mapping = page->mapping;
584 struct inode *inode = mapping->host;
585 struct nfs_page *req, *new = NULL;
586 pgoff_t rqend, end;
587
588 end = offset + bytes;
589
590 for (;;) {
591 /* Loop over all inode entries and see if we find
592 * A request for the page we wish to update
593 */
594 spin_lock(&inode->i_lock);
595 req = nfs_page_find_request_locked(page);
596 if (req) {
597 if (!nfs_set_page_tag_locked(req)) {
598 int error;
599
600 spin_unlock(&inode->i_lock);
601 error = nfs_wait_on_request(req);
602 nfs_release_request(req);
603 if (error < 0) {
604 if (new)
605 nfs_release_request(new);
606 return ERR_PTR(error);
607 }
608 continue;
609 }
610 spin_unlock(&inode->i_lock);
611 if (new)
612 nfs_release_request(new);
613 break;
614 }
615
616 if (new) {
617 int error;
618 nfs_lock_request_dontget(new);
619 error = nfs_inode_add_request(inode, new);
620 if (error) {
621 spin_unlock(&inode->i_lock);
622 nfs_unlock_request(new);
623 return ERR_PTR(error);
624 }
625 spin_unlock(&inode->i_lock);
626 req = new;
627 goto zero_page;
628 }
629 spin_unlock(&inode->i_lock);
630
631 new = nfs_create_request(ctx, inode, page, offset, bytes);
632 if (IS_ERR(new))
633 return new;
634 }
635
636 /* We have a request for our page.
637 * If the creds don't match, or the
638 * page addresses don't match,
639 * tell the caller to wait on the conflicting
640 * request.
641 */
642 rqend = req->wb_offset + req->wb_bytes;
643 if (req->wb_context != ctx
644 || req->wb_page != page
645 || !nfs_dirty_request(req)
646 || offset > rqend || end < req->wb_offset) {
647 nfs_clear_page_tag_locked(req);
648 return ERR_PTR(-EBUSY);
649 }
650
651 /* Okay, the request matches. Update the region */
652 if (offset < req->wb_offset) {
653 req->wb_offset = offset;
654 req->wb_pgbase = offset;
655 req->wb_bytes = max(end, rqend) - req->wb_offset;
656 goto zero_page;
657 }
658
659 if (end > rqend)
660 req->wb_bytes = end - req->wb_offset;
661
662 return req;
663 zero_page:
664 /* If this page might potentially be marked as up to date,
665 * then we need to zero any uninitalised data. */
666 if (req->wb_pgbase == 0 && req->wb_bytes != PAGE_CACHE_SIZE
667 && !PageUptodate(req->wb_page))
668 zero_user_segment(req->wb_page, req->wb_bytes, PAGE_CACHE_SIZE);
669 return req;
670 }
671
672 int nfs_flush_incompatible(struct file *file, struct page *page)
673 {
674 struct nfs_open_context *ctx = nfs_file_open_context(file);
675 struct nfs_page *req;
676 int do_flush, status;
677 /*
678 * Look for a request corresponding to this page. If there
679 * is one, and it belongs to another file, we flush it out
680 * before we try to copy anything into the page. Do this
681 * due to the lack of an ACCESS-type call in NFSv2.
682 * Also do the same if we find a request from an existing
683 * dropped page.
684 */
685 do {
686 req = nfs_page_find_request(page);
687 if (req == NULL)
688 return 0;
689 do_flush = req->wb_page != page || req->wb_context != ctx
690 || !nfs_dirty_request(req);
691 nfs_release_request(req);
692 if (!do_flush)
693 return 0;
694 status = nfs_wb_page(page->mapping->host, page);
695 } while (status == 0);
696 return status;
697 }
698
699 /*
700 * If the page cache is marked as unsafe or invalid, then we can't rely on
701 * the PageUptodate() flag. In this case, we will need to turn off
702 * write optimisations that depend on the page contents being correct.
703 */
704 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
705 {
706 return PageUptodate(page) &&
707 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
708 }
709
710 /*
711 * Update and possibly write a cached page of an NFS file.
712 *
713 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
714 * things with a page scheduled for an RPC call (e.g. invalidate it).
715 */
716 int nfs_updatepage(struct file *file, struct page *page,
717 unsigned int offset, unsigned int count)
718 {
719 struct nfs_open_context *ctx = nfs_file_open_context(file);
720 struct inode *inode = page->mapping->host;
721 int status = 0;
722
723 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
724
725 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n",
726 file->f_path.dentry->d_parent->d_name.name,
727 file->f_path.dentry->d_name.name, count,
728 (long long)(page_offset(page) +offset));
729
730 /* If we're not using byte range locks, and we know the page
731 * is up to date, it may be more efficient to extend the write
732 * to cover the entire page in order to avoid fragmentation
733 * inefficiencies.
734 */
735 if (nfs_write_pageuptodate(page, inode) &&
736 inode->i_flock == NULL &&
737 !(file->f_mode & O_SYNC)) {
738 count = max(count + offset, nfs_page_length(page));
739 offset = 0;
740 }
741
742 status = nfs_writepage_setup(ctx, page, offset, count);
743 __set_page_dirty_nobuffers(page);
744
745 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n",
746 status, (long long)i_size_read(inode));
747 if (status < 0)
748 nfs_set_pageerror(page);
749 return status;
750 }
751
752 static void nfs_writepage_release(struct nfs_page *req)
753 {
754
755 if (PageError(req->wb_page)) {
756 nfs_end_page_writeback(req->wb_page);
757 nfs_inode_remove_request(req);
758 } else if (!nfs_reschedule_unstable_write(req)) {
759 /* Set the PG_uptodate flag */
760 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes);
761 nfs_end_page_writeback(req->wb_page);
762 nfs_inode_remove_request(req);
763 } else
764 nfs_end_page_writeback(req->wb_page);
765 nfs_clear_page_tag_locked(req);
766 }
767
768 static int flush_task_priority(int how)
769 {
770 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
771 case FLUSH_HIGHPRI:
772 return RPC_PRIORITY_HIGH;
773 case FLUSH_LOWPRI:
774 return RPC_PRIORITY_LOW;
775 }
776 return RPC_PRIORITY_NORMAL;
777 }
778
779 /*
780 * Set up the argument/result storage required for the RPC call.
781 */
782 static void nfs_write_rpcsetup(struct nfs_page *req,
783 struct nfs_write_data *data,
784 const struct rpc_call_ops *call_ops,
785 unsigned int count, unsigned int offset,
786 int how)
787 {
788 struct inode *inode = req->wb_context->path.dentry->d_inode;
789 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
790 int priority = flush_task_priority(how);
791 struct rpc_task *task;
792 struct rpc_message msg = {
793 .rpc_argp = &data->args,
794 .rpc_resp = &data->res,
795 .rpc_cred = req->wb_context->cred,
796 };
797 struct rpc_task_setup task_setup_data = {
798 .rpc_client = NFS_CLIENT(inode),
799 .task = &data->task,
800 .rpc_message = &msg,
801 .callback_ops = call_ops,
802 .callback_data = data,
803 .flags = flags,
804 .priority = priority,
805 };
806
807 /* Set up the RPC argument and reply structs
808 * NB: take care not to mess about with data->commit et al. */
809
810 data->req = req;
811 data->inode = inode = req->wb_context->path.dentry->d_inode;
812 data->cred = msg.rpc_cred;
813
814 data->args.fh = NFS_FH(inode);
815 data->args.offset = req_offset(req) + offset;
816 data->args.pgbase = req->wb_pgbase + offset;
817 data->args.pages = data->pagevec;
818 data->args.count = count;
819 data->args.context = req->wb_context;
820 data->args.stable = NFS_UNSTABLE;
821 if (how & FLUSH_STABLE) {
822 data->args.stable = NFS_DATA_SYNC;
823 if (!NFS_I(inode)->ncommit)
824 data->args.stable = NFS_FILE_SYNC;
825 }
826
827 data->res.fattr = &data->fattr;
828 data->res.count = count;
829 data->res.verf = &data->verf;
830 nfs_fattr_init(&data->fattr);
831
832 /* Set up the initial task struct. */
833 NFS_PROTO(inode)->write_setup(data, &msg);
834
835 dprintk("NFS: %5u initiated write call "
836 "(req %s/%Ld, %u bytes @ offset %Lu)\n",
837 data->task.tk_pid,
838 inode->i_sb->s_id,
839 (long long)NFS_FILEID(inode),
840 count,
841 (unsigned long long)data->args.offset);
842
843 task = rpc_run_task(&task_setup_data);
844 if (!IS_ERR(task))
845 rpc_put_task(task);
846 }
847
848 /*
849 * Generate multiple small requests to write out a single
850 * contiguous dirty area on one page.
851 */
852 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
853 {
854 struct nfs_page *req = nfs_list_entry(head->next);
855 struct page *page = req->wb_page;
856 struct nfs_write_data *data;
857 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
858 unsigned int offset;
859 int requests = 0;
860 LIST_HEAD(list);
861
862 nfs_list_remove_request(req);
863
864 nbytes = count;
865 do {
866 size_t len = min(nbytes, wsize);
867
868 data = nfs_writedata_alloc(1);
869 if (!data)
870 goto out_bad;
871 list_add(&data->pages, &list);
872 requests++;
873 nbytes -= len;
874 } while (nbytes != 0);
875 atomic_set(&req->wb_complete, requests);
876
877 ClearPageError(page);
878 offset = 0;
879 nbytes = count;
880 do {
881 data = list_entry(list.next, struct nfs_write_data, pages);
882 list_del_init(&data->pages);
883
884 data->pagevec[0] = page;
885
886 if (nbytes < wsize)
887 wsize = nbytes;
888 nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
889 wsize, offset, how);
890 offset += wsize;
891 nbytes -= wsize;
892 } while (nbytes != 0);
893
894 return 0;
895
896 out_bad:
897 while (!list_empty(&list)) {
898 data = list_entry(list.next, struct nfs_write_data, pages);
899 list_del(&data->pages);
900 nfs_writedata_release(data);
901 }
902 nfs_redirty_request(req);
903 nfs_end_page_writeback(req->wb_page);
904 nfs_clear_page_tag_locked(req);
905 return -ENOMEM;
906 }
907
908 /*
909 * Create an RPC task for the given write request and kick it.
910 * The page must have been locked by the caller.
911 *
912 * It may happen that the page we're passed is not marked dirty.
913 * This is the case if nfs_updatepage detects a conflicting request
914 * that has been written but not committed.
915 */
916 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
917 {
918 struct nfs_page *req;
919 struct page **pages;
920 struct nfs_write_data *data;
921
922 data = nfs_writedata_alloc(npages);
923 if (!data)
924 goto out_bad;
925
926 pages = data->pagevec;
927 while (!list_empty(head)) {
928 req = nfs_list_entry(head->next);
929 nfs_list_remove_request(req);
930 nfs_list_add_request(req, &data->pages);
931 ClearPageError(req->wb_page);
932 *pages++ = req->wb_page;
933 }
934 req = nfs_list_entry(data->pages.next);
935
936 /* Set up the argument struct */
937 nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
938
939 return 0;
940 out_bad:
941 while (!list_empty(head)) {
942 req = nfs_list_entry(head->next);
943 nfs_list_remove_request(req);
944 nfs_redirty_request(req);
945 nfs_end_page_writeback(req->wb_page);
946 nfs_clear_page_tag_locked(req);
947 }
948 return -ENOMEM;
949 }
950
951 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
952 struct inode *inode, int ioflags)
953 {
954 size_t wsize = NFS_SERVER(inode)->wsize;
955
956 if (wsize < PAGE_CACHE_SIZE)
957 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
958 else
959 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
960 }
961
962 /*
963 * Handle a write reply that flushed part of a page.
964 */
965 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
966 {
967 struct nfs_write_data *data = calldata;
968 struct nfs_page *req = data->req;
969 struct page *page = req->wb_page;
970
971 dprintk("NFS: write (%s/%Ld %d@%Ld)",
972 req->wb_context->path.dentry->d_inode->i_sb->s_id,
973 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
974 req->wb_bytes,
975 (long long)req_offset(req));
976
977 if (nfs_writeback_done(task, data) != 0)
978 return;
979
980 if (task->tk_status < 0) {
981 nfs_set_pageerror(page);
982 nfs_context_set_write_error(req->wb_context, task->tk_status);
983 dprintk(", error = %d\n", task->tk_status);
984 goto out;
985 }
986
987 if (nfs_write_need_commit(data)) {
988 struct inode *inode = page->mapping->host;
989
990 spin_lock(&inode->i_lock);
991 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
992 /* Do nothing we need to resend the writes */
993 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
994 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
995 dprintk(" defer commit\n");
996 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
997 set_bit(PG_NEED_RESCHED, &req->wb_flags);
998 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
999 dprintk(" server reboot detected\n");
1000 }
1001 spin_unlock(&inode->i_lock);
1002 } else
1003 dprintk(" OK\n");
1004
1005 out:
1006 if (atomic_dec_and_test(&req->wb_complete))
1007 nfs_writepage_release(req);
1008 }
1009
1010 static const struct rpc_call_ops nfs_write_partial_ops = {
1011 .rpc_call_done = nfs_writeback_done_partial,
1012 .rpc_release = nfs_writedata_release,
1013 };
1014
1015 /*
1016 * Handle a write reply that flushes a whole page.
1017 *
1018 * FIXME: There is an inherent race with invalidate_inode_pages and
1019 * writebacks since the page->count is kept > 1 for as long
1020 * as the page has a write request pending.
1021 */
1022 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1023 {
1024 struct nfs_write_data *data = calldata;
1025 struct nfs_page *req;
1026 struct page *page;
1027
1028 if (nfs_writeback_done(task, data) != 0)
1029 return;
1030
1031 /* Update attributes as result of writeback. */
1032 while (!list_empty(&data->pages)) {
1033 req = nfs_list_entry(data->pages.next);
1034 nfs_list_remove_request(req);
1035 page = req->wb_page;
1036
1037 dprintk("NFS: write (%s/%Ld %d@%Ld)",
1038 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1039 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1040 req->wb_bytes,
1041 (long long)req_offset(req));
1042
1043 if (task->tk_status < 0) {
1044 nfs_set_pageerror(page);
1045 nfs_context_set_write_error(req->wb_context, task->tk_status);
1046 dprintk(", error = %d\n", task->tk_status);
1047 goto remove_request;
1048 }
1049
1050 if (nfs_write_need_commit(data)) {
1051 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1052 nfs_mark_request_commit(req);
1053 nfs_end_page_writeback(page);
1054 dprintk(" marked for commit\n");
1055 goto next;
1056 }
1057 /* Set the PG_uptodate flag? */
1058 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
1059 dprintk(" OK\n");
1060 remove_request:
1061 nfs_end_page_writeback(page);
1062 nfs_inode_remove_request(req);
1063 next:
1064 nfs_clear_page_tag_locked(req);
1065 }
1066 }
1067
1068 static const struct rpc_call_ops nfs_write_full_ops = {
1069 .rpc_call_done = nfs_writeback_done_full,
1070 .rpc_release = nfs_writedata_release,
1071 };
1072
1073
1074 /*
1075 * This function is called when the WRITE call is complete.
1076 */
1077 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1078 {
1079 struct nfs_writeargs *argp = &data->args;
1080 struct nfs_writeres *resp = &data->res;
1081 int status;
1082
1083 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1084 task->tk_pid, task->tk_status);
1085
1086 /*
1087 * ->write_done will attempt to use post-op attributes to detect
1088 * conflicting writes by other clients. A strict interpretation
1089 * of close-to-open would allow us to continue caching even if
1090 * another writer had changed the file, but some applications
1091 * depend on tighter cache coherency when writing.
1092 */
1093 status = NFS_PROTO(data->inode)->write_done(task, data);
1094 if (status != 0)
1095 return status;
1096 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1097
1098 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1099 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1100 /* We tried a write call, but the server did not
1101 * commit data to stable storage even though we
1102 * requested it.
1103 * Note: There is a known bug in Tru64 < 5.0 in which
1104 * the server reports NFS_DATA_SYNC, but performs
1105 * NFS_FILE_SYNC. We therefore implement this checking
1106 * as a dprintk() in order to avoid filling syslog.
1107 */
1108 static unsigned long complain;
1109
1110 if (time_before(complain, jiffies)) {
1111 dprintk("NFS: faulty NFS server %s:"
1112 " (committed = %d) != (stable = %d)\n",
1113 NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1114 resp->verf->committed, argp->stable);
1115 complain = jiffies + 300 * HZ;
1116 }
1117 }
1118 #endif
1119 /* Is this a short write? */
1120 if (task->tk_status >= 0 && resp->count < argp->count) {
1121 static unsigned long complain;
1122
1123 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1124
1125 /* Has the server at least made some progress? */
1126 if (resp->count != 0) {
1127 /* Was this an NFSv2 write or an NFSv3 stable write? */
1128 if (resp->verf->committed != NFS_UNSTABLE) {
1129 /* Resend from where the server left off */
1130 argp->offset += resp->count;
1131 argp->pgbase += resp->count;
1132 argp->count -= resp->count;
1133 } else {
1134 /* Resend as a stable write in order to avoid
1135 * headaches in the case of a server crash.
1136 */
1137 argp->stable = NFS_FILE_SYNC;
1138 }
1139 rpc_restart_call(task);
1140 return -EAGAIN;
1141 }
1142 if (time_before(complain, jiffies)) {
1143 printk(KERN_WARNING
1144 "NFS: Server wrote zero bytes, expected %u.\n",
1145 argp->count);
1146 complain = jiffies + 300 * HZ;
1147 }
1148 /* Can't do anything about it except throw an error. */
1149 task->tk_status = -EIO;
1150 }
1151 return 0;
1152 }
1153
1154
1155 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1156 void nfs_commit_release(void *wdata)
1157 {
1158 nfs_commit_free(wdata);
1159 }
1160
1161 /*
1162 * Set up the argument/result storage required for the RPC call.
1163 */
1164 static void nfs_commit_rpcsetup(struct list_head *head,
1165 struct nfs_write_data *data,
1166 int how)
1167 {
1168 struct nfs_page *first = nfs_list_entry(head->next);
1169 struct inode *inode = first->wb_context->path.dentry->d_inode;
1170 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1171 int priority = flush_task_priority(how);
1172 struct rpc_task *task;
1173 struct rpc_message msg = {
1174 .rpc_argp = &data->args,
1175 .rpc_resp = &data->res,
1176 .rpc_cred = first->wb_context->cred,
1177 };
1178 struct rpc_task_setup task_setup_data = {
1179 .task = &data->task,
1180 .rpc_client = NFS_CLIENT(inode),
1181 .rpc_message = &msg,
1182 .callback_ops = &nfs_commit_ops,
1183 .callback_data = data,
1184 .flags = flags,
1185 .priority = priority,
1186 };
1187
1188 /* Set up the RPC argument and reply structs
1189 * NB: take care not to mess about with data->commit et al. */
1190
1191 list_splice_init(head, &data->pages);
1192
1193 data->inode = inode;
1194 data->cred = msg.rpc_cred;
1195
1196 data->args.fh = NFS_FH(data->inode);
1197 /* Note: we always request a commit of the entire inode */
1198 data->args.offset = 0;
1199 data->args.count = 0;
1200 data->res.count = 0;
1201 data->res.fattr = &data->fattr;
1202 data->res.verf = &data->verf;
1203 nfs_fattr_init(&data->fattr);
1204
1205 /* Set up the initial task struct. */
1206 NFS_PROTO(inode)->commit_setup(data, &msg);
1207
1208 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1209
1210 task = rpc_run_task(&task_setup_data);
1211 if (!IS_ERR(task))
1212 rpc_put_task(task);
1213 }
1214
1215 /*
1216 * Commit dirty pages
1217 */
1218 static int
1219 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1220 {
1221 struct nfs_write_data *data;
1222 struct nfs_page *req;
1223
1224 data = nfs_commit_alloc();
1225
1226 if (!data)
1227 goto out_bad;
1228
1229 /* Set up the argument struct */
1230 nfs_commit_rpcsetup(head, data, how);
1231
1232 return 0;
1233 out_bad:
1234 while (!list_empty(head)) {
1235 req = nfs_list_entry(head->next);
1236 nfs_list_remove_request(req);
1237 nfs_mark_request_commit(req);
1238 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1239 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1240 BDI_RECLAIMABLE);
1241 nfs_clear_page_tag_locked(req);
1242 }
1243 return -ENOMEM;
1244 }
1245
1246 /*
1247 * COMMIT call returned
1248 */
1249 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1250 {
1251 struct nfs_write_data *data = calldata;
1252 struct nfs_page *req;
1253
1254 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1255 task->tk_pid, task->tk_status);
1256
1257 /* Call the NFS version-specific code */
1258 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1259 return;
1260
1261 while (!list_empty(&data->pages)) {
1262 req = nfs_list_entry(data->pages.next);
1263 nfs_list_remove_request(req);
1264 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
1265 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1266 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1267 BDI_RECLAIMABLE);
1268
1269 dprintk("NFS: commit (%s/%Ld %d@%Ld)",
1270 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1271 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1272 req->wb_bytes,
1273 (long long)req_offset(req));
1274 if (task->tk_status < 0) {
1275 nfs_context_set_write_error(req->wb_context, task->tk_status);
1276 nfs_inode_remove_request(req);
1277 dprintk(", error = %d\n", task->tk_status);
1278 goto next;
1279 }
1280
1281 /* Okay, COMMIT succeeded, apparently. Check the verifier
1282 * returned by the server against all stored verfs. */
1283 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1284 /* We have a match */
1285 /* Set the PG_uptodate flag */
1286 nfs_mark_uptodate(req->wb_page, req->wb_pgbase,
1287 req->wb_bytes);
1288 nfs_inode_remove_request(req);
1289 dprintk(" OK\n");
1290 goto next;
1291 }
1292 /* We have a mismatch. Write the page again */
1293 dprintk(" mismatch\n");
1294 nfs_redirty_request(req);
1295 next:
1296 nfs_clear_page_tag_locked(req);
1297 }
1298 }
1299
1300 static const struct rpc_call_ops nfs_commit_ops = {
1301 .rpc_call_done = nfs_commit_done,
1302 .rpc_release = nfs_commit_release,
1303 };
1304
1305 int nfs_commit_inode(struct inode *inode, int how)
1306 {
1307 LIST_HEAD(head);
1308 int res;
1309
1310 spin_lock(&inode->i_lock);
1311 res = nfs_scan_commit(inode, &head, 0, 0);
1312 spin_unlock(&inode->i_lock);
1313 if (res) {
1314 int error = nfs_commit_list(inode, &head, how);
1315 if (error < 0)
1316 return error;
1317 }
1318 return res;
1319 }
1320 #else
1321 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1322 {
1323 return 0;
1324 }
1325 #endif
1326
1327 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1328 {
1329 struct inode *inode = mapping->host;
1330 pgoff_t idx_start, idx_end;
1331 unsigned int npages = 0;
1332 LIST_HEAD(head);
1333 int nocommit = how & FLUSH_NOCOMMIT;
1334 long pages, ret;
1335
1336 /* FIXME */
1337 if (wbc->range_cyclic)
1338 idx_start = 0;
1339 else {
1340 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1341 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1342 if (idx_end > idx_start) {
1343 pgoff_t l_npages = 1 + idx_end - idx_start;
1344 npages = l_npages;
1345 if (sizeof(npages) != sizeof(l_npages) &&
1346 (pgoff_t)npages != l_npages)
1347 npages = 0;
1348 }
1349 }
1350 how &= ~FLUSH_NOCOMMIT;
1351 spin_lock(&inode->i_lock);
1352 do {
1353 ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1354 if (ret != 0)
1355 continue;
1356 if (nocommit)
1357 break;
1358 pages = nfs_scan_commit(inode, &head, idx_start, npages);
1359 if (pages == 0)
1360 break;
1361 if (how & FLUSH_INVALIDATE) {
1362 spin_unlock(&inode->i_lock);
1363 nfs_cancel_commit_list(&head);
1364 ret = pages;
1365 spin_lock(&inode->i_lock);
1366 continue;
1367 }
1368 pages += nfs_scan_commit(inode, &head, 0, 0);
1369 spin_unlock(&inode->i_lock);
1370 ret = nfs_commit_list(inode, &head, how);
1371 spin_lock(&inode->i_lock);
1372
1373 } while (ret >= 0);
1374 spin_unlock(&inode->i_lock);
1375 return ret;
1376 }
1377
1378 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1379 {
1380 int ret;
1381
1382 ret = nfs_writepages(mapping, wbc);
1383 if (ret < 0)
1384 goto out;
1385 ret = nfs_sync_mapping_wait(mapping, wbc, how);
1386 if (ret < 0)
1387 goto out;
1388 return 0;
1389 out:
1390 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1391 return ret;
1392 }
1393
1394 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1395 static int nfs_write_mapping(struct address_space *mapping, int how)
1396 {
1397 struct writeback_control wbc = {
1398 .bdi = mapping->backing_dev_info,
1399 .sync_mode = WB_SYNC_NONE,
1400 .nr_to_write = LONG_MAX,
1401 .for_writepages = 1,
1402 .range_cyclic = 1,
1403 };
1404 int ret;
1405
1406 ret = __nfs_write_mapping(mapping, &wbc, how);
1407 if (ret < 0)
1408 return ret;
1409 wbc.sync_mode = WB_SYNC_ALL;
1410 return __nfs_write_mapping(mapping, &wbc, how);
1411 }
1412
1413 /*
1414 * flush the inode to disk.
1415 */
1416 int nfs_wb_all(struct inode *inode)
1417 {
1418 return nfs_write_mapping(inode->i_mapping, 0);
1419 }
1420
1421 int nfs_wb_nocommit(struct inode *inode)
1422 {
1423 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1424 }
1425
1426 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1427 {
1428 struct nfs_page *req;
1429 loff_t range_start = page_offset(page);
1430 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1431 struct writeback_control wbc = {
1432 .bdi = page->mapping->backing_dev_info,
1433 .sync_mode = WB_SYNC_ALL,
1434 .nr_to_write = LONG_MAX,
1435 .range_start = range_start,
1436 .range_end = range_end,
1437 };
1438 int ret = 0;
1439
1440 BUG_ON(!PageLocked(page));
1441 for (;;) {
1442 req = nfs_page_find_request(page);
1443 if (req == NULL)
1444 goto out;
1445 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1446 nfs_release_request(req);
1447 break;
1448 }
1449 if (nfs_lock_request_dontget(req)) {
1450 nfs_inode_remove_request(req);
1451 /*
1452 * In case nfs_inode_remove_request has marked the
1453 * page as being dirty
1454 */
1455 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1456 nfs_unlock_request(req);
1457 break;
1458 }
1459 ret = nfs_wait_on_request(req);
1460 if (ret < 0)
1461 goto out;
1462 }
1463 if (!PagePrivate(page))
1464 return 0;
1465 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1466 out:
1467 return ret;
1468 }
1469
1470 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1471 int how)
1472 {
1473 loff_t range_start = page_offset(page);
1474 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1475 struct writeback_control wbc = {
1476 .bdi = page->mapping->backing_dev_info,
1477 .sync_mode = WB_SYNC_ALL,
1478 .nr_to_write = LONG_MAX,
1479 .range_start = range_start,
1480 .range_end = range_end,
1481 };
1482 int ret;
1483
1484 BUG_ON(!PageLocked(page));
1485 if (clear_page_dirty_for_io(page)) {
1486 ret = nfs_writepage_locked(page, &wbc);
1487 if (ret < 0)
1488 goto out;
1489 }
1490 if (!PagePrivate(page))
1491 return 0;
1492 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1493 if (ret >= 0)
1494 return 0;
1495 out:
1496 __mark_inode_dirty(inode, I_DIRTY_PAGES);
1497 return ret;
1498 }
1499
1500 /*
1501 * Write back all requests on one page - we do this before reading it.
1502 */
1503 int nfs_wb_page(struct inode *inode, struct page* page)
1504 {
1505 return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1506 }
1507
1508 int __init nfs_init_writepagecache(void)
1509 {
1510 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1511 sizeof(struct nfs_write_data),
1512 0, SLAB_HWCACHE_ALIGN,
1513 NULL);
1514 if (nfs_wdata_cachep == NULL)
1515 return -ENOMEM;
1516
1517 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1518 nfs_wdata_cachep);
1519 if (nfs_wdata_mempool == NULL)
1520 return -ENOMEM;
1521
1522 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1523 nfs_wdata_cachep);
1524 if (nfs_commit_mempool == NULL)
1525 return -ENOMEM;
1526
1527 /*
1528 * NFS congestion size, scale with available memory.
1529 *
1530 * 64MB: 8192k
1531 * 128MB: 11585k
1532 * 256MB: 16384k
1533 * 512MB: 23170k
1534 * 1GB: 32768k
1535 * 2GB: 46340k
1536 * 4GB: 65536k
1537 * 8GB: 92681k
1538 * 16GB: 131072k
1539 *
1540 * This allows larger machines to have larger/more transfers.
1541 * Limit the default to 256M
1542 */
1543 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1544 if (nfs_congestion_kb > 256*1024)
1545 nfs_congestion_kb = 256*1024;
1546
1547 return 0;
1548 }
1549
1550 void nfs_destroy_writepagecache(void)
1551 {
1552 mempool_destroy(nfs_commit_mempool);
1553 mempool_destroy(nfs_wdata_mempool);
1554 kmem_cache_destroy(nfs_wdata_cachep);
1555 }
1556
This page took 0.065892 seconds and 5 git commands to generate.