ACPI / LPSS: make code less confusing for reader
[deliverable/linux.git] / fs / nfsd / nfscache.c
1 /*
2 * Request reply cache. This is currently a global cache, but this may
3 * change in the future and be a per-client cache.
4 *
5 * This code is heavily inspired by the 44BSD implementation, although
6 * it does things a bit differently.
7 *
8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9 */
10
11 #include <linux/slab.h>
12 #include <linux/sunrpc/addr.h>
13 #include <linux/highmem.h>
14 #include <net/checksum.h>
15
16 #include "nfsd.h"
17 #include "cache.h"
18
19 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
20
21 #define HASHSIZE 64
22
23 static struct hlist_head * cache_hash;
24 static struct list_head lru_head;
25 static struct kmem_cache *drc_slab;
26 static unsigned int num_drc_entries;
27 static unsigned int max_drc_entries;
28
29 /*
30 * Calculate the hash index from an XID.
31 */
32 static inline u32 request_hash(u32 xid)
33 {
34 u32 h = xid;
35 h ^= (xid >> 24);
36 return h & (HASHSIZE-1);
37 }
38
39 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
40 static void cache_cleaner_func(struct work_struct *unused);
41 static int nfsd_reply_cache_shrink(struct shrinker *shrink,
42 struct shrink_control *sc);
43
44 struct shrinker nfsd_reply_cache_shrinker = {
45 .shrink = nfsd_reply_cache_shrink,
46 .seeks = 1,
47 };
48
49 /*
50 * locking for the reply cache:
51 * A cache entry is "single use" if c_state == RC_INPROG
52 * Otherwise, it when accessing _prev or _next, the lock must be held.
53 */
54 static DEFINE_SPINLOCK(cache_lock);
55 static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func);
56
57 /*
58 * Put a cap on the size of the DRC based on the amount of available
59 * low memory in the machine.
60 *
61 * 64MB: 8192
62 * 128MB: 11585
63 * 256MB: 16384
64 * 512MB: 23170
65 * 1GB: 32768
66 * 2GB: 46340
67 * 4GB: 65536
68 * 8GB: 92681
69 * 16GB: 131072
70 *
71 * ...with a hard cap of 256k entries. In the worst case, each entry will be
72 * ~1k, so the above numbers should give a rough max of the amount of memory
73 * used in k.
74 */
75 static unsigned int
76 nfsd_cache_size_limit(void)
77 {
78 unsigned int limit;
79 unsigned long low_pages = totalram_pages - totalhigh_pages;
80
81 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
82 return min_t(unsigned int, limit, 256*1024);
83 }
84
85 static struct svc_cacherep *
86 nfsd_reply_cache_alloc(void)
87 {
88 struct svc_cacherep *rp;
89
90 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
91 if (rp) {
92 rp->c_state = RC_UNUSED;
93 rp->c_type = RC_NOCACHE;
94 INIT_LIST_HEAD(&rp->c_lru);
95 INIT_HLIST_NODE(&rp->c_hash);
96 }
97 return rp;
98 }
99
100 static void
101 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
102 {
103 if (rp->c_type == RC_REPLBUFF)
104 kfree(rp->c_replvec.iov_base);
105 hlist_del(&rp->c_hash);
106 list_del(&rp->c_lru);
107 --num_drc_entries;
108 kmem_cache_free(drc_slab, rp);
109 }
110
111 static void
112 nfsd_reply_cache_free(struct svc_cacherep *rp)
113 {
114 spin_lock(&cache_lock);
115 nfsd_reply_cache_free_locked(rp);
116 spin_unlock(&cache_lock);
117 }
118
119 int nfsd_reply_cache_init(void)
120 {
121 register_shrinker(&nfsd_reply_cache_shrinker);
122 drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
123 0, 0, NULL);
124 if (!drc_slab)
125 goto out_nomem;
126
127 cache_hash = kcalloc(HASHSIZE, sizeof(struct hlist_head), GFP_KERNEL);
128 if (!cache_hash)
129 goto out_nomem;
130
131 INIT_LIST_HEAD(&lru_head);
132 max_drc_entries = nfsd_cache_size_limit();
133 num_drc_entries = 0;
134
135 return 0;
136 out_nomem:
137 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
138 nfsd_reply_cache_shutdown();
139 return -ENOMEM;
140 }
141
142 void nfsd_reply_cache_shutdown(void)
143 {
144 struct svc_cacherep *rp;
145
146 unregister_shrinker(&nfsd_reply_cache_shrinker);
147 cancel_delayed_work_sync(&cache_cleaner);
148
149 while (!list_empty(&lru_head)) {
150 rp = list_entry(lru_head.next, struct svc_cacherep, c_lru);
151 nfsd_reply_cache_free_locked(rp);
152 }
153
154 kfree (cache_hash);
155 cache_hash = NULL;
156
157 if (drc_slab) {
158 kmem_cache_destroy(drc_slab);
159 drc_slab = NULL;
160 }
161 }
162
163 /*
164 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
165 * not already scheduled.
166 */
167 static void
168 lru_put_end(struct svc_cacherep *rp)
169 {
170 rp->c_timestamp = jiffies;
171 list_move_tail(&rp->c_lru, &lru_head);
172 schedule_delayed_work(&cache_cleaner, RC_EXPIRE);
173 }
174
175 /*
176 * Move a cache entry from one hash list to another
177 */
178 static void
179 hash_refile(struct svc_cacherep *rp)
180 {
181 hlist_del_init(&rp->c_hash);
182 hlist_add_head(&rp->c_hash, cache_hash + request_hash(rp->c_xid));
183 }
184
185 static inline bool
186 nfsd_cache_entry_expired(struct svc_cacherep *rp)
187 {
188 return rp->c_state != RC_INPROG &&
189 time_after(jiffies, rp->c_timestamp + RC_EXPIRE);
190 }
191
192 /*
193 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
194 * Also prune the oldest ones when the total exceeds the max number of entries.
195 */
196 static void
197 prune_cache_entries(void)
198 {
199 struct svc_cacherep *rp, *tmp;
200
201 list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) {
202 if (!nfsd_cache_entry_expired(rp) &&
203 num_drc_entries <= max_drc_entries)
204 break;
205 nfsd_reply_cache_free_locked(rp);
206 }
207
208 /*
209 * Conditionally rearm the job. If we cleaned out the list, then
210 * cancel any pending run (since there won't be any work to do).
211 * Otherwise, we rearm the job or modify the existing one to run in
212 * RC_EXPIRE since we just ran the pruner.
213 */
214 if (list_empty(&lru_head))
215 cancel_delayed_work(&cache_cleaner);
216 else
217 mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE);
218 }
219
220 static void
221 cache_cleaner_func(struct work_struct *unused)
222 {
223 spin_lock(&cache_lock);
224 prune_cache_entries();
225 spin_unlock(&cache_lock);
226 }
227
228 static int
229 nfsd_reply_cache_shrink(struct shrinker *shrink, struct shrink_control *sc)
230 {
231 unsigned int num;
232
233 spin_lock(&cache_lock);
234 if (sc->nr_to_scan)
235 prune_cache_entries();
236 num = num_drc_entries;
237 spin_unlock(&cache_lock);
238
239 return num;
240 }
241
242 /*
243 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
244 */
245 static __wsum
246 nfsd_cache_csum(struct svc_rqst *rqstp)
247 {
248 int idx;
249 unsigned int base;
250 __wsum csum;
251 struct xdr_buf *buf = &rqstp->rq_arg;
252 const unsigned char *p = buf->head[0].iov_base;
253 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
254 RC_CSUMLEN);
255 size_t len = min(buf->head[0].iov_len, csum_len);
256
257 /* rq_arg.head first */
258 csum = csum_partial(p, len, 0);
259 csum_len -= len;
260
261 /* Continue into page array */
262 idx = buf->page_base / PAGE_SIZE;
263 base = buf->page_base & ~PAGE_MASK;
264 while (csum_len) {
265 p = page_address(buf->pages[idx]) + base;
266 len = min_t(size_t, PAGE_SIZE - base, csum_len);
267 csum = csum_partial(p, len, csum);
268 csum_len -= len;
269 base = 0;
270 ++idx;
271 }
272 return csum;
273 }
274
275 /*
276 * Search the request hash for an entry that matches the given rqstp.
277 * Must be called with cache_lock held. Returns the found entry or
278 * NULL on failure.
279 */
280 static struct svc_cacherep *
281 nfsd_cache_search(struct svc_rqst *rqstp, __wsum csum)
282 {
283 struct svc_cacherep *rp;
284 struct hlist_head *rh;
285 __be32 xid = rqstp->rq_xid;
286 u32 proto = rqstp->rq_prot,
287 vers = rqstp->rq_vers,
288 proc = rqstp->rq_proc;
289
290 rh = &cache_hash[request_hash(xid)];
291 hlist_for_each_entry(rp, rh, c_hash) {
292 if (xid == rp->c_xid && proc == rp->c_proc &&
293 proto == rp->c_prot && vers == rp->c_vers &&
294 rqstp->rq_arg.len == rp->c_len && csum == rp->c_csum &&
295 rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) &&
296 rpc_get_port(svc_addr(rqstp)) == rpc_get_port((struct sockaddr *)&rp->c_addr))
297 return rp;
298 }
299 return NULL;
300 }
301
302 /*
303 * Try to find an entry matching the current call in the cache. When none
304 * is found, we try to grab the oldest expired entry off the LRU list. If
305 * a suitable one isn't there, then drop the cache_lock and allocate a
306 * new one, then search again in case one got inserted while this thread
307 * didn't hold the lock.
308 */
309 int
310 nfsd_cache_lookup(struct svc_rqst *rqstp)
311 {
312 struct svc_cacherep *rp, *found;
313 __be32 xid = rqstp->rq_xid;
314 u32 proto = rqstp->rq_prot,
315 vers = rqstp->rq_vers,
316 proc = rqstp->rq_proc;
317 __wsum csum;
318 unsigned long age;
319 int type = rqstp->rq_cachetype;
320 int rtn;
321
322 rqstp->rq_cacherep = NULL;
323 if (type == RC_NOCACHE) {
324 nfsdstats.rcnocache++;
325 return RC_DOIT;
326 }
327
328 csum = nfsd_cache_csum(rqstp);
329
330 spin_lock(&cache_lock);
331 rtn = RC_DOIT;
332
333 rp = nfsd_cache_search(rqstp, csum);
334 if (rp)
335 goto found_entry;
336
337 /* Try to use the first entry on the LRU */
338 if (!list_empty(&lru_head)) {
339 rp = list_first_entry(&lru_head, struct svc_cacherep, c_lru);
340 if (nfsd_cache_entry_expired(rp) ||
341 num_drc_entries >= max_drc_entries) {
342 lru_put_end(rp);
343 prune_cache_entries();
344 goto setup_entry;
345 }
346 }
347
348 /* Drop the lock and allocate a new entry */
349 spin_unlock(&cache_lock);
350 rp = nfsd_reply_cache_alloc();
351 if (!rp) {
352 dprintk("nfsd: unable to allocate DRC entry!\n");
353 return RC_DOIT;
354 }
355 spin_lock(&cache_lock);
356 ++num_drc_entries;
357
358 /*
359 * Must search again just in case someone inserted one
360 * after we dropped the lock above.
361 */
362 found = nfsd_cache_search(rqstp, csum);
363 if (found) {
364 nfsd_reply_cache_free_locked(rp);
365 rp = found;
366 goto found_entry;
367 }
368
369 /*
370 * We're keeping the one we just allocated. Are we now over the
371 * limit? Prune one off the tip of the LRU in trade for the one we
372 * just allocated if so.
373 */
374 if (num_drc_entries >= max_drc_entries)
375 nfsd_reply_cache_free_locked(list_first_entry(&lru_head,
376 struct svc_cacherep, c_lru));
377
378 setup_entry:
379 nfsdstats.rcmisses++;
380 rqstp->rq_cacherep = rp;
381 rp->c_state = RC_INPROG;
382 rp->c_xid = xid;
383 rp->c_proc = proc;
384 rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
385 rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
386 rp->c_prot = proto;
387 rp->c_vers = vers;
388 rp->c_len = rqstp->rq_arg.len;
389 rp->c_csum = csum;
390
391 hash_refile(rp);
392 lru_put_end(rp);
393
394 /* release any buffer */
395 if (rp->c_type == RC_REPLBUFF) {
396 kfree(rp->c_replvec.iov_base);
397 rp->c_replvec.iov_base = NULL;
398 }
399 rp->c_type = RC_NOCACHE;
400 out:
401 spin_unlock(&cache_lock);
402 return rtn;
403
404 found_entry:
405 nfsdstats.rchits++;
406 /* We found a matching entry which is either in progress or done. */
407 age = jiffies - rp->c_timestamp;
408 lru_put_end(rp);
409
410 rtn = RC_DROPIT;
411 /* Request being processed or excessive rexmits */
412 if (rp->c_state == RC_INPROG || age < RC_DELAY)
413 goto out;
414
415 /* From the hall of fame of impractical attacks:
416 * Is this a user who tries to snoop on the cache? */
417 rtn = RC_DOIT;
418 if (!rqstp->rq_secure && rp->c_secure)
419 goto out;
420
421 /* Compose RPC reply header */
422 switch (rp->c_type) {
423 case RC_NOCACHE:
424 break;
425 case RC_REPLSTAT:
426 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
427 rtn = RC_REPLY;
428 break;
429 case RC_REPLBUFF:
430 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
431 goto out; /* should not happen */
432 rtn = RC_REPLY;
433 break;
434 default:
435 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
436 nfsd_reply_cache_free_locked(rp);
437 }
438
439 goto out;
440 }
441
442 /*
443 * Update a cache entry. This is called from nfsd_dispatch when
444 * the procedure has been executed and the complete reply is in
445 * rqstp->rq_res.
446 *
447 * We're copying around data here rather than swapping buffers because
448 * the toplevel loop requires max-sized buffers, which would be a waste
449 * of memory for a cache with a max reply size of 100 bytes (diropokres).
450 *
451 * If we should start to use different types of cache entries tailored
452 * specifically for attrstat and fh's, we may save even more space.
453 *
454 * Also note that a cachetype of RC_NOCACHE can legally be passed when
455 * nfsd failed to encode a reply that otherwise would have been cached.
456 * In this case, nfsd_cache_update is called with statp == NULL.
457 */
458 void
459 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
460 {
461 struct svc_cacherep *rp = rqstp->rq_cacherep;
462 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
463 int len;
464
465 if (!rp)
466 return;
467
468 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
469 len >>= 2;
470
471 /* Don't cache excessive amounts of data and XDR failures */
472 if (!statp || len > (256 >> 2)) {
473 nfsd_reply_cache_free(rp);
474 return;
475 }
476
477 switch (cachetype) {
478 case RC_REPLSTAT:
479 if (len != 1)
480 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
481 rp->c_replstat = *statp;
482 break;
483 case RC_REPLBUFF:
484 cachv = &rp->c_replvec;
485 cachv->iov_base = kmalloc(len << 2, GFP_KERNEL);
486 if (!cachv->iov_base) {
487 nfsd_reply_cache_free(rp);
488 return;
489 }
490 cachv->iov_len = len << 2;
491 memcpy(cachv->iov_base, statp, len << 2);
492 break;
493 case RC_NOCACHE:
494 nfsd_reply_cache_free(rp);
495 return;
496 }
497 spin_lock(&cache_lock);
498 lru_put_end(rp);
499 rp->c_secure = rqstp->rq_secure;
500 rp->c_type = cachetype;
501 rp->c_state = RC_DONE;
502 spin_unlock(&cache_lock);
503 return;
504 }
505
506 /*
507 * Copy cached reply to current reply buffer. Should always fit.
508 * FIXME as reply is in a page, we should just attach the page, and
509 * keep a refcount....
510 */
511 static int
512 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
513 {
514 struct kvec *vec = &rqstp->rq_res.head[0];
515
516 if (vec->iov_len + data->iov_len > PAGE_SIZE) {
517 printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
518 data->iov_len);
519 return 0;
520 }
521 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
522 vec->iov_len += data->iov_len;
523 return 1;
524 }
This page took 0.058293 seconds and 5 git commands to generate.