Merge tag 'soc-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / fs / ntfs / super.c
1 /*
2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5 * Copyright (c) 2001,2002 Richard Russon
6 *
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/bitmap.h>
34
35 #include "sysctl.h"
36 #include "logfile.h"
37 #include "quota.h"
38 #include "usnjrnl.h"
39 #include "dir.h"
40 #include "debug.h"
41 #include "index.h"
42 #include "inode.h"
43 #include "aops.h"
44 #include "layout.h"
45 #include "malloc.h"
46 #include "ntfs.h"
47
48 /* Number of mounted filesystems which have compression enabled. */
49 static unsigned long ntfs_nr_compression_users;
50
51 /* A global default upcase table and a corresponding reference count. */
52 static ntfschar *default_upcase = NULL;
53 static unsigned long ntfs_nr_upcase_users = 0;
54
55 /* Error constants/strings used in inode.c::ntfs_show_options(). */
56 typedef enum {
57 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
58 ON_ERRORS_PANIC = 0x01,
59 ON_ERRORS_REMOUNT_RO = 0x02,
60 ON_ERRORS_CONTINUE = 0x04,
61 /* Optional, can be combined with any of the above. */
62 ON_ERRORS_RECOVER = 0x10,
63 } ON_ERRORS_ACTIONS;
64
65 const option_t on_errors_arr[] = {
66 { ON_ERRORS_PANIC, "panic" },
67 { ON_ERRORS_REMOUNT_RO, "remount-ro", },
68 { ON_ERRORS_CONTINUE, "continue", },
69 { ON_ERRORS_RECOVER, "recover" },
70 { 0, NULL }
71 };
72
73 /**
74 * simple_getbool -
75 *
76 * Copied from old ntfs driver (which copied from vfat driver).
77 */
78 static int simple_getbool(char *s, bool *setval)
79 {
80 if (s) {
81 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
82 *setval = true;
83 else if (!strcmp(s, "0") || !strcmp(s, "no") ||
84 !strcmp(s, "false"))
85 *setval = false;
86 else
87 return 0;
88 } else
89 *setval = true;
90 return 1;
91 }
92
93 /**
94 * parse_options - parse the (re)mount options
95 * @vol: ntfs volume
96 * @opt: string containing the (re)mount options
97 *
98 * Parse the recognized options in @opt for the ntfs volume described by @vol.
99 */
100 static bool parse_options(ntfs_volume *vol, char *opt)
101 {
102 char *p, *v, *ov;
103 static char *utf8 = "utf8";
104 int errors = 0, sloppy = 0;
105 kuid_t uid = INVALID_UID;
106 kgid_t gid = INVALID_GID;
107 umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
108 int mft_zone_multiplier = -1, on_errors = -1;
109 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
110 struct nls_table *nls_map = NULL, *old_nls;
111
112 /* I am lazy... (-8 */
113 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
114 if (!strcmp(p, option)) { \
115 if (!v || !*v) \
116 variable = default_value; \
117 else { \
118 variable = simple_strtoul(ov = v, &v, 0); \
119 if (*v) \
120 goto needs_val; \
121 } \
122 }
123 #define NTFS_GETOPT(option, variable) \
124 if (!strcmp(p, option)) { \
125 if (!v || !*v) \
126 goto needs_arg; \
127 variable = simple_strtoul(ov = v, &v, 0); \
128 if (*v) \
129 goto needs_val; \
130 }
131 #define NTFS_GETOPT_UID(option, variable) \
132 if (!strcmp(p, option)) { \
133 uid_t uid_value; \
134 if (!v || !*v) \
135 goto needs_arg; \
136 uid_value = simple_strtoul(ov = v, &v, 0); \
137 if (*v) \
138 goto needs_val; \
139 variable = make_kuid(current_user_ns(), uid_value); \
140 if (!uid_valid(variable)) \
141 goto needs_val; \
142 }
143 #define NTFS_GETOPT_GID(option, variable) \
144 if (!strcmp(p, option)) { \
145 gid_t gid_value; \
146 if (!v || !*v) \
147 goto needs_arg; \
148 gid_value = simple_strtoul(ov = v, &v, 0); \
149 if (*v) \
150 goto needs_val; \
151 variable = make_kgid(current_user_ns(), gid_value); \
152 if (!gid_valid(variable)) \
153 goto needs_val; \
154 }
155 #define NTFS_GETOPT_OCTAL(option, variable) \
156 if (!strcmp(p, option)) { \
157 if (!v || !*v) \
158 goto needs_arg; \
159 variable = simple_strtoul(ov = v, &v, 8); \
160 if (*v) \
161 goto needs_val; \
162 }
163 #define NTFS_GETOPT_BOOL(option, variable) \
164 if (!strcmp(p, option)) { \
165 bool val; \
166 if (!simple_getbool(v, &val)) \
167 goto needs_bool; \
168 variable = val; \
169 }
170 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
171 if (!strcmp(p, option)) { \
172 int _i; \
173 if (!v || !*v) \
174 goto needs_arg; \
175 ov = v; \
176 if (variable == -1) \
177 variable = 0; \
178 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
179 if (!strcmp(opt_array[_i].str, v)) { \
180 variable |= opt_array[_i].val; \
181 break; \
182 } \
183 if (!opt_array[_i].str || !*opt_array[_i].str) \
184 goto needs_val; \
185 }
186 if (!opt || !*opt)
187 goto no_mount_options;
188 ntfs_debug("Entering with mount options string: %s", opt);
189 while ((p = strsep(&opt, ","))) {
190 if ((v = strchr(p, '=')))
191 *v++ = 0;
192 NTFS_GETOPT_UID("uid", uid)
193 else NTFS_GETOPT_GID("gid", gid)
194 else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
195 else NTFS_GETOPT_OCTAL("fmask", fmask)
196 else NTFS_GETOPT_OCTAL("dmask", dmask)
197 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
198 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
199 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
200 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
201 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
202 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
203 on_errors_arr)
204 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
205 ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
206 p);
207 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
208 if (!strcmp(p, "iocharset"))
209 ntfs_warning(vol->sb, "Option iocharset is "
210 "deprecated. Please use "
211 "option nls=<charsetname> in "
212 "the future.");
213 if (!v || !*v)
214 goto needs_arg;
215 use_utf8:
216 old_nls = nls_map;
217 nls_map = load_nls(v);
218 if (!nls_map) {
219 if (!old_nls) {
220 ntfs_error(vol->sb, "NLS character set "
221 "%s not found.", v);
222 return false;
223 }
224 ntfs_error(vol->sb, "NLS character set %s not "
225 "found. Using previous one %s.",
226 v, old_nls->charset);
227 nls_map = old_nls;
228 } else /* nls_map */ {
229 unload_nls(old_nls);
230 }
231 } else if (!strcmp(p, "utf8")) {
232 bool val = false;
233 ntfs_warning(vol->sb, "Option utf8 is no longer "
234 "supported, using option nls=utf8. Please "
235 "use option nls=utf8 in the future and "
236 "make sure utf8 is compiled either as a "
237 "module or into the kernel.");
238 if (!v || !*v)
239 val = true;
240 else if (!simple_getbool(v, &val))
241 goto needs_bool;
242 if (val) {
243 v = utf8;
244 goto use_utf8;
245 }
246 } else {
247 ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
248 if (errors < INT_MAX)
249 errors++;
250 }
251 #undef NTFS_GETOPT_OPTIONS_ARRAY
252 #undef NTFS_GETOPT_BOOL
253 #undef NTFS_GETOPT
254 #undef NTFS_GETOPT_WITH_DEFAULT
255 }
256 no_mount_options:
257 if (errors && !sloppy)
258 return false;
259 if (sloppy)
260 ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
261 "unrecognized mount option(s) and continuing.");
262 /* Keep this first! */
263 if (on_errors != -1) {
264 if (!on_errors) {
265 ntfs_error(vol->sb, "Invalid errors option argument "
266 "or bug in options parser.");
267 return false;
268 }
269 }
270 if (nls_map) {
271 if (vol->nls_map && vol->nls_map != nls_map) {
272 ntfs_error(vol->sb, "Cannot change NLS character set "
273 "on remount.");
274 return false;
275 } /* else (!vol->nls_map) */
276 ntfs_debug("Using NLS character set %s.", nls_map->charset);
277 vol->nls_map = nls_map;
278 } else /* (!nls_map) */ {
279 if (!vol->nls_map) {
280 vol->nls_map = load_nls_default();
281 if (!vol->nls_map) {
282 ntfs_error(vol->sb, "Failed to load default "
283 "NLS character set.");
284 return false;
285 }
286 ntfs_debug("Using default NLS character set (%s).",
287 vol->nls_map->charset);
288 }
289 }
290 if (mft_zone_multiplier != -1) {
291 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
292 mft_zone_multiplier) {
293 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
294 "on remount.");
295 return false;
296 }
297 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
298 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
299 "Using default value, i.e. 1.");
300 mft_zone_multiplier = 1;
301 }
302 vol->mft_zone_multiplier = mft_zone_multiplier;
303 }
304 if (!vol->mft_zone_multiplier)
305 vol->mft_zone_multiplier = 1;
306 if (on_errors != -1)
307 vol->on_errors = on_errors;
308 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
309 vol->on_errors |= ON_ERRORS_CONTINUE;
310 if (uid_valid(uid))
311 vol->uid = uid;
312 if (gid_valid(gid))
313 vol->gid = gid;
314 if (fmask != (umode_t)-1)
315 vol->fmask = fmask;
316 if (dmask != (umode_t)-1)
317 vol->dmask = dmask;
318 if (show_sys_files != -1) {
319 if (show_sys_files)
320 NVolSetShowSystemFiles(vol);
321 else
322 NVolClearShowSystemFiles(vol);
323 }
324 if (case_sensitive != -1) {
325 if (case_sensitive)
326 NVolSetCaseSensitive(vol);
327 else
328 NVolClearCaseSensitive(vol);
329 }
330 if (disable_sparse != -1) {
331 if (disable_sparse)
332 NVolClearSparseEnabled(vol);
333 else {
334 if (!NVolSparseEnabled(vol) &&
335 vol->major_ver && vol->major_ver < 3)
336 ntfs_warning(vol->sb, "Not enabling sparse "
337 "support due to NTFS volume "
338 "version %i.%i (need at least "
339 "version 3.0).", vol->major_ver,
340 vol->minor_ver);
341 else
342 NVolSetSparseEnabled(vol);
343 }
344 }
345 return true;
346 needs_arg:
347 ntfs_error(vol->sb, "The %s option requires an argument.", p);
348 return false;
349 needs_bool:
350 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
351 return false;
352 needs_val:
353 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
354 return false;
355 }
356
357 #ifdef NTFS_RW
358
359 /**
360 * ntfs_write_volume_flags - write new flags to the volume information flags
361 * @vol: ntfs volume on which to modify the flags
362 * @flags: new flags value for the volume information flags
363 *
364 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
365 * instead (see below).
366 *
367 * Replace the volume information flags on the volume @vol with the value
368 * supplied in @flags. Note, this overwrites the volume information flags, so
369 * make sure to combine the flags you want to modify with the old flags and use
370 * the result when calling ntfs_write_volume_flags().
371 *
372 * Return 0 on success and -errno on error.
373 */
374 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
375 {
376 ntfs_inode *ni = NTFS_I(vol->vol_ino);
377 MFT_RECORD *m;
378 VOLUME_INFORMATION *vi;
379 ntfs_attr_search_ctx *ctx;
380 int err;
381
382 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
383 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
384 if (vol->vol_flags == flags)
385 goto done;
386 BUG_ON(!ni);
387 m = map_mft_record(ni);
388 if (IS_ERR(m)) {
389 err = PTR_ERR(m);
390 goto err_out;
391 }
392 ctx = ntfs_attr_get_search_ctx(ni, m);
393 if (!ctx) {
394 err = -ENOMEM;
395 goto put_unm_err_out;
396 }
397 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
398 ctx);
399 if (err)
400 goto put_unm_err_out;
401 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
402 le16_to_cpu(ctx->attr->data.resident.value_offset));
403 vol->vol_flags = vi->flags = flags;
404 flush_dcache_mft_record_page(ctx->ntfs_ino);
405 mark_mft_record_dirty(ctx->ntfs_ino);
406 ntfs_attr_put_search_ctx(ctx);
407 unmap_mft_record(ni);
408 done:
409 ntfs_debug("Done.");
410 return 0;
411 put_unm_err_out:
412 if (ctx)
413 ntfs_attr_put_search_ctx(ctx);
414 unmap_mft_record(ni);
415 err_out:
416 ntfs_error(vol->sb, "Failed with error code %i.", -err);
417 return err;
418 }
419
420 /**
421 * ntfs_set_volume_flags - set bits in the volume information flags
422 * @vol: ntfs volume on which to modify the flags
423 * @flags: flags to set on the volume
424 *
425 * Set the bits in @flags in the volume information flags on the volume @vol.
426 *
427 * Return 0 on success and -errno on error.
428 */
429 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
430 {
431 flags &= VOLUME_FLAGS_MASK;
432 return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
433 }
434
435 /**
436 * ntfs_clear_volume_flags - clear bits in the volume information flags
437 * @vol: ntfs volume on which to modify the flags
438 * @flags: flags to clear on the volume
439 *
440 * Clear the bits in @flags in the volume information flags on the volume @vol.
441 *
442 * Return 0 on success and -errno on error.
443 */
444 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
445 {
446 flags &= VOLUME_FLAGS_MASK;
447 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
448 return ntfs_write_volume_flags(vol, flags);
449 }
450
451 #endif /* NTFS_RW */
452
453 /**
454 * ntfs_remount - change the mount options of a mounted ntfs filesystem
455 * @sb: superblock of mounted ntfs filesystem
456 * @flags: remount flags
457 * @opt: remount options string
458 *
459 * Change the mount options of an already mounted ntfs filesystem.
460 *
461 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
462 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
463 * @sb->s_flags are not changed.
464 */
465 static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
466 {
467 ntfs_volume *vol = NTFS_SB(sb);
468
469 ntfs_debug("Entering with remount options string: %s", opt);
470
471 sync_filesystem(sb);
472
473 #ifndef NTFS_RW
474 /* For read-only compiled driver, enforce read-only flag. */
475 *flags |= MS_RDONLY;
476 #else /* NTFS_RW */
477 /*
478 * For the read-write compiled driver, if we are remounting read-write,
479 * make sure there are no volume errors and that no unsupported volume
480 * flags are set. Also, empty the logfile journal as it would become
481 * stale as soon as something is written to the volume and mark the
482 * volume dirty so that chkdsk is run if the volume is not umounted
483 * cleanly. Finally, mark the quotas out of date so Windows rescans
484 * the volume on boot and updates them.
485 *
486 * When remounting read-only, mark the volume clean if no volume errors
487 * have occurred.
488 */
489 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
490 static const char *es = ". Cannot remount read-write.";
491
492 /* Remounting read-write. */
493 if (NVolErrors(vol)) {
494 ntfs_error(sb, "Volume has errors and is read-only%s",
495 es);
496 return -EROFS;
497 }
498 if (vol->vol_flags & VOLUME_IS_DIRTY) {
499 ntfs_error(sb, "Volume is dirty and read-only%s", es);
500 return -EROFS;
501 }
502 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
503 ntfs_error(sb, "Volume has been modified by chkdsk "
504 "and is read-only%s", es);
505 return -EROFS;
506 }
507 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
508 ntfs_error(sb, "Volume has unsupported flags set "
509 "(0x%x) and is read-only%s",
510 (unsigned)le16_to_cpu(vol->vol_flags),
511 es);
512 return -EROFS;
513 }
514 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
515 ntfs_error(sb, "Failed to set dirty bit in volume "
516 "information flags%s", es);
517 return -EROFS;
518 }
519 #if 0
520 // TODO: Enable this code once we start modifying anything that
521 // is different between NTFS 1.2 and 3.x...
522 /* Set NT4 compatibility flag on newer NTFS version volumes. */
523 if ((vol->major_ver > 1)) {
524 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
525 ntfs_error(sb, "Failed to set NT4 "
526 "compatibility flag%s", es);
527 NVolSetErrors(vol);
528 return -EROFS;
529 }
530 }
531 #endif
532 if (!ntfs_empty_logfile(vol->logfile_ino)) {
533 ntfs_error(sb, "Failed to empty journal $LogFile%s",
534 es);
535 NVolSetErrors(vol);
536 return -EROFS;
537 }
538 if (!ntfs_mark_quotas_out_of_date(vol)) {
539 ntfs_error(sb, "Failed to mark quotas out of date%s",
540 es);
541 NVolSetErrors(vol);
542 return -EROFS;
543 }
544 if (!ntfs_stamp_usnjrnl(vol)) {
545 ntfs_error(sb, "Failed to stamp transation log "
546 "($UsnJrnl)%s", es);
547 NVolSetErrors(vol);
548 return -EROFS;
549 }
550 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
551 /* Remounting read-only. */
552 if (!NVolErrors(vol)) {
553 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
554 ntfs_warning(sb, "Failed to clear dirty bit "
555 "in volume information "
556 "flags. Run chkdsk.");
557 }
558 }
559 #endif /* NTFS_RW */
560
561 // TODO: Deal with *flags.
562
563 if (!parse_options(vol, opt))
564 return -EINVAL;
565
566 ntfs_debug("Done.");
567 return 0;
568 }
569
570 /**
571 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
572 * @sb: Super block of the device to which @b belongs.
573 * @b: Boot sector of device @sb to check.
574 * @silent: If 'true', all output will be silenced.
575 *
576 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
577 * sector. Returns 'true' if it is valid and 'false' if not.
578 *
579 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
580 * is 'true'.
581 */
582 static bool is_boot_sector_ntfs(const struct super_block *sb,
583 const NTFS_BOOT_SECTOR *b, const bool silent)
584 {
585 /*
586 * Check that checksum == sum of u32 values from b to the checksum
587 * field. If checksum is zero, no checking is done. We will work when
588 * the checksum test fails, since some utilities update the boot sector
589 * ignoring the checksum which leaves the checksum out-of-date. We
590 * report a warning if this is the case.
591 */
592 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
593 le32 *u;
594 u32 i;
595
596 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
597 i += le32_to_cpup(u);
598 if (le32_to_cpu(b->checksum) != i)
599 ntfs_warning(sb, "Invalid boot sector checksum.");
600 }
601 /* Check OEMidentifier is "NTFS " */
602 if (b->oem_id != magicNTFS)
603 goto not_ntfs;
604 /* Check bytes per sector value is between 256 and 4096. */
605 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
606 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
607 goto not_ntfs;
608 /* Check sectors per cluster value is valid. */
609 switch (b->bpb.sectors_per_cluster) {
610 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
611 break;
612 default:
613 goto not_ntfs;
614 }
615 /* Check the cluster size is not above the maximum (64kiB). */
616 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
617 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
618 goto not_ntfs;
619 /* Check reserved/unused fields are really zero. */
620 if (le16_to_cpu(b->bpb.reserved_sectors) ||
621 le16_to_cpu(b->bpb.root_entries) ||
622 le16_to_cpu(b->bpb.sectors) ||
623 le16_to_cpu(b->bpb.sectors_per_fat) ||
624 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
625 goto not_ntfs;
626 /* Check clusters per file mft record value is valid. */
627 if ((u8)b->clusters_per_mft_record < 0xe1 ||
628 (u8)b->clusters_per_mft_record > 0xf7)
629 switch (b->clusters_per_mft_record) {
630 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
631 break;
632 default:
633 goto not_ntfs;
634 }
635 /* Check clusters per index block value is valid. */
636 if ((u8)b->clusters_per_index_record < 0xe1 ||
637 (u8)b->clusters_per_index_record > 0xf7)
638 switch (b->clusters_per_index_record) {
639 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
640 break;
641 default:
642 goto not_ntfs;
643 }
644 /*
645 * Check for valid end of sector marker. We will work without it, but
646 * many BIOSes will refuse to boot from a bootsector if the magic is
647 * incorrect, so we emit a warning.
648 */
649 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
650 ntfs_warning(sb, "Invalid end of sector marker.");
651 return true;
652 not_ntfs:
653 return false;
654 }
655
656 /**
657 * read_ntfs_boot_sector - read the NTFS boot sector of a device
658 * @sb: super block of device to read the boot sector from
659 * @silent: if true, suppress all output
660 *
661 * Reads the boot sector from the device and validates it. If that fails, tries
662 * to read the backup boot sector, first from the end of the device a-la NT4 and
663 * later and then from the middle of the device a-la NT3.51 and before.
664 *
665 * If a valid boot sector is found but it is not the primary boot sector, we
666 * repair the primary boot sector silently (unless the device is read-only or
667 * the primary boot sector is not accessible).
668 *
669 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
670 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
671 * to their respective values.
672 *
673 * Return the unlocked buffer head containing the boot sector or NULL on error.
674 */
675 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
676 const int silent)
677 {
678 const char *read_err_str = "Unable to read %s boot sector.";
679 struct buffer_head *bh_primary, *bh_backup;
680 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
681
682 /* Try to read primary boot sector. */
683 if ((bh_primary = sb_bread(sb, 0))) {
684 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
685 bh_primary->b_data, silent))
686 return bh_primary;
687 if (!silent)
688 ntfs_error(sb, "Primary boot sector is invalid.");
689 } else if (!silent)
690 ntfs_error(sb, read_err_str, "primary");
691 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
692 if (bh_primary)
693 brelse(bh_primary);
694 if (!silent)
695 ntfs_error(sb, "Mount option errors=recover not used. "
696 "Aborting without trying to recover.");
697 return NULL;
698 }
699 /* Try to read NT4+ backup boot sector. */
700 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
701 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
702 bh_backup->b_data, silent))
703 goto hotfix_primary_boot_sector;
704 brelse(bh_backup);
705 } else if (!silent)
706 ntfs_error(sb, read_err_str, "backup");
707 /* Try to read NT3.51- backup boot sector. */
708 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
709 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
710 bh_backup->b_data, silent))
711 goto hotfix_primary_boot_sector;
712 if (!silent)
713 ntfs_error(sb, "Could not find a valid backup boot "
714 "sector.");
715 brelse(bh_backup);
716 } else if (!silent)
717 ntfs_error(sb, read_err_str, "backup");
718 /* We failed. Cleanup and return. */
719 if (bh_primary)
720 brelse(bh_primary);
721 return NULL;
722 hotfix_primary_boot_sector:
723 if (bh_primary) {
724 /*
725 * If we managed to read sector zero and the volume is not
726 * read-only, copy the found, valid backup boot sector to the
727 * primary boot sector. Note we only copy the actual boot
728 * sector structure, not the actual whole device sector as that
729 * may be bigger and would potentially damage the $Boot system
730 * file (FIXME: Would be nice to know if the backup boot sector
731 * on a large sector device contains the whole boot loader or
732 * just the first 512 bytes).
733 */
734 if (!(sb->s_flags & MS_RDONLY)) {
735 ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
736 "boot sector from backup copy.");
737 memcpy(bh_primary->b_data, bh_backup->b_data,
738 NTFS_BLOCK_SIZE);
739 mark_buffer_dirty(bh_primary);
740 sync_dirty_buffer(bh_primary);
741 if (buffer_uptodate(bh_primary)) {
742 brelse(bh_backup);
743 return bh_primary;
744 }
745 ntfs_error(sb, "Hot-fix: Device write error while "
746 "recovering primary boot sector.");
747 } else {
748 ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
749 "sector failed: Read-only mount.");
750 }
751 brelse(bh_primary);
752 }
753 ntfs_warning(sb, "Using backup boot sector.");
754 return bh_backup;
755 }
756
757 /**
758 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
759 * @vol: volume structure to initialise with data from boot sector
760 * @b: boot sector to parse
761 *
762 * Parse the ntfs boot sector @b and store all imporant information therein in
763 * the ntfs super block @vol. Return 'true' on success and 'false' on error.
764 */
765 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
766 {
767 unsigned int sectors_per_cluster_bits, nr_hidden_sects;
768 int clusters_per_mft_record, clusters_per_index_record;
769 s64 ll;
770
771 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
772 vol->sector_size_bits = ffs(vol->sector_size) - 1;
773 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
774 vol->sector_size);
775 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
776 vol->sector_size_bits);
777 if (vol->sector_size < vol->sb->s_blocksize) {
778 ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
779 "device block size (%lu). This is not "
780 "supported. Sorry.", vol->sector_size,
781 vol->sb->s_blocksize);
782 return false;
783 }
784 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
785 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
786 ntfs_debug("sectors_per_cluster_bits = 0x%x",
787 sectors_per_cluster_bits);
788 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
789 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
790 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
791 vol->cluster_size_mask = vol->cluster_size - 1;
792 vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
793 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
794 vol->cluster_size);
795 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
796 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
797 if (vol->cluster_size < vol->sector_size) {
798 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
799 "sector size (%i). This is not supported. "
800 "Sorry.", vol->cluster_size, vol->sector_size);
801 return false;
802 }
803 clusters_per_mft_record = b->clusters_per_mft_record;
804 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
805 clusters_per_mft_record, clusters_per_mft_record);
806 if (clusters_per_mft_record > 0)
807 vol->mft_record_size = vol->cluster_size <<
808 (ffs(clusters_per_mft_record) - 1);
809 else
810 /*
811 * When mft_record_size < cluster_size, clusters_per_mft_record
812 * = -log2(mft_record_size) bytes. mft_record_size normaly is
813 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
814 */
815 vol->mft_record_size = 1 << -clusters_per_mft_record;
816 vol->mft_record_size_mask = vol->mft_record_size - 1;
817 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
818 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
819 vol->mft_record_size);
820 ntfs_debug("vol->mft_record_size_mask = 0x%x",
821 vol->mft_record_size_mask);
822 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
823 vol->mft_record_size_bits, vol->mft_record_size_bits);
824 /*
825 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
826 * we store $MFT/$DATA, the table of mft records in the page cache.
827 */
828 if (vol->mft_record_size > PAGE_CACHE_SIZE) {
829 ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
830 "PAGE_CACHE_SIZE on your system (%lu). "
831 "This is not supported. Sorry.",
832 vol->mft_record_size, PAGE_CACHE_SIZE);
833 return false;
834 }
835 /* We cannot support mft record sizes below the sector size. */
836 if (vol->mft_record_size < vol->sector_size) {
837 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
838 "sector size (%i). This is not supported. "
839 "Sorry.", vol->mft_record_size,
840 vol->sector_size);
841 return false;
842 }
843 clusters_per_index_record = b->clusters_per_index_record;
844 ntfs_debug("clusters_per_index_record = %i (0x%x)",
845 clusters_per_index_record, clusters_per_index_record);
846 if (clusters_per_index_record > 0)
847 vol->index_record_size = vol->cluster_size <<
848 (ffs(clusters_per_index_record) - 1);
849 else
850 /*
851 * When index_record_size < cluster_size,
852 * clusters_per_index_record = -log2(index_record_size) bytes.
853 * index_record_size normaly equals 4096 bytes, which is
854 * encoded as 0xF4 (-12 in decimal).
855 */
856 vol->index_record_size = 1 << -clusters_per_index_record;
857 vol->index_record_size_mask = vol->index_record_size - 1;
858 vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
859 ntfs_debug("vol->index_record_size = %i (0x%x)",
860 vol->index_record_size, vol->index_record_size);
861 ntfs_debug("vol->index_record_size_mask = 0x%x",
862 vol->index_record_size_mask);
863 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
864 vol->index_record_size_bits,
865 vol->index_record_size_bits);
866 /* We cannot support index record sizes below the sector size. */
867 if (vol->index_record_size < vol->sector_size) {
868 ntfs_error(vol->sb, "Index record size (%i) is smaller than "
869 "the sector size (%i). This is not "
870 "supported. Sorry.", vol->index_record_size,
871 vol->sector_size);
872 return false;
873 }
874 /*
875 * Get the size of the volume in clusters and check for 64-bit-ness.
876 * Windows currently only uses 32 bits to save the clusters so we do
877 * the same as it is much faster on 32-bit CPUs.
878 */
879 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
880 if ((u64)ll >= 1ULL << 32) {
881 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
882 return false;
883 }
884 vol->nr_clusters = ll;
885 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
886 /*
887 * On an architecture where unsigned long is 32-bits, we restrict the
888 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
889 * will hopefully optimize the whole check away.
890 */
891 if (sizeof(unsigned long) < 8) {
892 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
893 ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
894 "large for this architecture. "
895 "Maximum supported is 2TiB. Sorry.",
896 (unsigned long long)ll >> (40 -
897 vol->cluster_size_bits));
898 return false;
899 }
900 }
901 ll = sle64_to_cpu(b->mft_lcn);
902 if (ll >= vol->nr_clusters) {
903 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
904 "volume. Weird.", (unsigned long long)ll,
905 (unsigned long long)ll);
906 return false;
907 }
908 vol->mft_lcn = ll;
909 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
910 ll = sle64_to_cpu(b->mftmirr_lcn);
911 if (ll >= vol->nr_clusters) {
912 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
913 "of volume. Weird.", (unsigned long long)ll,
914 (unsigned long long)ll);
915 return false;
916 }
917 vol->mftmirr_lcn = ll;
918 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
919 #ifdef NTFS_RW
920 /*
921 * Work out the size of the mft mirror in number of mft records. If the
922 * cluster size is less than or equal to the size taken by four mft
923 * records, the mft mirror stores the first four mft records. If the
924 * cluster size is bigger than the size taken by four mft records, the
925 * mft mirror contains as many mft records as will fit into one
926 * cluster.
927 */
928 if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
929 vol->mftmirr_size = 4;
930 else
931 vol->mftmirr_size = vol->cluster_size >>
932 vol->mft_record_size_bits;
933 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
934 #endif /* NTFS_RW */
935 vol->serial_no = le64_to_cpu(b->volume_serial_number);
936 ntfs_debug("vol->serial_no = 0x%llx",
937 (unsigned long long)vol->serial_no);
938 return true;
939 }
940
941 /**
942 * ntfs_setup_allocators - initialize the cluster and mft allocators
943 * @vol: volume structure for which to setup the allocators
944 *
945 * Setup the cluster (lcn) and mft allocators to the starting values.
946 */
947 static void ntfs_setup_allocators(ntfs_volume *vol)
948 {
949 #ifdef NTFS_RW
950 LCN mft_zone_size, mft_lcn;
951 #endif /* NTFS_RW */
952
953 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
954 vol->mft_zone_multiplier);
955 #ifdef NTFS_RW
956 /* Determine the size of the MFT zone. */
957 mft_zone_size = vol->nr_clusters;
958 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
959 case 4:
960 mft_zone_size >>= 1; /* 50% */
961 break;
962 case 3:
963 mft_zone_size = (mft_zone_size +
964 (mft_zone_size >> 1)) >> 2; /* 37.5% */
965 break;
966 case 2:
967 mft_zone_size >>= 2; /* 25% */
968 break;
969 /* case 1: */
970 default:
971 mft_zone_size >>= 3; /* 12.5% */
972 break;
973 }
974 /* Setup the mft zone. */
975 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
976 ntfs_debug("vol->mft_zone_pos = 0x%llx",
977 (unsigned long long)vol->mft_zone_pos);
978 /*
979 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
980 * source) and if the actual mft_lcn is in the expected place or even
981 * further to the front of the volume, extend the mft_zone to cover the
982 * beginning of the volume as well. This is in order to protect the
983 * area reserved for the mft bitmap as well within the mft_zone itself.
984 * On non-standard volumes we do not protect it as the overhead would
985 * be higher than the speed increase we would get by doing it.
986 */
987 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
988 if (mft_lcn * vol->cluster_size < 16 * 1024)
989 mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
990 vol->cluster_size;
991 if (vol->mft_zone_start <= mft_lcn)
992 vol->mft_zone_start = 0;
993 ntfs_debug("vol->mft_zone_start = 0x%llx",
994 (unsigned long long)vol->mft_zone_start);
995 /*
996 * Need to cap the mft zone on non-standard volumes so that it does
997 * not point outside the boundaries of the volume. We do this by
998 * halving the zone size until we are inside the volume.
999 */
1000 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
1001 while (vol->mft_zone_end >= vol->nr_clusters) {
1002 mft_zone_size >>= 1;
1003 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
1004 }
1005 ntfs_debug("vol->mft_zone_end = 0x%llx",
1006 (unsigned long long)vol->mft_zone_end);
1007 /*
1008 * Set the current position within each data zone to the start of the
1009 * respective zone.
1010 */
1011 vol->data1_zone_pos = vol->mft_zone_end;
1012 ntfs_debug("vol->data1_zone_pos = 0x%llx",
1013 (unsigned long long)vol->data1_zone_pos);
1014 vol->data2_zone_pos = 0;
1015 ntfs_debug("vol->data2_zone_pos = 0x%llx",
1016 (unsigned long long)vol->data2_zone_pos);
1017
1018 /* Set the mft data allocation position to mft record 24. */
1019 vol->mft_data_pos = 24;
1020 ntfs_debug("vol->mft_data_pos = 0x%llx",
1021 (unsigned long long)vol->mft_data_pos);
1022 #endif /* NTFS_RW */
1023 }
1024
1025 #ifdef NTFS_RW
1026
1027 /**
1028 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1029 * @vol: ntfs super block describing device whose mft mirror to load
1030 *
1031 * Return 'true' on success or 'false' on error.
1032 */
1033 static bool load_and_init_mft_mirror(ntfs_volume *vol)
1034 {
1035 struct inode *tmp_ino;
1036 ntfs_inode *tmp_ni;
1037
1038 ntfs_debug("Entering.");
1039 /* Get mft mirror inode. */
1040 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1041 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1042 if (!IS_ERR(tmp_ino))
1043 iput(tmp_ino);
1044 /* Caller will display error message. */
1045 return false;
1046 }
1047 /*
1048 * Re-initialize some specifics about $MFTMirr's inode as
1049 * ntfs_read_inode() will have set up the default ones.
1050 */
1051 /* Set uid and gid to root. */
1052 tmp_ino->i_uid = GLOBAL_ROOT_UID;
1053 tmp_ino->i_gid = GLOBAL_ROOT_GID;
1054 /* Regular file. No access for anyone. */
1055 tmp_ino->i_mode = S_IFREG;
1056 /* No VFS initiated operations allowed for $MFTMirr. */
1057 tmp_ino->i_op = &ntfs_empty_inode_ops;
1058 tmp_ino->i_fop = &ntfs_empty_file_ops;
1059 /* Put in our special address space operations. */
1060 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1061 tmp_ni = NTFS_I(tmp_ino);
1062 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1063 NInoSetMstProtected(tmp_ni);
1064 NInoSetSparseDisabled(tmp_ni);
1065 /*
1066 * Set up our little cheat allowing us to reuse the async read io
1067 * completion handler for directories.
1068 */
1069 tmp_ni->itype.index.block_size = vol->mft_record_size;
1070 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1071 vol->mftmirr_ino = tmp_ino;
1072 ntfs_debug("Done.");
1073 return true;
1074 }
1075
1076 /**
1077 * check_mft_mirror - compare contents of the mft mirror with the mft
1078 * @vol: ntfs super block describing device whose mft mirror to check
1079 *
1080 * Return 'true' on success or 'false' on error.
1081 *
1082 * Note, this function also results in the mft mirror runlist being completely
1083 * mapped into memory. The mft mirror write code requires this and will BUG()
1084 * should it find an unmapped runlist element.
1085 */
1086 static bool check_mft_mirror(ntfs_volume *vol)
1087 {
1088 struct super_block *sb = vol->sb;
1089 ntfs_inode *mirr_ni;
1090 struct page *mft_page, *mirr_page;
1091 u8 *kmft, *kmirr;
1092 runlist_element *rl, rl2[2];
1093 pgoff_t index;
1094 int mrecs_per_page, i;
1095
1096 ntfs_debug("Entering.");
1097 /* Compare contents of $MFT and $MFTMirr. */
1098 mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1099 BUG_ON(!mrecs_per_page);
1100 BUG_ON(!vol->mftmirr_size);
1101 mft_page = mirr_page = NULL;
1102 kmft = kmirr = NULL;
1103 index = i = 0;
1104 do {
1105 u32 bytes;
1106
1107 /* Switch pages if necessary. */
1108 if (!(i % mrecs_per_page)) {
1109 if (index) {
1110 ntfs_unmap_page(mft_page);
1111 ntfs_unmap_page(mirr_page);
1112 }
1113 /* Get the $MFT page. */
1114 mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1115 index);
1116 if (IS_ERR(mft_page)) {
1117 ntfs_error(sb, "Failed to read $MFT.");
1118 return false;
1119 }
1120 kmft = page_address(mft_page);
1121 /* Get the $MFTMirr page. */
1122 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1123 index);
1124 if (IS_ERR(mirr_page)) {
1125 ntfs_error(sb, "Failed to read $MFTMirr.");
1126 goto mft_unmap_out;
1127 }
1128 kmirr = page_address(mirr_page);
1129 ++index;
1130 }
1131 /* Do not check the record if it is not in use. */
1132 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1133 /* Make sure the record is ok. */
1134 if (ntfs_is_baad_recordp((le32*)kmft)) {
1135 ntfs_error(sb, "Incomplete multi sector "
1136 "transfer detected in mft "
1137 "record %i.", i);
1138 mm_unmap_out:
1139 ntfs_unmap_page(mirr_page);
1140 mft_unmap_out:
1141 ntfs_unmap_page(mft_page);
1142 return false;
1143 }
1144 }
1145 /* Do not check the mirror record if it is not in use. */
1146 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1147 if (ntfs_is_baad_recordp((le32*)kmirr)) {
1148 ntfs_error(sb, "Incomplete multi sector "
1149 "transfer detected in mft "
1150 "mirror record %i.", i);
1151 goto mm_unmap_out;
1152 }
1153 }
1154 /* Get the amount of data in the current record. */
1155 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1156 if (bytes < sizeof(MFT_RECORD_OLD) ||
1157 bytes > vol->mft_record_size ||
1158 ntfs_is_baad_recordp((le32*)kmft)) {
1159 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1160 if (bytes < sizeof(MFT_RECORD_OLD) ||
1161 bytes > vol->mft_record_size ||
1162 ntfs_is_baad_recordp((le32*)kmirr))
1163 bytes = vol->mft_record_size;
1164 }
1165 /* Compare the two records. */
1166 if (memcmp(kmft, kmirr, bytes)) {
1167 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1168 "match. Run ntfsfix or chkdsk.", i);
1169 goto mm_unmap_out;
1170 }
1171 kmft += vol->mft_record_size;
1172 kmirr += vol->mft_record_size;
1173 } while (++i < vol->mftmirr_size);
1174 /* Release the last pages. */
1175 ntfs_unmap_page(mft_page);
1176 ntfs_unmap_page(mirr_page);
1177
1178 /* Construct the mft mirror runlist by hand. */
1179 rl2[0].vcn = 0;
1180 rl2[0].lcn = vol->mftmirr_lcn;
1181 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1182 vol->cluster_size - 1) / vol->cluster_size;
1183 rl2[1].vcn = rl2[0].length;
1184 rl2[1].lcn = LCN_ENOENT;
1185 rl2[1].length = 0;
1186 /*
1187 * Because we have just read all of the mft mirror, we know we have
1188 * mapped the full runlist for it.
1189 */
1190 mirr_ni = NTFS_I(vol->mftmirr_ino);
1191 down_read(&mirr_ni->runlist.lock);
1192 rl = mirr_ni->runlist.rl;
1193 /* Compare the two runlists. They must be identical. */
1194 i = 0;
1195 do {
1196 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1197 rl2[i].length != rl[i].length) {
1198 ntfs_error(sb, "$MFTMirr location mismatch. "
1199 "Run chkdsk.");
1200 up_read(&mirr_ni->runlist.lock);
1201 return false;
1202 }
1203 } while (rl2[i++].length);
1204 up_read(&mirr_ni->runlist.lock);
1205 ntfs_debug("Done.");
1206 return true;
1207 }
1208
1209 /**
1210 * load_and_check_logfile - load and check the logfile inode for a volume
1211 * @vol: ntfs super block describing device whose logfile to load
1212 *
1213 * Return 'true' on success or 'false' on error.
1214 */
1215 static bool load_and_check_logfile(ntfs_volume *vol,
1216 RESTART_PAGE_HEADER **rp)
1217 {
1218 struct inode *tmp_ino;
1219
1220 ntfs_debug("Entering.");
1221 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1222 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1223 if (!IS_ERR(tmp_ino))
1224 iput(tmp_ino);
1225 /* Caller will display error message. */
1226 return false;
1227 }
1228 if (!ntfs_check_logfile(tmp_ino, rp)) {
1229 iput(tmp_ino);
1230 /* ntfs_check_logfile() will have displayed error output. */
1231 return false;
1232 }
1233 NInoSetSparseDisabled(NTFS_I(tmp_ino));
1234 vol->logfile_ino = tmp_ino;
1235 ntfs_debug("Done.");
1236 return true;
1237 }
1238
1239 #define NTFS_HIBERFIL_HEADER_SIZE 4096
1240
1241 /**
1242 * check_windows_hibernation_status - check if Windows is suspended on a volume
1243 * @vol: ntfs super block of device to check
1244 *
1245 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1246 * looking for the file hiberfil.sys in the root directory of the volume. If
1247 * the file is not present Windows is definitely not suspended.
1248 *
1249 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1250 * definitely suspended (this volume is not the system volume). Caveat: on a
1251 * system with many volumes it is possible that the < 4kiB check is bogus but
1252 * for now this should do fine.
1253 *
1254 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1255 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1256 * Windows is definitely suspended. If it is completely full of zeroes,
1257 * Windows is definitely not hibernated. Any other case is treated as if
1258 * Windows is suspended. This caters for the above mentioned caveat of a
1259 * system with many volumes where no "hibr" magic would be present and there is
1260 * no zero header.
1261 *
1262 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1263 * hibernated on the volume, and -errno on error.
1264 */
1265 static int check_windows_hibernation_status(ntfs_volume *vol)
1266 {
1267 MFT_REF mref;
1268 struct inode *vi;
1269 struct page *page;
1270 u32 *kaddr, *kend;
1271 ntfs_name *name = NULL;
1272 int ret = 1;
1273 static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1274 cpu_to_le16('i'), cpu_to_le16('b'),
1275 cpu_to_le16('e'), cpu_to_le16('r'),
1276 cpu_to_le16('f'), cpu_to_le16('i'),
1277 cpu_to_le16('l'), cpu_to_le16('.'),
1278 cpu_to_le16('s'), cpu_to_le16('y'),
1279 cpu_to_le16('s'), 0 };
1280
1281 ntfs_debug("Entering.");
1282 /*
1283 * Find the inode number for the hibernation file by looking up the
1284 * filename hiberfil.sys in the root directory.
1285 */
1286 mutex_lock(&vol->root_ino->i_mutex);
1287 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1288 &name);
1289 mutex_unlock(&vol->root_ino->i_mutex);
1290 if (IS_ERR_MREF(mref)) {
1291 ret = MREF_ERR(mref);
1292 /* If the file does not exist, Windows is not hibernated. */
1293 if (ret == -ENOENT) {
1294 ntfs_debug("hiberfil.sys not present. Windows is not "
1295 "hibernated on the volume.");
1296 return 0;
1297 }
1298 /* A real error occurred. */
1299 ntfs_error(vol->sb, "Failed to find inode number for "
1300 "hiberfil.sys.");
1301 return ret;
1302 }
1303 /* We do not care for the type of match that was found. */
1304 kfree(name);
1305 /* Get the inode. */
1306 vi = ntfs_iget(vol->sb, MREF(mref));
1307 if (IS_ERR(vi) || is_bad_inode(vi)) {
1308 if (!IS_ERR(vi))
1309 iput(vi);
1310 ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1311 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1312 }
1313 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1314 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1315 "Windows is hibernated on the volume. This "
1316 "is not the system volume.", i_size_read(vi));
1317 goto iput_out;
1318 }
1319 page = ntfs_map_page(vi->i_mapping, 0);
1320 if (IS_ERR(page)) {
1321 ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1322 ret = PTR_ERR(page);
1323 goto iput_out;
1324 }
1325 kaddr = (u32*)page_address(page);
1326 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1327 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1328 "hibernated on the volume. This is the "
1329 "system volume.");
1330 goto unm_iput_out;
1331 }
1332 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1333 do {
1334 if (unlikely(*kaddr)) {
1335 ntfs_debug("hiberfil.sys is larger than 4kiB "
1336 "(0x%llx), does not contain the "
1337 "\"hibr\" magic, and does not have a "
1338 "zero header. Windows is hibernated "
1339 "on the volume. This is not the "
1340 "system volume.", i_size_read(vi));
1341 goto unm_iput_out;
1342 }
1343 } while (++kaddr < kend);
1344 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1345 "hibernated on the volume. This is the system "
1346 "volume.");
1347 ret = 0;
1348 unm_iput_out:
1349 ntfs_unmap_page(page);
1350 iput_out:
1351 iput(vi);
1352 return ret;
1353 }
1354
1355 /**
1356 * load_and_init_quota - load and setup the quota file for a volume if present
1357 * @vol: ntfs super block describing device whose quota file to load
1358 *
1359 * Return 'true' on success or 'false' on error. If $Quota is not present, we
1360 * leave vol->quota_ino as NULL and return success.
1361 */
1362 static bool load_and_init_quota(ntfs_volume *vol)
1363 {
1364 MFT_REF mref;
1365 struct inode *tmp_ino;
1366 ntfs_name *name = NULL;
1367 static const ntfschar Quota[7] = { cpu_to_le16('$'),
1368 cpu_to_le16('Q'), cpu_to_le16('u'),
1369 cpu_to_le16('o'), cpu_to_le16('t'),
1370 cpu_to_le16('a'), 0 };
1371 static ntfschar Q[3] = { cpu_to_le16('$'),
1372 cpu_to_le16('Q'), 0 };
1373
1374 ntfs_debug("Entering.");
1375 /*
1376 * Find the inode number for the quota file by looking up the filename
1377 * $Quota in the extended system files directory $Extend.
1378 */
1379 mutex_lock(&vol->extend_ino->i_mutex);
1380 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1381 &name);
1382 mutex_unlock(&vol->extend_ino->i_mutex);
1383 if (IS_ERR_MREF(mref)) {
1384 /*
1385 * If the file does not exist, quotas are disabled and have
1386 * never been enabled on this volume, just return success.
1387 */
1388 if (MREF_ERR(mref) == -ENOENT) {
1389 ntfs_debug("$Quota not present. Volume does not have "
1390 "quotas enabled.");
1391 /*
1392 * No need to try to set quotas out of date if they are
1393 * not enabled.
1394 */
1395 NVolSetQuotaOutOfDate(vol);
1396 return true;
1397 }
1398 /* A real error occurred. */
1399 ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1400 return false;
1401 }
1402 /* We do not care for the type of match that was found. */
1403 kfree(name);
1404 /* Get the inode. */
1405 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1406 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1407 if (!IS_ERR(tmp_ino))
1408 iput(tmp_ino);
1409 ntfs_error(vol->sb, "Failed to load $Quota.");
1410 return false;
1411 }
1412 vol->quota_ino = tmp_ino;
1413 /* Get the $Q index allocation attribute. */
1414 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1415 if (IS_ERR(tmp_ino)) {
1416 ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1417 return false;
1418 }
1419 vol->quota_q_ino = tmp_ino;
1420 ntfs_debug("Done.");
1421 return true;
1422 }
1423
1424 /**
1425 * load_and_init_usnjrnl - load and setup the transaction log if present
1426 * @vol: ntfs super block describing device whose usnjrnl file to load
1427 *
1428 * Return 'true' on success or 'false' on error.
1429 *
1430 * If $UsnJrnl is not present or in the process of being disabled, we set
1431 * NVolUsnJrnlStamped() and return success.
1432 *
1433 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1434 * i.e. transaction logging has only just been enabled or the journal has been
1435 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1436 * and return success.
1437 */
1438 static bool load_and_init_usnjrnl(ntfs_volume *vol)
1439 {
1440 MFT_REF mref;
1441 struct inode *tmp_ino;
1442 ntfs_inode *tmp_ni;
1443 struct page *page;
1444 ntfs_name *name = NULL;
1445 USN_HEADER *uh;
1446 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1447 cpu_to_le16('U'), cpu_to_le16('s'),
1448 cpu_to_le16('n'), cpu_to_le16('J'),
1449 cpu_to_le16('r'), cpu_to_le16('n'),
1450 cpu_to_le16('l'), 0 };
1451 static ntfschar Max[5] = { cpu_to_le16('$'),
1452 cpu_to_le16('M'), cpu_to_le16('a'),
1453 cpu_to_le16('x'), 0 };
1454 static ntfschar J[3] = { cpu_to_le16('$'),
1455 cpu_to_le16('J'), 0 };
1456
1457 ntfs_debug("Entering.");
1458 /*
1459 * Find the inode number for the transaction log file by looking up the
1460 * filename $UsnJrnl in the extended system files directory $Extend.
1461 */
1462 mutex_lock(&vol->extend_ino->i_mutex);
1463 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1464 &name);
1465 mutex_unlock(&vol->extend_ino->i_mutex);
1466 if (IS_ERR_MREF(mref)) {
1467 /*
1468 * If the file does not exist, transaction logging is disabled,
1469 * just return success.
1470 */
1471 if (MREF_ERR(mref) == -ENOENT) {
1472 ntfs_debug("$UsnJrnl not present. Volume does not "
1473 "have transaction logging enabled.");
1474 not_enabled:
1475 /*
1476 * No need to try to stamp the transaction log if
1477 * transaction logging is not enabled.
1478 */
1479 NVolSetUsnJrnlStamped(vol);
1480 return true;
1481 }
1482 /* A real error occurred. */
1483 ntfs_error(vol->sb, "Failed to find inode number for "
1484 "$UsnJrnl.");
1485 return false;
1486 }
1487 /* We do not care for the type of match that was found. */
1488 kfree(name);
1489 /* Get the inode. */
1490 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1491 if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1492 if (!IS_ERR(tmp_ino))
1493 iput(tmp_ino);
1494 ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1495 return false;
1496 }
1497 vol->usnjrnl_ino = tmp_ino;
1498 /*
1499 * If the transaction log is in the process of being deleted, we can
1500 * ignore it.
1501 */
1502 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1503 ntfs_debug("$UsnJrnl in the process of being disabled. "
1504 "Volume does not have transaction logging "
1505 "enabled.");
1506 goto not_enabled;
1507 }
1508 /* Get the $DATA/$Max attribute. */
1509 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1510 if (IS_ERR(tmp_ino)) {
1511 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1512 "attribute.");
1513 return false;
1514 }
1515 vol->usnjrnl_max_ino = tmp_ino;
1516 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1517 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1518 "attribute (size is 0x%llx but should be at "
1519 "least 0x%zx bytes).", i_size_read(tmp_ino),
1520 sizeof(USN_HEADER));
1521 return false;
1522 }
1523 /* Get the $DATA/$J attribute. */
1524 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1525 if (IS_ERR(tmp_ino)) {
1526 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1527 "attribute.");
1528 return false;
1529 }
1530 vol->usnjrnl_j_ino = tmp_ino;
1531 /* Verify $J is non-resident and sparse. */
1532 tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1533 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1534 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1535 "and/or not sparse.");
1536 return false;
1537 }
1538 /* Read the USN_HEADER from $DATA/$Max. */
1539 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1540 if (IS_ERR(page)) {
1541 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1542 "attribute.");
1543 return false;
1544 }
1545 uh = (USN_HEADER*)page_address(page);
1546 /* Sanity check the $Max. */
1547 if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1548 sle64_to_cpu(uh->maximum_size))) {
1549 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1550 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1551 (long long)sle64_to_cpu(uh->allocation_delta),
1552 (long long)sle64_to_cpu(uh->maximum_size));
1553 ntfs_unmap_page(page);
1554 return false;
1555 }
1556 /*
1557 * If the transaction log has been stamped and nothing has been written
1558 * to it since, we do not need to stamp it.
1559 */
1560 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1561 i_size_read(vol->usnjrnl_j_ino))) {
1562 if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1563 i_size_read(vol->usnjrnl_j_ino))) {
1564 ntfs_unmap_page(page);
1565 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1566 "logged since it was last stamped. "
1567 "Treating this as if the volume does "
1568 "not have transaction logging "
1569 "enabled.");
1570 goto not_enabled;
1571 }
1572 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1573 "which is out of bounds (0x%llx). $UsnJrnl "
1574 "is corrupt.",
1575 (long long)sle64_to_cpu(uh->lowest_valid_usn),
1576 i_size_read(vol->usnjrnl_j_ino));
1577 ntfs_unmap_page(page);
1578 return false;
1579 }
1580 ntfs_unmap_page(page);
1581 ntfs_debug("Done.");
1582 return true;
1583 }
1584
1585 /**
1586 * load_and_init_attrdef - load the attribute definitions table for a volume
1587 * @vol: ntfs super block describing device whose attrdef to load
1588 *
1589 * Return 'true' on success or 'false' on error.
1590 */
1591 static bool load_and_init_attrdef(ntfs_volume *vol)
1592 {
1593 loff_t i_size;
1594 struct super_block *sb = vol->sb;
1595 struct inode *ino;
1596 struct page *page;
1597 pgoff_t index, max_index;
1598 unsigned int size;
1599
1600 ntfs_debug("Entering.");
1601 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1602 ino = ntfs_iget(sb, FILE_AttrDef);
1603 if (IS_ERR(ino) || is_bad_inode(ino)) {
1604 if (!IS_ERR(ino))
1605 iput(ino);
1606 goto failed;
1607 }
1608 NInoSetSparseDisabled(NTFS_I(ino));
1609 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1610 i_size = i_size_read(ino);
1611 if (i_size <= 0 || i_size > 0x7fffffff)
1612 goto iput_failed;
1613 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1614 if (!vol->attrdef)
1615 goto iput_failed;
1616 index = 0;
1617 max_index = i_size >> PAGE_CACHE_SHIFT;
1618 size = PAGE_CACHE_SIZE;
1619 while (index < max_index) {
1620 /* Read the attrdef table and copy it into the linear buffer. */
1621 read_partial_attrdef_page:
1622 page = ntfs_map_page(ino->i_mapping, index);
1623 if (IS_ERR(page))
1624 goto free_iput_failed;
1625 memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1626 page_address(page), size);
1627 ntfs_unmap_page(page);
1628 };
1629 if (size == PAGE_CACHE_SIZE) {
1630 size = i_size & ~PAGE_CACHE_MASK;
1631 if (size)
1632 goto read_partial_attrdef_page;
1633 }
1634 vol->attrdef_size = i_size;
1635 ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1636 iput(ino);
1637 return true;
1638 free_iput_failed:
1639 ntfs_free(vol->attrdef);
1640 vol->attrdef = NULL;
1641 iput_failed:
1642 iput(ino);
1643 failed:
1644 ntfs_error(sb, "Failed to initialize attribute definition table.");
1645 return false;
1646 }
1647
1648 #endif /* NTFS_RW */
1649
1650 /**
1651 * load_and_init_upcase - load the upcase table for an ntfs volume
1652 * @vol: ntfs super block describing device whose upcase to load
1653 *
1654 * Return 'true' on success or 'false' on error.
1655 */
1656 static bool load_and_init_upcase(ntfs_volume *vol)
1657 {
1658 loff_t i_size;
1659 struct super_block *sb = vol->sb;
1660 struct inode *ino;
1661 struct page *page;
1662 pgoff_t index, max_index;
1663 unsigned int size;
1664 int i, max;
1665
1666 ntfs_debug("Entering.");
1667 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1668 ino = ntfs_iget(sb, FILE_UpCase);
1669 if (IS_ERR(ino) || is_bad_inode(ino)) {
1670 if (!IS_ERR(ino))
1671 iput(ino);
1672 goto upcase_failed;
1673 }
1674 /*
1675 * The upcase size must not be above 64k Unicode characters, must not
1676 * be zero and must be a multiple of sizeof(ntfschar).
1677 */
1678 i_size = i_size_read(ino);
1679 if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1680 i_size > 64ULL * 1024 * sizeof(ntfschar))
1681 goto iput_upcase_failed;
1682 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1683 if (!vol->upcase)
1684 goto iput_upcase_failed;
1685 index = 0;
1686 max_index = i_size >> PAGE_CACHE_SHIFT;
1687 size = PAGE_CACHE_SIZE;
1688 while (index < max_index) {
1689 /* Read the upcase table and copy it into the linear buffer. */
1690 read_partial_upcase_page:
1691 page = ntfs_map_page(ino->i_mapping, index);
1692 if (IS_ERR(page))
1693 goto iput_upcase_failed;
1694 memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1695 page_address(page), size);
1696 ntfs_unmap_page(page);
1697 };
1698 if (size == PAGE_CACHE_SIZE) {
1699 size = i_size & ~PAGE_CACHE_MASK;
1700 if (size)
1701 goto read_partial_upcase_page;
1702 }
1703 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1704 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1705 i_size, 64 * 1024 * sizeof(ntfschar));
1706 iput(ino);
1707 mutex_lock(&ntfs_lock);
1708 if (!default_upcase) {
1709 ntfs_debug("Using volume specified $UpCase since default is "
1710 "not present.");
1711 mutex_unlock(&ntfs_lock);
1712 return true;
1713 }
1714 max = default_upcase_len;
1715 if (max > vol->upcase_len)
1716 max = vol->upcase_len;
1717 for (i = 0; i < max; i++)
1718 if (vol->upcase[i] != default_upcase[i])
1719 break;
1720 if (i == max) {
1721 ntfs_free(vol->upcase);
1722 vol->upcase = default_upcase;
1723 vol->upcase_len = max;
1724 ntfs_nr_upcase_users++;
1725 mutex_unlock(&ntfs_lock);
1726 ntfs_debug("Volume specified $UpCase matches default. Using "
1727 "default.");
1728 return true;
1729 }
1730 mutex_unlock(&ntfs_lock);
1731 ntfs_debug("Using volume specified $UpCase since it does not match "
1732 "the default.");
1733 return true;
1734 iput_upcase_failed:
1735 iput(ino);
1736 ntfs_free(vol->upcase);
1737 vol->upcase = NULL;
1738 upcase_failed:
1739 mutex_lock(&ntfs_lock);
1740 if (default_upcase) {
1741 vol->upcase = default_upcase;
1742 vol->upcase_len = default_upcase_len;
1743 ntfs_nr_upcase_users++;
1744 mutex_unlock(&ntfs_lock);
1745 ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1746 "default.");
1747 return true;
1748 }
1749 mutex_unlock(&ntfs_lock);
1750 ntfs_error(sb, "Failed to initialize upcase table.");
1751 return false;
1752 }
1753
1754 /*
1755 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1756 * their own special locking rules:
1757 */
1758 static struct lock_class_key
1759 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1760 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1761
1762 /**
1763 * load_system_files - open the system files using normal functions
1764 * @vol: ntfs super block describing device whose system files to load
1765 *
1766 * Open the system files with normal access functions and complete setting up
1767 * the ntfs super block @vol.
1768 *
1769 * Return 'true' on success or 'false' on error.
1770 */
1771 static bool load_system_files(ntfs_volume *vol)
1772 {
1773 struct super_block *sb = vol->sb;
1774 MFT_RECORD *m;
1775 VOLUME_INFORMATION *vi;
1776 ntfs_attr_search_ctx *ctx;
1777 #ifdef NTFS_RW
1778 RESTART_PAGE_HEADER *rp;
1779 int err;
1780 #endif /* NTFS_RW */
1781
1782 ntfs_debug("Entering.");
1783 #ifdef NTFS_RW
1784 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1785 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1786 static const char *es1 = "Failed to load $MFTMirr";
1787 static const char *es2 = "$MFTMirr does not match $MFT";
1788 static const char *es3 = ". Run ntfsfix and/or chkdsk.";
1789
1790 /* If a read-write mount, convert it to a read-only mount. */
1791 if (!(sb->s_flags & MS_RDONLY)) {
1792 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1793 ON_ERRORS_CONTINUE))) {
1794 ntfs_error(sb, "%s and neither on_errors="
1795 "continue nor on_errors="
1796 "remount-ro was specified%s",
1797 !vol->mftmirr_ino ? es1 : es2,
1798 es3);
1799 goto iput_mirr_err_out;
1800 }
1801 sb->s_flags |= MS_RDONLY;
1802 ntfs_error(sb, "%s. Mounting read-only%s",
1803 !vol->mftmirr_ino ? es1 : es2, es3);
1804 } else
1805 ntfs_warning(sb, "%s. Will not be able to remount "
1806 "read-write%s",
1807 !vol->mftmirr_ino ? es1 : es2, es3);
1808 /* This will prevent a read-write remount. */
1809 NVolSetErrors(vol);
1810 }
1811 #endif /* NTFS_RW */
1812 /* Get mft bitmap attribute inode. */
1813 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1814 if (IS_ERR(vol->mftbmp_ino)) {
1815 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1816 goto iput_mirr_err_out;
1817 }
1818 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1819 &mftbmp_runlist_lock_key);
1820 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1821 &mftbmp_mrec_lock_key);
1822 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1823 if (!load_and_init_upcase(vol))
1824 goto iput_mftbmp_err_out;
1825 #ifdef NTFS_RW
1826 /*
1827 * Read attribute definitions table and setup @vol->attrdef and
1828 * @vol->attrdef_size.
1829 */
1830 if (!load_and_init_attrdef(vol))
1831 goto iput_upcase_err_out;
1832 #endif /* NTFS_RW */
1833 /*
1834 * Get the cluster allocation bitmap inode and verify the size, no
1835 * need for any locking at this stage as we are already running
1836 * exclusively as we are mount in progress task.
1837 */
1838 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1839 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1840 if (!IS_ERR(vol->lcnbmp_ino))
1841 iput(vol->lcnbmp_ino);
1842 goto bitmap_failed;
1843 }
1844 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1845 &lcnbmp_runlist_lock_key);
1846 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1847 &lcnbmp_mrec_lock_key);
1848
1849 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1850 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1851 iput(vol->lcnbmp_ino);
1852 bitmap_failed:
1853 ntfs_error(sb, "Failed to load $Bitmap.");
1854 goto iput_attrdef_err_out;
1855 }
1856 /*
1857 * Get the volume inode and setup our cache of the volume flags and
1858 * version.
1859 */
1860 vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1861 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1862 if (!IS_ERR(vol->vol_ino))
1863 iput(vol->vol_ino);
1864 volume_failed:
1865 ntfs_error(sb, "Failed to load $Volume.");
1866 goto iput_lcnbmp_err_out;
1867 }
1868 m = map_mft_record(NTFS_I(vol->vol_ino));
1869 if (IS_ERR(m)) {
1870 iput_volume_failed:
1871 iput(vol->vol_ino);
1872 goto volume_failed;
1873 }
1874 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1875 ntfs_error(sb, "Failed to get attribute search context.");
1876 goto get_ctx_vol_failed;
1877 }
1878 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1879 ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1880 err_put_vol:
1881 ntfs_attr_put_search_ctx(ctx);
1882 get_ctx_vol_failed:
1883 unmap_mft_record(NTFS_I(vol->vol_ino));
1884 goto iput_volume_failed;
1885 }
1886 vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1887 le16_to_cpu(ctx->attr->data.resident.value_offset));
1888 /* Some bounds checks. */
1889 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1890 le32_to_cpu(ctx->attr->data.resident.value_length) >
1891 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1892 goto err_put_vol;
1893 /* Copy the volume flags and version to the ntfs_volume structure. */
1894 vol->vol_flags = vi->flags;
1895 vol->major_ver = vi->major_ver;
1896 vol->minor_ver = vi->minor_ver;
1897 ntfs_attr_put_search_ctx(ctx);
1898 unmap_mft_record(NTFS_I(vol->vol_ino));
1899 printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
1900 vol->minor_ver);
1901 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1902 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1903 "volume version %i.%i (need at least version "
1904 "3.0).", vol->major_ver, vol->minor_ver);
1905 NVolClearSparseEnabled(vol);
1906 }
1907 #ifdef NTFS_RW
1908 /* Make sure that no unsupported volume flags are set. */
1909 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1910 static const char *es1a = "Volume is dirty";
1911 static const char *es1b = "Volume has been modified by chkdsk";
1912 static const char *es1c = "Volume has unsupported flags set";
1913 static const char *es2a = ". Run chkdsk and mount in Windows.";
1914 static const char *es2b = ". Mount in Windows.";
1915 const char *es1, *es2;
1916
1917 es2 = es2a;
1918 if (vol->vol_flags & VOLUME_IS_DIRTY)
1919 es1 = es1a;
1920 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1921 es1 = es1b;
1922 es2 = es2b;
1923 } else {
1924 es1 = es1c;
1925 ntfs_warning(sb, "Unsupported volume flags 0x%x "
1926 "encountered.",
1927 (unsigned)le16_to_cpu(vol->vol_flags));
1928 }
1929 /* If a read-write mount, convert it to a read-only mount. */
1930 if (!(sb->s_flags & MS_RDONLY)) {
1931 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1932 ON_ERRORS_CONTINUE))) {
1933 ntfs_error(sb, "%s and neither on_errors="
1934 "continue nor on_errors="
1935 "remount-ro was specified%s",
1936 es1, es2);
1937 goto iput_vol_err_out;
1938 }
1939 sb->s_flags |= MS_RDONLY;
1940 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1941 } else
1942 ntfs_warning(sb, "%s. Will not be able to remount "
1943 "read-write%s", es1, es2);
1944 /*
1945 * Do not set NVolErrors() because ntfs_remount() re-checks the
1946 * flags which we need to do in case any flags have changed.
1947 */
1948 }
1949 /*
1950 * Get the inode for the logfile, check it and determine if the volume
1951 * was shutdown cleanly.
1952 */
1953 rp = NULL;
1954 if (!load_and_check_logfile(vol, &rp) ||
1955 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1956 static const char *es1a = "Failed to load $LogFile";
1957 static const char *es1b = "$LogFile is not clean";
1958 static const char *es2 = ". Mount in Windows.";
1959 const char *es1;
1960
1961 es1 = !vol->logfile_ino ? es1a : es1b;
1962 /* If a read-write mount, convert it to a read-only mount. */
1963 if (!(sb->s_flags & MS_RDONLY)) {
1964 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1965 ON_ERRORS_CONTINUE))) {
1966 ntfs_error(sb, "%s and neither on_errors="
1967 "continue nor on_errors="
1968 "remount-ro was specified%s",
1969 es1, es2);
1970 if (vol->logfile_ino) {
1971 BUG_ON(!rp);
1972 ntfs_free(rp);
1973 }
1974 goto iput_logfile_err_out;
1975 }
1976 sb->s_flags |= MS_RDONLY;
1977 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1978 } else
1979 ntfs_warning(sb, "%s. Will not be able to remount "
1980 "read-write%s", es1, es2);
1981 /* This will prevent a read-write remount. */
1982 NVolSetErrors(vol);
1983 }
1984 ntfs_free(rp);
1985 #endif /* NTFS_RW */
1986 /* Get the root directory inode so we can do path lookups. */
1987 vol->root_ino = ntfs_iget(sb, FILE_root);
1988 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1989 if (!IS_ERR(vol->root_ino))
1990 iput(vol->root_ino);
1991 ntfs_error(sb, "Failed to load root directory.");
1992 goto iput_logfile_err_out;
1993 }
1994 #ifdef NTFS_RW
1995 /*
1996 * Check if Windows is suspended to disk on the target volume. If it
1997 * is hibernated, we must not write *anything* to the disk so set
1998 * NVolErrors() without setting the dirty volume flag and mount
1999 * read-only. This will prevent read-write remounting and it will also
2000 * prevent all writes.
2001 */
2002 err = check_windows_hibernation_status(vol);
2003 if (unlikely(err)) {
2004 static const char *es1a = "Failed to determine if Windows is "
2005 "hibernated";
2006 static const char *es1b = "Windows is hibernated";
2007 static const char *es2 = ". Run chkdsk.";
2008 const char *es1;
2009
2010 es1 = err < 0 ? es1a : es1b;
2011 /* If a read-write mount, convert it to a read-only mount. */
2012 if (!(sb->s_flags & MS_RDONLY)) {
2013 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2014 ON_ERRORS_CONTINUE))) {
2015 ntfs_error(sb, "%s and neither on_errors="
2016 "continue nor on_errors="
2017 "remount-ro was specified%s",
2018 es1, es2);
2019 goto iput_root_err_out;
2020 }
2021 sb->s_flags |= MS_RDONLY;
2022 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2023 } else
2024 ntfs_warning(sb, "%s. Will not be able to remount "
2025 "read-write%s", es1, es2);
2026 /* This will prevent a read-write remount. */
2027 NVolSetErrors(vol);
2028 }
2029 /* If (still) a read-write mount, mark the volume dirty. */
2030 if (!(sb->s_flags & MS_RDONLY) &&
2031 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
2032 static const char *es1 = "Failed to set dirty bit in volume "
2033 "information flags";
2034 static const char *es2 = ". Run chkdsk.";
2035
2036 /* Convert to a read-only mount. */
2037 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2038 ON_ERRORS_CONTINUE))) {
2039 ntfs_error(sb, "%s and neither on_errors=continue nor "
2040 "on_errors=remount-ro was specified%s",
2041 es1, es2);
2042 goto iput_root_err_out;
2043 }
2044 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2045 sb->s_flags |= MS_RDONLY;
2046 /*
2047 * Do not set NVolErrors() because ntfs_remount() might manage
2048 * to set the dirty flag in which case all would be well.
2049 */
2050 }
2051 #if 0
2052 // TODO: Enable this code once we start modifying anything that is
2053 // different between NTFS 1.2 and 3.x...
2054 /*
2055 * If (still) a read-write mount, set the NT4 compatibility flag on
2056 * newer NTFS version volumes.
2057 */
2058 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
2059 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2060 static const char *es1 = "Failed to set NT4 compatibility flag";
2061 static const char *es2 = ". Run chkdsk.";
2062
2063 /* Convert to a read-only mount. */
2064 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2065 ON_ERRORS_CONTINUE))) {
2066 ntfs_error(sb, "%s and neither on_errors=continue nor "
2067 "on_errors=remount-ro was specified%s",
2068 es1, es2);
2069 goto iput_root_err_out;
2070 }
2071 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2072 sb->s_flags |= MS_RDONLY;
2073 NVolSetErrors(vol);
2074 }
2075 #endif
2076 /* If (still) a read-write mount, empty the logfile. */
2077 if (!(sb->s_flags & MS_RDONLY) &&
2078 !ntfs_empty_logfile(vol->logfile_ino)) {
2079 static const char *es1 = "Failed to empty $LogFile";
2080 static const char *es2 = ". Mount in Windows.";
2081
2082 /* Convert to a read-only mount. */
2083 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2084 ON_ERRORS_CONTINUE))) {
2085 ntfs_error(sb, "%s and neither on_errors=continue nor "
2086 "on_errors=remount-ro was specified%s",
2087 es1, es2);
2088 goto iput_root_err_out;
2089 }
2090 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2091 sb->s_flags |= MS_RDONLY;
2092 NVolSetErrors(vol);
2093 }
2094 #endif /* NTFS_RW */
2095 /* If on NTFS versions before 3.0, we are done. */
2096 if (unlikely(vol->major_ver < 3))
2097 return true;
2098 /* NTFS 3.0+ specific initialization. */
2099 /* Get the security descriptors inode. */
2100 vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2101 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2102 if (!IS_ERR(vol->secure_ino))
2103 iput(vol->secure_ino);
2104 ntfs_error(sb, "Failed to load $Secure.");
2105 goto iput_root_err_out;
2106 }
2107 // TODO: Initialize security.
2108 /* Get the extended system files' directory inode. */
2109 vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2110 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2111 if (!IS_ERR(vol->extend_ino))
2112 iput(vol->extend_ino);
2113 ntfs_error(sb, "Failed to load $Extend.");
2114 goto iput_sec_err_out;
2115 }
2116 #ifdef NTFS_RW
2117 /* Find the quota file, load it if present, and set it up. */
2118 if (!load_and_init_quota(vol)) {
2119 static const char *es1 = "Failed to load $Quota";
2120 static const char *es2 = ". Run chkdsk.";
2121
2122 /* If a read-write mount, convert it to a read-only mount. */
2123 if (!(sb->s_flags & MS_RDONLY)) {
2124 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2125 ON_ERRORS_CONTINUE))) {
2126 ntfs_error(sb, "%s and neither on_errors="
2127 "continue nor on_errors="
2128 "remount-ro was specified%s",
2129 es1, es2);
2130 goto iput_quota_err_out;
2131 }
2132 sb->s_flags |= MS_RDONLY;
2133 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2134 } else
2135 ntfs_warning(sb, "%s. Will not be able to remount "
2136 "read-write%s", es1, es2);
2137 /* This will prevent a read-write remount. */
2138 NVolSetErrors(vol);
2139 }
2140 /* If (still) a read-write mount, mark the quotas out of date. */
2141 if (!(sb->s_flags & MS_RDONLY) &&
2142 !ntfs_mark_quotas_out_of_date(vol)) {
2143 static const char *es1 = "Failed to mark quotas out of date";
2144 static const char *es2 = ". Run chkdsk.";
2145
2146 /* Convert to a read-only mount. */
2147 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2148 ON_ERRORS_CONTINUE))) {
2149 ntfs_error(sb, "%s and neither on_errors=continue nor "
2150 "on_errors=remount-ro was specified%s",
2151 es1, es2);
2152 goto iput_quota_err_out;
2153 }
2154 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2155 sb->s_flags |= MS_RDONLY;
2156 NVolSetErrors(vol);
2157 }
2158 /*
2159 * Find the transaction log file ($UsnJrnl), load it if present, check
2160 * it, and set it up.
2161 */
2162 if (!load_and_init_usnjrnl(vol)) {
2163 static const char *es1 = "Failed to load $UsnJrnl";
2164 static const char *es2 = ". Run chkdsk.";
2165
2166 /* If a read-write mount, convert it to a read-only mount. */
2167 if (!(sb->s_flags & MS_RDONLY)) {
2168 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2169 ON_ERRORS_CONTINUE))) {
2170 ntfs_error(sb, "%s and neither on_errors="
2171 "continue nor on_errors="
2172 "remount-ro was specified%s",
2173 es1, es2);
2174 goto iput_usnjrnl_err_out;
2175 }
2176 sb->s_flags |= MS_RDONLY;
2177 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2178 } else
2179 ntfs_warning(sb, "%s. Will not be able to remount "
2180 "read-write%s", es1, es2);
2181 /* This will prevent a read-write remount. */
2182 NVolSetErrors(vol);
2183 }
2184 /* If (still) a read-write mount, stamp the transaction log. */
2185 if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2186 static const char *es1 = "Failed to stamp transaction log "
2187 "($UsnJrnl)";
2188 static const char *es2 = ". Run chkdsk.";
2189
2190 /* Convert to a read-only mount. */
2191 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2192 ON_ERRORS_CONTINUE))) {
2193 ntfs_error(sb, "%s and neither on_errors=continue nor "
2194 "on_errors=remount-ro was specified%s",
2195 es1, es2);
2196 goto iput_usnjrnl_err_out;
2197 }
2198 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2199 sb->s_flags |= MS_RDONLY;
2200 NVolSetErrors(vol);
2201 }
2202 #endif /* NTFS_RW */
2203 return true;
2204 #ifdef NTFS_RW
2205 iput_usnjrnl_err_out:
2206 if (vol->usnjrnl_j_ino)
2207 iput(vol->usnjrnl_j_ino);
2208 if (vol->usnjrnl_max_ino)
2209 iput(vol->usnjrnl_max_ino);
2210 if (vol->usnjrnl_ino)
2211 iput(vol->usnjrnl_ino);
2212 iput_quota_err_out:
2213 if (vol->quota_q_ino)
2214 iput(vol->quota_q_ino);
2215 if (vol->quota_ino)
2216 iput(vol->quota_ino);
2217 iput(vol->extend_ino);
2218 #endif /* NTFS_RW */
2219 iput_sec_err_out:
2220 iput(vol->secure_ino);
2221 iput_root_err_out:
2222 iput(vol->root_ino);
2223 iput_logfile_err_out:
2224 #ifdef NTFS_RW
2225 if (vol->logfile_ino)
2226 iput(vol->logfile_ino);
2227 iput_vol_err_out:
2228 #endif /* NTFS_RW */
2229 iput(vol->vol_ino);
2230 iput_lcnbmp_err_out:
2231 iput(vol->lcnbmp_ino);
2232 iput_attrdef_err_out:
2233 vol->attrdef_size = 0;
2234 if (vol->attrdef) {
2235 ntfs_free(vol->attrdef);
2236 vol->attrdef = NULL;
2237 }
2238 #ifdef NTFS_RW
2239 iput_upcase_err_out:
2240 #endif /* NTFS_RW */
2241 vol->upcase_len = 0;
2242 mutex_lock(&ntfs_lock);
2243 if (vol->upcase == default_upcase) {
2244 ntfs_nr_upcase_users--;
2245 vol->upcase = NULL;
2246 }
2247 mutex_unlock(&ntfs_lock);
2248 if (vol->upcase) {
2249 ntfs_free(vol->upcase);
2250 vol->upcase = NULL;
2251 }
2252 iput_mftbmp_err_out:
2253 iput(vol->mftbmp_ino);
2254 iput_mirr_err_out:
2255 #ifdef NTFS_RW
2256 if (vol->mftmirr_ino)
2257 iput(vol->mftmirr_ino);
2258 #endif /* NTFS_RW */
2259 return false;
2260 }
2261
2262 /**
2263 * ntfs_put_super - called by the vfs to unmount a volume
2264 * @sb: vfs superblock of volume to unmount
2265 *
2266 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2267 * the volume is being unmounted (umount system call has been invoked) and it
2268 * releases all inodes and memory belonging to the NTFS specific part of the
2269 * super block.
2270 */
2271 static void ntfs_put_super(struct super_block *sb)
2272 {
2273 ntfs_volume *vol = NTFS_SB(sb);
2274
2275 ntfs_debug("Entering.");
2276
2277 #ifdef NTFS_RW
2278 /*
2279 * Commit all inodes while they are still open in case some of them
2280 * cause others to be dirtied.
2281 */
2282 ntfs_commit_inode(vol->vol_ino);
2283
2284 /* NTFS 3.0+ specific. */
2285 if (vol->major_ver >= 3) {
2286 if (vol->usnjrnl_j_ino)
2287 ntfs_commit_inode(vol->usnjrnl_j_ino);
2288 if (vol->usnjrnl_max_ino)
2289 ntfs_commit_inode(vol->usnjrnl_max_ino);
2290 if (vol->usnjrnl_ino)
2291 ntfs_commit_inode(vol->usnjrnl_ino);
2292 if (vol->quota_q_ino)
2293 ntfs_commit_inode(vol->quota_q_ino);
2294 if (vol->quota_ino)
2295 ntfs_commit_inode(vol->quota_ino);
2296 if (vol->extend_ino)
2297 ntfs_commit_inode(vol->extend_ino);
2298 if (vol->secure_ino)
2299 ntfs_commit_inode(vol->secure_ino);
2300 }
2301
2302 ntfs_commit_inode(vol->root_ino);
2303
2304 down_write(&vol->lcnbmp_lock);
2305 ntfs_commit_inode(vol->lcnbmp_ino);
2306 up_write(&vol->lcnbmp_lock);
2307
2308 down_write(&vol->mftbmp_lock);
2309 ntfs_commit_inode(vol->mftbmp_ino);
2310 up_write(&vol->mftbmp_lock);
2311
2312 if (vol->logfile_ino)
2313 ntfs_commit_inode(vol->logfile_ino);
2314
2315 if (vol->mftmirr_ino)
2316 ntfs_commit_inode(vol->mftmirr_ino);
2317 ntfs_commit_inode(vol->mft_ino);
2318
2319 /*
2320 * If a read-write mount and no volume errors have occurred, mark the
2321 * volume clean. Also, re-commit all affected inodes.
2322 */
2323 if (!(sb->s_flags & MS_RDONLY)) {
2324 if (!NVolErrors(vol)) {
2325 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2326 ntfs_warning(sb, "Failed to clear dirty bit "
2327 "in volume information "
2328 "flags. Run chkdsk.");
2329 ntfs_commit_inode(vol->vol_ino);
2330 ntfs_commit_inode(vol->root_ino);
2331 if (vol->mftmirr_ino)
2332 ntfs_commit_inode(vol->mftmirr_ino);
2333 ntfs_commit_inode(vol->mft_ino);
2334 } else {
2335 ntfs_warning(sb, "Volume has errors. Leaving volume "
2336 "marked dirty. Run chkdsk.");
2337 }
2338 }
2339 #endif /* NTFS_RW */
2340
2341 iput(vol->vol_ino);
2342 vol->vol_ino = NULL;
2343
2344 /* NTFS 3.0+ specific clean up. */
2345 if (vol->major_ver >= 3) {
2346 #ifdef NTFS_RW
2347 if (vol->usnjrnl_j_ino) {
2348 iput(vol->usnjrnl_j_ino);
2349 vol->usnjrnl_j_ino = NULL;
2350 }
2351 if (vol->usnjrnl_max_ino) {
2352 iput(vol->usnjrnl_max_ino);
2353 vol->usnjrnl_max_ino = NULL;
2354 }
2355 if (vol->usnjrnl_ino) {
2356 iput(vol->usnjrnl_ino);
2357 vol->usnjrnl_ino = NULL;
2358 }
2359 if (vol->quota_q_ino) {
2360 iput(vol->quota_q_ino);
2361 vol->quota_q_ino = NULL;
2362 }
2363 if (vol->quota_ino) {
2364 iput(vol->quota_ino);
2365 vol->quota_ino = NULL;
2366 }
2367 #endif /* NTFS_RW */
2368 if (vol->extend_ino) {
2369 iput(vol->extend_ino);
2370 vol->extend_ino = NULL;
2371 }
2372 if (vol->secure_ino) {
2373 iput(vol->secure_ino);
2374 vol->secure_ino = NULL;
2375 }
2376 }
2377
2378 iput(vol->root_ino);
2379 vol->root_ino = NULL;
2380
2381 down_write(&vol->lcnbmp_lock);
2382 iput(vol->lcnbmp_ino);
2383 vol->lcnbmp_ino = NULL;
2384 up_write(&vol->lcnbmp_lock);
2385
2386 down_write(&vol->mftbmp_lock);
2387 iput(vol->mftbmp_ino);
2388 vol->mftbmp_ino = NULL;
2389 up_write(&vol->mftbmp_lock);
2390
2391 #ifdef NTFS_RW
2392 if (vol->logfile_ino) {
2393 iput(vol->logfile_ino);
2394 vol->logfile_ino = NULL;
2395 }
2396 if (vol->mftmirr_ino) {
2397 /* Re-commit the mft mirror and mft just in case. */
2398 ntfs_commit_inode(vol->mftmirr_ino);
2399 ntfs_commit_inode(vol->mft_ino);
2400 iput(vol->mftmirr_ino);
2401 vol->mftmirr_ino = NULL;
2402 }
2403 /*
2404 * We should have no dirty inodes left, due to
2405 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2406 * the underlying mft records are written out and cleaned.
2407 */
2408 ntfs_commit_inode(vol->mft_ino);
2409 write_inode_now(vol->mft_ino, 1);
2410 #endif /* NTFS_RW */
2411
2412 iput(vol->mft_ino);
2413 vol->mft_ino = NULL;
2414
2415 /* Throw away the table of attribute definitions. */
2416 vol->attrdef_size = 0;
2417 if (vol->attrdef) {
2418 ntfs_free(vol->attrdef);
2419 vol->attrdef = NULL;
2420 }
2421 vol->upcase_len = 0;
2422 /*
2423 * Destroy the global default upcase table if necessary. Also decrease
2424 * the number of upcase users if we are a user.
2425 */
2426 mutex_lock(&ntfs_lock);
2427 if (vol->upcase == default_upcase) {
2428 ntfs_nr_upcase_users--;
2429 vol->upcase = NULL;
2430 }
2431 if (!ntfs_nr_upcase_users && default_upcase) {
2432 ntfs_free(default_upcase);
2433 default_upcase = NULL;
2434 }
2435 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2436 free_compression_buffers();
2437 mutex_unlock(&ntfs_lock);
2438 if (vol->upcase) {
2439 ntfs_free(vol->upcase);
2440 vol->upcase = NULL;
2441 }
2442
2443 unload_nls(vol->nls_map);
2444
2445 sb->s_fs_info = NULL;
2446 kfree(vol);
2447 }
2448
2449 /**
2450 * get_nr_free_clusters - return the number of free clusters on a volume
2451 * @vol: ntfs volume for which to obtain free cluster count
2452 *
2453 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2454 * actually calculate the number of clusters in use instead because this
2455 * allows us to not care about partial pages as these will be just zero filled
2456 * and hence not be counted as allocated clusters.
2457 *
2458 * The only particularity is that clusters beyond the end of the logical ntfs
2459 * volume will be marked as allocated to prevent errors which means we have to
2460 * discount those at the end. This is important as the cluster bitmap always
2461 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2462 * the logical volume and marked in use when they are not as they do not exist.
2463 *
2464 * If any pages cannot be read we assume all clusters in the erroring pages are
2465 * in use. This means we return an underestimate on errors which is better than
2466 * an overestimate.
2467 */
2468 static s64 get_nr_free_clusters(ntfs_volume *vol)
2469 {
2470 s64 nr_free = vol->nr_clusters;
2471 struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2472 struct page *page;
2473 pgoff_t index, max_index;
2474
2475 ntfs_debug("Entering.");
2476 /* Serialize accesses to the cluster bitmap. */
2477 down_read(&vol->lcnbmp_lock);
2478 /*
2479 * Convert the number of bits into bytes rounded up, then convert into
2480 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2481 * full and one partial page max_index = 2.
2482 */
2483 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2484 PAGE_CACHE_SHIFT;
2485 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2486 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2487 max_index, PAGE_CACHE_SIZE / 4);
2488 for (index = 0; index < max_index; index++) {
2489 unsigned long *kaddr;
2490
2491 /*
2492 * Read the page from page cache, getting it from backing store
2493 * if necessary, and increment the use count.
2494 */
2495 page = read_mapping_page(mapping, index, NULL);
2496 /* Ignore pages which errored synchronously. */
2497 if (IS_ERR(page)) {
2498 ntfs_debug("read_mapping_page() error. Skipping "
2499 "page (index 0x%lx).", index);
2500 nr_free -= PAGE_CACHE_SIZE * 8;
2501 continue;
2502 }
2503 kaddr = kmap_atomic(page);
2504 /*
2505 * Subtract the number of set bits. If this
2506 * is the last page and it is partial we don't really care as
2507 * it just means we do a little extra work but it won't affect
2508 * the result as all out of range bytes are set to zero by
2509 * ntfs_readpage().
2510 */
2511 nr_free -= bitmap_weight(kaddr,
2512 PAGE_CACHE_SIZE * BITS_PER_BYTE);
2513 kunmap_atomic(kaddr);
2514 page_cache_release(page);
2515 }
2516 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2517 /*
2518 * Fixup for eventual bits outside logical ntfs volume (see function
2519 * description above).
2520 */
2521 if (vol->nr_clusters & 63)
2522 nr_free += 64 - (vol->nr_clusters & 63);
2523 up_read(&vol->lcnbmp_lock);
2524 /* If errors occurred we may well have gone below zero, fix this. */
2525 if (nr_free < 0)
2526 nr_free = 0;
2527 ntfs_debug("Exiting.");
2528 return nr_free;
2529 }
2530
2531 /**
2532 * __get_nr_free_mft_records - return the number of free inodes on a volume
2533 * @vol: ntfs volume for which to obtain free inode count
2534 * @nr_free: number of mft records in filesystem
2535 * @max_index: maximum number of pages containing set bits
2536 *
2537 * Calculate the number of free mft records (inodes) on the mounted NTFS
2538 * volume @vol. We actually calculate the number of mft records in use instead
2539 * because this allows us to not care about partial pages as these will be just
2540 * zero filled and hence not be counted as allocated mft record.
2541 *
2542 * If any pages cannot be read we assume all mft records in the erroring pages
2543 * are in use. This means we return an underestimate on errors which is better
2544 * than an overestimate.
2545 *
2546 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2547 */
2548 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2549 s64 nr_free, const pgoff_t max_index)
2550 {
2551 struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2552 struct page *page;
2553 pgoff_t index;
2554
2555 ntfs_debug("Entering.");
2556 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2557 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2558 "0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2559 for (index = 0; index < max_index; index++) {
2560 unsigned long *kaddr;
2561
2562 /*
2563 * Read the page from page cache, getting it from backing store
2564 * if necessary, and increment the use count.
2565 */
2566 page = read_mapping_page(mapping, index, NULL);
2567 /* Ignore pages which errored synchronously. */
2568 if (IS_ERR(page)) {
2569 ntfs_debug("read_mapping_page() error. Skipping "
2570 "page (index 0x%lx).", index);
2571 nr_free -= PAGE_CACHE_SIZE * 8;
2572 continue;
2573 }
2574 kaddr = kmap_atomic(page);
2575 /*
2576 * Subtract the number of set bits. If this
2577 * is the last page and it is partial we don't really care as
2578 * it just means we do a little extra work but it won't affect
2579 * the result as all out of range bytes are set to zero by
2580 * ntfs_readpage().
2581 */
2582 nr_free -= bitmap_weight(kaddr,
2583 PAGE_CACHE_SIZE * BITS_PER_BYTE);
2584 kunmap_atomic(kaddr);
2585 page_cache_release(page);
2586 }
2587 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2588 index - 1);
2589 /* If errors occurred we may well have gone below zero, fix this. */
2590 if (nr_free < 0)
2591 nr_free = 0;
2592 ntfs_debug("Exiting.");
2593 return nr_free;
2594 }
2595
2596 /**
2597 * ntfs_statfs - return information about mounted NTFS volume
2598 * @dentry: dentry from mounted volume
2599 * @sfs: statfs structure in which to return the information
2600 *
2601 * Return information about the mounted NTFS volume @dentry in the statfs structure
2602 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2603 * called). We interpret the values to be correct of the moment in time at
2604 * which we are called. Most values are variable otherwise and this isn't just
2605 * the free values but the totals as well. For example we can increase the
2606 * total number of file nodes if we run out and we can keep doing this until
2607 * there is no more space on the volume left at all.
2608 *
2609 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2610 * ustat system calls.
2611 *
2612 * Return 0 on success or -errno on error.
2613 */
2614 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2615 {
2616 struct super_block *sb = dentry->d_sb;
2617 s64 size;
2618 ntfs_volume *vol = NTFS_SB(sb);
2619 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2620 pgoff_t max_index;
2621 unsigned long flags;
2622
2623 ntfs_debug("Entering.");
2624 /* Type of filesystem. */
2625 sfs->f_type = NTFS_SB_MAGIC;
2626 /* Optimal transfer block size. */
2627 sfs->f_bsize = PAGE_CACHE_SIZE;
2628 /*
2629 * Total data blocks in filesystem in units of f_bsize and since
2630 * inodes are also stored in data blocs ($MFT is a file) this is just
2631 * the total clusters.
2632 */
2633 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2634 PAGE_CACHE_SHIFT;
2635 /* Free data blocks in filesystem in units of f_bsize. */
2636 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2637 PAGE_CACHE_SHIFT;
2638 if (size < 0LL)
2639 size = 0LL;
2640 /* Free blocks avail to non-superuser, same as above on NTFS. */
2641 sfs->f_bavail = sfs->f_bfree = size;
2642 /* Serialize accesses to the inode bitmap. */
2643 down_read(&vol->mftbmp_lock);
2644 read_lock_irqsave(&mft_ni->size_lock, flags);
2645 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2646 /*
2647 * Convert the maximum number of set bits into bytes rounded up, then
2648 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2649 * have one full and one partial page max_index = 2.
2650 */
2651 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2652 + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2653 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2654 /* Number of inodes in filesystem (at this point in time). */
2655 sfs->f_files = size;
2656 /* Free inodes in fs (based on current total count). */
2657 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2658 up_read(&vol->mftbmp_lock);
2659 /*
2660 * File system id. This is extremely *nix flavour dependent and even
2661 * within Linux itself all fs do their own thing. I interpret this to
2662 * mean a unique id associated with the mounted fs and not the id
2663 * associated with the filesystem driver, the latter is already given
2664 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2665 * volume serial number splitting it into two 32-bit parts. We enter
2666 * the least significant 32-bits in f_fsid[0] and the most significant
2667 * 32-bits in f_fsid[1].
2668 */
2669 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2670 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2671 /* Maximum length of filenames. */
2672 sfs->f_namelen = NTFS_MAX_NAME_LEN;
2673 return 0;
2674 }
2675
2676 #ifdef NTFS_RW
2677 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2678 {
2679 return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2680 }
2681 #endif
2682
2683 /**
2684 * The complete super operations.
2685 */
2686 static const struct super_operations ntfs_sops = {
2687 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
2688 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2689 #ifdef NTFS_RW
2690 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
2691 disk. */
2692 #endif /* NTFS_RW */
2693 .put_super = ntfs_put_super, /* Syscall: umount. */
2694 .statfs = ntfs_statfs, /* Syscall: statfs */
2695 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
2696 .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is
2697 removed from memory. */
2698 .show_options = ntfs_show_options, /* Show mount options in
2699 proc. */
2700 };
2701
2702 /**
2703 * ntfs_fill_super - mount an ntfs filesystem
2704 * @sb: super block of ntfs filesystem to mount
2705 * @opt: string containing the mount options
2706 * @silent: silence error output
2707 *
2708 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2709 * with the mount otions in @data with the NTFS filesystem.
2710 *
2711 * If @silent is true, remain silent even if errors are detected. This is used
2712 * during bootup, when the kernel tries to mount the root filesystem with all
2713 * registered filesystems one after the other until one succeeds. This implies
2714 * that all filesystems except the correct one will quite correctly and
2715 * expectedly return an error, but nobody wants to see error messages when in
2716 * fact this is what is supposed to happen.
2717 *
2718 * NOTE: @sb->s_flags contains the mount options flags.
2719 */
2720 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2721 {
2722 ntfs_volume *vol;
2723 struct buffer_head *bh;
2724 struct inode *tmp_ino;
2725 int blocksize, result;
2726
2727 /*
2728 * We do a pretty difficult piece of bootstrap by reading the
2729 * MFT (and other metadata) from disk into memory. We'll only
2730 * release this metadata during umount, so the locking patterns
2731 * observed during bootstrap do not count. So turn off the
2732 * observation of locking patterns (strictly for this context
2733 * only) while mounting NTFS. [The validator is still active
2734 * otherwise, even for this context: it will for example record
2735 * lock class registrations.]
2736 */
2737 lockdep_off();
2738 ntfs_debug("Entering.");
2739 #ifndef NTFS_RW
2740 sb->s_flags |= MS_RDONLY;
2741 #endif /* ! NTFS_RW */
2742 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2743 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2744 vol = NTFS_SB(sb);
2745 if (!vol) {
2746 if (!silent)
2747 ntfs_error(sb, "Allocation of NTFS volume structure "
2748 "failed. Aborting mount...");
2749 lockdep_on();
2750 return -ENOMEM;
2751 }
2752 /* Initialize ntfs_volume structure. */
2753 *vol = (ntfs_volume) {
2754 .sb = sb,
2755 /*
2756 * Default is group and other don't have any access to files or
2757 * directories while owner has full access. Further, files by
2758 * default are not executable but directories are of course
2759 * browseable.
2760 */
2761 .fmask = 0177,
2762 .dmask = 0077,
2763 };
2764 init_rwsem(&vol->mftbmp_lock);
2765 init_rwsem(&vol->lcnbmp_lock);
2766
2767 /* By default, enable sparse support. */
2768 NVolSetSparseEnabled(vol);
2769
2770 /* Important to get the mount options dealt with now. */
2771 if (!parse_options(vol, (char*)opt))
2772 goto err_out_now;
2773
2774 /* We support sector sizes up to the PAGE_CACHE_SIZE. */
2775 if (bdev_logical_block_size(sb->s_bdev) > PAGE_CACHE_SIZE) {
2776 if (!silent)
2777 ntfs_error(sb, "Device has unsupported sector size "
2778 "(%i). The maximum supported sector "
2779 "size on this architecture is %lu "
2780 "bytes.",
2781 bdev_logical_block_size(sb->s_bdev),
2782 PAGE_CACHE_SIZE);
2783 goto err_out_now;
2784 }
2785 /*
2786 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2787 * sector size, whichever is bigger.
2788 */
2789 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2790 if (blocksize < NTFS_BLOCK_SIZE) {
2791 if (!silent)
2792 ntfs_error(sb, "Unable to set device block size.");
2793 goto err_out_now;
2794 }
2795 BUG_ON(blocksize != sb->s_blocksize);
2796 ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2797 blocksize, sb->s_blocksize_bits);
2798 /* Determine the size of the device in units of block_size bytes. */
2799 if (!i_size_read(sb->s_bdev->bd_inode)) {
2800 if (!silent)
2801 ntfs_error(sb, "Unable to determine device size.");
2802 goto err_out_now;
2803 }
2804 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2805 sb->s_blocksize_bits;
2806 /* Read the boot sector and return unlocked buffer head to it. */
2807 if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2808 if (!silent)
2809 ntfs_error(sb, "Not an NTFS volume.");
2810 goto err_out_now;
2811 }
2812 /*
2813 * Extract the data from the boot sector and setup the ntfs volume
2814 * using it.
2815 */
2816 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2817 brelse(bh);
2818 if (!result) {
2819 if (!silent)
2820 ntfs_error(sb, "Unsupported NTFS filesystem.");
2821 goto err_out_now;
2822 }
2823 /*
2824 * If the boot sector indicates a sector size bigger than the current
2825 * device block size, switch the device block size to the sector size.
2826 * TODO: It may be possible to support this case even when the set
2827 * below fails, we would just be breaking up the i/o for each sector
2828 * into multiple blocks for i/o purposes but otherwise it should just
2829 * work. However it is safer to leave disabled until someone hits this
2830 * error message and then we can get them to try it without the setting
2831 * so we know for sure that it works.
2832 */
2833 if (vol->sector_size > blocksize) {
2834 blocksize = sb_set_blocksize(sb, vol->sector_size);
2835 if (blocksize != vol->sector_size) {
2836 if (!silent)
2837 ntfs_error(sb, "Unable to set device block "
2838 "size to sector size (%i).",
2839 vol->sector_size);
2840 goto err_out_now;
2841 }
2842 BUG_ON(blocksize != sb->s_blocksize);
2843 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2844 sb->s_blocksize_bits;
2845 ntfs_debug("Changed device block size to %i bytes (block size "
2846 "bits %i) to match volume sector size.",
2847 blocksize, sb->s_blocksize_bits);
2848 }
2849 /* Initialize the cluster and mft allocators. */
2850 ntfs_setup_allocators(vol);
2851 /* Setup remaining fields in the super block. */
2852 sb->s_magic = NTFS_SB_MAGIC;
2853 /*
2854 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2855 * sb->s_maxbytes = ~0ULL >> 1;
2856 * But the kernel uses a long as the page cache page index which on
2857 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2858 * defined to the maximum the page cache page index can cope with
2859 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2860 */
2861 sb->s_maxbytes = MAX_LFS_FILESIZE;
2862 /* Ntfs measures time in 100ns intervals. */
2863 sb->s_time_gran = 100;
2864 /*
2865 * Now load the metadata required for the page cache and our address
2866 * space operations to function. We do this by setting up a specialised
2867 * read_inode method and then just calling the normal iget() to obtain
2868 * the inode for $MFT which is sufficient to allow our normal inode
2869 * operations and associated address space operations to function.
2870 */
2871 sb->s_op = &ntfs_sops;
2872 tmp_ino = new_inode(sb);
2873 if (!tmp_ino) {
2874 if (!silent)
2875 ntfs_error(sb, "Failed to load essential metadata.");
2876 goto err_out_now;
2877 }
2878 tmp_ino->i_ino = FILE_MFT;
2879 insert_inode_hash(tmp_ino);
2880 if (ntfs_read_inode_mount(tmp_ino) < 0) {
2881 if (!silent)
2882 ntfs_error(sb, "Failed to load essential metadata.");
2883 goto iput_tmp_ino_err_out_now;
2884 }
2885 mutex_lock(&ntfs_lock);
2886 /*
2887 * The current mount is a compression user if the cluster size is
2888 * less than or equal 4kiB.
2889 */
2890 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2891 result = allocate_compression_buffers();
2892 if (result) {
2893 ntfs_error(NULL, "Failed to allocate buffers "
2894 "for compression engine.");
2895 ntfs_nr_compression_users--;
2896 mutex_unlock(&ntfs_lock);
2897 goto iput_tmp_ino_err_out_now;
2898 }
2899 }
2900 /*
2901 * Generate the global default upcase table if necessary. Also
2902 * temporarily increment the number of upcase users to avoid race
2903 * conditions with concurrent (u)mounts.
2904 */
2905 if (!default_upcase)
2906 default_upcase = generate_default_upcase();
2907 ntfs_nr_upcase_users++;
2908 mutex_unlock(&ntfs_lock);
2909 /*
2910 * From now on, ignore @silent parameter. If we fail below this line,
2911 * it will be due to a corrupt fs or a system error, so we report it.
2912 */
2913 /*
2914 * Open the system files with normal access functions and complete
2915 * setting up the ntfs super block.
2916 */
2917 if (!load_system_files(vol)) {
2918 ntfs_error(sb, "Failed to load system files.");
2919 goto unl_upcase_iput_tmp_ino_err_out_now;
2920 }
2921
2922 /* We grab a reference, simulating an ntfs_iget(). */
2923 ihold(vol->root_ino);
2924 if ((sb->s_root = d_make_root(vol->root_ino))) {
2925 ntfs_debug("Exiting, status successful.");
2926 /* Release the default upcase if it has no users. */
2927 mutex_lock(&ntfs_lock);
2928 if (!--ntfs_nr_upcase_users && default_upcase) {
2929 ntfs_free(default_upcase);
2930 default_upcase = NULL;
2931 }
2932 mutex_unlock(&ntfs_lock);
2933 sb->s_export_op = &ntfs_export_ops;
2934 lockdep_on();
2935 return 0;
2936 }
2937 ntfs_error(sb, "Failed to allocate root directory.");
2938 /* Clean up after the successful load_system_files() call from above. */
2939 // TODO: Use ntfs_put_super() instead of repeating all this code...
2940 // FIXME: Should mark the volume clean as the error is most likely
2941 // -ENOMEM.
2942 iput(vol->vol_ino);
2943 vol->vol_ino = NULL;
2944 /* NTFS 3.0+ specific clean up. */
2945 if (vol->major_ver >= 3) {
2946 #ifdef NTFS_RW
2947 if (vol->usnjrnl_j_ino) {
2948 iput(vol->usnjrnl_j_ino);
2949 vol->usnjrnl_j_ino = NULL;
2950 }
2951 if (vol->usnjrnl_max_ino) {
2952 iput(vol->usnjrnl_max_ino);
2953 vol->usnjrnl_max_ino = NULL;
2954 }
2955 if (vol->usnjrnl_ino) {
2956 iput(vol->usnjrnl_ino);
2957 vol->usnjrnl_ino = NULL;
2958 }
2959 if (vol->quota_q_ino) {
2960 iput(vol->quota_q_ino);
2961 vol->quota_q_ino = NULL;
2962 }
2963 if (vol->quota_ino) {
2964 iput(vol->quota_ino);
2965 vol->quota_ino = NULL;
2966 }
2967 #endif /* NTFS_RW */
2968 if (vol->extend_ino) {
2969 iput(vol->extend_ino);
2970 vol->extend_ino = NULL;
2971 }
2972 if (vol->secure_ino) {
2973 iput(vol->secure_ino);
2974 vol->secure_ino = NULL;
2975 }
2976 }
2977 iput(vol->root_ino);
2978 vol->root_ino = NULL;
2979 iput(vol->lcnbmp_ino);
2980 vol->lcnbmp_ino = NULL;
2981 iput(vol->mftbmp_ino);
2982 vol->mftbmp_ino = NULL;
2983 #ifdef NTFS_RW
2984 if (vol->logfile_ino) {
2985 iput(vol->logfile_ino);
2986 vol->logfile_ino = NULL;
2987 }
2988 if (vol->mftmirr_ino) {
2989 iput(vol->mftmirr_ino);
2990 vol->mftmirr_ino = NULL;
2991 }
2992 #endif /* NTFS_RW */
2993 /* Throw away the table of attribute definitions. */
2994 vol->attrdef_size = 0;
2995 if (vol->attrdef) {
2996 ntfs_free(vol->attrdef);
2997 vol->attrdef = NULL;
2998 }
2999 vol->upcase_len = 0;
3000 mutex_lock(&ntfs_lock);
3001 if (vol->upcase == default_upcase) {
3002 ntfs_nr_upcase_users--;
3003 vol->upcase = NULL;
3004 }
3005 mutex_unlock(&ntfs_lock);
3006 if (vol->upcase) {
3007 ntfs_free(vol->upcase);
3008 vol->upcase = NULL;
3009 }
3010 if (vol->nls_map) {
3011 unload_nls(vol->nls_map);
3012 vol->nls_map = NULL;
3013 }
3014 /* Error exit code path. */
3015 unl_upcase_iput_tmp_ino_err_out_now:
3016 /*
3017 * Decrease the number of upcase users and destroy the global default
3018 * upcase table if necessary.
3019 */
3020 mutex_lock(&ntfs_lock);
3021 if (!--ntfs_nr_upcase_users && default_upcase) {
3022 ntfs_free(default_upcase);
3023 default_upcase = NULL;
3024 }
3025 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3026 free_compression_buffers();
3027 mutex_unlock(&ntfs_lock);
3028 iput_tmp_ino_err_out_now:
3029 iput(tmp_ino);
3030 if (vol->mft_ino && vol->mft_ino != tmp_ino)
3031 iput(vol->mft_ino);
3032 vol->mft_ino = NULL;
3033 /* Errors at this stage are irrelevant. */
3034 err_out_now:
3035 sb->s_fs_info = NULL;
3036 kfree(vol);
3037 ntfs_debug("Failed, returning -EINVAL.");
3038 lockdep_on();
3039 return -EINVAL;
3040 }
3041
3042 /*
3043 * This is a slab cache to optimize allocations and deallocations of Unicode
3044 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3045 * (255) Unicode characters + a terminating NULL Unicode character.
3046 */
3047 struct kmem_cache *ntfs_name_cache;
3048
3049 /* Slab caches for efficient allocation/deallocation of inodes. */
3050 struct kmem_cache *ntfs_inode_cache;
3051 struct kmem_cache *ntfs_big_inode_cache;
3052
3053 /* Init once constructor for the inode slab cache. */
3054 static void ntfs_big_inode_init_once(void *foo)
3055 {
3056 ntfs_inode *ni = (ntfs_inode *)foo;
3057
3058 inode_init_once(VFS_I(ni));
3059 }
3060
3061 /*
3062 * Slab caches to optimize allocations and deallocations of attribute search
3063 * contexts and index contexts, respectively.
3064 */
3065 struct kmem_cache *ntfs_attr_ctx_cache;
3066 struct kmem_cache *ntfs_index_ctx_cache;
3067
3068 /* Driver wide mutex. */
3069 DEFINE_MUTEX(ntfs_lock);
3070
3071 static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3072 int flags, const char *dev_name, void *data)
3073 {
3074 return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3075 }
3076
3077 static struct file_system_type ntfs_fs_type = {
3078 .owner = THIS_MODULE,
3079 .name = "ntfs",
3080 .mount = ntfs_mount,
3081 .kill_sb = kill_block_super,
3082 .fs_flags = FS_REQUIRES_DEV,
3083 };
3084 MODULE_ALIAS_FS("ntfs");
3085
3086 /* Stable names for the slab caches. */
3087 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3088 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3089 static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3090 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3091 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3092
3093 static int __init init_ntfs_fs(void)
3094 {
3095 int err = 0;
3096
3097 /* This may be ugly but it results in pretty output so who cares. (-8 */
3098 printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
3099 #ifdef NTFS_RW
3100 "W"
3101 #else
3102 "O"
3103 #endif
3104 #ifdef DEBUG
3105 " DEBUG"
3106 #endif
3107 #ifdef MODULE
3108 " MODULE"
3109 #endif
3110 "].\n");
3111
3112 ntfs_debug("Debug messages are enabled.");
3113
3114 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3115 sizeof(ntfs_index_context), 0 /* offset */,
3116 SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3117 if (!ntfs_index_ctx_cache) {
3118 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3119 ntfs_index_ctx_cache_name);
3120 goto ictx_err_out;
3121 }
3122 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3123 sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3124 SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3125 if (!ntfs_attr_ctx_cache) {
3126 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3127 ntfs_attr_ctx_cache_name);
3128 goto actx_err_out;
3129 }
3130
3131 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3132 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3133 SLAB_HWCACHE_ALIGN, NULL);
3134 if (!ntfs_name_cache) {
3135 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3136 ntfs_name_cache_name);
3137 goto name_err_out;
3138 }
3139
3140 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3141 sizeof(ntfs_inode), 0,
3142 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3143 if (!ntfs_inode_cache) {
3144 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3145 ntfs_inode_cache_name);
3146 goto inode_err_out;
3147 }
3148
3149 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3150 sizeof(big_ntfs_inode), 0,
3151 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
3152 ntfs_big_inode_init_once);
3153 if (!ntfs_big_inode_cache) {
3154 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
3155 ntfs_big_inode_cache_name);
3156 goto big_inode_err_out;
3157 }
3158
3159 /* Register the ntfs sysctls. */
3160 err = ntfs_sysctl(1);
3161 if (err) {
3162 printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
3163 goto sysctl_err_out;
3164 }
3165
3166 err = register_filesystem(&ntfs_fs_type);
3167 if (!err) {
3168 ntfs_debug("NTFS driver registered successfully.");
3169 return 0; /* Success! */
3170 }
3171 printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
3172
3173 /* Unregister the ntfs sysctls. */
3174 ntfs_sysctl(0);
3175 sysctl_err_out:
3176 kmem_cache_destroy(ntfs_big_inode_cache);
3177 big_inode_err_out:
3178 kmem_cache_destroy(ntfs_inode_cache);
3179 inode_err_out:
3180 kmem_cache_destroy(ntfs_name_cache);
3181 name_err_out:
3182 kmem_cache_destroy(ntfs_attr_ctx_cache);
3183 actx_err_out:
3184 kmem_cache_destroy(ntfs_index_ctx_cache);
3185 ictx_err_out:
3186 if (!err) {
3187 printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
3188 "registration...\n");
3189 err = -ENOMEM;
3190 }
3191 return err;
3192 }
3193
3194 static void __exit exit_ntfs_fs(void)
3195 {
3196 ntfs_debug("Unregistering NTFS driver.");
3197
3198 unregister_filesystem(&ntfs_fs_type);
3199
3200 /*
3201 * Make sure all delayed rcu free inodes are flushed before we
3202 * destroy cache.
3203 */
3204 rcu_barrier();
3205 kmem_cache_destroy(ntfs_big_inode_cache);
3206 kmem_cache_destroy(ntfs_inode_cache);
3207 kmem_cache_destroy(ntfs_name_cache);
3208 kmem_cache_destroy(ntfs_attr_ctx_cache);
3209 kmem_cache_destroy(ntfs_index_ctx_cache);
3210 /* Unregister the ntfs sysctls. */
3211 ntfs_sysctl(0);
3212 }
3213
3214 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3215 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc.");
3216 MODULE_VERSION(NTFS_VERSION);
3217 MODULE_LICENSE("GPL");
3218 #ifdef DEBUG
3219 module_param(debug_msgs, bint, 0);
3220 MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3221 #endif
3222
3223 module_init(init_ntfs_fs)
3224 module_exit(exit_ntfs_fs)
This page took 0.167593 seconds and 6 git commands to generate.