VFS: Uninline the function put_mnt_ns()
[deliverable/linux.git] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * alloc.c
5 *
6 * Extent allocs and frees
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52
53 #include "buffer_head_io.h"
54
55
56 /*
57 * Operations for a specific extent tree type.
58 *
59 * To implement an on-disk btree (extent tree) type in ocfs2, add
60 * an ocfs2_extent_tree_operations structure and the matching
61 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
62 * for the allocation portion of the extent tree.
63 */
64 struct ocfs2_extent_tree_operations {
65 /*
66 * last_eb_blk is the block number of the right most leaf extent
67 * block. Most on-disk structures containing an extent tree store
68 * this value for fast access. The ->eo_set_last_eb_blk() and
69 * ->eo_get_last_eb_blk() operations access this value. They are
70 * both required.
71 */
72 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
73 u64 blkno);
74 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
75
76 /*
77 * The on-disk structure usually keeps track of how many total
78 * clusters are stored in this extent tree. This function updates
79 * that value. new_clusters is the delta, and must be
80 * added to the total. Required.
81 */
82 void (*eo_update_clusters)(struct inode *inode,
83 struct ocfs2_extent_tree *et,
84 u32 new_clusters);
85
86 /*
87 * If ->eo_insert_check() exists, it is called before rec is
88 * inserted into the extent tree. It is optional.
89 */
90 int (*eo_insert_check)(struct inode *inode,
91 struct ocfs2_extent_tree *et,
92 struct ocfs2_extent_rec *rec);
93 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
94
95 /*
96 * --------------------------------------------------------------
97 * The remaining are internal to ocfs2_extent_tree and don't have
98 * accessor functions
99 */
100
101 /*
102 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
103 * It is required.
104 */
105 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
106
107 /*
108 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
109 * it exists. If it does not, et->et_max_leaf_clusters is set
110 * to 0 (unlimited). Optional.
111 */
112 void (*eo_fill_max_leaf_clusters)(struct inode *inode,
113 struct ocfs2_extent_tree *et);
114 };
115
116
117 /*
118 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
119 * in the methods.
120 */
121 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
122 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
123 u64 blkno);
124 static void ocfs2_dinode_update_clusters(struct inode *inode,
125 struct ocfs2_extent_tree *et,
126 u32 clusters);
127 static int ocfs2_dinode_insert_check(struct inode *inode,
128 struct ocfs2_extent_tree *et,
129 struct ocfs2_extent_rec *rec);
130 static int ocfs2_dinode_sanity_check(struct inode *inode,
131 struct ocfs2_extent_tree *et);
132 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
133 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
134 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
135 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
136 .eo_update_clusters = ocfs2_dinode_update_clusters,
137 .eo_insert_check = ocfs2_dinode_insert_check,
138 .eo_sanity_check = ocfs2_dinode_sanity_check,
139 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
140 };
141
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 u64 blkno)
144 {
145 struct ocfs2_dinode *di = et->et_object;
146
147 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
148 di->i_last_eb_blk = cpu_to_le64(blkno);
149 }
150
151 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
152 {
153 struct ocfs2_dinode *di = et->et_object;
154
155 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
156 return le64_to_cpu(di->i_last_eb_blk);
157 }
158
159 static void ocfs2_dinode_update_clusters(struct inode *inode,
160 struct ocfs2_extent_tree *et,
161 u32 clusters)
162 {
163 struct ocfs2_dinode *di = et->et_object;
164
165 le32_add_cpu(&di->i_clusters, clusters);
166 spin_lock(&OCFS2_I(inode)->ip_lock);
167 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
168 spin_unlock(&OCFS2_I(inode)->ip_lock);
169 }
170
171 static int ocfs2_dinode_insert_check(struct inode *inode,
172 struct ocfs2_extent_tree *et,
173 struct ocfs2_extent_rec *rec)
174 {
175 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
176
177 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
178 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
179 (OCFS2_I(inode)->ip_clusters !=
180 le32_to_cpu(rec->e_cpos)),
181 "Device %s, asking for sparse allocation: inode %llu, "
182 "cpos %u, clusters %u\n",
183 osb->dev_str,
184 (unsigned long long)OCFS2_I(inode)->ip_blkno,
185 rec->e_cpos,
186 OCFS2_I(inode)->ip_clusters);
187
188 return 0;
189 }
190
191 static int ocfs2_dinode_sanity_check(struct inode *inode,
192 struct ocfs2_extent_tree *et)
193 {
194 struct ocfs2_dinode *di = et->et_object;
195
196 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
197 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
198
199 return 0;
200 }
201
202 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
203 {
204 struct ocfs2_dinode *di = et->et_object;
205
206 et->et_root_el = &di->id2.i_list;
207 }
208
209
210 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
211 {
212 struct ocfs2_xattr_value_buf *vb = et->et_object;
213
214 et->et_root_el = &vb->vb_xv->xr_list;
215 }
216
217 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
218 u64 blkno)
219 {
220 struct ocfs2_xattr_value_buf *vb = et->et_object;
221
222 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
223 }
224
225 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
226 {
227 struct ocfs2_xattr_value_buf *vb = et->et_object;
228
229 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
230 }
231
232 static void ocfs2_xattr_value_update_clusters(struct inode *inode,
233 struct ocfs2_extent_tree *et,
234 u32 clusters)
235 {
236 struct ocfs2_xattr_value_buf *vb = et->et_object;
237
238 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
239 }
240
241 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
242 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
243 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
244 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
245 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
246 };
247
248 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
249 {
250 struct ocfs2_xattr_block *xb = et->et_object;
251
252 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
253 }
254
255 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
256 struct ocfs2_extent_tree *et)
257 {
258 et->et_max_leaf_clusters =
259 ocfs2_clusters_for_bytes(inode->i_sb,
260 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
261 }
262
263 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
264 u64 blkno)
265 {
266 struct ocfs2_xattr_block *xb = et->et_object;
267 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
268
269 xt->xt_last_eb_blk = cpu_to_le64(blkno);
270 }
271
272 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
273 {
274 struct ocfs2_xattr_block *xb = et->et_object;
275 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
276
277 return le64_to_cpu(xt->xt_last_eb_blk);
278 }
279
280 static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
281 struct ocfs2_extent_tree *et,
282 u32 clusters)
283 {
284 struct ocfs2_xattr_block *xb = et->et_object;
285
286 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
287 }
288
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
290 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
291 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
292 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
293 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
294 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
295 };
296
297 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
298 u64 blkno)
299 {
300 struct ocfs2_dx_root_block *dx_root = et->et_object;
301
302 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
303 }
304
305 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
306 {
307 struct ocfs2_dx_root_block *dx_root = et->et_object;
308
309 return le64_to_cpu(dx_root->dr_last_eb_blk);
310 }
311
312 static void ocfs2_dx_root_update_clusters(struct inode *inode,
313 struct ocfs2_extent_tree *et,
314 u32 clusters)
315 {
316 struct ocfs2_dx_root_block *dx_root = et->et_object;
317
318 le32_add_cpu(&dx_root->dr_clusters, clusters);
319 }
320
321 static int ocfs2_dx_root_sanity_check(struct inode *inode,
322 struct ocfs2_extent_tree *et)
323 {
324 struct ocfs2_dx_root_block *dx_root = et->et_object;
325
326 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
327
328 return 0;
329 }
330
331 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
332 {
333 struct ocfs2_dx_root_block *dx_root = et->et_object;
334
335 et->et_root_el = &dx_root->dr_list;
336 }
337
338 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
339 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
340 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
341 .eo_update_clusters = ocfs2_dx_root_update_clusters,
342 .eo_sanity_check = ocfs2_dx_root_sanity_check,
343 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
344 };
345
346 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
347 struct inode *inode,
348 struct buffer_head *bh,
349 ocfs2_journal_access_func access,
350 void *obj,
351 struct ocfs2_extent_tree_operations *ops)
352 {
353 et->et_ops = ops;
354 et->et_root_bh = bh;
355 et->et_root_journal_access = access;
356 if (!obj)
357 obj = (void *)bh->b_data;
358 et->et_object = obj;
359
360 et->et_ops->eo_fill_root_el(et);
361 if (!et->et_ops->eo_fill_max_leaf_clusters)
362 et->et_max_leaf_clusters = 0;
363 else
364 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
365 }
366
367 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
368 struct inode *inode,
369 struct buffer_head *bh)
370 {
371 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_di,
372 NULL, &ocfs2_dinode_et_ops);
373 }
374
375 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
376 struct inode *inode,
377 struct buffer_head *bh)
378 {
379 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_xb,
380 NULL, &ocfs2_xattr_tree_et_ops);
381 }
382
383 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
384 struct inode *inode,
385 struct ocfs2_xattr_value_buf *vb)
386 {
387 __ocfs2_init_extent_tree(et, inode, vb->vb_bh, vb->vb_access, vb,
388 &ocfs2_xattr_value_et_ops);
389 }
390
391 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
392 struct inode *inode,
393 struct buffer_head *bh)
394 {
395 __ocfs2_init_extent_tree(et, inode, bh, ocfs2_journal_access_dr,
396 NULL, &ocfs2_dx_root_et_ops);
397 }
398
399 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
400 u64 new_last_eb_blk)
401 {
402 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
403 }
404
405 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
406 {
407 return et->et_ops->eo_get_last_eb_blk(et);
408 }
409
410 static inline void ocfs2_et_update_clusters(struct inode *inode,
411 struct ocfs2_extent_tree *et,
412 u32 clusters)
413 {
414 et->et_ops->eo_update_clusters(inode, et, clusters);
415 }
416
417 static inline int ocfs2_et_root_journal_access(handle_t *handle,
418 struct inode *inode,
419 struct ocfs2_extent_tree *et,
420 int type)
421 {
422 return et->et_root_journal_access(handle, inode, et->et_root_bh,
423 type);
424 }
425
426 static inline int ocfs2_et_insert_check(struct inode *inode,
427 struct ocfs2_extent_tree *et,
428 struct ocfs2_extent_rec *rec)
429 {
430 int ret = 0;
431
432 if (et->et_ops->eo_insert_check)
433 ret = et->et_ops->eo_insert_check(inode, et, rec);
434 return ret;
435 }
436
437 static inline int ocfs2_et_sanity_check(struct inode *inode,
438 struct ocfs2_extent_tree *et)
439 {
440 int ret = 0;
441
442 if (et->et_ops->eo_sanity_check)
443 ret = et->et_ops->eo_sanity_check(inode, et);
444 return ret;
445 }
446
447 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
448 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
449 struct ocfs2_extent_block *eb);
450
451 /*
452 * Structures which describe a path through a btree, and functions to
453 * manipulate them.
454 *
455 * The idea here is to be as generic as possible with the tree
456 * manipulation code.
457 */
458 struct ocfs2_path_item {
459 struct buffer_head *bh;
460 struct ocfs2_extent_list *el;
461 };
462
463 #define OCFS2_MAX_PATH_DEPTH 5
464
465 struct ocfs2_path {
466 int p_tree_depth;
467 ocfs2_journal_access_func p_root_access;
468 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
469 };
470
471 #define path_root_bh(_path) ((_path)->p_node[0].bh)
472 #define path_root_el(_path) ((_path)->p_node[0].el)
473 #define path_root_access(_path)((_path)->p_root_access)
474 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
475 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
476 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
477
478 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
479 u32 cpos);
480 static void ocfs2_adjust_rightmost_records(struct inode *inode,
481 handle_t *handle,
482 struct ocfs2_path *path,
483 struct ocfs2_extent_rec *insert_rec);
484 /*
485 * Reset the actual path elements so that we can re-use the structure
486 * to build another path. Generally, this involves freeing the buffer
487 * heads.
488 */
489 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
490 {
491 int i, start = 0, depth = 0;
492 struct ocfs2_path_item *node;
493
494 if (keep_root)
495 start = 1;
496
497 for(i = start; i < path_num_items(path); i++) {
498 node = &path->p_node[i];
499
500 brelse(node->bh);
501 node->bh = NULL;
502 node->el = NULL;
503 }
504
505 /*
506 * Tree depth may change during truncate, or insert. If we're
507 * keeping the root extent list, then make sure that our path
508 * structure reflects the proper depth.
509 */
510 if (keep_root)
511 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
512 else
513 path_root_access(path) = NULL;
514
515 path->p_tree_depth = depth;
516 }
517
518 static void ocfs2_free_path(struct ocfs2_path *path)
519 {
520 if (path) {
521 ocfs2_reinit_path(path, 0);
522 kfree(path);
523 }
524 }
525
526 /*
527 * All the elements of src into dest. After this call, src could be freed
528 * without affecting dest.
529 *
530 * Both paths should have the same root. Any non-root elements of dest
531 * will be freed.
532 */
533 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
534 {
535 int i;
536
537 BUG_ON(path_root_bh(dest) != path_root_bh(src));
538 BUG_ON(path_root_el(dest) != path_root_el(src));
539 BUG_ON(path_root_access(dest) != path_root_access(src));
540
541 ocfs2_reinit_path(dest, 1);
542
543 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
544 dest->p_node[i].bh = src->p_node[i].bh;
545 dest->p_node[i].el = src->p_node[i].el;
546
547 if (dest->p_node[i].bh)
548 get_bh(dest->p_node[i].bh);
549 }
550 }
551
552 /*
553 * Make the *dest path the same as src and re-initialize src path to
554 * have a root only.
555 */
556 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
557 {
558 int i;
559
560 BUG_ON(path_root_bh(dest) != path_root_bh(src));
561 BUG_ON(path_root_access(dest) != path_root_access(src));
562
563 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
564 brelse(dest->p_node[i].bh);
565
566 dest->p_node[i].bh = src->p_node[i].bh;
567 dest->p_node[i].el = src->p_node[i].el;
568
569 src->p_node[i].bh = NULL;
570 src->p_node[i].el = NULL;
571 }
572 }
573
574 /*
575 * Insert an extent block at given index.
576 *
577 * This will not take an additional reference on eb_bh.
578 */
579 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
580 struct buffer_head *eb_bh)
581 {
582 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
583
584 /*
585 * Right now, no root bh is an extent block, so this helps
586 * catch code errors with dinode trees. The assertion can be
587 * safely removed if we ever need to insert extent block
588 * structures at the root.
589 */
590 BUG_ON(index == 0);
591
592 path->p_node[index].bh = eb_bh;
593 path->p_node[index].el = &eb->h_list;
594 }
595
596 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
597 struct ocfs2_extent_list *root_el,
598 ocfs2_journal_access_func access)
599 {
600 struct ocfs2_path *path;
601
602 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
603
604 path = kzalloc(sizeof(*path), GFP_NOFS);
605 if (path) {
606 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
607 get_bh(root_bh);
608 path_root_bh(path) = root_bh;
609 path_root_el(path) = root_el;
610 path_root_access(path) = access;
611 }
612
613 return path;
614 }
615
616 static struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
617 {
618 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
619 path_root_access(path));
620 }
621
622 static struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
623 {
624 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
625 et->et_root_journal_access);
626 }
627
628 /*
629 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
630 * otherwise it's the root_access function.
631 *
632 * I don't like the way this function's name looks next to
633 * ocfs2_journal_access_path(), but I don't have a better one.
634 */
635 static int ocfs2_path_bh_journal_access(handle_t *handle,
636 struct inode *inode,
637 struct ocfs2_path *path,
638 int idx)
639 {
640 ocfs2_journal_access_func access = path_root_access(path);
641
642 if (!access)
643 access = ocfs2_journal_access;
644
645 if (idx)
646 access = ocfs2_journal_access_eb;
647
648 return access(handle, inode, path->p_node[idx].bh,
649 OCFS2_JOURNAL_ACCESS_WRITE);
650 }
651
652 /*
653 * Convenience function to journal all components in a path.
654 */
655 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
656 struct ocfs2_path *path)
657 {
658 int i, ret = 0;
659
660 if (!path)
661 goto out;
662
663 for(i = 0; i < path_num_items(path); i++) {
664 ret = ocfs2_path_bh_journal_access(handle, inode, path, i);
665 if (ret < 0) {
666 mlog_errno(ret);
667 goto out;
668 }
669 }
670
671 out:
672 return ret;
673 }
674
675 /*
676 * Return the index of the extent record which contains cluster #v_cluster.
677 * -1 is returned if it was not found.
678 *
679 * Should work fine on interior and exterior nodes.
680 */
681 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
682 {
683 int ret = -1;
684 int i;
685 struct ocfs2_extent_rec *rec;
686 u32 rec_end, rec_start, clusters;
687
688 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
689 rec = &el->l_recs[i];
690
691 rec_start = le32_to_cpu(rec->e_cpos);
692 clusters = ocfs2_rec_clusters(el, rec);
693
694 rec_end = rec_start + clusters;
695
696 if (v_cluster >= rec_start && v_cluster < rec_end) {
697 ret = i;
698 break;
699 }
700 }
701
702 return ret;
703 }
704
705 enum ocfs2_contig_type {
706 CONTIG_NONE = 0,
707 CONTIG_LEFT,
708 CONTIG_RIGHT,
709 CONTIG_LEFTRIGHT,
710 };
711
712
713 /*
714 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
715 * ocfs2_extent_contig only work properly against leaf nodes!
716 */
717 static int ocfs2_block_extent_contig(struct super_block *sb,
718 struct ocfs2_extent_rec *ext,
719 u64 blkno)
720 {
721 u64 blk_end = le64_to_cpu(ext->e_blkno);
722
723 blk_end += ocfs2_clusters_to_blocks(sb,
724 le16_to_cpu(ext->e_leaf_clusters));
725
726 return blkno == blk_end;
727 }
728
729 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
730 struct ocfs2_extent_rec *right)
731 {
732 u32 left_range;
733
734 left_range = le32_to_cpu(left->e_cpos) +
735 le16_to_cpu(left->e_leaf_clusters);
736
737 return (left_range == le32_to_cpu(right->e_cpos));
738 }
739
740 static enum ocfs2_contig_type
741 ocfs2_extent_contig(struct inode *inode,
742 struct ocfs2_extent_rec *ext,
743 struct ocfs2_extent_rec *insert_rec)
744 {
745 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
746
747 /*
748 * Refuse to coalesce extent records with different flag
749 * fields - we don't want to mix unwritten extents with user
750 * data.
751 */
752 if (ext->e_flags != insert_rec->e_flags)
753 return CONTIG_NONE;
754
755 if (ocfs2_extents_adjacent(ext, insert_rec) &&
756 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
757 return CONTIG_RIGHT;
758
759 blkno = le64_to_cpu(ext->e_blkno);
760 if (ocfs2_extents_adjacent(insert_rec, ext) &&
761 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
762 return CONTIG_LEFT;
763
764 return CONTIG_NONE;
765 }
766
767 /*
768 * NOTE: We can have pretty much any combination of contiguousness and
769 * appending.
770 *
771 * The usefulness of APPEND_TAIL is more in that it lets us know that
772 * we'll have to update the path to that leaf.
773 */
774 enum ocfs2_append_type {
775 APPEND_NONE = 0,
776 APPEND_TAIL,
777 };
778
779 enum ocfs2_split_type {
780 SPLIT_NONE = 0,
781 SPLIT_LEFT,
782 SPLIT_RIGHT,
783 };
784
785 struct ocfs2_insert_type {
786 enum ocfs2_split_type ins_split;
787 enum ocfs2_append_type ins_appending;
788 enum ocfs2_contig_type ins_contig;
789 int ins_contig_index;
790 int ins_tree_depth;
791 };
792
793 struct ocfs2_merge_ctxt {
794 enum ocfs2_contig_type c_contig_type;
795 int c_has_empty_extent;
796 int c_split_covers_rec;
797 };
798
799 static int ocfs2_validate_extent_block(struct super_block *sb,
800 struct buffer_head *bh)
801 {
802 int rc;
803 struct ocfs2_extent_block *eb =
804 (struct ocfs2_extent_block *)bh->b_data;
805
806 mlog(0, "Validating extent block %llu\n",
807 (unsigned long long)bh->b_blocknr);
808
809 BUG_ON(!buffer_uptodate(bh));
810
811 /*
812 * If the ecc fails, we return the error but otherwise
813 * leave the filesystem running. We know any error is
814 * local to this block.
815 */
816 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
817 if (rc) {
818 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
819 (unsigned long long)bh->b_blocknr);
820 return rc;
821 }
822
823 /*
824 * Errors after here are fatal.
825 */
826
827 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
828 ocfs2_error(sb,
829 "Extent block #%llu has bad signature %.*s",
830 (unsigned long long)bh->b_blocknr, 7,
831 eb->h_signature);
832 return -EINVAL;
833 }
834
835 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
836 ocfs2_error(sb,
837 "Extent block #%llu has an invalid h_blkno "
838 "of %llu",
839 (unsigned long long)bh->b_blocknr,
840 (unsigned long long)le64_to_cpu(eb->h_blkno));
841 return -EINVAL;
842 }
843
844 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
845 ocfs2_error(sb,
846 "Extent block #%llu has an invalid "
847 "h_fs_generation of #%u",
848 (unsigned long long)bh->b_blocknr,
849 le32_to_cpu(eb->h_fs_generation));
850 return -EINVAL;
851 }
852
853 return 0;
854 }
855
856 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
857 struct buffer_head **bh)
858 {
859 int rc;
860 struct buffer_head *tmp = *bh;
861
862 rc = ocfs2_read_block(inode, eb_blkno, &tmp,
863 ocfs2_validate_extent_block);
864
865 /* If ocfs2_read_block() got us a new bh, pass it up. */
866 if (!rc && !*bh)
867 *bh = tmp;
868
869 return rc;
870 }
871
872
873 /*
874 * How many free extents have we got before we need more meta data?
875 */
876 int ocfs2_num_free_extents(struct ocfs2_super *osb,
877 struct inode *inode,
878 struct ocfs2_extent_tree *et)
879 {
880 int retval;
881 struct ocfs2_extent_list *el = NULL;
882 struct ocfs2_extent_block *eb;
883 struct buffer_head *eb_bh = NULL;
884 u64 last_eb_blk = 0;
885
886 mlog_entry_void();
887
888 el = et->et_root_el;
889 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
890
891 if (last_eb_blk) {
892 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
893 if (retval < 0) {
894 mlog_errno(retval);
895 goto bail;
896 }
897 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
898 el = &eb->h_list;
899 }
900
901 BUG_ON(el->l_tree_depth != 0);
902
903 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
904 bail:
905 brelse(eb_bh);
906
907 mlog_exit(retval);
908 return retval;
909 }
910
911 /* expects array to already be allocated
912 *
913 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
914 * l_count for you
915 */
916 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
917 handle_t *handle,
918 struct inode *inode,
919 int wanted,
920 struct ocfs2_alloc_context *meta_ac,
921 struct buffer_head *bhs[])
922 {
923 int count, status, i;
924 u16 suballoc_bit_start;
925 u32 num_got;
926 u64 first_blkno;
927 struct ocfs2_extent_block *eb;
928
929 mlog_entry_void();
930
931 count = 0;
932 while (count < wanted) {
933 status = ocfs2_claim_metadata(osb,
934 handle,
935 meta_ac,
936 wanted - count,
937 &suballoc_bit_start,
938 &num_got,
939 &first_blkno);
940 if (status < 0) {
941 mlog_errno(status);
942 goto bail;
943 }
944
945 for(i = count; i < (num_got + count); i++) {
946 bhs[i] = sb_getblk(osb->sb, first_blkno);
947 if (bhs[i] == NULL) {
948 status = -EIO;
949 mlog_errno(status);
950 goto bail;
951 }
952 ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
953
954 status = ocfs2_journal_access_eb(handle, inode, bhs[i],
955 OCFS2_JOURNAL_ACCESS_CREATE);
956 if (status < 0) {
957 mlog_errno(status);
958 goto bail;
959 }
960
961 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
962 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
963 /* Ok, setup the minimal stuff here. */
964 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
965 eb->h_blkno = cpu_to_le64(first_blkno);
966 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
967 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
968 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
969 eb->h_list.l_count =
970 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
971
972 suballoc_bit_start++;
973 first_blkno++;
974
975 /* We'll also be dirtied by the caller, so
976 * this isn't absolutely necessary. */
977 status = ocfs2_journal_dirty(handle, bhs[i]);
978 if (status < 0) {
979 mlog_errno(status);
980 goto bail;
981 }
982 }
983
984 count += num_got;
985 }
986
987 status = 0;
988 bail:
989 if (status < 0) {
990 for(i = 0; i < wanted; i++) {
991 brelse(bhs[i]);
992 bhs[i] = NULL;
993 }
994 }
995 mlog_exit(status);
996 return status;
997 }
998
999 /*
1000 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1001 *
1002 * Returns the sum of the rightmost extent rec logical offset and
1003 * cluster count.
1004 *
1005 * ocfs2_add_branch() uses this to determine what logical cluster
1006 * value should be populated into the leftmost new branch records.
1007 *
1008 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1009 * value for the new topmost tree record.
1010 */
1011 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1012 {
1013 int i;
1014
1015 i = le16_to_cpu(el->l_next_free_rec) - 1;
1016
1017 return le32_to_cpu(el->l_recs[i].e_cpos) +
1018 ocfs2_rec_clusters(el, &el->l_recs[i]);
1019 }
1020
1021 /*
1022 * Change range of the branches in the right most path according to the leaf
1023 * extent block's rightmost record.
1024 */
1025 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1026 struct inode *inode,
1027 struct ocfs2_extent_tree *et)
1028 {
1029 int status;
1030 struct ocfs2_path *path = NULL;
1031 struct ocfs2_extent_list *el;
1032 struct ocfs2_extent_rec *rec;
1033
1034 path = ocfs2_new_path_from_et(et);
1035 if (!path) {
1036 status = -ENOMEM;
1037 return status;
1038 }
1039
1040 status = ocfs2_find_path(inode, path, UINT_MAX);
1041 if (status < 0) {
1042 mlog_errno(status);
1043 goto out;
1044 }
1045
1046 status = ocfs2_extend_trans(handle, path_num_items(path) +
1047 handle->h_buffer_credits);
1048 if (status < 0) {
1049 mlog_errno(status);
1050 goto out;
1051 }
1052
1053 status = ocfs2_journal_access_path(inode, handle, path);
1054 if (status < 0) {
1055 mlog_errno(status);
1056 goto out;
1057 }
1058
1059 el = path_leaf_el(path);
1060 rec = &el->l_recs[le32_to_cpu(el->l_next_free_rec) - 1];
1061
1062 ocfs2_adjust_rightmost_records(inode, handle, path, rec);
1063
1064 out:
1065 ocfs2_free_path(path);
1066 return status;
1067 }
1068
1069 /*
1070 * Add an entire tree branch to our inode. eb_bh is the extent block
1071 * to start at, if we don't want to start the branch at the dinode
1072 * structure.
1073 *
1074 * last_eb_bh is required as we have to update it's next_leaf pointer
1075 * for the new last extent block.
1076 *
1077 * the new branch will be 'empty' in the sense that every block will
1078 * contain a single record with cluster count == 0.
1079 */
1080 static int ocfs2_add_branch(struct ocfs2_super *osb,
1081 handle_t *handle,
1082 struct inode *inode,
1083 struct ocfs2_extent_tree *et,
1084 struct buffer_head *eb_bh,
1085 struct buffer_head **last_eb_bh,
1086 struct ocfs2_alloc_context *meta_ac)
1087 {
1088 int status, new_blocks, i;
1089 u64 next_blkno, new_last_eb_blk;
1090 struct buffer_head *bh;
1091 struct buffer_head **new_eb_bhs = NULL;
1092 struct ocfs2_extent_block *eb;
1093 struct ocfs2_extent_list *eb_el;
1094 struct ocfs2_extent_list *el;
1095 u32 new_cpos, root_end;
1096
1097 mlog_entry_void();
1098
1099 BUG_ON(!last_eb_bh || !*last_eb_bh);
1100
1101 if (eb_bh) {
1102 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1103 el = &eb->h_list;
1104 } else
1105 el = et->et_root_el;
1106
1107 /* we never add a branch to a leaf. */
1108 BUG_ON(!el->l_tree_depth);
1109
1110 new_blocks = le16_to_cpu(el->l_tree_depth);
1111
1112 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1113 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1114 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1115
1116 /*
1117 * If there is a gap before the root end and the real end
1118 * of the righmost leaf block, we need to remove the gap
1119 * between new_cpos and root_end first so that the tree
1120 * is consistent after we add a new branch(it will start
1121 * from new_cpos).
1122 */
1123 if (root_end > new_cpos) {
1124 mlog(0, "adjust the cluster end from %u to %u\n",
1125 root_end, new_cpos);
1126 status = ocfs2_adjust_rightmost_branch(handle, inode, et);
1127 if (status) {
1128 mlog_errno(status);
1129 goto bail;
1130 }
1131 }
1132
1133 /* allocate the number of new eb blocks we need */
1134 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1135 GFP_KERNEL);
1136 if (!new_eb_bhs) {
1137 status = -ENOMEM;
1138 mlog_errno(status);
1139 goto bail;
1140 }
1141
1142 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
1143 meta_ac, new_eb_bhs);
1144 if (status < 0) {
1145 mlog_errno(status);
1146 goto bail;
1147 }
1148
1149 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1150 * linked with the rest of the tree.
1151 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1152 *
1153 * when we leave the loop, new_last_eb_blk will point to the
1154 * newest leaf, and next_blkno will point to the topmost extent
1155 * block. */
1156 next_blkno = new_last_eb_blk = 0;
1157 for(i = 0; i < new_blocks; i++) {
1158 bh = new_eb_bhs[i];
1159 eb = (struct ocfs2_extent_block *) bh->b_data;
1160 /* ocfs2_create_new_meta_bhs() should create it right! */
1161 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1162 eb_el = &eb->h_list;
1163
1164 status = ocfs2_journal_access_eb(handle, inode, bh,
1165 OCFS2_JOURNAL_ACCESS_CREATE);
1166 if (status < 0) {
1167 mlog_errno(status);
1168 goto bail;
1169 }
1170
1171 eb->h_next_leaf_blk = 0;
1172 eb_el->l_tree_depth = cpu_to_le16(i);
1173 eb_el->l_next_free_rec = cpu_to_le16(1);
1174 /*
1175 * This actually counts as an empty extent as
1176 * c_clusters == 0
1177 */
1178 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1179 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1180 /*
1181 * eb_el isn't always an interior node, but even leaf
1182 * nodes want a zero'd flags and reserved field so
1183 * this gets the whole 32 bits regardless of use.
1184 */
1185 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1186 if (!eb_el->l_tree_depth)
1187 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1188
1189 status = ocfs2_journal_dirty(handle, bh);
1190 if (status < 0) {
1191 mlog_errno(status);
1192 goto bail;
1193 }
1194
1195 next_blkno = le64_to_cpu(eb->h_blkno);
1196 }
1197
1198 /* This is a bit hairy. We want to update up to three blocks
1199 * here without leaving any of them in an inconsistent state
1200 * in case of error. We don't have to worry about
1201 * journal_dirty erroring as it won't unless we've aborted the
1202 * handle (in which case we would never be here) so reserving
1203 * the write with journal_access is all we need to do. */
1204 status = ocfs2_journal_access_eb(handle, inode, *last_eb_bh,
1205 OCFS2_JOURNAL_ACCESS_WRITE);
1206 if (status < 0) {
1207 mlog_errno(status);
1208 goto bail;
1209 }
1210 status = ocfs2_et_root_journal_access(handle, inode, et,
1211 OCFS2_JOURNAL_ACCESS_WRITE);
1212 if (status < 0) {
1213 mlog_errno(status);
1214 goto bail;
1215 }
1216 if (eb_bh) {
1217 status = ocfs2_journal_access_eb(handle, inode, eb_bh,
1218 OCFS2_JOURNAL_ACCESS_WRITE);
1219 if (status < 0) {
1220 mlog_errno(status);
1221 goto bail;
1222 }
1223 }
1224
1225 /* Link the new branch into the rest of the tree (el will
1226 * either be on the root_bh, or the extent block passed in. */
1227 i = le16_to_cpu(el->l_next_free_rec);
1228 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1229 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1230 el->l_recs[i].e_int_clusters = 0;
1231 le16_add_cpu(&el->l_next_free_rec, 1);
1232
1233 /* fe needs a new last extent block pointer, as does the
1234 * next_leaf on the previously last-extent-block. */
1235 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1236
1237 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1238 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1239
1240 status = ocfs2_journal_dirty(handle, *last_eb_bh);
1241 if (status < 0)
1242 mlog_errno(status);
1243 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1244 if (status < 0)
1245 mlog_errno(status);
1246 if (eb_bh) {
1247 status = ocfs2_journal_dirty(handle, eb_bh);
1248 if (status < 0)
1249 mlog_errno(status);
1250 }
1251
1252 /*
1253 * Some callers want to track the rightmost leaf so pass it
1254 * back here.
1255 */
1256 brelse(*last_eb_bh);
1257 get_bh(new_eb_bhs[0]);
1258 *last_eb_bh = new_eb_bhs[0];
1259
1260 status = 0;
1261 bail:
1262 if (new_eb_bhs) {
1263 for (i = 0; i < new_blocks; i++)
1264 brelse(new_eb_bhs[i]);
1265 kfree(new_eb_bhs);
1266 }
1267
1268 mlog_exit(status);
1269 return status;
1270 }
1271
1272 /*
1273 * adds another level to the allocation tree.
1274 * returns back the new extent block so you can add a branch to it
1275 * after this call.
1276 */
1277 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1278 handle_t *handle,
1279 struct inode *inode,
1280 struct ocfs2_extent_tree *et,
1281 struct ocfs2_alloc_context *meta_ac,
1282 struct buffer_head **ret_new_eb_bh)
1283 {
1284 int status, i;
1285 u32 new_clusters;
1286 struct buffer_head *new_eb_bh = NULL;
1287 struct ocfs2_extent_block *eb;
1288 struct ocfs2_extent_list *root_el;
1289 struct ocfs2_extent_list *eb_el;
1290
1291 mlog_entry_void();
1292
1293 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1294 &new_eb_bh);
1295 if (status < 0) {
1296 mlog_errno(status);
1297 goto bail;
1298 }
1299
1300 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1301 /* ocfs2_create_new_meta_bhs() should create it right! */
1302 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1303
1304 eb_el = &eb->h_list;
1305 root_el = et->et_root_el;
1306
1307 status = ocfs2_journal_access_eb(handle, inode, new_eb_bh,
1308 OCFS2_JOURNAL_ACCESS_CREATE);
1309 if (status < 0) {
1310 mlog_errno(status);
1311 goto bail;
1312 }
1313
1314 /* copy the root extent list data into the new extent block */
1315 eb_el->l_tree_depth = root_el->l_tree_depth;
1316 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1317 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1318 eb_el->l_recs[i] = root_el->l_recs[i];
1319
1320 status = ocfs2_journal_dirty(handle, new_eb_bh);
1321 if (status < 0) {
1322 mlog_errno(status);
1323 goto bail;
1324 }
1325
1326 status = ocfs2_et_root_journal_access(handle, inode, et,
1327 OCFS2_JOURNAL_ACCESS_WRITE);
1328 if (status < 0) {
1329 mlog_errno(status);
1330 goto bail;
1331 }
1332
1333 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1334
1335 /* update root_bh now */
1336 le16_add_cpu(&root_el->l_tree_depth, 1);
1337 root_el->l_recs[0].e_cpos = 0;
1338 root_el->l_recs[0].e_blkno = eb->h_blkno;
1339 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1340 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1341 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1342 root_el->l_next_free_rec = cpu_to_le16(1);
1343
1344 /* If this is our 1st tree depth shift, then last_eb_blk
1345 * becomes the allocated extent block */
1346 if (root_el->l_tree_depth == cpu_to_le16(1))
1347 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1348
1349 status = ocfs2_journal_dirty(handle, et->et_root_bh);
1350 if (status < 0) {
1351 mlog_errno(status);
1352 goto bail;
1353 }
1354
1355 *ret_new_eb_bh = new_eb_bh;
1356 new_eb_bh = NULL;
1357 status = 0;
1358 bail:
1359 brelse(new_eb_bh);
1360
1361 mlog_exit(status);
1362 return status;
1363 }
1364
1365 /*
1366 * Should only be called when there is no space left in any of the
1367 * leaf nodes. What we want to do is find the lowest tree depth
1368 * non-leaf extent block with room for new records. There are three
1369 * valid results of this search:
1370 *
1371 * 1) a lowest extent block is found, then we pass it back in
1372 * *lowest_eb_bh and return '0'
1373 *
1374 * 2) the search fails to find anything, but the root_el has room. We
1375 * pass NULL back in *lowest_eb_bh, but still return '0'
1376 *
1377 * 3) the search fails to find anything AND the root_el is full, in
1378 * which case we return > 0
1379 *
1380 * return status < 0 indicates an error.
1381 */
1382 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1383 struct inode *inode,
1384 struct ocfs2_extent_tree *et,
1385 struct buffer_head **target_bh)
1386 {
1387 int status = 0, i;
1388 u64 blkno;
1389 struct ocfs2_extent_block *eb;
1390 struct ocfs2_extent_list *el;
1391 struct buffer_head *bh = NULL;
1392 struct buffer_head *lowest_bh = NULL;
1393
1394 mlog_entry_void();
1395
1396 *target_bh = NULL;
1397
1398 el = et->et_root_el;
1399
1400 while(le16_to_cpu(el->l_tree_depth) > 1) {
1401 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1402 ocfs2_error(inode->i_sb, "Dinode %llu has empty "
1403 "extent list (next_free_rec == 0)",
1404 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1405 status = -EIO;
1406 goto bail;
1407 }
1408 i = le16_to_cpu(el->l_next_free_rec) - 1;
1409 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1410 if (!blkno) {
1411 ocfs2_error(inode->i_sb, "Dinode %llu has extent "
1412 "list where extent # %d has no physical "
1413 "block start",
1414 (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
1415 status = -EIO;
1416 goto bail;
1417 }
1418
1419 brelse(bh);
1420 bh = NULL;
1421
1422 status = ocfs2_read_extent_block(inode, blkno, &bh);
1423 if (status < 0) {
1424 mlog_errno(status);
1425 goto bail;
1426 }
1427
1428 eb = (struct ocfs2_extent_block *) bh->b_data;
1429 el = &eb->h_list;
1430
1431 if (le16_to_cpu(el->l_next_free_rec) <
1432 le16_to_cpu(el->l_count)) {
1433 brelse(lowest_bh);
1434 lowest_bh = bh;
1435 get_bh(lowest_bh);
1436 }
1437 }
1438
1439 /* If we didn't find one and the fe doesn't have any room,
1440 * then return '1' */
1441 el = et->et_root_el;
1442 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1443 status = 1;
1444
1445 *target_bh = lowest_bh;
1446 bail:
1447 brelse(bh);
1448
1449 mlog_exit(status);
1450 return status;
1451 }
1452
1453 /*
1454 * Grow a b-tree so that it has more records.
1455 *
1456 * We might shift the tree depth in which case existing paths should
1457 * be considered invalid.
1458 *
1459 * Tree depth after the grow is returned via *final_depth.
1460 *
1461 * *last_eb_bh will be updated by ocfs2_add_branch().
1462 */
1463 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
1464 struct ocfs2_extent_tree *et, int *final_depth,
1465 struct buffer_head **last_eb_bh,
1466 struct ocfs2_alloc_context *meta_ac)
1467 {
1468 int ret, shift;
1469 struct ocfs2_extent_list *el = et->et_root_el;
1470 int depth = le16_to_cpu(el->l_tree_depth);
1471 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1472 struct buffer_head *bh = NULL;
1473
1474 BUG_ON(meta_ac == NULL);
1475
1476 shift = ocfs2_find_branch_target(osb, inode, et, &bh);
1477 if (shift < 0) {
1478 ret = shift;
1479 mlog_errno(ret);
1480 goto out;
1481 }
1482
1483 /* We traveled all the way to the bottom of the allocation tree
1484 * and didn't find room for any more extents - we need to add
1485 * another tree level */
1486 if (shift) {
1487 BUG_ON(bh);
1488 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1489
1490 /* ocfs2_shift_tree_depth will return us a buffer with
1491 * the new extent block (so we can pass that to
1492 * ocfs2_add_branch). */
1493 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
1494 meta_ac, &bh);
1495 if (ret < 0) {
1496 mlog_errno(ret);
1497 goto out;
1498 }
1499 depth++;
1500 if (depth == 1) {
1501 /*
1502 * Special case: we have room now if we shifted from
1503 * tree_depth 0, so no more work needs to be done.
1504 *
1505 * We won't be calling add_branch, so pass
1506 * back *last_eb_bh as the new leaf. At depth
1507 * zero, it should always be null so there's
1508 * no reason to brelse.
1509 */
1510 BUG_ON(*last_eb_bh);
1511 get_bh(bh);
1512 *last_eb_bh = bh;
1513 goto out;
1514 }
1515 }
1516
1517 /* call ocfs2_add_branch to add the final part of the tree with
1518 * the new data. */
1519 mlog(0, "add branch. bh = %p\n", bh);
1520 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
1521 meta_ac);
1522 if (ret < 0) {
1523 mlog_errno(ret);
1524 goto out;
1525 }
1526
1527 out:
1528 if (final_depth)
1529 *final_depth = depth;
1530 brelse(bh);
1531 return ret;
1532 }
1533
1534 /*
1535 * This function will discard the rightmost extent record.
1536 */
1537 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1538 {
1539 int next_free = le16_to_cpu(el->l_next_free_rec);
1540 int count = le16_to_cpu(el->l_count);
1541 unsigned int num_bytes;
1542
1543 BUG_ON(!next_free);
1544 /* This will cause us to go off the end of our extent list. */
1545 BUG_ON(next_free >= count);
1546
1547 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1548
1549 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1550 }
1551
1552 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1553 struct ocfs2_extent_rec *insert_rec)
1554 {
1555 int i, insert_index, next_free, has_empty, num_bytes;
1556 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1557 struct ocfs2_extent_rec *rec;
1558
1559 next_free = le16_to_cpu(el->l_next_free_rec);
1560 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1561
1562 BUG_ON(!next_free);
1563
1564 /* The tree code before us didn't allow enough room in the leaf. */
1565 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1566
1567 /*
1568 * The easiest way to approach this is to just remove the
1569 * empty extent and temporarily decrement next_free.
1570 */
1571 if (has_empty) {
1572 /*
1573 * If next_free was 1 (only an empty extent), this
1574 * loop won't execute, which is fine. We still want
1575 * the decrement above to happen.
1576 */
1577 for(i = 0; i < (next_free - 1); i++)
1578 el->l_recs[i] = el->l_recs[i+1];
1579
1580 next_free--;
1581 }
1582
1583 /*
1584 * Figure out what the new record index should be.
1585 */
1586 for(i = 0; i < next_free; i++) {
1587 rec = &el->l_recs[i];
1588
1589 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1590 break;
1591 }
1592 insert_index = i;
1593
1594 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1595 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1596
1597 BUG_ON(insert_index < 0);
1598 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1599 BUG_ON(insert_index > next_free);
1600
1601 /*
1602 * No need to memmove if we're just adding to the tail.
1603 */
1604 if (insert_index != next_free) {
1605 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1606
1607 num_bytes = next_free - insert_index;
1608 num_bytes *= sizeof(struct ocfs2_extent_rec);
1609 memmove(&el->l_recs[insert_index + 1],
1610 &el->l_recs[insert_index],
1611 num_bytes);
1612 }
1613
1614 /*
1615 * Either we had an empty extent, and need to re-increment or
1616 * there was no empty extent on a non full rightmost leaf node,
1617 * in which case we still need to increment.
1618 */
1619 next_free++;
1620 el->l_next_free_rec = cpu_to_le16(next_free);
1621 /*
1622 * Make sure none of the math above just messed up our tree.
1623 */
1624 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1625
1626 el->l_recs[insert_index] = *insert_rec;
1627
1628 }
1629
1630 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1631 {
1632 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1633
1634 BUG_ON(num_recs == 0);
1635
1636 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1637 num_recs--;
1638 size = num_recs * sizeof(struct ocfs2_extent_rec);
1639 memmove(&el->l_recs[0], &el->l_recs[1], size);
1640 memset(&el->l_recs[num_recs], 0,
1641 sizeof(struct ocfs2_extent_rec));
1642 el->l_next_free_rec = cpu_to_le16(num_recs);
1643 }
1644 }
1645
1646 /*
1647 * Create an empty extent record .
1648 *
1649 * l_next_free_rec may be updated.
1650 *
1651 * If an empty extent already exists do nothing.
1652 */
1653 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1654 {
1655 int next_free = le16_to_cpu(el->l_next_free_rec);
1656
1657 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1658
1659 if (next_free == 0)
1660 goto set_and_inc;
1661
1662 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1663 return;
1664
1665 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1666 "Asked to create an empty extent in a full list:\n"
1667 "count = %u, tree depth = %u",
1668 le16_to_cpu(el->l_count),
1669 le16_to_cpu(el->l_tree_depth));
1670
1671 ocfs2_shift_records_right(el);
1672
1673 set_and_inc:
1674 le16_add_cpu(&el->l_next_free_rec, 1);
1675 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1676 }
1677
1678 /*
1679 * For a rotation which involves two leaf nodes, the "root node" is
1680 * the lowest level tree node which contains a path to both leafs. This
1681 * resulting set of information can be used to form a complete "subtree"
1682 *
1683 * This function is passed two full paths from the dinode down to a
1684 * pair of adjacent leaves. It's task is to figure out which path
1685 * index contains the subtree root - this can be the root index itself
1686 * in a worst-case rotation.
1687 *
1688 * The array index of the subtree root is passed back.
1689 */
1690 static int ocfs2_find_subtree_root(struct inode *inode,
1691 struct ocfs2_path *left,
1692 struct ocfs2_path *right)
1693 {
1694 int i = 0;
1695
1696 /*
1697 * Check that the caller passed in two paths from the same tree.
1698 */
1699 BUG_ON(path_root_bh(left) != path_root_bh(right));
1700
1701 do {
1702 i++;
1703
1704 /*
1705 * The caller didn't pass two adjacent paths.
1706 */
1707 mlog_bug_on_msg(i > left->p_tree_depth,
1708 "Inode %lu, left depth %u, right depth %u\n"
1709 "left leaf blk %llu, right leaf blk %llu\n",
1710 inode->i_ino, left->p_tree_depth,
1711 right->p_tree_depth,
1712 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1713 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1714 } while (left->p_node[i].bh->b_blocknr ==
1715 right->p_node[i].bh->b_blocknr);
1716
1717 return i - 1;
1718 }
1719
1720 typedef void (path_insert_t)(void *, struct buffer_head *);
1721
1722 /*
1723 * Traverse a btree path in search of cpos, starting at root_el.
1724 *
1725 * This code can be called with a cpos larger than the tree, in which
1726 * case it will return the rightmost path.
1727 */
1728 static int __ocfs2_find_path(struct inode *inode,
1729 struct ocfs2_extent_list *root_el, u32 cpos,
1730 path_insert_t *func, void *data)
1731 {
1732 int i, ret = 0;
1733 u32 range;
1734 u64 blkno;
1735 struct buffer_head *bh = NULL;
1736 struct ocfs2_extent_block *eb;
1737 struct ocfs2_extent_list *el;
1738 struct ocfs2_extent_rec *rec;
1739 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1740
1741 el = root_el;
1742 while (el->l_tree_depth) {
1743 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1744 ocfs2_error(inode->i_sb,
1745 "Inode %llu has empty extent list at "
1746 "depth %u\n",
1747 (unsigned long long)oi->ip_blkno,
1748 le16_to_cpu(el->l_tree_depth));
1749 ret = -EROFS;
1750 goto out;
1751
1752 }
1753
1754 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1755 rec = &el->l_recs[i];
1756
1757 /*
1758 * In the case that cpos is off the allocation
1759 * tree, this should just wind up returning the
1760 * rightmost record.
1761 */
1762 range = le32_to_cpu(rec->e_cpos) +
1763 ocfs2_rec_clusters(el, rec);
1764 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1765 break;
1766 }
1767
1768 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1769 if (blkno == 0) {
1770 ocfs2_error(inode->i_sb,
1771 "Inode %llu has bad blkno in extent list "
1772 "at depth %u (index %d)\n",
1773 (unsigned long long)oi->ip_blkno,
1774 le16_to_cpu(el->l_tree_depth), i);
1775 ret = -EROFS;
1776 goto out;
1777 }
1778
1779 brelse(bh);
1780 bh = NULL;
1781 ret = ocfs2_read_extent_block(inode, blkno, &bh);
1782 if (ret) {
1783 mlog_errno(ret);
1784 goto out;
1785 }
1786
1787 eb = (struct ocfs2_extent_block *) bh->b_data;
1788 el = &eb->h_list;
1789
1790 if (le16_to_cpu(el->l_next_free_rec) >
1791 le16_to_cpu(el->l_count)) {
1792 ocfs2_error(inode->i_sb,
1793 "Inode %llu has bad count in extent list "
1794 "at block %llu (next free=%u, count=%u)\n",
1795 (unsigned long long)oi->ip_blkno,
1796 (unsigned long long)bh->b_blocknr,
1797 le16_to_cpu(el->l_next_free_rec),
1798 le16_to_cpu(el->l_count));
1799 ret = -EROFS;
1800 goto out;
1801 }
1802
1803 if (func)
1804 func(data, bh);
1805 }
1806
1807 out:
1808 /*
1809 * Catch any trailing bh that the loop didn't handle.
1810 */
1811 brelse(bh);
1812
1813 return ret;
1814 }
1815
1816 /*
1817 * Given an initialized path (that is, it has a valid root extent
1818 * list), this function will traverse the btree in search of the path
1819 * which would contain cpos.
1820 *
1821 * The path traveled is recorded in the path structure.
1822 *
1823 * Note that this will not do any comparisons on leaf node extent
1824 * records, so it will work fine in the case that we just added a tree
1825 * branch.
1826 */
1827 struct find_path_data {
1828 int index;
1829 struct ocfs2_path *path;
1830 };
1831 static void find_path_ins(void *data, struct buffer_head *bh)
1832 {
1833 struct find_path_data *fp = data;
1834
1835 get_bh(bh);
1836 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1837 fp->index++;
1838 }
1839 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1840 u32 cpos)
1841 {
1842 struct find_path_data data;
1843
1844 data.index = 1;
1845 data.path = path;
1846 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1847 find_path_ins, &data);
1848 }
1849
1850 static void find_leaf_ins(void *data, struct buffer_head *bh)
1851 {
1852 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1853 struct ocfs2_extent_list *el = &eb->h_list;
1854 struct buffer_head **ret = data;
1855
1856 /* We want to retain only the leaf block. */
1857 if (le16_to_cpu(el->l_tree_depth) == 0) {
1858 get_bh(bh);
1859 *ret = bh;
1860 }
1861 }
1862 /*
1863 * Find the leaf block in the tree which would contain cpos. No
1864 * checking of the actual leaf is done.
1865 *
1866 * Some paths want to call this instead of allocating a path structure
1867 * and calling ocfs2_find_path().
1868 *
1869 * This function doesn't handle non btree extent lists.
1870 */
1871 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1872 u32 cpos, struct buffer_head **leaf_bh)
1873 {
1874 int ret;
1875 struct buffer_head *bh = NULL;
1876
1877 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1878 if (ret) {
1879 mlog_errno(ret);
1880 goto out;
1881 }
1882
1883 *leaf_bh = bh;
1884 out:
1885 return ret;
1886 }
1887
1888 /*
1889 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1890 *
1891 * Basically, we've moved stuff around at the bottom of the tree and
1892 * we need to fix up the extent records above the changes to reflect
1893 * the new changes.
1894 *
1895 * left_rec: the record on the left.
1896 * left_child_el: is the child list pointed to by left_rec
1897 * right_rec: the record to the right of left_rec
1898 * right_child_el: is the child list pointed to by right_rec
1899 *
1900 * By definition, this only works on interior nodes.
1901 */
1902 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1903 struct ocfs2_extent_list *left_child_el,
1904 struct ocfs2_extent_rec *right_rec,
1905 struct ocfs2_extent_list *right_child_el)
1906 {
1907 u32 left_clusters, right_end;
1908
1909 /*
1910 * Interior nodes never have holes. Their cpos is the cpos of
1911 * the leftmost record in their child list. Their cluster
1912 * count covers the full theoretical range of their child list
1913 * - the range between their cpos and the cpos of the record
1914 * immediately to their right.
1915 */
1916 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1917 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1918 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1919 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1920 }
1921 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1922 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1923
1924 /*
1925 * Calculate the rightmost cluster count boundary before
1926 * moving cpos - we will need to adjust clusters after
1927 * updating e_cpos to keep the same highest cluster count.
1928 */
1929 right_end = le32_to_cpu(right_rec->e_cpos);
1930 right_end += le32_to_cpu(right_rec->e_int_clusters);
1931
1932 right_rec->e_cpos = left_rec->e_cpos;
1933 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1934
1935 right_end -= le32_to_cpu(right_rec->e_cpos);
1936 right_rec->e_int_clusters = cpu_to_le32(right_end);
1937 }
1938
1939 /*
1940 * Adjust the adjacent root node records involved in a
1941 * rotation. left_el_blkno is passed in as a key so that we can easily
1942 * find it's index in the root list.
1943 */
1944 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1945 struct ocfs2_extent_list *left_el,
1946 struct ocfs2_extent_list *right_el,
1947 u64 left_el_blkno)
1948 {
1949 int i;
1950
1951 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1952 le16_to_cpu(left_el->l_tree_depth));
1953
1954 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1955 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1956 break;
1957 }
1958
1959 /*
1960 * The path walking code should have never returned a root and
1961 * two paths which are not adjacent.
1962 */
1963 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1964
1965 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1966 &root_el->l_recs[i + 1], right_el);
1967 }
1968
1969 /*
1970 * We've changed a leaf block (in right_path) and need to reflect that
1971 * change back up the subtree.
1972 *
1973 * This happens in multiple places:
1974 * - When we've moved an extent record from the left path leaf to the right
1975 * path leaf to make room for an empty extent in the left path leaf.
1976 * - When our insert into the right path leaf is at the leftmost edge
1977 * and requires an update of the path immediately to it's left. This
1978 * can occur at the end of some types of rotation and appending inserts.
1979 * - When we've adjusted the last extent record in the left path leaf and the
1980 * 1st extent record in the right path leaf during cross extent block merge.
1981 */
1982 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1983 struct ocfs2_path *left_path,
1984 struct ocfs2_path *right_path,
1985 int subtree_index)
1986 {
1987 int ret, i, idx;
1988 struct ocfs2_extent_list *el, *left_el, *right_el;
1989 struct ocfs2_extent_rec *left_rec, *right_rec;
1990 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1991
1992 /*
1993 * Update the counts and position values within all the
1994 * interior nodes to reflect the leaf rotation we just did.
1995 *
1996 * The root node is handled below the loop.
1997 *
1998 * We begin the loop with right_el and left_el pointing to the
1999 * leaf lists and work our way up.
2000 *
2001 * NOTE: within this loop, left_el and right_el always refer
2002 * to the *child* lists.
2003 */
2004 left_el = path_leaf_el(left_path);
2005 right_el = path_leaf_el(right_path);
2006 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2007 mlog(0, "Adjust records at index %u\n", i);
2008
2009 /*
2010 * One nice property of knowing that all of these
2011 * nodes are below the root is that we only deal with
2012 * the leftmost right node record and the rightmost
2013 * left node record.
2014 */
2015 el = left_path->p_node[i].el;
2016 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2017 left_rec = &el->l_recs[idx];
2018
2019 el = right_path->p_node[i].el;
2020 right_rec = &el->l_recs[0];
2021
2022 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2023 right_el);
2024
2025 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2026 if (ret)
2027 mlog_errno(ret);
2028
2029 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2030 if (ret)
2031 mlog_errno(ret);
2032
2033 /*
2034 * Setup our list pointers now so that the current
2035 * parents become children in the next iteration.
2036 */
2037 left_el = left_path->p_node[i].el;
2038 right_el = right_path->p_node[i].el;
2039 }
2040
2041 /*
2042 * At the root node, adjust the two adjacent records which
2043 * begin our path to the leaves.
2044 */
2045
2046 el = left_path->p_node[subtree_index].el;
2047 left_el = left_path->p_node[subtree_index + 1].el;
2048 right_el = right_path->p_node[subtree_index + 1].el;
2049
2050 ocfs2_adjust_root_records(el, left_el, right_el,
2051 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2052
2053 root_bh = left_path->p_node[subtree_index].bh;
2054
2055 ret = ocfs2_journal_dirty(handle, root_bh);
2056 if (ret)
2057 mlog_errno(ret);
2058 }
2059
2060 static int ocfs2_rotate_subtree_right(struct inode *inode,
2061 handle_t *handle,
2062 struct ocfs2_path *left_path,
2063 struct ocfs2_path *right_path,
2064 int subtree_index)
2065 {
2066 int ret, i;
2067 struct buffer_head *right_leaf_bh;
2068 struct buffer_head *left_leaf_bh = NULL;
2069 struct buffer_head *root_bh;
2070 struct ocfs2_extent_list *right_el, *left_el;
2071 struct ocfs2_extent_rec move_rec;
2072
2073 left_leaf_bh = path_leaf_bh(left_path);
2074 left_el = path_leaf_el(left_path);
2075
2076 if (left_el->l_next_free_rec != left_el->l_count) {
2077 ocfs2_error(inode->i_sb,
2078 "Inode %llu has non-full interior leaf node %llu"
2079 "(next free = %u)",
2080 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2081 (unsigned long long)left_leaf_bh->b_blocknr,
2082 le16_to_cpu(left_el->l_next_free_rec));
2083 return -EROFS;
2084 }
2085
2086 /*
2087 * This extent block may already have an empty record, so we
2088 * return early if so.
2089 */
2090 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2091 return 0;
2092
2093 root_bh = left_path->p_node[subtree_index].bh;
2094 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2095
2096 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2097 subtree_index);
2098 if (ret) {
2099 mlog_errno(ret);
2100 goto out;
2101 }
2102
2103 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2104 ret = ocfs2_path_bh_journal_access(handle, inode,
2105 right_path, i);
2106 if (ret) {
2107 mlog_errno(ret);
2108 goto out;
2109 }
2110
2111 ret = ocfs2_path_bh_journal_access(handle, inode,
2112 left_path, i);
2113 if (ret) {
2114 mlog_errno(ret);
2115 goto out;
2116 }
2117 }
2118
2119 right_leaf_bh = path_leaf_bh(right_path);
2120 right_el = path_leaf_el(right_path);
2121
2122 /* This is a code error, not a disk corruption. */
2123 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2124 "because rightmost leaf block %llu is empty\n",
2125 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2126 (unsigned long long)right_leaf_bh->b_blocknr);
2127
2128 ocfs2_create_empty_extent(right_el);
2129
2130 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
2131 if (ret) {
2132 mlog_errno(ret);
2133 goto out;
2134 }
2135
2136 /* Do the copy now. */
2137 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2138 move_rec = left_el->l_recs[i];
2139 right_el->l_recs[0] = move_rec;
2140
2141 /*
2142 * Clear out the record we just copied and shift everything
2143 * over, leaving an empty extent in the left leaf.
2144 *
2145 * We temporarily subtract from next_free_rec so that the
2146 * shift will lose the tail record (which is now defunct).
2147 */
2148 le16_add_cpu(&left_el->l_next_free_rec, -1);
2149 ocfs2_shift_records_right(left_el);
2150 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2151 le16_add_cpu(&left_el->l_next_free_rec, 1);
2152
2153 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
2154 if (ret) {
2155 mlog_errno(ret);
2156 goto out;
2157 }
2158
2159 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2160 subtree_index);
2161
2162 out:
2163 return ret;
2164 }
2165
2166 /*
2167 * Given a full path, determine what cpos value would return us a path
2168 * containing the leaf immediately to the left of the current one.
2169 *
2170 * Will return zero if the path passed in is already the leftmost path.
2171 */
2172 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2173 struct ocfs2_path *path, u32 *cpos)
2174 {
2175 int i, j, ret = 0;
2176 u64 blkno;
2177 struct ocfs2_extent_list *el;
2178
2179 BUG_ON(path->p_tree_depth == 0);
2180
2181 *cpos = 0;
2182
2183 blkno = path_leaf_bh(path)->b_blocknr;
2184
2185 /* Start at the tree node just above the leaf and work our way up. */
2186 i = path->p_tree_depth - 1;
2187 while (i >= 0) {
2188 el = path->p_node[i].el;
2189
2190 /*
2191 * Find the extent record just before the one in our
2192 * path.
2193 */
2194 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2195 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2196 if (j == 0) {
2197 if (i == 0) {
2198 /*
2199 * We've determined that the
2200 * path specified is already
2201 * the leftmost one - return a
2202 * cpos of zero.
2203 */
2204 goto out;
2205 }
2206 /*
2207 * The leftmost record points to our
2208 * leaf - we need to travel up the
2209 * tree one level.
2210 */
2211 goto next_node;
2212 }
2213
2214 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2215 *cpos = *cpos + ocfs2_rec_clusters(el,
2216 &el->l_recs[j - 1]);
2217 *cpos = *cpos - 1;
2218 goto out;
2219 }
2220 }
2221
2222 /*
2223 * If we got here, we never found a valid node where
2224 * the tree indicated one should be.
2225 */
2226 ocfs2_error(sb,
2227 "Invalid extent tree at extent block %llu\n",
2228 (unsigned long long)blkno);
2229 ret = -EROFS;
2230 goto out;
2231
2232 next_node:
2233 blkno = path->p_node[i].bh->b_blocknr;
2234 i--;
2235 }
2236
2237 out:
2238 return ret;
2239 }
2240
2241 /*
2242 * Extend the transaction by enough credits to complete the rotation,
2243 * and still leave at least the original number of credits allocated
2244 * to this transaction.
2245 */
2246 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2247 int op_credits,
2248 struct ocfs2_path *path)
2249 {
2250 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2251
2252 if (handle->h_buffer_credits < credits)
2253 return ocfs2_extend_trans(handle, credits);
2254
2255 return 0;
2256 }
2257
2258 /*
2259 * Trap the case where we're inserting into the theoretical range past
2260 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2261 * whose cpos is less than ours into the right leaf.
2262 *
2263 * It's only necessary to look at the rightmost record of the left
2264 * leaf because the logic that calls us should ensure that the
2265 * theoretical ranges in the path components above the leaves are
2266 * correct.
2267 */
2268 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2269 u32 insert_cpos)
2270 {
2271 struct ocfs2_extent_list *left_el;
2272 struct ocfs2_extent_rec *rec;
2273 int next_free;
2274
2275 left_el = path_leaf_el(left_path);
2276 next_free = le16_to_cpu(left_el->l_next_free_rec);
2277 rec = &left_el->l_recs[next_free - 1];
2278
2279 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2280 return 1;
2281 return 0;
2282 }
2283
2284 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2285 {
2286 int next_free = le16_to_cpu(el->l_next_free_rec);
2287 unsigned int range;
2288 struct ocfs2_extent_rec *rec;
2289
2290 if (next_free == 0)
2291 return 0;
2292
2293 rec = &el->l_recs[0];
2294 if (ocfs2_is_empty_extent(rec)) {
2295 /* Empty list. */
2296 if (next_free == 1)
2297 return 0;
2298 rec = &el->l_recs[1];
2299 }
2300
2301 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2302 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2303 return 1;
2304 return 0;
2305 }
2306
2307 /*
2308 * Rotate all the records in a btree right one record, starting at insert_cpos.
2309 *
2310 * The path to the rightmost leaf should be passed in.
2311 *
2312 * The array is assumed to be large enough to hold an entire path (tree depth).
2313 *
2314 * Upon succesful return from this function:
2315 *
2316 * - The 'right_path' array will contain a path to the leaf block
2317 * whose range contains e_cpos.
2318 * - That leaf block will have a single empty extent in list index 0.
2319 * - In the case that the rotation requires a post-insert update,
2320 * *ret_left_path will contain a valid path which can be passed to
2321 * ocfs2_insert_path().
2322 */
2323 static int ocfs2_rotate_tree_right(struct inode *inode,
2324 handle_t *handle,
2325 enum ocfs2_split_type split,
2326 u32 insert_cpos,
2327 struct ocfs2_path *right_path,
2328 struct ocfs2_path **ret_left_path)
2329 {
2330 int ret, start, orig_credits = handle->h_buffer_credits;
2331 u32 cpos;
2332 struct ocfs2_path *left_path = NULL;
2333
2334 *ret_left_path = NULL;
2335
2336 left_path = ocfs2_new_path_from_path(right_path);
2337 if (!left_path) {
2338 ret = -ENOMEM;
2339 mlog_errno(ret);
2340 goto out;
2341 }
2342
2343 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2344 if (ret) {
2345 mlog_errno(ret);
2346 goto out;
2347 }
2348
2349 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2350
2351 /*
2352 * What we want to do here is:
2353 *
2354 * 1) Start with the rightmost path.
2355 *
2356 * 2) Determine a path to the leaf block directly to the left
2357 * of that leaf.
2358 *
2359 * 3) Determine the 'subtree root' - the lowest level tree node
2360 * which contains a path to both leaves.
2361 *
2362 * 4) Rotate the subtree.
2363 *
2364 * 5) Find the next subtree by considering the left path to be
2365 * the new right path.
2366 *
2367 * The check at the top of this while loop also accepts
2368 * insert_cpos == cpos because cpos is only a _theoretical_
2369 * value to get us the left path - insert_cpos might very well
2370 * be filling that hole.
2371 *
2372 * Stop at a cpos of '0' because we either started at the
2373 * leftmost branch (i.e., a tree with one branch and a
2374 * rotation inside of it), or we've gone as far as we can in
2375 * rotating subtrees.
2376 */
2377 while (cpos && insert_cpos <= cpos) {
2378 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2379 insert_cpos, cpos);
2380
2381 ret = ocfs2_find_path(inode, left_path, cpos);
2382 if (ret) {
2383 mlog_errno(ret);
2384 goto out;
2385 }
2386
2387 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2388 path_leaf_bh(right_path),
2389 "Inode %lu: error during insert of %u "
2390 "(left path cpos %u) results in two identical "
2391 "paths ending at %llu\n",
2392 inode->i_ino, insert_cpos, cpos,
2393 (unsigned long long)
2394 path_leaf_bh(left_path)->b_blocknr);
2395
2396 if (split == SPLIT_NONE &&
2397 ocfs2_rotate_requires_path_adjustment(left_path,
2398 insert_cpos)) {
2399
2400 /*
2401 * We've rotated the tree as much as we
2402 * should. The rest is up to
2403 * ocfs2_insert_path() to complete, after the
2404 * record insertion. We indicate this
2405 * situation by returning the left path.
2406 *
2407 * The reason we don't adjust the records here
2408 * before the record insert is that an error
2409 * later might break the rule where a parent
2410 * record e_cpos will reflect the actual
2411 * e_cpos of the 1st nonempty record of the
2412 * child list.
2413 */
2414 *ret_left_path = left_path;
2415 goto out_ret_path;
2416 }
2417
2418 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2419
2420 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2421 start,
2422 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2423 right_path->p_tree_depth);
2424
2425 ret = ocfs2_extend_rotate_transaction(handle, start,
2426 orig_credits, right_path);
2427 if (ret) {
2428 mlog_errno(ret);
2429 goto out;
2430 }
2431
2432 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2433 right_path, start);
2434 if (ret) {
2435 mlog_errno(ret);
2436 goto out;
2437 }
2438
2439 if (split != SPLIT_NONE &&
2440 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2441 insert_cpos)) {
2442 /*
2443 * A rotate moves the rightmost left leaf
2444 * record over to the leftmost right leaf
2445 * slot. If we're doing an extent split
2446 * instead of a real insert, then we have to
2447 * check that the extent to be split wasn't
2448 * just moved over. If it was, then we can
2449 * exit here, passing left_path back -
2450 * ocfs2_split_extent() is smart enough to
2451 * search both leaves.
2452 */
2453 *ret_left_path = left_path;
2454 goto out_ret_path;
2455 }
2456
2457 /*
2458 * There is no need to re-read the next right path
2459 * as we know that it'll be our current left
2460 * path. Optimize by copying values instead.
2461 */
2462 ocfs2_mv_path(right_path, left_path);
2463
2464 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2465 &cpos);
2466 if (ret) {
2467 mlog_errno(ret);
2468 goto out;
2469 }
2470 }
2471
2472 out:
2473 ocfs2_free_path(left_path);
2474
2475 out_ret_path:
2476 return ret;
2477 }
2478
2479 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2480 struct ocfs2_path *path)
2481 {
2482 int i, idx;
2483 struct ocfs2_extent_rec *rec;
2484 struct ocfs2_extent_list *el;
2485 struct ocfs2_extent_block *eb;
2486 u32 range;
2487
2488 /* Path should always be rightmost. */
2489 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2490 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2491
2492 el = &eb->h_list;
2493 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2494 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2495 rec = &el->l_recs[idx];
2496 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2497
2498 for (i = 0; i < path->p_tree_depth; i++) {
2499 el = path->p_node[i].el;
2500 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2501 rec = &el->l_recs[idx];
2502
2503 rec->e_int_clusters = cpu_to_le32(range);
2504 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2505
2506 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2507 }
2508 }
2509
2510 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2511 struct ocfs2_cached_dealloc_ctxt *dealloc,
2512 struct ocfs2_path *path, int unlink_start)
2513 {
2514 int ret, i;
2515 struct ocfs2_extent_block *eb;
2516 struct ocfs2_extent_list *el;
2517 struct buffer_head *bh;
2518
2519 for(i = unlink_start; i < path_num_items(path); i++) {
2520 bh = path->p_node[i].bh;
2521
2522 eb = (struct ocfs2_extent_block *)bh->b_data;
2523 /*
2524 * Not all nodes might have had their final count
2525 * decremented by the caller - handle this here.
2526 */
2527 el = &eb->h_list;
2528 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2529 mlog(ML_ERROR,
2530 "Inode %llu, attempted to remove extent block "
2531 "%llu with %u records\n",
2532 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2533 (unsigned long long)le64_to_cpu(eb->h_blkno),
2534 le16_to_cpu(el->l_next_free_rec));
2535
2536 ocfs2_journal_dirty(handle, bh);
2537 ocfs2_remove_from_cache(inode, bh);
2538 continue;
2539 }
2540
2541 el->l_next_free_rec = 0;
2542 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2543
2544 ocfs2_journal_dirty(handle, bh);
2545
2546 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2547 if (ret)
2548 mlog_errno(ret);
2549
2550 ocfs2_remove_from_cache(inode, bh);
2551 }
2552 }
2553
2554 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2555 struct ocfs2_path *left_path,
2556 struct ocfs2_path *right_path,
2557 int subtree_index,
2558 struct ocfs2_cached_dealloc_ctxt *dealloc)
2559 {
2560 int i;
2561 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2562 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2563 struct ocfs2_extent_list *el;
2564 struct ocfs2_extent_block *eb;
2565
2566 el = path_leaf_el(left_path);
2567
2568 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2569
2570 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2571 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2572 break;
2573
2574 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2575
2576 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2577 le16_add_cpu(&root_el->l_next_free_rec, -1);
2578
2579 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2580 eb->h_next_leaf_blk = 0;
2581
2582 ocfs2_journal_dirty(handle, root_bh);
2583 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2584
2585 ocfs2_unlink_path(inode, handle, dealloc, right_path,
2586 subtree_index + 1);
2587 }
2588
2589 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2590 struct ocfs2_path *left_path,
2591 struct ocfs2_path *right_path,
2592 int subtree_index,
2593 struct ocfs2_cached_dealloc_ctxt *dealloc,
2594 int *deleted,
2595 struct ocfs2_extent_tree *et)
2596 {
2597 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2598 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2599 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2600 struct ocfs2_extent_block *eb;
2601
2602 *deleted = 0;
2603
2604 right_leaf_el = path_leaf_el(right_path);
2605 left_leaf_el = path_leaf_el(left_path);
2606 root_bh = left_path->p_node[subtree_index].bh;
2607 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2608
2609 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2610 return 0;
2611
2612 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2613 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2614 /*
2615 * It's legal for us to proceed if the right leaf is
2616 * the rightmost one and it has an empty extent. There
2617 * are two cases to handle - whether the leaf will be
2618 * empty after removal or not. If the leaf isn't empty
2619 * then just remove the empty extent up front. The
2620 * next block will handle empty leaves by flagging
2621 * them for unlink.
2622 *
2623 * Non rightmost leaves will throw -EAGAIN and the
2624 * caller can manually move the subtree and retry.
2625 */
2626
2627 if (eb->h_next_leaf_blk != 0ULL)
2628 return -EAGAIN;
2629
2630 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2631 ret = ocfs2_journal_access_eb(handle, inode,
2632 path_leaf_bh(right_path),
2633 OCFS2_JOURNAL_ACCESS_WRITE);
2634 if (ret) {
2635 mlog_errno(ret);
2636 goto out;
2637 }
2638
2639 ocfs2_remove_empty_extent(right_leaf_el);
2640 } else
2641 right_has_empty = 1;
2642 }
2643
2644 if (eb->h_next_leaf_blk == 0ULL &&
2645 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2646 /*
2647 * We have to update i_last_eb_blk during the meta
2648 * data delete.
2649 */
2650 ret = ocfs2_et_root_journal_access(handle, inode, et,
2651 OCFS2_JOURNAL_ACCESS_WRITE);
2652 if (ret) {
2653 mlog_errno(ret);
2654 goto out;
2655 }
2656
2657 del_right_subtree = 1;
2658 }
2659
2660 /*
2661 * Getting here with an empty extent in the right path implies
2662 * that it's the rightmost path and will be deleted.
2663 */
2664 BUG_ON(right_has_empty && !del_right_subtree);
2665
2666 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
2667 subtree_index);
2668 if (ret) {
2669 mlog_errno(ret);
2670 goto out;
2671 }
2672
2673 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2674 ret = ocfs2_path_bh_journal_access(handle, inode,
2675 right_path, i);
2676 if (ret) {
2677 mlog_errno(ret);
2678 goto out;
2679 }
2680
2681 ret = ocfs2_path_bh_journal_access(handle, inode,
2682 left_path, i);
2683 if (ret) {
2684 mlog_errno(ret);
2685 goto out;
2686 }
2687 }
2688
2689 if (!right_has_empty) {
2690 /*
2691 * Only do this if we're moving a real
2692 * record. Otherwise, the action is delayed until
2693 * after removal of the right path in which case we
2694 * can do a simple shift to remove the empty extent.
2695 */
2696 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2697 memset(&right_leaf_el->l_recs[0], 0,
2698 sizeof(struct ocfs2_extent_rec));
2699 }
2700 if (eb->h_next_leaf_blk == 0ULL) {
2701 /*
2702 * Move recs over to get rid of empty extent, decrease
2703 * next_free. This is allowed to remove the last
2704 * extent in our leaf (setting l_next_free_rec to
2705 * zero) - the delete code below won't care.
2706 */
2707 ocfs2_remove_empty_extent(right_leaf_el);
2708 }
2709
2710 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2711 if (ret)
2712 mlog_errno(ret);
2713 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2714 if (ret)
2715 mlog_errno(ret);
2716
2717 if (del_right_subtree) {
2718 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2719 subtree_index, dealloc);
2720 ocfs2_update_edge_lengths(inode, handle, left_path);
2721
2722 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2723 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2724
2725 /*
2726 * Removal of the extent in the left leaf was skipped
2727 * above so we could delete the right path
2728 * 1st.
2729 */
2730 if (right_has_empty)
2731 ocfs2_remove_empty_extent(left_leaf_el);
2732
2733 ret = ocfs2_journal_dirty(handle, et_root_bh);
2734 if (ret)
2735 mlog_errno(ret);
2736
2737 *deleted = 1;
2738 } else
2739 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2740 subtree_index);
2741
2742 out:
2743 return ret;
2744 }
2745
2746 /*
2747 * Given a full path, determine what cpos value would return us a path
2748 * containing the leaf immediately to the right of the current one.
2749 *
2750 * Will return zero if the path passed in is already the rightmost path.
2751 *
2752 * This looks similar, but is subtly different to
2753 * ocfs2_find_cpos_for_left_leaf().
2754 */
2755 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2756 struct ocfs2_path *path, u32 *cpos)
2757 {
2758 int i, j, ret = 0;
2759 u64 blkno;
2760 struct ocfs2_extent_list *el;
2761
2762 *cpos = 0;
2763
2764 if (path->p_tree_depth == 0)
2765 return 0;
2766
2767 blkno = path_leaf_bh(path)->b_blocknr;
2768
2769 /* Start at the tree node just above the leaf and work our way up. */
2770 i = path->p_tree_depth - 1;
2771 while (i >= 0) {
2772 int next_free;
2773
2774 el = path->p_node[i].el;
2775
2776 /*
2777 * Find the extent record just after the one in our
2778 * path.
2779 */
2780 next_free = le16_to_cpu(el->l_next_free_rec);
2781 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2782 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2783 if (j == (next_free - 1)) {
2784 if (i == 0) {
2785 /*
2786 * We've determined that the
2787 * path specified is already
2788 * the rightmost one - return a
2789 * cpos of zero.
2790 */
2791 goto out;
2792 }
2793 /*
2794 * The rightmost record points to our
2795 * leaf - we need to travel up the
2796 * tree one level.
2797 */
2798 goto next_node;
2799 }
2800
2801 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2802 goto out;
2803 }
2804 }
2805
2806 /*
2807 * If we got here, we never found a valid node where
2808 * the tree indicated one should be.
2809 */
2810 ocfs2_error(sb,
2811 "Invalid extent tree at extent block %llu\n",
2812 (unsigned long long)blkno);
2813 ret = -EROFS;
2814 goto out;
2815
2816 next_node:
2817 blkno = path->p_node[i].bh->b_blocknr;
2818 i--;
2819 }
2820
2821 out:
2822 return ret;
2823 }
2824
2825 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2826 handle_t *handle,
2827 struct ocfs2_path *path)
2828 {
2829 int ret;
2830 struct buffer_head *bh = path_leaf_bh(path);
2831 struct ocfs2_extent_list *el = path_leaf_el(path);
2832
2833 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2834 return 0;
2835
2836 ret = ocfs2_path_bh_journal_access(handle, inode, path,
2837 path_num_items(path) - 1);
2838 if (ret) {
2839 mlog_errno(ret);
2840 goto out;
2841 }
2842
2843 ocfs2_remove_empty_extent(el);
2844
2845 ret = ocfs2_journal_dirty(handle, bh);
2846 if (ret)
2847 mlog_errno(ret);
2848
2849 out:
2850 return ret;
2851 }
2852
2853 static int __ocfs2_rotate_tree_left(struct inode *inode,
2854 handle_t *handle, int orig_credits,
2855 struct ocfs2_path *path,
2856 struct ocfs2_cached_dealloc_ctxt *dealloc,
2857 struct ocfs2_path **empty_extent_path,
2858 struct ocfs2_extent_tree *et)
2859 {
2860 int ret, subtree_root, deleted;
2861 u32 right_cpos;
2862 struct ocfs2_path *left_path = NULL;
2863 struct ocfs2_path *right_path = NULL;
2864
2865 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2866
2867 *empty_extent_path = NULL;
2868
2869 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2870 &right_cpos);
2871 if (ret) {
2872 mlog_errno(ret);
2873 goto out;
2874 }
2875
2876 left_path = ocfs2_new_path_from_path(path);
2877 if (!left_path) {
2878 ret = -ENOMEM;
2879 mlog_errno(ret);
2880 goto out;
2881 }
2882
2883 ocfs2_cp_path(left_path, path);
2884
2885 right_path = ocfs2_new_path_from_path(path);
2886 if (!right_path) {
2887 ret = -ENOMEM;
2888 mlog_errno(ret);
2889 goto out;
2890 }
2891
2892 while (right_cpos) {
2893 ret = ocfs2_find_path(inode, right_path, right_cpos);
2894 if (ret) {
2895 mlog_errno(ret);
2896 goto out;
2897 }
2898
2899 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2900 right_path);
2901
2902 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2903 subtree_root,
2904 (unsigned long long)
2905 right_path->p_node[subtree_root].bh->b_blocknr,
2906 right_path->p_tree_depth);
2907
2908 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2909 orig_credits, left_path);
2910 if (ret) {
2911 mlog_errno(ret);
2912 goto out;
2913 }
2914
2915 /*
2916 * Caller might still want to make changes to the
2917 * tree root, so re-add it to the journal here.
2918 */
2919 ret = ocfs2_path_bh_journal_access(handle, inode,
2920 left_path, 0);
2921 if (ret) {
2922 mlog_errno(ret);
2923 goto out;
2924 }
2925
2926 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2927 right_path, subtree_root,
2928 dealloc, &deleted, et);
2929 if (ret == -EAGAIN) {
2930 /*
2931 * The rotation has to temporarily stop due to
2932 * the right subtree having an empty
2933 * extent. Pass it back to the caller for a
2934 * fixup.
2935 */
2936 *empty_extent_path = right_path;
2937 right_path = NULL;
2938 goto out;
2939 }
2940 if (ret) {
2941 mlog_errno(ret);
2942 goto out;
2943 }
2944
2945 /*
2946 * The subtree rotate might have removed records on
2947 * the rightmost edge. If so, then rotation is
2948 * complete.
2949 */
2950 if (deleted)
2951 break;
2952
2953 ocfs2_mv_path(left_path, right_path);
2954
2955 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2956 &right_cpos);
2957 if (ret) {
2958 mlog_errno(ret);
2959 goto out;
2960 }
2961 }
2962
2963 out:
2964 ocfs2_free_path(right_path);
2965 ocfs2_free_path(left_path);
2966
2967 return ret;
2968 }
2969
2970 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2971 struct ocfs2_path *path,
2972 struct ocfs2_cached_dealloc_ctxt *dealloc,
2973 struct ocfs2_extent_tree *et)
2974 {
2975 int ret, subtree_index;
2976 u32 cpos;
2977 struct ocfs2_path *left_path = NULL;
2978 struct ocfs2_extent_block *eb;
2979 struct ocfs2_extent_list *el;
2980
2981
2982 ret = ocfs2_et_sanity_check(inode, et);
2983 if (ret)
2984 goto out;
2985 /*
2986 * There's two ways we handle this depending on
2987 * whether path is the only existing one.
2988 */
2989 ret = ocfs2_extend_rotate_transaction(handle, 0,
2990 handle->h_buffer_credits,
2991 path);
2992 if (ret) {
2993 mlog_errno(ret);
2994 goto out;
2995 }
2996
2997 ret = ocfs2_journal_access_path(inode, handle, path);
2998 if (ret) {
2999 mlog_errno(ret);
3000 goto out;
3001 }
3002
3003 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
3004 if (ret) {
3005 mlog_errno(ret);
3006 goto out;
3007 }
3008
3009 if (cpos) {
3010 /*
3011 * We have a path to the left of this one - it needs
3012 * an update too.
3013 */
3014 left_path = ocfs2_new_path_from_path(path);
3015 if (!left_path) {
3016 ret = -ENOMEM;
3017 mlog_errno(ret);
3018 goto out;
3019 }
3020
3021 ret = ocfs2_find_path(inode, left_path, cpos);
3022 if (ret) {
3023 mlog_errno(ret);
3024 goto out;
3025 }
3026
3027 ret = ocfs2_journal_access_path(inode, handle, left_path);
3028 if (ret) {
3029 mlog_errno(ret);
3030 goto out;
3031 }
3032
3033 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
3034
3035 ocfs2_unlink_subtree(inode, handle, left_path, path,
3036 subtree_index, dealloc);
3037 ocfs2_update_edge_lengths(inode, handle, left_path);
3038
3039 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3040 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3041 } else {
3042 /*
3043 * 'path' is also the leftmost path which
3044 * means it must be the only one. This gets
3045 * handled differently because we want to
3046 * revert the inode back to having extents
3047 * in-line.
3048 */
3049 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
3050
3051 el = et->et_root_el;
3052 el->l_tree_depth = 0;
3053 el->l_next_free_rec = 0;
3054 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3055
3056 ocfs2_et_set_last_eb_blk(et, 0);
3057 }
3058
3059 ocfs2_journal_dirty(handle, path_root_bh(path));
3060
3061 out:
3062 ocfs2_free_path(left_path);
3063 return ret;
3064 }
3065
3066 /*
3067 * Left rotation of btree records.
3068 *
3069 * In many ways, this is (unsurprisingly) the opposite of right
3070 * rotation. We start at some non-rightmost path containing an empty
3071 * extent in the leaf block. The code works its way to the rightmost
3072 * path by rotating records to the left in every subtree.
3073 *
3074 * This is used by any code which reduces the number of extent records
3075 * in a leaf. After removal, an empty record should be placed in the
3076 * leftmost list position.
3077 *
3078 * This won't handle a length update of the rightmost path records if
3079 * the rightmost tree leaf record is removed so the caller is
3080 * responsible for detecting and correcting that.
3081 */
3082 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
3083 struct ocfs2_path *path,
3084 struct ocfs2_cached_dealloc_ctxt *dealloc,
3085 struct ocfs2_extent_tree *et)
3086 {
3087 int ret, orig_credits = handle->h_buffer_credits;
3088 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3089 struct ocfs2_extent_block *eb;
3090 struct ocfs2_extent_list *el;
3091
3092 el = path_leaf_el(path);
3093 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3094 return 0;
3095
3096 if (path->p_tree_depth == 0) {
3097 rightmost_no_delete:
3098 /*
3099 * Inline extents. This is trivially handled, so do
3100 * it up front.
3101 */
3102 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
3103 path);
3104 if (ret)
3105 mlog_errno(ret);
3106 goto out;
3107 }
3108
3109 /*
3110 * Handle rightmost branch now. There's several cases:
3111 * 1) simple rotation leaving records in there. That's trivial.
3112 * 2) rotation requiring a branch delete - there's no more
3113 * records left. Two cases of this:
3114 * a) There are branches to the left.
3115 * b) This is also the leftmost (the only) branch.
3116 *
3117 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3118 * 2a) we need the left branch so that we can update it with the unlink
3119 * 2b) we need to bring the inode back to inline extents.
3120 */
3121
3122 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3123 el = &eb->h_list;
3124 if (eb->h_next_leaf_blk == 0) {
3125 /*
3126 * This gets a bit tricky if we're going to delete the
3127 * rightmost path. Get the other cases out of the way
3128 * 1st.
3129 */
3130 if (le16_to_cpu(el->l_next_free_rec) > 1)
3131 goto rightmost_no_delete;
3132
3133 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3134 ret = -EIO;
3135 ocfs2_error(inode->i_sb,
3136 "Inode %llu has empty extent block at %llu",
3137 (unsigned long long)OCFS2_I(inode)->ip_blkno,
3138 (unsigned long long)le64_to_cpu(eb->h_blkno));
3139 goto out;
3140 }
3141
3142 /*
3143 * XXX: The caller can not trust "path" any more after
3144 * this as it will have been deleted. What do we do?
3145 *
3146 * In theory the rotate-for-merge code will never get
3147 * here because it'll always ask for a rotate in a
3148 * nonempty list.
3149 */
3150
3151 ret = ocfs2_remove_rightmost_path(inode, handle, path,
3152 dealloc, et);
3153 if (ret)
3154 mlog_errno(ret);
3155 goto out;
3156 }
3157
3158 /*
3159 * Now we can loop, remembering the path we get from -EAGAIN
3160 * and restarting from there.
3161 */
3162 try_rotate:
3163 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
3164 dealloc, &restart_path, et);
3165 if (ret && ret != -EAGAIN) {
3166 mlog_errno(ret);
3167 goto out;
3168 }
3169
3170 while (ret == -EAGAIN) {
3171 tmp_path = restart_path;
3172 restart_path = NULL;
3173
3174 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
3175 tmp_path, dealloc,
3176 &restart_path, et);
3177 if (ret && ret != -EAGAIN) {
3178 mlog_errno(ret);
3179 goto out;
3180 }
3181
3182 ocfs2_free_path(tmp_path);
3183 tmp_path = NULL;
3184
3185 if (ret == 0)
3186 goto try_rotate;
3187 }
3188
3189 out:
3190 ocfs2_free_path(tmp_path);
3191 ocfs2_free_path(restart_path);
3192 return ret;
3193 }
3194
3195 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3196 int index)
3197 {
3198 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3199 unsigned int size;
3200
3201 if (rec->e_leaf_clusters == 0) {
3202 /*
3203 * We consumed all of the merged-from record. An empty
3204 * extent cannot exist anywhere but the 1st array
3205 * position, so move things over if the merged-from
3206 * record doesn't occupy that position.
3207 *
3208 * This creates a new empty extent so the caller
3209 * should be smart enough to have removed any existing
3210 * ones.
3211 */
3212 if (index > 0) {
3213 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3214 size = index * sizeof(struct ocfs2_extent_rec);
3215 memmove(&el->l_recs[1], &el->l_recs[0], size);
3216 }
3217
3218 /*
3219 * Always memset - the caller doesn't check whether it
3220 * created an empty extent, so there could be junk in
3221 * the other fields.
3222 */
3223 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3224 }
3225 }
3226
3227 static int ocfs2_get_right_path(struct inode *inode,
3228 struct ocfs2_path *left_path,
3229 struct ocfs2_path **ret_right_path)
3230 {
3231 int ret;
3232 u32 right_cpos;
3233 struct ocfs2_path *right_path = NULL;
3234 struct ocfs2_extent_list *left_el;
3235
3236 *ret_right_path = NULL;
3237
3238 /* This function shouldn't be called for non-trees. */
3239 BUG_ON(left_path->p_tree_depth == 0);
3240
3241 left_el = path_leaf_el(left_path);
3242 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3243
3244 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3245 &right_cpos);
3246 if (ret) {
3247 mlog_errno(ret);
3248 goto out;
3249 }
3250
3251 /* This function shouldn't be called for the rightmost leaf. */
3252 BUG_ON(right_cpos == 0);
3253
3254 right_path = ocfs2_new_path_from_path(left_path);
3255 if (!right_path) {
3256 ret = -ENOMEM;
3257 mlog_errno(ret);
3258 goto out;
3259 }
3260
3261 ret = ocfs2_find_path(inode, right_path, right_cpos);
3262 if (ret) {
3263 mlog_errno(ret);
3264 goto out;
3265 }
3266
3267 *ret_right_path = right_path;
3268 out:
3269 if (ret)
3270 ocfs2_free_path(right_path);
3271 return ret;
3272 }
3273
3274 /*
3275 * Remove split_rec clusters from the record at index and merge them
3276 * onto the beginning of the record "next" to it.
3277 * For index < l_count - 1, the next means the extent rec at index + 1.
3278 * For index == l_count - 1, the "next" means the 1st extent rec of the
3279 * next extent block.
3280 */
3281 static int ocfs2_merge_rec_right(struct inode *inode,
3282 struct ocfs2_path *left_path,
3283 handle_t *handle,
3284 struct ocfs2_extent_rec *split_rec,
3285 int index)
3286 {
3287 int ret, next_free, i;
3288 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3289 struct ocfs2_extent_rec *left_rec;
3290 struct ocfs2_extent_rec *right_rec;
3291 struct ocfs2_extent_list *right_el;
3292 struct ocfs2_path *right_path = NULL;
3293 int subtree_index = 0;
3294 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3295 struct buffer_head *bh = path_leaf_bh(left_path);
3296 struct buffer_head *root_bh = NULL;
3297
3298 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3299 left_rec = &el->l_recs[index];
3300
3301 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3302 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3303 /* we meet with a cross extent block merge. */
3304 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3305 if (ret) {
3306 mlog_errno(ret);
3307 goto out;
3308 }
3309
3310 right_el = path_leaf_el(right_path);
3311 next_free = le16_to_cpu(right_el->l_next_free_rec);
3312 BUG_ON(next_free <= 0);
3313 right_rec = &right_el->l_recs[0];
3314 if (ocfs2_is_empty_extent(right_rec)) {
3315 BUG_ON(next_free <= 1);
3316 right_rec = &right_el->l_recs[1];
3317 }
3318
3319 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3320 le16_to_cpu(left_rec->e_leaf_clusters) !=
3321 le32_to_cpu(right_rec->e_cpos));
3322
3323 subtree_index = ocfs2_find_subtree_root(inode,
3324 left_path, right_path);
3325
3326 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3327 handle->h_buffer_credits,
3328 right_path);
3329 if (ret) {
3330 mlog_errno(ret);
3331 goto out;
3332 }
3333
3334 root_bh = left_path->p_node[subtree_index].bh;
3335 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3336
3337 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3338 subtree_index);
3339 if (ret) {
3340 mlog_errno(ret);
3341 goto out;
3342 }
3343
3344 for (i = subtree_index + 1;
3345 i < path_num_items(right_path); i++) {
3346 ret = ocfs2_path_bh_journal_access(handle, inode,
3347 right_path, i);
3348 if (ret) {
3349 mlog_errno(ret);
3350 goto out;
3351 }
3352
3353 ret = ocfs2_path_bh_journal_access(handle, inode,
3354 left_path, i);
3355 if (ret) {
3356 mlog_errno(ret);
3357 goto out;
3358 }
3359 }
3360
3361 } else {
3362 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3363 right_rec = &el->l_recs[index + 1];
3364 }
3365
3366 ret = ocfs2_path_bh_journal_access(handle, inode, left_path,
3367 path_num_items(left_path) - 1);
3368 if (ret) {
3369 mlog_errno(ret);
3370 goto out;
3371 }
3372
3373 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3374
3375 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3376 le64_add_cpu(&right_rec->e_blkno,
3377 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3378 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3379
3380 ocfs2_cleanup_merge(el, index);
3381
3382 ret = ocfs2_journal_dirty(handle, bh);
3383 if (ret)
3384 mlog_errno(ret);
3385
3386 if (right_path) {
3387 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3388 if (ret)
3389 mlog_errno(ret);
3390
3391 ocfs2_complete_edge_insert(inode, handle, left_path,
3392 right_path, subtree_index);
3393 }
3394 out:
3395 if (right_path)
3396 ocfs2_free_path(right_path);
3397 return ret;
3398 }
3399
3400 static int ocfs2_get_left_path(struct inode *inode,
3401 struct ocfs2_path *right_path,
3402 struct ocfs2_path **ret_left_path)
3403 {
3404 int ret;
3405 u32 left_cpos;
3406 struct ocfs2_path *left_path = NULL;
3407
3408 *ret_left_path = NULL;
3409
3410 /* This function shouldn't be called for non-trees. */
3411 BUG_ON(right_path->p_tree_depth == 0);
3412
3413 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3414 right_path, &left_cpos);
3415 if (ret) {
3416 mlog_errno(ret);
3417 goto out;
3418 }
3419
3420 /* This function shouldn't be called for the leftmost leaf. */
3421 BUG_ON(left_cpos == 0);
3422
3423 left_path = ocfs2_new_path_from_path(right_path);
3424 if (!left_path) {
3425 ret = -ENOMEM;
3426 mlog_errno(ret);
3427 goto out;
3428 }
3429
3430 ret = ocfs2_find_path(inode, left_path, left_cpos);
3431 if (ret) {
3432 mlog_errno(ret);
3433 goto out;
3434 }
3435
3436 *ret_left_path = left_path;
3437 out:
3438 if (ret)
3439 ocfs2_free_path(left_path);
3440 return ret;
3441 }
3442
3443 /*
3444 * Remove split_rec clusters from the record at index and merge them
3445 * onto the tail of the record "before" it.
3446 * For index > 0, the "before" means the extent rec at index - 1.
3447 *
3448 * For index == 0, the "before" means the last record of the previous
3449 * extent block. And there is also a situation that we may need to
3450 * remove the rightmost leaf extent block in the right_path and change
3451 * the right path to indicate the new rightmost path.
3452 */
3453 static int ocfs2_merge_rec_left(struct inode *inode,
3454 struct ocfs2_path *right_path,
3455 handle_t *handle,
3456 struct ocfs2_extent_rec *split_rec,
3457 struct ocfs2_cached_dealloc_ctxt *dealloc,
3458 struct ocfs2_extent_tree *et,
3459 int index)
3460 {
3461 int ret, i, subtree_index = 0, has_empty_extent = 0;
3462 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3463 struct ocfs2_extent_rec *left_rec;
3464 struct ocfs2_extent_rec *right_rec;
3465 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3466 struct buffer_head *bh = path_leaf_bh(right_path);
3467 struct buffer_head *root_bh = NULL;
3468 struct ocfs2_path *left_path = NULL;
3469 struct ocfs2_extent_list *left_el;
3470
3471 BUG_ON(index < 0);
3472
3473 right_rec = &el->l_recs[index];
3474 if (index == 0) {
3475 /* we meet with a cross extent block merge. */
3476 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3477 if (ret) {
3478 mlog_errno(ret);
3479 goto out;
3480 }
3481
3482 left_el = path_leaf_el(left_path);
3483 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3484 le16_to_cpu(left_el->l_count));
3485
3486 left_rec = &left_el->l_recs[
3487 le16_to_cpu(left_el->l_next_free_rec) - 1];
3488 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3489 le16_to_cpu(left_rec->e_leaf_clusters) !=
3490 le32_to_cpu(split_rec->e_cpos));
3491
3492 subtree_index = ocfs2_find_subtree_root(inode,
3493 left_path, right_path);
3494
3495 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3496 handle->h_buffer_credits,
3497 left_path);
3498 if (ret) {
3499 mlog_errno(ret);
3500 goto out;
3501 }
3502
3503 root_bh = left_path->p_node[subtree_index].bh;
3504 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3505
3506 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3507 subtree_index);
3508 if (ret) {
3509 mlog_errno(ret);
3510 goto out;
3511 }
3512
3513 for (i = subtree_index + 1;
3514 i < path_num_items(right_path); i++) {
3515 ret = ocfs2_path_bh_journal_access(handle, inode,
3516 right_path, i);
3517 if (ret) {
3518 mlog_errno(ret);
3519 goto out;
3520 }
3521
3522 ret = ocfs2_path_bh_journal_access(handle, inode,
3523 left_path, i);
3524 if (ret) {
3525 mlog_errno(ret);
3526 goto out;
3527 }
3528 }
3529 } else {
3530 left_rec = &el->l_recs[index - 1];
3531 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3532 has_empty_extent = 1;
3533 }
3534
3535 ret = ocfs2_path_bh_journal_access(handle, inode, right_path,
3536 path_num_items(right_path) - 1);
3537 if (ret) {
3538 mlog_errno(ret);
3539 goto out;
3540 }
3541
3542 if (has_empty_extent && index == 1) {
3543 /*
3544 * The easy case - we can just plop the record right in.
3545 */
3546 *left_rec = *split_rec;
3547
3548 has_empty_extent = 0;
3549 } else
3550 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3551
3552 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3553 le64_add_cpu(&right_rec->e_blkno,
3554 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3555 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3556
3557 ocfs2_cleanup_merge(el, index);
3558
3559 ret = ocfs2_journal_dirty(handle, bh);
3560 if (ret)
3561 mlog_errno(ret);
3562
3563 if (left_path) {
3564 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3565 if (ret)
3566 mlog_errno(ret);
3567
3568 /*
3569 * In the situation that the right_rec is empty and the extent
3570 * block is empty also, ocfs2_complete_edge_insert can't handle
3571 * it and we need to delete the right extent block.
3572 */
3573 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3574 le16_to_cpu(el->l_next_free_rec) == 1) {
3575
3576 ret = ocfs2_remove_rightmost_path(inode, handle,
3577 right_path,
3578 dealloc, et);
3579 if (ret) {
3580 mlog_errno(ret);
3581 goto out;
3582 }
3583
3584 /* Now the rightmost extent block has been deleted.
3585 * So we use the new rightmost path.
3586 */
3587 ocfs2_mv_path(right_path, left_path);
3588 left_path = NULL;
3589 } else
3590 ocfs2_complete_edge_insert(inode, handle, left_path,
3591 right_path, subtree_index);
3592 }
3593 out:
3594 if (left_path)
3595 ocfs2_free_path(left_path);
3596 return ret;
3597 }
3598
3599 static int ocfs2_try_to_merge_extent(struct inode *inode,
3600 handle_t *handle,
3601 struct ocfs2_path *path,
3602 int split_index,
3603 struct ocfs2_extent_rec *split_rec,
3604 struct ocfs2_cached_dealloc_ctxt *dealloc,
3605 struct ocfs2_merge_ctxt *ctxt,
3606 struct ocfs2_extent_tree *et)
3607
3608 {
3609 int ret = 0;
3610 struct ocfs2_extent_list *el = path_leaf_el(path);
3611 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3612
3613 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3614
3615 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3616 /*
3617 * The merge code will need to create an empty
3618 * extent to take the place of the newly
3619 * emptied slot. Remove any pre-existing empty
3620 * extents - having more than one in a leaf is
3621 * illegal.
3622 */
3623 ret = ocfs2_rotate_tree_left(inode, handle, path,
3624 dealloc, et);
3625 if (ret) {
3626 mlog_errno(ret);
3627 goto out;
3628 }
3629 split_index--;
3630 rec = &el->l_recs[split_index];
3631 }
3632
3633 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3634 /*
3635 * Left-right contig implies this.
3636 */
3637 BUG_ON(!ctxt->c_split_covers_rec);
3638
3639 /*
3640 * Since the leftright insert always covers the entire
3641 * extent, this call will delete the insert record
3642 * entirely, resulting in an empty extent record added to
3643 * the extent block.
3644 *
3645 * Since the adding of an empty extent shifts
3646 * everything back to the right, there's no need to
3647 * update split_index here.
3648 *
3649 * When the split_index is zero, we need to merge it to the
3650 * prevoius extent block. It is more efficient and easier
3651 * if we do merge_right first and merge_left later.
3652 */
3653 ret = ocfs2_merge_rec_right(inode, path,
3654 handle, split_rec,
3655 split_index);
3656 if (ret) {
3657 mlog_errno(ret);
3658 goto out;
3659 }
3660
3661 /*
3662 * We can only get this from logic error above.
3663 */
3664 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3665
3666 /* The merge left us with an empty extent, remove it. */
3667 ret = ocfs2_rotate_tree_left(inode, handle, path,
3668 dealloc, et);
3669 if (ret) {
3670 mlog_errno(ret);
3671 goto out;
3672 }
3673
3674 rec = &el->l_recs[split_index];
3675
3676 /*
3677 * Note that we don't pass split_rec here on purpose -
3678 * we've merged it into the rec already.
3679 */
3680 ret = ocfs2_merge_rec_left(inode, path,
3681 handle, rec,
3682 dealloc, et,
3683 split_index);
3684
3685 if (ret) {
3686 mlog_errno(ret);
3687 goto out;
3688 }
3689
3690 ret = ocfs2_rotate_tree_left(inode, handle, path,
3691 dealloc, et);
3692 /*
3693 * Error from this last rotate is not critical, so
3694 * print but don't bubble it up.
3695 */
3696 if (ret)
3697 mlog_errno(ret);
3698 ret = 0;
3699 } else {
3700 /*
3701 * Merge a record to the left or right.
3702 *
3703 * 'contig_type' is relative to the existing record,
3704 * so for example, if we're "right contig", it's to
3705 * the record on the left (hence the left merge).
3706 */
3707 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3708 ret = ocfs2_merge_rec_left(inode,
3709 path,
3710 handle, split_rec,
3711 dealloc, et,
3712 split_index);
3713 if (ret) {
3714 mlog_errno(ret);
3715 goto out;
3716 }
3717 } else {
3718 ret = ocfs2_merge_rec_right(inode,
3719 path,
3720 handle, split_rec,
3721 split_index);
3722 if (ret) {
3723 mlog_errno(ret);
3724 goto out;
3725 }
3726 }
3727
3728 if (ctxt->c_split_covers_rec) {
3729 /*
3730 * The merge may have left an empty extent in
3731 * our leaf. Try to rotate it away.
3732 */
3733 ret = ocfs2_rotate_tree_left(inode, handle, path,
3734 dealloc, et);
3735 if (ret)
3736 mlog_errno(ret);
3737 ret = 0;
3738 }
3739 }
3740
3741 out:
3742 return ret;
3743 }
3744
3745 static void ocfs2_subtract_from_rec(struct super_block *sb,
3746 enum ocfs2_split_type split,
3747 struct ocfs2_extent_rec *rec,
3748 struct ocfs2_extent_rec *split_rec)
3749 {
3750 u64 len_blocks;
3751
3752 len_blocks = ocfs2_clusters_to_blocks(sb,
3753 le16_to_cpu(split_rec->e_leaf_clusters));
3754
3755 if (split == SPLIT_LEFT) {
3756 /*
3757 * Region is on the left edge of the existing
3758 * record.
3759 */
3760 le32_add_cpu(&rec->e_cpos,
3761 le16_to_cpu(split_rec->e_leaf_clusters));
3762 le64_add_cpu(&rec->e_blkno, len_blocks);
3763 le16_add_cpu(&rec->e_leaf_clusters,
3764 -le16_to_cpu(split_rec->e_leaf_clusters));
3765 } else {
3766 /*
3767 * Region is on the right edge of the existing
3768 * record.
3769 */
3770 le16_add_cpu(&rec->e_leaf_clusters,
3771 -le16_to_cpu(split_rec->e_leaf_clusters));
3772 }
3773 }
3774
3775 /*
3776 * Do the final bits of extent record insertion at the target leaf
3777 * list. If this leaf is part of an allocation tree, it is assumed
3778 * that the tree above has been prepared.
3779 */
3780 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3781 struct ocfs2_extent_list *el,
3782 struct ocfs2_insert_type *insert,
3783 struct inode *inode)
3784 {
3785 int i = insert->ins_contig_index;
3786 unsigned int range;
3787 struct ocfs2_extent_rec *rec;
3788
3789 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3790
3791 if (insert->ins_split != SPLIT_NONE) {
3792 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3793 BUG_ON(i == -1);
3794 rec = &el->l_recs[i];
3795 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3796 insert_rec);
3797 goto rotate;
3798 }
3799
3800 /*
3801 * Contiguous insert - either left or right.
3802 */
3803 if (insert->ins_contig != CONTIG_NONE) {
3804 rec = &el->l_recs[i];
3805 if (insert->ins_contig == CONTIG_LEFT) {
3806 rec->e_blkno = insert_rec->e_blkno;
3807 rec->e_cpos = insert_rec->e_cpos;
3808 }
3809 le16_add_cpu(&rec->e_leaf_clusters,
3810 le16_to_cpu(insert_rec->e_leaf_clusters));
3811 return;
3812 }
3813
3814 /*
3815 * Handle insert into an empty leaf.
3816 */
3817 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3818 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3819 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3820 el->l_recs[0] = *insert_rec;
3821 el->l_next_free_rec = cpu_to_le16(1);
3822 return;
3823 }
3824
3825 /*
3826 * Appending insert.
3827 */
3828 if (insert->ins_appending == APPEND_TAIL) {
3829 i = le16_to_cpu(el->l_next_free_rec) - 1;
3830 rec = &el->l_recs[i];
3831 range = le32_to_cpu(rec->e_cpos)
3832 + le16_to_cpu(rec->e_leaf_clusters);
3833 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3834
3835 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3836 le16_to_cpu(el->l_count),
3837 "inode %lu, depth %u, count %u, next free %u, "
3838 "rec.cpos %u, rec.clusters %u, "
3839 "insert.cpos %u, insert.clusters %u\n",
3840 inode->i_ino,
3841 le16_to_cpu(el->l_tree_depth),
3842 le16_to_cpu(el->l_count),
3843 le16_to_cpu(el->l_next_free_rec),
3844 le32_to_cpu(el->l_recs[i].e_cpos),
3845 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3846 le32_to_cpu(insert_rec->e_cpos),
3847 le16_to_cpu(insert_rec->e_leaf_clusters));
3848 i++;
3849 el->l_recs[i] = *insert_rec;
3850 le16_add_cpu(&el->l_next_free_rec, 1);
3851 return;
3852 }
3853
3854 rotate:
3855 /*
3856 * Ok, we have to rotate.
3857 *
3858 * At this point, it is safe to assume that inserting into an
3859 * empty leaf and appending to a leaf have both been handled
3860 * above.
3861 *
3862 * This leaf needs to have space, either by the empty 1st
3863 * extent record, or by virtue of an l_next_rec < l_count.
3864 */
3865 ocfs2_rotate_leaf(el, insert_rec);
3866 }
3867
3868 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3869 handle_t *handle,
3870 struct ocfs2_path *path,
3871 struct ocfs2_extent_rec *insert_rec)
3872 {
3873 int ret, i, next_free;
3874 struct buffer_head *bh;
3875 struct ocfs2_extent_list *el;
3876 struct ocfs2_extent_rec *rec;
3877
3878 /*
3879 * Update everything except the leaf block.
3880 */
3881 for (i = 0; i < path->p_tree_depth; i++) {
3882 bh = path->p_node[i].bh;
3883 el = path->p_node[i].el;
3884
3885 next_free = le16_to_cpu(el->l_next_free_rec);
3886 if (next_free == 0) {
3887 ocfs2_error(inode->i_sb,
3888 "Dinode %llu has a bad extent list",
3889 (unsigned long long)OCFS2_I(inode)->ip_blkno);
3890 ret = -EIO;
3891 return;
3892 }
3893
3894 rec = &el->l_recs[next_free - 1];
3895
3896 rec->e_int_clusters = insert_rec->e_cpos;
3897 le32_add_cpu(&rec->e_int_clusters,
3898 le16_to_cpu(insert_rec->e_leaf_clusters));
3899 le32_add_cpu(&rec->e_int_clusters,
3900 -le32_to_cpu(rec->e_cpos));
3901
3902 ret = ocfs2_journal_dirty(handle, bh);
3903 if (ret)
3904 mlog_errno(ret);
3905
3906 }
3907 }
3908
3909 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3910 struct ocfs2_extent_rec *insert_rec,
3911 struct ocfs2_path *right_path,
3912 struct ocfs2_path **ret_left_path)
3913 {
3914 int ret, next_free;
3915 struct ocfs2_extent_list *el;
3916 struct ocfs2_path *left_path = NULL;
3917
3918 *ret_left_path = NULL;
3919
3920 /*
3921 * This shouldn't happen for non-trees. The extent rec cluster
3922 * count manipulation below only works for interior nodes.
3923 */
3924 BUG_ON(right_path->p_tree_depth == 0);
3925
3926 /*
3927 * If our appending insert is at the leftmost edge of a leaf,
3928 * then we might need to update the rightmost records of the
3929 * neighboring path.
3930 */
3931 el = path_leaf_el(right_path);
3932 next_free = le16_to_cpu(el->l_next_free_rec);
3933 if (next_free == 0 ||
3934 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3935 u32 left_cpos;
3936
3937 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3938 &left_cpos);
3939 if (ret) {
3940 mlog_errno(ret);
3941 goto out;
3942 }
3943
3944 mlog(0, "Append may need a left path update. cpos: %u, "
3945 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3946 left_cpos);
3947
3948 /*
3949 * No need to worry if the append is already in the
3950 * leftmost leaf.
3951 */
3952 if (left_cpos) {
3953 left_path = ocfs2_new_path_from_path(right_path);
3954 if (!left_path) {
3955 ret = -ENOMEM;
3956 mlog_errno(ret);
3957 goto out;
3958 }
3959
3960 ret = ocfs2_find_path(inode, left_path, left_cpos);
3961 if (ret) {
3962 mlog_errno(ret);
3963 goto out;
3964 }
3965
3966 /*
3967 * ocfs2_insert_path() will pass the left_path to the
3968 * journal for us.
3969 */
3970 }
3971 }
3972
3973 ret = ocfs2_journal_access_path(inode, handle, right_path);
3974 if (ret) {
3975 mlog_errno(ret);
3976 goto out;
3977 }
3978
3979 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3980
3981 *ret_left_path = left_path;
3982 ret = 0;
3983 out:
3984 if (ret != 0)
3985 ocfs2_free_path(left_path);
3986
3987 return ret;
3988 }
3989
3990 static void ocfs2_split_record(struct inode *inode,
3991 struct ocfs2_path *left_path,
3992 struct ocfs2_path *right_path,
3993 struct ocfs2_extent_rec *split_rec,
3994 enum ocfs2_split_type split)
3995 {
3996 int index;
3997 u32 cpos = le32_to_cpu(split_rec->e_cpos);
3998 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3999 struct ocfs2_extent_rec *rec, *tmprec;
4000
4001 right_el = path_leaf_el(right_path);
4002 if (left_path)
4003 left_el = path_leaf_el(left_path);
4004
4005 el = right_el;
4006 insert_el = right_el;
4007 index = ocfs2_search_extent_list(el, cpos);
4008 if (index != -1) {
4009 if (index == 0 && left_path) {
4010 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4011
4012 /*
4013 * This typically means that the record
4014 * started in the left path but moved to the
4015 * right as a result of rotation. We either
4016 * move the existing record to the left, or we
4017 * do the later insert there.
4018 *
4019 * In this case, the left path should always
4020 * exist as the rotate code will have passed
4021 * it back for a post-insert update.
4022 */
4023
4024 if (split == SPLIT_LEFT) {
4025 /*
4026 * It's a left split. Since we know
4027 * that the rotate code gave us an
4028 * empty extent in the left path, we
4029 * can just do the insert there.
4030 */
4031 insert_el = left_el;
4032 } else {
4033 /*
4034 * Right split - we have to move the
4035 * existing record over to the left
4036 * leaf. The insert will be into the
4037 * newly created empty extent in the
4038 * right leaf.
4039 */
4040 tmprec = &right_el->l_recs[index];
4041 ocfs2_rotate_leaf(left_el, tmprec);
4042 el = left_el;
4043
4044 memset(tmprec, 0, sizeof(*tmprec));
4045 index = ocfs2_search_extent_list(left_el, cpos);
4046 BUG_ON(index == -1);
4047 }
4048 }
4049 } else {
4050 BUG_ON(!left_path);
4051 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4052 /*
4053 * Left path is easy - we can just allow the insert to
4054 * happen.
4055 */
4056 el = left_el;
4057 insert_el = left_el;
4058 index = ocfs2_search_extent_list(el, cpos);
4059 BUG_ON(index == -1);
4060 }
4061
4062 rec = &el->l_recs[index];
4063 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
4064 ocfs2_rotate_leaf(insert_el, split_rec);
4065 }
4066
4067 /*
4068 * This function only does inserts on an allocation b-tree. For tree
4069 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4070 *
4071 * right_path is the path we want to do the actual insert
4072 * in. left_path should only be passed in if we need to update that
4073 * portion of the tree after an edge insert.
4074 */
4075 static int ocfs2_insert_path(struct inode *inode,
4076 handle_t *handle,
4077 struct ocfs2_path *left_path,
4078 struct ocfs2_path *right_path,
4079 struct ocfs2_extent_rec *insert_rec,
4080 struct ocfs2_insert_type *insert)
4081 {
4082 int ret, subtree_index;
4083 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4084
4085 if (left_path) {
4086 int credits = handle->h_buffer_credits;
4087
4088 /*
4089 * There's a chance that left_path got passed back to
4090 * us without being accounted for in the
4091 * journal. Extend our transaction here to be sure we
4092 * can change those blocks.
4093 */
4094 credits += left_path->p_tree_depth;
4095
4096 ret = ocfs2_extend_trans(handle, credits);
4097 if (ret < 0) {
4098 mlog_errno(ret);
4099 goto out;
4100 }
4101
4102 ret = ocfs2_journal_access_path(inode, handle, left_path);
4103 if (ret < 0) {
4104 mlog_errno(ret);
4105 goto out;
4106 }
4107 }
4108
4109 /*
4110 * Pass both paths to the journal. The majority of inserts
4111 * will be touching all components anyway.
4112 */
4113 ret = ocfs2_journal_access_path(inode, handle, right_path);
4114 if (ret < 0) {
4115 mlog_errno(ret);
4116 goto out;
4117 }
4118
4119 if (insert->ins_split != SPLIT_NONE) {
4120 /*
4121 * We could call ocfs2_insert_at_leaf() for some types
4122 * of splits, but it's easier to just let one separate
4123 * function sort it all out.
4124 */
4125 ocfs2_split_record(inode, left_path, right_path,
4126 insert_rec, insert->ins_split);
4127
4128 /*
4129 * Split might have modified either leaf and we don't
4130 * have a guarantee that the later edge insert will
4131 * dirty this for us.
4132 */
4133 if (left_path)
4134 ret = ocfs2_journal_dirty(handle,
4135 path_leaf_bh(left_path));
4136 if (ret)
4137 mlog_errno(ret);
4138 } else
4139 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
4140 insert, inode);
4141
4142 ret = ocfs2_journal_dirty(handle, leaf_bh);
4143 if (ret)
4144 mlog_errno(ret);
4145
4146 if (left_path) {
4147 /*
4148 * The rotate code has indicated that we need to fix
4149 * up portions of the tree after the insert.
4150 *
4151 * XXX: Should we extend the transaction here?
4152 */
4153 subtree_index = ocfs2_find_subtree_root(inode, left_path,
4154 right_path);
4155 ocfs2_complete_edge_insert(inode, handle, left_path,
4156 right_path, subtree_index);
4157 }
4158
4159 ret = 0;
4160 out:
4161 return ret;
4162 }
4163
4164 static int ocfs2_do_insert_extent(struct inode *inode,
4165 handle_t *handle,
4166 struct ocfs2_extent_tree *et,
4167 struct ocfs2_extent_rec *insert_rec,
4168 struct ocfs2_insert_type *type)
4169 {
4170 int ret, rotate = 0;
4171 u32 cpos;
4172 struct ocfs2_path *right_path = NULL;
4173 struct ocfs2_path *left_path = NULL;
4174 struct ocfs2_extent_list *el;
4175
4176 el = et->et_root_el;
4177
4178 ret = ocfs2_et_root_journal_access(handle, inode, et,
4179 OCFS2_JOURNAL_ACCESS_WRITE);
4180 if (ret) {
4181 mlog_errno(ret);
4182 goto out;
4183 }
4184
4185 if (le16_to_cpu(el->l_tree_depth) == 0) {
4186 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4187 goto out_update_clusters;
4188 }
4189
4190 right_path = ocfs2_new_path_from_et(et);
4191 if (!right_path) {
4192 ret = -ENOMEM;
4193 mlog_errno(ret);
4194 goto out;
4195 }
4196
4197 /*
4198 * Determine the path to start with. Rotations need the
4199 * rightmost path, everything else can go directly to the
4200 * target leaf.
4201 */
4202 cpos = le32_to_cpu(insert_rec->e_cpos);
4203 if (type->ins_appending == APPEND_NONE &&
4204 type->ins_contig == CONTIG_NONE) {
4205 rotate = 1;
4206 cpos = UINT_MAX;
4207 }
4208
4209 ret = ocfs2_find_path(inode, right_path, cpos);
4210 if (ret) {
4211 mlog_errno(ret);
4212 goto out;
4213 }
4214
4215 /*
4216 * Rotations and appends need special treatment - they modify
4217 * parts of the tree's above them.
4218 *
4219 * Both might pass back a path immediate to the left of the
4220 * one being inserted to. This will be cause
4221 * ocfs2_insert_path() to modify the rightmost records of
4222 * left_path to account for an edge insert.
4223 *
4224 * XXX: When modifying this code, keep in mind that an insert
4225 * can wind up skipping both of these two special cases...
4226 */
4227 if (rotate) {
4228 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
4229 le32_to_cpu(insert_rec->e_cpos),
4230 right_path, &left_path);
4231 if (ret) {
4232 mlog_errno(ret);
4233 goto out;
4234 }
4235
4236 /*
4237 * ocfs2_rotate_tree_right() might have extended the
4238 * transaction without re-journaling our tree root.
4239 */
4240 ret = ocfs2_et_root_journal_access(handle, inode, et,
4241 OCFS2_JOURNAL_ACCESS_WRITE);
4242 if (ret) {
4243 mlog_errno(ret);
4244 goto out;
4245 }
4246 } else if (type->ins_appending == APPEND_TAIL
4247 && type->ins_contig != CONTIG_LEFT) {
4248 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4249 right_path, &left_path);
4250 if (ret) {
4251 mlog_errno(ret);
4252 goto out;
4253 }
4254 }
4255
4256 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4257 insert_rec, type);
4258 if (ret) {
4259 mlog_errno(ret);
4260 goto out;
4261 }
4262
4263 out_update_clusters:
4264 if (type->ins_split == SPLIT_NONE)
4265 ocfs2_et_update_clusters(inode, et,
4266 le16_to_cpu(insert_rec->e_leaf_clusters));
4267
4268 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
4269 if (ret)
4270 mlog_errno(ret);
4271
4272 out:
4273 ocfs2_free_path(left_path);
4274 ocfs2_free_path(right_path);
4275
4276 return ret;
4277 }
4278
4279 static enum ocfs2_contig_type
4280 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
4281 struct ocfs2_extent_list *el, int index,
4282 struct ocfs2_extent_rec *split_rec)
4283 {
4284 int status;
4285 enum ocfs2_contig_type ret = CONTIG_NONE;
4286 u32 left_cpos, right_cpos;
4287 struct ocfs2_extent_rec *rec = NULL;
4288 struct ocfs2_extent_list *new_el;
4289 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4290 struct buffer_head *bh;
4291 struct ocfs2_extent_block *eb;
4292
4293 if (index > 0) {
4294 rec = &el->l_recs[index - 1];
4295 } else if (path->p_tree_depth > 0) {
4296 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4297 path, &left_cpos);
4298 if (status)
4299 goto out;
4300
4301 if (left_cpos != 0) {
4302 left_path = ocfs2_new_path_from_path(path);
4303 if (!left_path)
4304 goto out;
4305
4306 status = ocfs2_find_path(inode, left_path, left_cpos);
4307 if (status)
4308 goto out;
4309
4310 new_el = path_leaf_el(left_path);
4311
4312 if (le16_to_cpu(new_el->l_next_free_rec) !=
4313 le16_to_cpu(new_el->l_count)) {
4314 bh = path_leaf_bh(left_path);
4315 eb = (struct ocfs2_extent_block *)bh->b_data;
4316 ocfs2_error(inode->i_sb,
4317 "Extent block #%llu has an "
4318 "invalid l_next_free_rec of "
4319 "%d. It should have "
4320 "matched the l_count of %d",
4321 (unsigned long long)le64_to_cpu(eb->h_blkno),
4322 le16_to_cpu(new_el->l_next_free_rec),
4323 le16_to_cpu(new_el->l_count));
4324 status = -EINVAL;
4325 goto out;
4326 }
4327 rec = &new_el->l_recs[
4328 le16_to_cpu(new_el->l_next_free_rec) - 1];
4329 }
4330 }
4331
4332 /*
4333 * We're careful to check for an empty extent record here -
4334 * the merge code will know what to do if it sees one.
4335 */
4336 if (rec) {
4337 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4338 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4339 ret = CONTIG_RIGHT;
4340 } else {
4341 ret = ocfs2_extent_contig(inode, rec, split_rec);
4342 }
4343 }
4344
4345 rec = NULL;
4346 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4347 rec = &el->l_recs[index + 1];
4348 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4349 path->p_tree_depth > 0) {
4350 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4351 path, &right_cpos);
4352 if (status)
4353 goto out;
4354
4355 if (right_cpos == 0)
4356 goto out;
4357
4358 right_path = ocfs2_new_path_from_path(path);
4359 if (!right_path)
4360 goto out;
4361
4362 status = ocfs2_find_path(inode, right_path, right_cpos);
4363 if (status)
4364 goto out;
4365
4366 new_el = path_leaf_el(right_path);
4367 rec = &new_el->l_recs[0];
4368 if (ocfs2_is_empty_extent(rec)) {
4369 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4370 bh = path_leaf_bh(right_path);
4371 eb = (struct ocfs2_extent_block *)bh->b_data;
4372 ocfs2_error(inode->i_sb,
4373 "Extent block #%llu has an "
4374 "invalid l_next_free_rec of %d",
4375 (unsigned long long)le64_to_cpu(eb->h_blkno),
4376 le16_to_cpu(new_el->l_next_free_rec));
4377 status = -EINVAL;
4378 goto out;
4379 }
4380 rec = &new_el->l_recs[1];
4381 }
4382 }
4383
4384 if (rec) {
4385 enum ocfs2_contig_type contig_type;
4386
4387 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4388
4389 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4390 ret = CONTIG_LEFTRIGHT;
4391 else if (ret == CONTIG_NONE)
4392 ret = contig_type;
4393 }
4394
4395 out:
4396 if (left_path)
4397 ocfs2_free_path(left_path);
4398 if (right_path)
4399 ocfs2_free_path(right_path);
4400
4401 return ret;
4402 }
4403
4404 static void ocfs2_figure_contig_type(struct inode *inode,
4405 struct ocfs2_insert_type *insert,
4406 struct ocfs2_extent_list *el,
4407 struct ocfs2_extent_rec *insert_rec,
4408 struct ocfs2_extent_tree *et)
4409 {
4410 int i;
4411 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4412
4413 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4414
4415 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4416 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4417 insert_rec);
4418 if (contig_type != CONTIG_NONE) {
4419 insert->ins_contig_index = i;
4420 break;
4421 }
4422 }
4423 insert->ins_contig = contig_type;
4424
4425 if (insert->ins_contig != CONTIG_NONE) {
4426 struct ocfs2_extent_rec *rec =
4427 &el->l_recs[insert->ins_contig_index];
4428 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4429 le16_to_cpu(insert_rec->e_leaf_clusters);
4430
4431 /*
4432 * Caller might want us to limit the size of extents, don't
4433 * calculate contiguousness if we might exceed that limit.
4434 */
4435 if (et->et_max_leaf_clusters &&
4436 (len > et->et_max_leaf_clusters))
4437 insert->ins_contig = CONTIG_NONE;
4438 }
4439 }
4440
4441 /*
4442 * This should only be called against the righmost leaf extent list.
4443 *
4444 * ocfs2_figure_appending_type() will figure out whether we'll have to
4445 * insert at the tail of the rightmost leaf.
4446 *
4447 * This should also work against the root extent list for tree's with 0
4448 * depth. If we consider the root extent list to be the rightmost leaf node
4449 * then the logic here makes sense.
4450 */
4451 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4452 struct ocfs2_extent_list *el,
4453 struct ocfs2_extent_rec *insert_rec)
4454 {
4455 int i;
4456 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4457 struct ocfs2_extent_rec *rec;
4458
4459 insert->ins_appending = APPEND_NONE;
4460
4461 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4462
4463 if (!el->l_next_free_rec)
4464 goto set_tail_append;
4465
4466 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4467 /* Were all records empty? */
4468 if (le16_to_cpu(el->l_next_free_rec) == 1)
4469 goto set_tail_append;
4470 }
4471
4472 i = le16_to_cpu(el->l_next_free_rec) - 1;
4473 rec = &el->l_recs[i];
4474
4475 if (cpos >=
4476 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4477 goto set_tail_append;
4478
4479 return;
4480
4481 set_tail_append:
4482 insert->ins_appending = APPEND_TAIL;
4483 }
4484
4485 /*
4486 * Helper function called at the begining of an insert.
4487 *
4488 * This computes a few things that are commonly used in the process of
4489 * inserting into the btree:
4490 * - Whether the new extent is contiguous with an existing one.
4491 * - The current tree depth.
4492 * - Whether the insert is an appending one.
4493 * - The total # of free records in the tree.
4494 *
4495 * All of the information is stored on the ocfs2_insert_type
4496 * structure.
4497 */
4498 static int ocfs2_figure_insert_type(struct inode *inode,
4499 struct ocfs2_extent_tree *et,
4500 struct buffer_head **last_eb_bh,
4501 struct ocfs2_extent_rec *insert_rec,
4502 int *free_records,
4503 struct ocfs2_insert_type *insert)
4504 {
4505 int ret;
4506 struct ocfs2_extent_block *eb;
4507 struct ocfs2_extent_list *el;
4508 struct ocfs2_path *path = NULL;
4509 struct buffer_head *bh = NULL;
4510
4511 insert->ins_split = SPLIT_NONE;
4512
4513 el = et->et_root_el;
4514 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4515
4516 if (el->l_tree_depth) {
4517 /*
4518 * If we have tree depth, we read in the
4519 * rightmost extent block ahead of time as
4520 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4521 * may want it later.
4522 */
4523 ret = ocfs2_read_extent_block(inode,
4524 ocfs2_et_get_last_eb_blk(et),
4525 &bh);
4526 if (ret) {
4527 mlog_exit(ret);
4528 goto out;
4529 }
4530 eb = (struct ocfs2_extent_block *) bh->b_data;
4531 el = &eb->h_list;
4532 }
4533
4534 /*
4535 * Unless we have a contiguous insert, we'll need to know if
4536 * there is room left in our allocation tree for another
4537 * extent record.
4538 *
4539 * XXX: This test is simplistic, we can search for empty
4540 * extent records too.
4541 */
4542 *free_records = le16_to_cpu(el->l_count) -
4543 le16_to_cpu(el->l_next_free_rec);
4544
4545 if (!insert->ins_tree_depth) {
4546 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4547 ocfs2_figure_appending_type(insert, el, insert_rec);
4548 return 0;
4549 }
4550
4551 path = ocfs2_new_path_from_et(et);
4552 if (!path) {
4553 ret = -ENOMEM;
4554 mlog_errno(ret);
4555 goto out;
4556 }
4557
4558 /*
4559 * In the case that we're inserting past what the tree
4560 * currently accounts for, ocfs2_find_path() will return for
4561 * us the rightmost tree path. This is accounted for below in
4562 * the appending code.
4563 */
4564 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4565 if (ret) {
4566 mlog_errno(ret);
4567 goto out;
4568 }
4569
4570 el = path_leaf_el(path);
4571
4572 /*
4573 * Now that we have the path, there's two things we want to determine:
4574 * 1) Contiguousness (also set contig_index if this is so)
4575 *
4576 * 2) Are we doing an append? We can trivially break this up
4577 * into two types of appends: simple record append, or a
4578 * rotate inside the tail leaf.
4579 */
4580 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
4581
4582 /*
4583 * The insert code isn't quite ready to deal with all cases of
4584 * left contiguousness. Specifically, if it's an insert into
4585 * the 1st record in a leaf, it will require the adjustment of
4586 * cluster count on the last record of the path directly to it's
4587 * left. For now, just catch that case and fool the layers
4588 * above us. This works just fine for tree_depth == 0, which
4589 * is why we allow that above.
4590 */
4591 if (insert->ins_contig == CONTIG_LEFT &&
4592 insert->ins_contig_index == 0)
4593 insert->ins_contig = CONTIG_NONE;
4594
4595 /*
4596 * Ok, so we can simply compare against last_eb to figure out
4597 * whether the path doesn't exist. This will only happen in
4598 * the case that we're doing a tail append, so maybe we can
4599 * take advantage of that information somehow.
4600 */
4601 if (ocfs2_et_get_last_eb_blk(et) ==
4602 path_leaf_bh(path)->b_blocknr) {
4603 /*
4604 * Ok, ocfs2_find_path() returned us the rightmost
4605 * tree path. This might be an appending insert. There are
4606 * two cases:
4607 * 1) We're doing a true append at the tail:
4608 * -This might even be off the end of the leaf
4609 * 2) We're "appending" by rotating in the tail
4610 */
4611 ocfs2_figure_appending_type(insert, el, insert_rec);
4612 }
4613
4614 out:
4615 ocfs2_free_path(path);
4616
4617 if (ret == 0)
4618 *last_eb_bh = bh;
4619 else
4620 brelse(bh);
4621 return ret;
4622 }
4623
4624 /*
4625 * Insert an extent into an inode btree.
4626 *
4627 * The caller needs to update fe->i_clusters
4628 */
4629 int ocfs2_insert_extent(struct ocfs2_super *osb,
4630 handle_t *handle,
4631 struct inode *inode,
4632 struct ocfs2_extent_tree *et,
4633 u32 cpos,
4634 u64 start_blk,
4635 u32 new_clusters,
4636 u8 flags,
4637 struct ocfs2_alloc_context *meta_ac)
4638 {
4639 int status;
4640 int uninitialized_var(free_records);
4641 struct buffer_head *last_eb_bh = NULL;
4642 struct ocfs2_insert_type insert = {0, };
4643 struct ocfs2_extent_rec rec;
4644
4645 mlog(0, "add %u clusters at position %u to inode %llu\n",
4646 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4647
4648 memset(&rec, 0, sizeof(rec));
4649 rec.e_cpos = cpu_to_le32(cpos);
4650 rec.e_blkno = cpu_to_le64(start_blk);
4651 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4652 rec.e_flags = flags;
4653 status = ocfs2_et_insert_check(inode, et, &rec);
4654 if (status) {
4655 mlog_errno(status);
4656 goto bail;
4657 }
4658
4659 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
4660 &free_records, &insert);
4661 if (status < 0) {
4662 mlog_errno(status);
4663 goto bail;
4664 }
4665
4666 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4667 "Insert.contig_index: %d, Insert.free_records: %d, "
4668 "Insert.tree_depth: %d\n",
4669 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4670 free_records, insert.ins_tree_depth);
4671
4672 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4673 status = ocfs2_grow_tree(inode, handle, et,
4674 &insert.ins_tree_depth, &last_eb_bh,
4675 meta_ac);
4676 if (status) {
4677 mlog_errno(status);
4678 goto bail;
4679 }
4680 }
4681
4682 /* Finally, we can add clusters. This might rotate the tree for us. */
4683 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
4684 if (status < 0)
4685 mlog_errno(status);
4686 else if (et->et_ops == &ocfs2_dinode_et_ops)
4687 ocfs2_extent_map_insert_rec(inode, &rec);
4688
4689 bail:
4690 brelse(last_eb_bh);
4691
4692 mlog_exit(status);
4693 return status;
4694 }
4695
4696 /*
4697 * Allcate and add clusters into the extent b-tree.
4698 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4699 * The extent b-tree's root is specified by et, and
4700 * it is not limited to the file storage. Any extent tree can use this
4701 * function if it implements the proper ocfs2_extent_tree.
4702 */
4703 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4704 struct inode *inode,
4705 u32 *logical_offset,
4706 u32 clusters_to_add,
4707 int mark_unwritten,
4708 struct ocfs2_extent_tree *et,
4709 handle_t *handle,
4710 struct ocfs2_alloc_context *data_ac,
4711 struct ocfs2_alloc_context *meta_ac,
4712 enum ocfs2_alloc_restarted *reason_ret)
4713 {
4714 int status = 0;
4715 int free_extents;
4716 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4717 u32 bit_off, num_bits;
4718 u64 block;
4719 u8 flags = 0;
4720
4721 BUG_ON(!clusters_to_add);
4722
4723 if (mark_unwritten)
4724 flags = OCFS2_EXT_UNWRITTEN;
4725
4726 free_extents = ocfs2_num_free_extents(osb, inode, et);
4727 if (free_extents < 0) {
4728 status = free_extents;
4729 mlog_errno(status);
4730 goto leave;
4731 }
4732
4733 /* there are two cases which could cause us to EAGAIN in the
4734 * we-need-more-metadata case:
4735 * 1) we haven't reserved *any*
4736 * 2) we are so fragmented, we've needed to add metadata too
4737 * many times. */
4738 if (!free_extents && !meta_ac) {
4739 mlog(0, "we haven't reserved any metadata!\n");
4740 status = -EAGAIN;
4741 reason = RESTART_META;
4742 goto leave;
4743 } else if ((!free_extents)
4744 && (ocfs2_alloc_context_bits_left(meta_ac)
4745 < ocfs2_extend_meta_needed(et->et_root_el))) {
4746 mlog(0, "filesystem is really fragmented...\n");
4747 status = -EAGAIN;
4748 reason = RESTART_META;
4749 goto leave;
4750 }
4751
4752 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4753 clusters_to_add, &bit_off, &num_bits);
4754 if (status < 0) {
4755 if (status != -ENOSPC)
4756 mlog_errno(status);
4757 goto leave;
4758 }
4759
4760 BUG_ON(num_bits > clusters_to_add);
4761
4762 /* reserve our write early -- insert_extent may update the tree root */
4763 status = ocfs2_et_root_journal_access(handle, inode, et,
4764 OCFS2_JOURNAL_ACCESS_WRITE);
4765 if (status < 0) {
4766 mlog_errno(status);
4767 goto leave;
4768 }
4769
4770 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4771 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4772 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4773 status = ocfs2_insert_extent(osb, handle, inode, et,
4774 *logical_offset, block,
4775 num_bits, flags, meta_ac);
4776 if (status < 0) {
4777 mlog_errno(status);
4778 goto leave;
4779 }
4780
4781 status = ocfs2_journal_dirty(handle, et->et_root_bh);
4782 if (status < 0) {
4783 mlog_errno(status);
4784 goto leave;
4785 }
4786
4787 clusters_to_add -= num_bits;
4788 *logical_offset += num_bits;
4789
4790 if (clusters_to_add) {
4791 mlog(0, "need to alloc once more, wanted = %u\n",
4792 clusters_to_add);
4793 status = -EAGAIN;
4794 reason = RESTART_TRANS;
4795 }
4796
4797 leave:
4798 mlog_exit(status);
4799 if (reason_ret)
4800 *reason_ret = reason;
4801 return status;
4802 }
4803
4804 static void ocfs2_make_right_split_rec(struct super_block *sb,
4805 struct ocfs2_extent_rec *split_rec,
4806 u32 cpos,
4807 struct ocfs2_extent_rec *rec)
4808 {
4809 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4810 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4811
4812 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4813
4814 split_rec->e_cpos = cpu_to_le32(cpos);
4815 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4816
4817 split_rec->e_blkno = rec->e_blkno;
4818 le64_add_cpu(&split_rec->e_blkno,
4819 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4820
4821 split_rec->e_flags = rec->e_flags;
4822 }
4823
4824 static int ocfs2_split_and_insert(struct inode *inode,
4825 handle_t *handle,
4826 struct ocfs2_path *path,
4827 struct ocfs2_extent_tree *et,
4828 struct buffer_head **last_eb_bh,
4829 int split_index,
4830 struct ocfs2_extent_rec *orig_split_rec,
4831 struct ocfs2_alloc_context *meta_ac)
4832 {
4833 int ret = 0, depth;
4834 unsigned int insert_range, rec_range, do_leftright = 0;
4835 struct ocfs2_extent_rec tmprec;
4836 struct ocfs2_extent_list *rightmost_el;
4837 struct ocfs2_extent_rec rec;
4838 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4839 struct ocfs2_insert_type insert;
4840 struct ocfs2_extent_block *eb;
4841
4842 leftright:
4843 /*
4844 * Store a copy of the record on the stack - it might move
4845 * around as the tree is manipulated below.
4846 */
4847 rec = path_leaf_el(path)->l_recs[split_index];
4848
4849 rightmost_el = et->et_root_el;
4850
4851 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4852 if (depth) {
4853 BUG_ON(!(*last_eb_bh));
4854 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4855 rightmost_el = &eb->h_list;
4856 }
4857
4858 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4859 le16_to_cpu(rightmost_el->l_count)) {
4860 ret = ocfs2_grow_tree(inode, handle, et,
4861 &depth, last_eb_bh, meta_ac);
4862 if (ret) {
4863 mlog_errno(ret);
4864 goto out;
4865 }
4866 }
4867
4868 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4869 insert.ins_appending = APPEND_NONE;
4870 insert.ins_contig = CONTIG_NONE;
4871 insert.ins_tree_depth = depth;
4872
4873 insert_range = le32_to_cpu(split_rec.e_cpos) +
4874 le16_to_cpu(split_rec.e_leaf_clusters);
4875 rec_range = le32_to_cpu(rec.e_cpos) +
4876 le16_to_cpu(rec.e_leaf_clusters);
4877
4878 if (split_rec.e_cpos == rec.e_cpos) {
4879 insert.ins_split = SPLIT_LEFT;
4880 } else if (insert_range == rec_range) {
4881 insert.ins_split = SPLIT_RIGHT;
4882 } else {
4883 /*
4884 * Left/right split. We fake this as a right split
4885 * first and then make a second pass as a left split.
4886 */
4887 insert.ins_split = SPLIT_RIGHT;
4888
4889 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4890 &rec);
4891
4892 split_rec = tmprec;
4893
4894 BUG_ON(do_leftright);
4895 do_leftright = 1;
4896 }
4897
4898 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
4899 if (ret) {
4900 mlog_errno(ret);
4901 goto out;
4902 }
4903
4904 if (do_leftright == 1) {
4905 u32 cpos;
4906 struct ocfs2_extent_list *el;
4907
4908 do_leftright++;
4909 split_rec = *orig_split_rec;
4910
4911 ocfs2_reinit_path(path, 1);
4912
4913 cpos = le32_to_cpu(split_rec.e_cpos);
4914 ret = ocfs2_find_path(inode, path, cpos);
4915 if (ret) {
4916 mlog_errno(ret);
4917 goto out;
4918 }
4919
4920 el = path_leaf_el(path);
4921 split_index = ocfs2_search_extent_list(el, cpos);
4922 goto leftright;
4923 }
4924 out:
4925
4926 return ret;
4927 }
4928
4929 static int ocfs2_replace_extent_rec(struct inode *inode,
4930 handle_t *handle,
4931 struct ocfs2_path *path,
4932 struct ocfs2_extent_list *el,
4933 int split_index,
4934 struct ocfs2_extent_rec *split_rec)
4935 {
4936 int ret;
4937
4938 ret = ocfs2_path_bh_journal_access(handle, inode, path,
4939 path_num_items(path) - 1);
4940 if (ret) {
4941 mlog_errno(ret);
4942 goto out;
4943 }
4944
4945 el->l_recs[split_index] = *split_rec;
4946
4947 ocfs2_journal_dirty(handle, path_leaf_bh(path));
4948 out:
4949 return ret;
4950 }
4951
4952 /*
4953 * Mark part or all of the extent record at split_index in the leaf
4954 * pointed to by path as written. This removes the unwritten
4955 * extent flag.
4956 *
4957 * Care is taken to handle contiguousness so as to not grow the tree.
4958 *
4959 * meta_ac is not strictly necessary - we only truly need it if growth
4960 * of the tree is required. All other cases will degrade into a less
4961 * optimal tree layout.
4962 *
4963 * last_eb_bh should be the rightmost leaf block for any extent
4964 * btree. Since a split may grow the tree or a merge might shrink it,
4965 * the caller cannot trust the contents of that buffer after this call.
4966 *
4967 * This code is optimized for readability - several passes might be
4968 * made over certain portions of the tree. All of those blocks will
4969 * have been brought into cache (and pinned via the journal), so the
4970 * extra overhead is not expressed in terms of disk reads.
4971 */
4972 static int __ocfs2_mark_extent_written(struct inode *inode,
4973 struct ocfs2_extent_tree *et,
4974 handle_t *handle,
4975 struct ocfs2_path *path,
4976 int split_index,
4977 struct ocfs2_extent_rec *split_rec,
4978 struct ocfs2_alloc_context *meta_ac,
4979 struct ocfs2_cached_dealloc_ctxt *dealloc)
4980 {
4981 int ret = 0;
4982 struct ocfs2_extent_list *el = path_leaf_el(path);
4983 struct buffer_head *last_eb_bh = NULL;
4984 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4985 struct ocfs2_merge_ctxt ctxt;
4986 struct ocfs2_extent_list *rightmost_el;
4987
4988 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4989 ret = -EIO;
4990 mlog_errno(ret);
4991 goto out;
4992 }
4993
4994 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4995 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4996 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4997 ret = -EIO;
4998 mlog_errno(ret);
4999 goto out;
5000 }
5001
5002 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
5003 split_index,
5004 split_rec);
5005
5006 /*
5007 * The core merge / split code wants to know how much room is
5008 * left in this inodes allocation tree, so we pass the
5009 * rightmost extent list.
5010 */
5011 if (path->p_tree_depth) {
5012 struct ocfs2_extent_block *eb;
5013
5014 ret = ocfs2_read_extent_block(inode,
5015 ocfs2_et_get_last_eb_blk(et),
5016 &last_eb_bh);
5017 if (ret) {
5018 mlog_exit(ret);
5019 goto out;
5020 }
5021
5022 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5023 rightmost_el = &eb->h_list;
5024 } else
5025 rightmost_el = path_root_el(path);
5026
5027 if (rec->e_cpos == split_rec->e_cpos &&
5028 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5029 ctxt.c_split_covers_rec = 1;
5030 else
5031 ctxt.c_split_covers_rec = 0;
5032
5033 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5034
5035 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5036 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
5037 ctxt.c_split_covers_rec);
5038
5039 if (ctxt.c_contig_type == CONTIG_NONE) {
5040 if (ctxt.c_split_covers_rec)
5041 ret = ocfs2_replace_extent_rec(inode, handle,
5042 path, el,
5043 split_index, split_rec);
5044 else
5045 ret = ocfs2_split_and_insert(inode, handle, path, et,
5046 &last_eb_bh, split_index,
5047 split_rec, meta_ac);
5048 if (ret)
5049 mlog_errno(ret);
5050 } else {
5051 ret = ocfs2_try_to_merge_extent(inode, handle, path,
5052 split_index, split_rec,
5053 dealloc, &ctxt, et);
5054 if (ret)
5055 mlog_errno(ret);
5056 }
5057
5058 out:
5059 brelse(last_eb_bh);
5060 return ret;
5061 }
5062
5063 /*
5064 * Mark the already-existing extent at cpos as written for len clusters.
5065 *
5066 * If the existing extent is larger than the request, initiate a
5067 * split. An attempt will be made at merging with adjacent extents.
5068 *
5069 * The caller is responsible for passing down meta_ac if we'll need it.
5070 */
5071 int ocfs2_mark_extent_written(struct inode *inode,
5072 struct ocfs2_extent_tree *et,
5073 handle_t *handle, u32 cpos, u32 len, u32 phys,
5074 struct ocfs2_alloc_context *meta_ac,
5075 struct ocfs2_cached_dealloc_ctxt *dealloc)
5076 {
5077 int ret, index;
5078 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
5079 struct ocfs2_extent_rec split_rec;
5080 struct ocfs2_path *left_path = NULL;
5081 struct ocfs2_extent_list *el;
5082
5083 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
5084 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
5085
5086 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5087 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5088 "that are being written to, but the feature bit "
5089 "is not set in the super block.",
5090 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5091 ret = -EROFS;
5092 goto out;
5093 }
5094
5095 /*
5096 * XXX: This should be fixed up so that we just re-insert the
5097 * next extent records.
5098 *
5099 * XXX: This is a hack on the extent tree, maybe it should be
5100 * an op?
5101 */
5102 if (et->et_ops == &ocfs2_dinode_et_ops)
5103 ocfs2_extent_map_trunc(inode, 0);
5104
5105 left_path = ocfs2_new_path_from_et(et);
5106 if (!left_path) {
5107 ret = -ENOMEM;
5108 mlog_errno(ret);
5109 goto out;
5110 }
5111
5112 ret = ocfs2_find_path(inode, left_path, cpos);
5113 if (ret) {
5114 mlog_errno(ret);
5115 goto out;
5116 }
5117 el = path_leaf_el(left_path);
5118
5119 index = ocfs2_search_extent_list(el, cpos);
5120 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5121 ocfs2_error(inode->i_sb,
5122 "Inode %llu has an extent at cpos %u which can no "
5123 "longer be found.\n",
5124 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5125 ret = -EROFS;
5126 goto out;
5127 }
5128
5129 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5130 split_rec.e_cpos = cpu_to_le32(cpos);
5131 split_rec.e_leaf_clusters = cpu_to_le16(len);
5132 split_rec.e_blkno = cpu_to_le64(start_blkno);
5133 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
5134 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
5135
5136 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
5137 index, &split_rec, meta_ac,
5138 dealloc);
5139 if (ret)
5140 mlog_errno(ret);
5141
5142 out:
5143 ocfs2_free_path(left_path);
5144 return ret;
5145 }
5146
5147 static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
5148 handle_t *handle, struct ocfs2_path *path,
5149 int index, u32 new_range,
5150 struct ocfs2_alloc_context *meta_ac)
5151 {
5152 int ret, depth, credits = handle->h_buffer_credits;
5153 struct buffer_head *last_eb_bh = NULL;
5154 struct ocfs2_extent_block *eb;
5155 struct ocfs2_extent_list *rightmost_el, *el;
5156 struct ocfs2_extent_rec split_rec;
5157 struct ocfs2_extent_rec *rec;
5158 struct ocfs2_insert_type insert;
5159
5160 /*
5161 * Setup the record to split before we grow the tree.
5162 */
5163 el = path_leaf_el(path);
5164 rec = &el->l_recs[index];
5165 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
5166
5167 depth = path->p_tree_depth;
5168 if (depth > 0) {
5169 ret = ocfs2_read_extent_block(inode,
5170 ocfs2_et_get_last_eb_blk(et),
5171 &last_eb_bh);
5172 if (ret < 0) {
5173 mlog_errno(ret);
5174 goto out;
5175 }
5176
5177 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5178 rightmost_el = &eb->h_list;
5179 } else
5180 rightmost_el = path_leaf_el(path);
5181
5182 credits += path->p_tree_depth +
5183 ocfs2_extend_meta_needed(et->et_root_el);
5184 ret = ocfs2_extend_trans(handle, credits);
5185 if (ret) {
5186 mlog_errno(ret);
5187 goto out;
5188 }
5189
5190 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5191 le16_to_cpu(rightmost_el->l_count)) {
5192 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
5193 meta_ac);
5194 if (ret) {
5195 mlog_errno(ret);
5196 goto out;
5197 }
5198 }
5199
5200 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5201 insert.ins_appending = APPEND_NONE;
5202 insert.ins_contig = CONTIG_NONE;
5203 insert.ins_split = SPLIT_RIGHT;
5204 insert.ins_tree_depth = depth;
5205
5206 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
5207 if (ret)
5208 mlog_errno(ret);
5209
5210 out:
5211 brelse(last_eb_bh);
5212 return ret;
5213 }
5214
5215 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5216 struct ocfs2_path *path, int index,
5217 struct ocfs2_cached_dealloc_ctxt *dealloc,
5218 u32 cpos, u32 len,
5219 struct ocfs2_extent_tree *et)
5220 {
5221 int ret;
5222 u32 left_cpos, rec_range, trunc_range;
5223 int wants_rotate = 0, is_rightmost_tree_rec = 0;
5224 struct super_block *sb = inode->i_sb;
5225 struct ocfs2_path *left_path = NULL;
5226 struct ocfs2_extent_list *el = path_leaf_el(path);
5227 struct ocfs2_extent_rec *rec;
5228 struct ocfs2_extent_block *eb;
5229
5230 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5231 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5232 if (ret) {
5233 mlog_errno(ret);
5234 goto out;
5235 }
5236
5237 index--;
5238 }
5239
5240 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5241 path->p_tree_depth) {
5242 /*
5243 * Check whether this is the rightmost tree record. If
5244 * we remove all of this record or part of its right
5245 * edge then an update of the record lengths above it
5246 * will be required.
5247 */
5248 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5249 if (eb->h_next_leaf_blk == 0)
5250 is_rightmost_tree_rec = 1;
5251 }
5252
5253 rec = &el->l_recs[index];
5254 if (index == 0 && path->p_tree_depth &&
5255 le32_to_cpu(rec->e_cpos) == cpos) {
5256 /*
5257 * Changing the leftmost offset (via partial or whole
5258 * record truncate) of an interior (or rightmost) path
5259 * means we have to update the subtree that is formed
5260 * by this leaf and the one to it's left.
5261 *
5262 * There are two cases we can skip:
5263 * 1) Path is the leftmost one in our inode tree.
5264 * 2) The leaf is rightmost and will be empty after
5265 * we remove the extent record - the rotate code
5266 * knows how to update the newly formed edge.
5267 */
5268
5269 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5270 &left_cpos);
5271 if (ret) {
5272 mlog_errno(ret);
5273 goto out;
5274 }
5275
5276 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5277 left_path = ocfs2_new_path_from_path(path);
5278 if (!left_path) {
5279 ret = -ENOMEM;
5280 mlog_errno(ret);
5281 goto out;
5282 }
5283
5284 ret = ocfs2_find_path(inode, left_path, left_cpos);
5285 if (ret) {
5286 mlog_errno(ret);
5287 goto out;
5288 }
5289 }
5290 }
5291
5292 ret = ocfs2_extend_rotate_transaction(handle, 0,
5293 handle->h_buffer_credits,
5294 path);
5295 if (ret) {
5296 mlog_errno(ret);
5297 goto out;
5298 }
5299
5300 ret = ocfs2_journal_access_path(inode, handle, path);
5301 if (ret) {
5302 mlog_errno(ret);
5303 goto out;
5304 }
5305
5306 ret = ocfs2_journal_access_path(inode, handle, left_path);
5307 if (ret) {
5308 mlog_errno(ret);
5309 goto out;
5310 }
5311
5312 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5313 trunc_range = cpos + len;
5314
5315 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5316 int next_free;
5317
5318 memset(rec, 0, sizeof(*rec));
5319 ocfs2_cleanup_merge(el, index);
5320 wants_rotate = 1;
5321
5322 next_free = le16_to_cpu(el->l_next_free_rec);
5323 if (is_rightmost_tree_rec && next_free > 1) {
5324 /*
5325 * We skip the edge update if this path will
5326 * be deleted by the rotate code.
5327 */
5328 rec = &el->l_recs[next_free - 1];
5329 ocfs2_adjust_rightmost_records(inode, handle, path,
5330 rec);
5331 }
5332 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5333 /* Remove leftmost portion of the record. */
5334 le32_add_cpu(&rec->e_cpos, len);
5335 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5336 le16_add_cpu(&rec->e_leaf_clusters, -len);
5337 } else if (rec_range == trunc_range) {
5338 /* Remove rightmost portion of the record */
5339 le16_add_cpu(&rec->e_leaf_clusters, -len);
5340 if (is_rightmost_tree_rec)
5341 ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5342 } else {
5343 /* Caller should have trapped this. */
5344 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5345 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5346 le32_to_cpu(rec->e_cpos),
5347 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5348 BUG();
5349 }
5350
5351 if (left_path) {
5352 int subtree_index;
5353
5354 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5355 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5356 subtree_index);
5357 }
5358
5359 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5360
5361 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
5362 if (ret) {
5363 mlog_errno(ret);
5364 goto out;
5365 }
5366
5367 out:
5368 ocfs2_free_path(left_path);
5369 return ret;
5370 }
5371
5372 int ocfs2_remove_extent(struct inode *inode,
5373 struct ocfs2_extent_tree *et,
5374 u32 cpos, u32 len, handle_t *handle,
5375 struct ocfs2_alloc_context *meta_ac,
5376 struct ocfs2_cached_dealloc_ctxt *dealloc)
5377 {
5378 int ret, index;
5379 u32 rec_range, trunc_range;
5380 struct ocfs2_extent_rec *rec;
5381 struct ocfs2_extent_list *el;
5382 struct ocfs2_path *path = NULL;
5383
5384 ocfs2_extent_map_trunc(inode, 0);
5385
5386 path = ocfs2_new_path_from_et(et);
5387 if (!path) {
5388 ret = -ENOMEM;
5389 mlog_errno(ret);
5390 goto out;
5391 }
5392
5393 ret = ocfs2_find_path(inode, path, cpos);
5394 if (ret) {
5395 mlog_errno(ret);
5396 goto out;
5397 }
5398
5399 el = path_leaf_el(path);
5400 index = ocfs2_search_extent_list(el, cpos);
5401 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5402 ocfs2_error(inode->i_sb,
5403 "Inode %llu has an extent at cpos %u which can no "
5404 "longer be found.\n",
5405 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5406 ret = -EROFS;
5407 goto out;
5408 }
5409
5410 /*
5411 * We have 3 cases of extent removal:
5412 * 1) Range covers the entire extent rec
5413 * 2) Range begins or ends on one edge of the extent rec
5414 * 3) Range is in the middle of the extent rec (no shared edges)
5415 *
5416 * For case 1 we remove the extent rec and left rotate to
5417 * fill the hole.
5418 *
5419 * For case 2 we just shrink the existing extent rec, with a
5420 * tree update if the shrinking edge is also the edge of an
5421 * extent block.
5422 *
5423 * For case 3 we do a right split to turn the extent rec into
5424 * something case 2 can handle.
5425 */
5426 rec = &el->l_recs[index];
5427 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5428 trunc_range = cpos + len;
5429
5430 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5431
5432 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5433 "(cpos %u, len %u)\n",
5434 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5435 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5436
5437 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5438 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5439 cpos, len, et);
5440 if (ret) {
5441 mlog_errno(ret);
5442 goto out;
5443 }
5444 } else {
5445 ret = ocfs2_split_tree(inode, et, handle, path, index,
5446 trunc_range, meta_ac);
5447 if (ret) {
5448 mlog_errno(ret);
5449 goto out;
5450 }
5451
5452 /*
5453 * The split could have manipulated the tree enough to
5454 * move the record location, so we have to look for it again.
5455 */
5456 ocfs2_reinit_path(path, 1);
5457
5458 ret = ocfs2_find_path(inode, path, cpos);
5459 if (ret) {
5460 mlog_errno(ret);
5461 goto out;
5462 }
5463
5464 el = path_leaf_el(path);
5465 index = ocfs2_search_extent_list(el, cpos);
5466 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5467 ocfs2_error(inode->i_sb,
5468 "Inode %llu: split at cpos %u lost record.",
5469 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5470 cpos);
5471 ret = -EROFS;
5472 goto out;
5473 }
5474
5475 /*
5476 * Double check our values here. If anything is fishy,
5477 * it's easier to catch it at the top level.
5478 */
5479 rec = &el->l_recs[index];
5480 rec_range = le32_to_cpu(rec->e_cpos) +
5481 ocfs2_rec_clusters(el, rec);
5482 if (rec_range != trunc_range) {
5483 ocfs2_error(inode->i_sb,
5484 "Inode %llu: error after split at cpos %u"
5485 "trunc len %u, existing record is (%u,%u)",
5486 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5487 cpos, len, le32_to_cpu(rec->e_cpos),
5488 ocfs2_rec_clusters(el, rec));
5489 ret = -EROFS;
5490 goto out;
5491 }
5492
5493 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
5494 cpos, len, et);
5495 if (ret) {
5496 mlog_errno(ret);
5497 goto out;
5498 }
5499 }
5500
5501 out:
5502 ocfs2_free_path(path);
5503 return ret;
5504 }
5505
5506 int ocfs2_remove_btree_range(struct inode *inode,
5507 struct ocfs2_extent_tree *et,
5508 u32 cpos, u32 phys_cpos, u32 len,
5509 struct ocfs2_cached_dealloc_ctxt *dealloc)
5510 {
5511 int ret;
5512 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5513 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5514 struct inode *tl_inode = osb->osb_tl_inode;
5515 handle_t *handle;
5516 struct ocfs2_alloc_context *meta_ac = NULL;
5517
5518 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5519 if (ret) {
5520 mlog_errno(ret);
5521 return ret;
5522 }
5523
5524 mutex_lock(&tl_inode->i_mutex);
5525
5526 if (ocfs2_truncate_log_needs_flush(osb)) {
5527 ret = __ocfs2_flush_truncate_log(osb);
5528 if (ret < 0) {
5529 mlog_errno(ret);
5530 goto out;
5531 }
5532 }
5533
5534 handle = ocfs2_start_trans(osb, ocfs2_remove_extent_credits(osb->sb));
5535 if (IS_ERR(handle)) {
5536 ret = PTR_ERR(handle);
5537 mlog_errno(ret);
5538 goto out;
5539 }
5540
5541 ret = ocfs2_et_root_journal_access(handle, inode, et,
5542 OCFS2_JOURNAL_ACCESS_WRITE);
5543 if (ret) {
5544 mlog_errno(ret);
5545 goto out;
5546 }
5547
5548 vfs_dq_free_space_nodirty(inode,
5549 ocfs2_clusters_to_bytes(inode->i_sb, len));
5550
5551 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5552 dealloc);
5553 if (ret) {
5554 mlog_errno(ret);
5555 goto out_commit;
5556 }
5557
5558 ocfs2_et_update_clusters(inode, et, -len);
5559
5560 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5561 if (ret) {
5562 mlog_errno(ret);
5563 goto out_commit;
5564 }
5565
5566 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5567 if (ret)
5568 mlog_errno(ret);
5569
5570 out_commit:
5571 ocfs2_commit_trans(osb, handle);
5572 out:
5573 mutex_unlock(&tl_inode->i_mutex);
5574
5575 if (meta_ac)
5576 ocfs2_free_alloc_context(meta_ac);
5577
5578 return ret;
5579 }
5580
5581 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5582 {
5583 struct buffer_head *tl_bh = osb->osb_tl_bh;
5584 struct ocfs2_dinode *di;
5585 struct ocfs2_truncate_log *tl;
5586
5587 di = (struct ocfs2_dinode *) tl_bh->b_data;
5588 tl = &di->id2.i_dealloc;
5589
5590 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5591 "slot %d, invalid truncate log parameters: used = "
5592 "%u, count = %u\n", osb->slot_num,
5593 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5594 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5595 }
5596
5597 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5598 unsigned int new_start)
5599 {
5600 unsigned int tail_index;
5601 unsigned int current_tail;
5602
5603 /* No records, nothing to coalesce */
5604 if (!le16_to_cpu(tl->tl_used))
5605 return 0;
5606
5607 tail_index = le16_to_cpu(tl->tl_used) - 1;
5608 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5609 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5610
5611 return current_tail == new_start;
5612 }
5613
5614 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5615 handle_t *handle,
5616 u64 start_blk,
5617 unsigned int num_clusters)
5618 {
5619 int status, index;
5620 unsigned int start_cluster, tl_count;
5621 struct inode *tl_inode = osb->osb_tl_inode;
5622 struct buffer_head *tl_bh = osb->osb_tl_bh;
5623 struct ocfs2_dinode *di;
5624 struct ocfs2_truncate_log *tl;
5625
5626 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5627 (unsigned long long)start_blk, num_clusters);
5628
5629 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5630
5631 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5632
5633 di = (struct ocfs2_dinode *) tl_bh->b_data;
5634
5635 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5636 * by the underlying call to ocfs2_read_inode_block(), so any
5637 * corruption is a code bug */
5638 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5639
5640 tl = &di->id2.i_dealloc;
5641 tl_count = le16_to_cpu(tl->tl_count);
5642 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5643 tl_count == 0,
5644 "Truncate record count on #%llu invalid "
5645 "wanted %u, actual %u\n",
5646 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5647 ocfs2_truncate_recs_per_inode(osb->sb),
5648 le16_to_cpu(tl->tl_count));
5649
5650 /* Caller should have known to flush before calling us. */
5651 index = le16_to_cpu(tl->tl_used);
5652 if (index >= tl_count) {
5653 status = -ENOSPC;
5654 mlog_errno(status);
5655 goto bail;
5656 }
5657
5658 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5659 OCFS2_JOURNAL_ACCESS_WRITE);
5660 if (status < 0) {
5661 mlog_errno(status);
5662 goto bail;
5663 }
5664
5665 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5666 "%llu (index = %d)\n", num_clusters, start_cluster,
5667 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
5668
5669 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5670 /*
5671 * Move index back to the record we are coalescing with.
5672 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5673 */
5674 index--;
5675
5676 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5677 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5678 index, le32_to_cpu(tl->tl_recs[index].t_start),
5679 num_clusters);
5680 } else {
5681 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5682 tl->tl_used = cpu_to_le16(index + 1);
5683 }
5684 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5685
5686 status = ocfs2_journal_dirty(handle, tl_bh);
5687 if (status < 0) {
5688 mlog_errno(status);
5689 goto bail;
5690 }
5691
5692 bail:
5693 mlog_exit(status);
5694 return status;
5695 }
5696
5697 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5698 handle_t *handle,
5699 struct inode *data_alloc_inode,
5700 struct buffer_head *data_alloc_bh)
5701 {
5702 int status = 0;
5703 int i;
5704 unsigned int num_clusters;
5705 u64 start_blk;
5706 struct ocfs2_truncate_rec rec;
5707 struct ocfs2_dinode *di;
5708 struct ocfs2_truncate_log *tl;
5709 struct inode *tl_inode = osb->osb_tl_inode;
5710 struct buffer_head *tl_bh = osb->osb_tl_bh;
5711
5712 mlog_entry_void();
5713
5714 di = (struct ocfs2_dinode *) tl_bh->b_data;
5715 tl = &di->id2.i_dealloc;
5716 i = le16_to_cpu(tl->tl_used) - 1;
5717 while (i >= 0) {
5718 /* Caller has given us at least enough credits to
5719 * update the truncate log dinode */
5720 status = ocfs2_journal_access_di(handle, tl_inode, tl_bh,
5721 OCFS2_JOURNAL_ACCESS_WRITE);
5722 if (status < 0) {
5723 mlog_errno(status);
5724 goto bail;
5725 }
5726
5727 tl->tl_used = cpu_to_le16(i);
5728
5729 status = ocfs2_journal_dirty(handle, tl_bh);
5730 if (status < 0) {
5731 mlog_errno(status);
5732 goto bail;
5733 }
5734
5735 /* TODO: Perhaps we can calculate the bulk of the
5736 * credits up front rather than extending like
5737 * this. */
5738 status = ocfs2_extend_trans(handle,
5739 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5740 if (status < 0) {
5741 mlog_errno(status);
5742 goto bail;
5743 }
5744
5745 rec = tl->tl_recs[i];
5746 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5747 le32_to_cpu(rec.t_start));
5748 num_clusters = le32_to_cpu(rec.t_clusters);
5749
5750 /* if start_blk is not set, we ignore the record as
5751 * invalid. */
5752 if (start_blk) {
5753 mlog(0, "free record %d, start = %u, clusters = %u\n",
5754 i, le32_to_cpu(rec.t_start), num_clusters);
5755
5756 status = ocfs2_free_clusters(handle, data_alloc_inode,
5757 data_alloc_bh, start_blk,
5758 num_clusters);
5759 if (status < 0) {
5760 mlog_errno(status);
5761 goto bail;
5762 }
5763 }
5764 i--;
5765 }
5766
5767 bail:
5768 mlog_exit(status);
5769 return status;
5770 }
5771
5772 /* Expects you to already be holding tl_inode->i_mutex */
5773 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5774 {
5775 int status;
5776 unsigned int num_to_flush;
5777 handle_t *handle;
5778 struct inode *tl_inode = osb->osb_tl_inode;
5779 struct inode *data_alloc_inode = NULL;
5780 struct buffer_head *tl_bh = osb->osb_tl_bh;
5781 struct buffer_head *data_alloc_bh = NULL;
5782 struct ocfs2_dinode *di;
5783 struct ocfs2_truncate_log *tl;
5784
5785 mlog_entry_void();
5786
5787 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5788
5789 di = (struct ocfs2_dinode *) tl_bh->b_data;
5790
5791 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5792 * by the underlying call to ocfs2_read_inode_block(), so any
5793 * corruption is a code bug */
5794 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5795
5796 tl = &di->id2.i_dealloc;
5797 num_to_flush = le16_to_cpu(tl->tl_used);
5798 mlog(0, "Flush %u records from truncate log #%llu\n",
5799 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5800 if (!num_to_flush) {
5801 status = 0;
5802 goto out;
5803 }
5804
5805 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5806 GLOBAL_BITMAP_SYSTEM_INODE,
5807 OCFS2_INVALID_SLOT);
5808 if (!data_alloc_inode) {
5809 status = -EINVAL;
5810 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5811 goto out;
5812 }
5813
5814 mutex_lock(&data_alloc_inode->i_mutex);
5815
5816 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5817 if (status < 0) {
5818 mlog_errno(status);
5819 goto out_mutex;
5820 }
5821
5822 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5823 if (IS_ERR(handle)) {
5824 status = PTR_ERR(handle);
5825 mlog_errno(status);
5826 goto out_unlock;
5827 }
5828
5829 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5830 data_alloc_bh);
5831 if (status < 0)
5832 mlog_errno(status);
5833
5834 ocfs2_commit_trans(osb, handle);
5835
5836 out_unlock:
5837 brelse(data_alloc_bh);
5838 ocfs2_inode_unlock(data_alloc_inode, 1);
5839
5840 out_mutex:
5841 mutex_unlock(&data_alloc_inode->i_mutex);
5842 iput(data_alloc_inode);
5843
5844 out:
5845 mlog_exit(status);
5846 return status;
5847 }
5848
5849 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5850 {
5851 int status;
5852 struct inode *tl_inode = osb->osb_tl_inode;
5853
5854 mutex_lock(&tl_inode->i_mutex);
5855 status = __ocfs2_flush_truncate_log(osb);
5856 mutex_unlock(&tl_inode->i_mutex);
5857
5858 return status;
5859 }
5860
5861 static void ocfs2_truncate_log_worker(struct work_struct *work)
5862 {
5863 int status;
5864 struct ocfs2_super *osb =
5865 container_of(work, struct ocfs2_super,
5866 osb_truncate_log_wq.work);
5867
5868 mlog_entry_void();
5869
5870 status = ocfs2_flush_truncate_log(osb);
5871 if (status < 0)
5872 mlog_errno(status);
5873 else
5874 ocfs2_init_inode_steal_slot(osb);
5875
5876 mlog_exit(status);
5877 }
5878
5879 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5880 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5881 int cancel)
5882 {
5883 if (osb->osb_tl_inode) {
5884 /* We want to push off log flushes while truncates are
5885 * still running. */
5886 if (cancel)
5887 cancel_delayed_work(&osb->osb_truncate_log_wq);
5888
5889 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5890 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5891 }
5892 }
5893
5894 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5895 int slot_num,
5896 struct inode **tl_inode,
5897 struct buffer_head **tl_bh)
5898 {
5899 int status;
5900 struct inode *inode = NULL;
5901 struct buffer_head *bh = NULL;
5902
5903 inode = ocfs2_get_system_file_inode(osb,
5904 TRUNCATE_LOG_SYSTEM_INODE,
5905 slot_num);
5906 if (!inode) {
5907 status = -EINVAL;
5908 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5909 goto bail;
5910 }
5911
5912 status = ocfs2_read_inode_block(inode, &bh);
5913 if (status < 0) {
5914 iput(inode);
5915 mlog_errno(status);
5916 goto bail;
5917 }
5918
5919 *tl_inode = inode;
5920 *tl_bh = bh;
5921 bail:
5922 mlog_exit(status);
5923 return status;
5924 }
5925
5926 /* called during the 1st stage of node recovery. we stamp a clean
5927 * truncate log and pass back a copy for processing later. if the
5928 * truncate log does not require processing, a *tl_copy is set to
5929 * NULL. */
5930 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5931 int slot_num,
5932 struct ocfs2_dinode **tl_copy)
5933 {
5934 int status;
5935 struct inode *tl_inode = NULL;
5936 struct buffer_head *tl_bh = NULL;
5937 struct ocfs2_dinode *di;
5938 struct ocfs2_truncate_log *tl;
5939
5940 *tl_copy = NULL;
5941
5942 mlog(0, "recover truncate log from slot %d\n", slot_num);
5943
5944 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5945 if (status < 0) {
5946 mlog_errno(status);
5947 goto bail;
5948 }
5949
5950 di = (struct ocfs2_dinode *) tl_bh->b_data;
5951
5952 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
5953 * validated by the underlying call to ocfs2_read_inode_block(),
5954 * so any corruption is a code bug */
5955 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5956
5957 tl = &di->id2.i_dealloc;
5958 if (le16_to_cpu(tl->tl_used)) {
5959 mlog(0, "We'll have %u logs to recover\n",
5960 le16_to_cpu(tl->tl_used));
5961
5962 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5963 if (!(*tl_copy)) {
5964 status = -ENOMEM;
5965 mlog_errno(status);
5966 goto bail;
5967 }
5968
5969 /* Assuming the write-out below goes well, this copy
5970 * will be passed back to recovery for processing. */
5971 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5972
5973 /* All we need to do to clear the truncate log is set
5974 * tl_used. */
5975 tl->tl_used = 0;
5976
5977 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
5978 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5979 if (status < 0) {
5980 mlog_errno(status);
5981 goto bail;
5982 }
5983 }
5984
5985 bail:
5986 if (tl_inode)
5987 iput(tl_inode);
5988 brelse(tl_bh);
5989
5990 if (status < 0 && (*tl_copy)) {
5991 kfree(*tl_copy);
5992 *tl_copy = NULL;
5993 }
5994
5995 mlog_exit(status);
5996 return status;
5997 }
5998
5999 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6000 struct ocfs2_dinode *tl_copy)
6001 {
6002 int status = 0;
6003 int i;
6004 unsigned int clusters, num_recs, start_cluster;
6005 u64 start_blk;
6006 handle_t *handle;
6007 struct inode *tl_inode = osb->osb_tl_inode;
6008 struct ocfs2_truncate_log *tl;
6009
6010 mlog_entry_void();
6011
6012 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6013 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6014 return -EINVAL;
6015 }
6016
6017 tl = &tl_copy->id2.i_dealloc;
6018 num_recs = le16_to_cpu(tl->tl_used);
6019 mlog(0, "cleanup %u records from %llu\n", num_recs,
6020 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
6021
6022 mutex_lock(&tl_inode->i_mutex);
6023 for(i = 0; i < num_recs; i++) {
6024 if (ocfs2_truncate_log_needs_flush(osb)) {
6025 status = __ocfs2_flush_truncate_log(osb);
6026 if (status < 0) {
6027 mlog_errno(status);
6028 goto bail_up;
6029 }
6030 }
6031
6032 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6033 if (IS_ERR(handle)) {
6034 status = PTR_ERR(handle);
6035 mlog_errno(status);
6036 goto bail_up;
6037 }
6038
6039 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6040 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6041 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6042
6043 status = ocfs2_truncate_log_append(osb, handle,
6044 start_blk, clusters);
6045 ocfs2_commit_trans(osb, handle);
6046 if (status < 0) {
6047 mlog_errno(status);
6048 goto bail_up;
6049 }
6050 }
6051
6052 bail_up:
6053 mutex_unlock(&tl_inode->i_mutex);
6054
6055 mlog_exit(status);
6056 return status;
6057 }
6058
6059 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6060 {
6061 int status;
6062 struct inode *tl_inode = osb->osb_tl_inode;
6063
6064 mlog_entry_void();
6065
6066 if (tl_inode) {
6067 cancel_delayed_work(&osb->osb_truncate_log_wq);
6068 flush_workqueue(ocfs2_wq);
6069
6070 status = ocfs2_flush_truncate_log(osb);
6071 if (status < 0)
6072 mlog_errno(status);
6073
6074 brelse(osb->osb_tl_bh);
6075 iput(osb->osb_tl_inode);
6076 }
6077
6078 mlog_exit_void();
6079 }
6080
6081 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6082 {
6083 int status;
6084 struct inode *tl_inode = NULL;
6085 struct buffer_head *tl_bh = NULL;
6086
6087 mlog_entry_void();
6088
6089 status = ocfs2_get_truncate_log_info(osb,
6090 osb->slot_num,
6091 &tl_inode,
6092 &tl_bh);
6093 if (status < 0)
6094 mlog_errno(status);
6095
6096 /* ocfs2_truncate_log_shutdown keys on the existence of
6097 * osb->osb_tl_inode so we don't set any of the osb variables
6098 * until we're sure all is well. */
6099 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6100 ocfs2_truncate_log_worker);
6101 osb->osb_tl_bh = tl_bh;
6102 osb->osb_tl_inode = tl_inode;
6103
6104 mlog_exit(status);
6105 return status;
6106 }
6107
6108 /*
6109 * Delayed de-allocation of suballocator blocks.
6110 *
6111 * Some sets of block de-allocations might involve multiple suballocator inodes.
6112 *
6113 * The locking for this can get extremely complicated, especially when
6114 * the suballocator inodes to delete from aren't known until deep
6115 * within an unrelated codepath.
6116 *
6117 * ocfs2_extent_block structures are a good example of this - an inode
6118 * btree could have been grown by any number of nodes each allocating
6119 * out of their own suballoc inode.
6120 *
6121 * These structures allow the delay of block de-allocation until a
6122 * later time, when locking of multiple cluster inodes won't cause
6123 * deadlock.
6124 */
6125
6126 /*
6127 * Describe a single bit freed from a suballocator. For the block
6128 * suballocators, it represents one block. For the global cluster
6129 * allocator, it represents some clusters and free_bit indicates
6130 * clusters number.
6131 */
6132 struct ocfs2_cached_block_free {
6133 struct ocfs2_cached_block_free *free_next;
6134 u64 free_blk;
6135 unsigned int free_bit;
6136 };
6137
6138 struct ocfs2_per_slot_free_list {
6139 struct ocfs2_per_slot_free_list *f_next_suballocator;
6140 int f_inode_type;
6141 int f_slot;
6142 struct ocfs2_cached_block_free *f_first;
6143 };
6144
6145 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6146 int sysfile_type,
6147 int slot,
6148 struct ocfs2_cached_block_free *head)
6149 {
6150 int ret;
6151 u64 bg_blkno;
6152 handle_t *handle;
6153 struct inode *inode;
6154 struct buffer_head *di_bh = NULL;
6155 struct ocfs2_cached_block_free *tmp;
6156
6157 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6158 if (!inode) {
6159 ret = -EINVAL;
6160 mlog_errno(ret);
6161 goto out;
6162 }
6163
6164 mutex_lock(&inode->i_mutex);
6165
6166 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6167 if (ret) {
6168 mlog_errno(ret);
6169 goto out_mutex;
6170 }
6171
6172 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6173 if (IS_ERR(handle)) {
6174 ret = PTR_ERR(handle);
6175 mlog_errno(ret);
6176 goto out_unlock;
6177 }
6178
6179 while (head) {
6180 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6181 head->free_bit);
6182 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6183 head->free_bit, (unsigned long long)head->free_blk);
6184
6185 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6186 head->free_bit, bg_blkno, 1);
6187 if (ret) {
6188 mlog_errno(ret);
6189 goto out_journal;
6190 }
6191
6192 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6193 if (ret) {
6194 mlog_errno(ret);
6195 goto out_journal;
6196 }
6197
6198 tmp = head;
6199 head = head->free_next;
6200 kfree(tmp);
6201 }
6202
6203 out_journal:
6204 ocfs2_commit_trans(osb, handle);
6205
6206 out_unlock:
6207 ocfs2_inode_unlock(inode, 1);
6208 brelse(di_bh);
6209 out_mutex:
6210 mutex_unlock(&inode->i_mutex);
6211 iput(inode);
6212 out:
6213 while(head) {
6214 /* Premature exit may have left some dangling items. */
6215 tmp = head;
6216 head = head->free_next;
6217 kfree(tmp);
6218 }
6219
6220 return ret;
6221 }
6222
6223 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6224 u64 blkno, unsigned int bit)
6225 {
6226 int ret = 0;
6227 struct ocfs2_cached_block_free *item;
6228
6229 item = kmalloc(sizeof(*item), GFP_NOFS);
6230 if (item == NULL) {
6231 ret = -ENOMEM;
6232 mlog_errno(ret);
6233 return ret;
6234 }
6235
6236 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6237 bit, (unsigned long long)blkno);
6238
6239 item->free_blk = blkno;
6240 item->free_bit = bit;
6241 item->free_next = ctxt->c_global_allocator;
6242
6243 ctxt->c_global_allocator = item;
6244 return ret;
6245 }
6246
6247 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6248 struct ocfs2_cached_block_free *head)
6249 {
6250 struct ocfs2_cached_block_free *tmp;
6251 struct inode *tl_inode = osb->osb_tl_inode;
6252 handle_t *handle;
6253 int ret = 0;
6254
6255 mutex_lock(&tl_inode->i_mutex);
6256
6257 while (head) {
6258 if (ocfs2_truncate_log_needs_flush(osb)) {
6259 ret = __ocfs2_flush_truncate_log(osb);
6260 if (ret < 0) {
6261 mlog_errno(ret);
6262 break;
6263 }
6264 }
6265
6266 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6267 if (IS_ERR(handle)) {
6268 ret = PTR_ERR(handle);
6269 mlog_errno(ret);
6270 break;
6271 }
6272
6273 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6274 head->free_bit);
6275
6276 ocfs2_commit_trans(osb, handle);
6277 tmp = head;
6278 head = head->free_next;
6279 kfree(tmp);
6280
6281 if (ret < 0) {
6282 mlog_errno(ret);
6283 break;
6284 }
6285 }
6286
6287 mutex_unlock(&tl_inode->i_mutex);
6288
6289 while (head) {
6290 /* Premature exit may have left some dangling items. */
6291 tmp = head;
6292 head = head->free_next;
6293 kfree(tmp);
6294 }
6295
6296 return ret;
6297 }
6298
6299 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6300 struct ocfs2_cached_dealloc_ctxt *ctxt)
6301 {
6302 int ret = 0, ret2;
6303 struct ocfs2_per_slot_free_list *fl;
6304
6305 if (!ctxt)
6306 return 0;
6307
6308 while (ctxt->c_first_suballocator) {
6309 fl = ctxt->c_first_suballocator;
6310
6311 if (fl->f_first) {
6312 mlog(0, "Free items: (type %u, slot %d)\n",
6313 fl->f_inode_type, fl->f_slot);
6314 ret2 = ocfs2_free_cached_blocks(osb,
6315 fl->f_inode_type,
6316 fl->f_slot,
6317 fl->f_first);
6318 if (ret2)
6319 mlog_errno(ret2);
6320 if (!ret)
6321 ret = ret2;
6322 }
6323
6324 ctxt->c_first_suballocator = fl->f_next_suballocator;
6325 kfree(fl);
6326 }
6327
6328 if (ctxt->c_global_allocator) {
6329 ret2 = ocfs2_free_cached_clusters(osb,
6330 ctxt->c_global_allocator);
6331 if (ret2)
6332 mlog_errno(ret2);
6333 if (!ret)
6334 ret = ret2;
6335
6336 ctxt->c_global_allocator = NULL;
6337 }
6338
6339 return ret;
6340 }
6341
6342 static struct ocfs2_per_slot_free_list *
6343 ocfs2_find_per_slot_free_list(int type,
6344 int slot,
6345 struct ocfs2_cached_dealloc_ctxt *ctxt)
6346 {
6347 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6348
6349 while (fl) {
6350 if (fl->f_inode_type == type && fl->f_slot == slot)
6351 return fl;
6352
6353 fl = fl->f_next_suballocator;
6354 }
6355
6356 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6357 if (fl) {
6358 fl->f_inode_type = type;
6359 fl->f_slot = slot;
6360 fl->f_first = NULL;
6361 fl->f_next_suballocator = ctxt->c_first_suballocator;
6362
6363 ctxt->c_first_suballocator = fl;
6364 }
6365 return fl;
6366 }
6367
6368 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6369 int type, int slot, u64 blkno,
6370 unsigned int bit)
6371 {
6372 int ret;
6373 struct ocfs2_per_slot_free_list *fl;
6374 struct ocfs2_cached_block_free *item;
6375
6376 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6377 if (fl == NULL) {
6378 ret = -ENOMEM;
6379 mlog_errno(ret);
6380 goto out;
6381 }
6382
6383 item = kmalloc(sizeof(*item), GFP_NOFS);
6384 if (item == NULL) {
6385 ret = -ENOMEM;
6386 mlog_errno(ret);
6387 goto out;
6388 }
6389
6390 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6391 type, slot, bit, (unsigned long long)blkno);
6392
6393 item->free_blk = blkno;
6394 item->free_bit = bit;
6395 item->free_next = fl->f_first;
6396
6397 fl->f_first = item;
6398
6399 ret = 0;
6400 out:
6401 return ret;
6402 }
6403
6404 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6405 struct ocfs2_extent_block *eb)
6406 {
6407 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6408 le16_to_cpu(eb->h_suballoc_slot),
6409 le64_to_cpu(eb->h_blkno),
6410 le16_to_cpu(eb->h_suballoc_bit));
6411 }
6412
6413 /* This function will figure out whether the currently last extent
6414 * block will be deleted, and if it will, what the new last extent
6415 * block will be so we can update his h_next_leaf_blk field, as well
6416 * as the dinodes i_last_eb_blk */
6417 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
6418 unsigned int clusters_to_del,
6419 struct ocfs2_path *path,
6420 struct buffer_head **new_last_eb)
6421 {
6422 int next_free, ret = 0;
6423 u32 cpos;
6424 struct ocfs2_extent_rec *rec;
6425 struct ocfs2_extent_block *eb;
6426 struct ocfs2_extent_list *el;
6427 struct buffer_head *bh = NULL;
6428
6429 *new_last_eb = NULL;
6430
6431 /* we have no tree, so of course, no last_eb. */
6432 if (!path->p_tree_depth)
6433 goto out;
6434
6435 /* trunc to zero special case - this makes tree_depth = 0
6436 * regardless of what it is. */
6437 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
6438 goto out;
6439
6440 el = path_leaf_el(path);
6441 BUG_ON(!el->l_next_free_rec);
6442
6443 /*
6444 * Make sure that this extent list will actually be empty
6445 * after we clear away the data. We can shortcut out if
6446 * there's more than one non-empty extent in the
6447 * list. Otherwise, a check of the remaining extent is
6448 * necessary.
6449 */
6450 next_free = le16_to_cpu(el->l_next_free_rec);
6451 rec = NULL;
6452 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6453 if (next_free > 2)
6454 goto out;
6455
6456 /* We may have a valid extent in index 1, check it. */
6457 if (next_free == 2)
6458 rec = &el->l_recs[1];
6459
6460 /*
6461 * Fall through - no more nonempty extents, so we want
6462 * to delete this leaf.
6463 */
6464 } else {
6465 if (next_free > 1)
6466 goto out;
6467
6468 rec = &el->l_recs[0];
6469 }
6470
6471 if (rec) {
6472 /*
6473 * Check it we'll only be trimming off the end of this
6474 * cluster.
6475 */
6476 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
6477 goto out;
6478 }
6479
6480 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6481 if (ret) {
6482 mlog_errno(ret);
6483 goto out;
6484 }
6485
6486 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6487 if (ret) {
6488 mlog_errno(ret);
6489 goto out;
6490 }
6491
6492 eb = (struct ocfs2_extent_block *) bh->b_data;
6493 el = &eb->h_list;
6494
6495 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6496 * Any corruption is a code bug. */
6497 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
6498
6499 *new_last_eb = bh;
6500 get_bh(*new_last_eb);
6501 mlog(0, "returning block %llu, (cpos: %u)\n",
6502 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6503 out:
6504 brelse(bh);
6505
6506 return ret;
6507 }
6508
6509 /*
6510 * Trim some clusters off the rightmost edge of a tree. Only called
6511 * during truncate.
6512 *
6513 * The caller needs to:
6514 * - start journaling of each path component.
6515 * - compute and fully set up any new last ext block
6516 */
6517 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6518 handle_t *handle, struct ocfs2_truncate_context *tc,
6519 u32 clusters_to_del, u64 *delete_start)
6520 {
6521 int ret, i, index = path->p_tree_depth;
6522 u32 new_edge = 0;
6523 u64 deleted_eb = 0;
6524 struct buffer_head *bh;
6525 struct ocfs2_extent_list *el;
6526 struct ocfs2_extent_rec *rec;
6527
6528 *delete_start = 0;
6529
6530 while (index >= 0) {
6531 bh = path->p_node[index].bh;
6532 el = path->p_node[index].el;
6533
6534 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6535 index, (unsigned long long)bh->b_blocknr);
6536
6537 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6538
6539 if (index !=
6540 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6541 ocfs2_error(inode->i_sb,
6542 "Inode %lu has invalid ext. block %llu",
6543 inode->i_ino,
6544 (unsigned long long)bh->b_blocknr);
6545 ret = -EROFS;
6546 goto out;
6547 }
6548
6549 find_tail_record:
6550 i = le16_to_cpu(el->l_next_free_rec) - 1;
6551 rec = &el->l_recs[i];
6552
6553 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6554 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
6555 ocfs2_rec_clusters(el, rec),
6556 (unsigned long long)le64_to_cpu(rec->e_blkno),
6557 le16_to_cpu(el->l_next_free_rec));
6558
6559 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
6560
6561 if (le16_to_cpu(el->l_tree_depth) == 0) {
6562 /*
6563 * If the leaf block contains a single empty
6564 * extent and no records, we can just remove
6565 * the block.
6566 */
6567 if (i == 0 && ocfs2_is_empty_extent(rec)) {
6568 memset(rec, 0,
6569 sizeof(struct ocfs2_extent_rec));
6570 el->l_next_free_rec = cpu_to_le16(0);
6571
6572 goto delete;
6573 }
6574
6575 /*
6576 * Remove any empty extents by shifting things
6577 * left. That should make life much easier on
6578 * the code below. This condition is rare
6579 * enough that we shouldn't see a performance
6580 * hit.
6581 */
6582 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6583 le16_add_cpu(&el->l_next_free_rec, -1);
6584
6585 for(i = 0;
6586 i < le16_to_cpu(el->l_next_free_rec); i++)
6587 el->l_recs[i] = el->l_recs[i + 1];
6588
6589 memset(&el->l_recs[i], 0,
6590 sizeof(struct ocfs2_extent_rec));
6591
6592 /*
6593 * We've modified our extent list. The
6594 * simplest way to handle this change
6595 * is to being the search from the
6596 * start again.
6597 */
6598 goto find_tail_record;
6599 }
6600
6601 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
6602
6603 /*
6604 * We'll use "new_edge" on our way back up the
6605 * tree to know what our rightmost cpos is.
6606 */
6607 new_edge = le16_to_cpu(rec->e_leaf_clusters);
6608 new_edge += le32_to_cpu(rec->e_cpos);
6609
6610 /*
6611 * The caller will use this to delete data blocks.
6612 */
6613 *delete_start = le64_to_cpu(rec->e_blkno)
6614 + ocfs2_clusters_to_blocks(inode->i_sb,
6615 le16_to_cpu(rec->e_leaf_clusters));
6616
6617 /*
6618 * If it's now empty, remove this record.
6619 */
6620 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
6621 memset(rec, 0,
6622 sizeof(struct ocfs2_extent_rec));
6623 le16_add_cpu(&el->l_next_free_rec, -1);
6624 }
6625 } else {
6626 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6627 memset(rec, 0,
6628 sizeof(struct ocfs2_extent_rec));
6629 le16_add_cpu(&el->l_next_free_rec, -1);
6630
6631 goto delete;
6632 }
6633
6634 /* Can this actually happen? */
6635 if (le16_to_cpu(el->l_next_free_rec) == 0)
6636 goto delete;
6637
6638 /*
6639 * We never actually deleted any clusters
6640 * because our leaf was empty. There's no
6641 * reason to adjust the rightmost edge then.
6642 */
6643 if (new_edge == 0)
6644 goto delete;
6645
6646 rec->e_int_clusters = cpu_to_le32(new_edge);
6647 le32_add_cpu(&rec->e_int_clusters,
6648 -le32_to_cpu(rec->e_cpos));
6649
6650 /*
6651 * A deleted child record should have been
6652 * caught above.
6653 */
6654 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
6655 }
6656
6657 delete:
6658 ret = ocfs2_journal_dirty(handle, bh);
6659 if (ret) {
6660 mlog_errno(ret);
6661 goto out;
6662 }
6663
6664 mlog(0, "extent list container %llu, after: record %d: "
6665 "(%u, %u, %llu), next = %u.\n",
6666 (unsigned long long)bh->b_blocknr, i,
6667 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
6668 (unsigned long long)le64_to_cpu(rec->e_blkno),
6669 le16_to_cpu(el->l_next_free_rec));
6670
6671 /*
6672 * We must be careful to only attempt delete of an
6673 * extent block (and not the root inode block).
6674 */
6675 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6676 struct ocfs2_extent_block *eb =
6677 (struct ocfs2_extent_block *)bh->b_data;
6678
6679 /*
6680 * Save this for use when processing the
6681 * parent block.
6682 */
6683 deleted_eb = le64_to_cpu(eb->h_blkno);
6684
6685 mlog(0, "deleting this extent block.\n");
6686
6687 ocfs2_remove_from_cache(inode, bh);
6688
6689 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
6690 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6691 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6692
6693 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6694 /* An error here is not fatal. */
6695 if (ret < 0)
6696 mlog_errno(ret);
6697 } else {
6698 deleted_eb = 0;
6699 }
6700
6701 index--;
6702 }
6703
6704 ret = 0;
6705 out:
6706 return ret;
6707 }
6708
6709 static int ocfs2_do_truncate(struct ocfs2_super *osb,
6710 unsigned int clusters_to_del,
6711 struct inode *inode,
6712 struct buffer_head *fe_bh,
6713 handle_t *handle,
6714 struct ocfs2_truncate_context *tc,
6715 struct ocfs2_path *path)
6716 {
6717 int status;
6718 struct ocfs2_dinode *fe;
6719 struct ocfs2_extent_block *last_eb = NULL;
6720 struct ocfs2_extent_list *el;
6721 struct buffer_head *last_eb_bh = NULL;
6722 u64 delete_blk = 0;
6723
6724 fe = (struct ocfs2_dinode *) fe_bh->b_data;
6725
6726 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
6727 path, &last_eb_bh);
6728 if (status < 0) {
6729 mlog_errno(status);
6730 goto bail;
6731 }
6732
6733 /*
6734 * Each component will be touched, so we might as well journal
6735 * here to avoid having to handle errors later.
6736 */
6737 status = ocfs2_journal_access_path(inode, handle, path);
6738 if (status < 0) {
6739 mlog_errno(status);
6740 goto bail;
6741 }
6742
6743 if (last_eb_bh) {
6744 status = ocfs2_journal_access_eb(handle, inode, last_eb_bh,
6745 OCFS2_JOURNAL_ACCESS_WRITE);
6746 if (status < 0) {
6747 mlog_errno(status);
6748 goto bail;
6749 }
6750
6751 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6752 }
6753
6754 el = &(fe->id2.i_list);
6755
6756 /*
6757 * Lower levels depend on this never happening, but it's best
6758 * to check it up here before changing the tree.
6759 */
6760 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
6761 ocfs2_error(inode->i_sb,
6762 "Inode %lu has an empty extent record, depth %u\n",
6763 inode->i_ino, le16_to_cpu(el->l_tree_depth));
6764 status = -EROFS;
6765 goto bail;
6766 }
6767
6768 vfs_dq_free_space_nodirty(inode,
6769 ocfs2_clusters_to_bytes(osb->sb, clusters_to_del));
6770 spin_lock(&OCFS2_I(inode)->ip_lock);
6771 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6772 clusters_to_del;
6773 spin_unlock(&OCFS2_I(inode)->ip_lock);
6774 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
6775 inode->i_blocks = ocfs2_inode_sector_count(inode);
6776
6777 status = ocfs2_trim_tree(inode, path, handle, tc,
6778 clusters_to_del, &delete_blk);
6779 if (status) {
6780 mlog_errno(status);
6781 goto bail;
6782 }
6783
6784 if (le32_to_cpu(fe->i_clusters) == 0) {
6785 /* trunc to zero is a special case. */
6786 el->l_tree_depth = 0;
6787 fe->i_last_eb_blk = 0;
6788 } else if (last_eb)
6789 fe->i_last_eb_blk = last_eb->h_blkno;
6790
6791 status = ocfs2_journal_dirty(handle, fe_bh);
6792 if (status < 0) {
6793 mlog_errno(status);
6794 goto bail;
6795 }
6796
6797 if (last_eb) {
6798 /* If there will be a new last extent block, then by
6799 * definition, there cannot be any leaves to the right of
6800 * him. */
6801 last_eb->h_next_leaf_blk = 0;
6802 status = ocfs2_journal_dirty(handle, last_eb_bh);
6803 if (status < 0) {
6804 mlog_errno(status);
6805 goto bail;
6806 }
6807 }
6808
6809 if (delete_blk) {
6810 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6811 clusters_to_del);
6812 if (status < 0) {
6813 mlog_errno(status);
6814 goto bail;
6815 }
6816 }
6817 status = 0;
6818 bail:
6819
6820 mlog_exit(status);
6821 return status;
6822 }
6823
6824 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6825 {
6826 set_buffer_uptodate(bh);
6827 mark_buffer_dirty(bh);
6828 return 0;
6829 }
6830
6831 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6832 unsigned int from, unsigned int to,
6833 struct page *page, int zero, u64 *phys)
6834 {
6835 int ret, partial = 0;
6836
6837 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6838 if (ret)
6839 mlog_errno(ret);
6840
6841 if (zero)
6842 zero_user_segment(page, from, to);
6843
6844 /*
6845 * Need to set the buffers we zero'd into uptodate
6846 * here if they aren't - ocfs2_map_page_blocks()
6847 * might've skipped some
6848 */
6849 ret = walk_page_buffers(handle, page_buffers(page),
6850 from, to, &partial,
6851 ocfs2_zero_func);
6852 if (ret < 0)
6853 mlog_errno(ret);
6854 else if (ocfs2_should_order_data(inode)) {
6855 ret = ocfs2_jbd2_file_inode(handle, inode);
6856 if (ret < 0)
6857 mlog_errno(ret);
6858 }
6859
6860 if (!partial)
6861 SetPageUptodate(page);
6862
6863 flush_dcache_page(page);
6864 }
6865
6866 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6867 loff_t end, struct page **pages,
6868 int numpages, u64 phys, handle_t *handle)
6869 {
6870 int i;
6871 struct page *page;
6872 unsigned int from, to = PAGE_CACHE_SIZE;
6873 struct super_block *sb = inode->i_sb;
6874
6875 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6876
6877 if (numpages == 0)
6878 goto out;
6879
6880 to = PAGE_CACHE_SIZE;
6881 for(i = 0; i < numpages; i++) {
6882 page = pages[i];
6883
6884 from = start & (PAGE_CACHE_SIZE - 1);
6885 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6886 to = end & (PAGE_CACHE_SIZE - 1);
6887
6888 BUG_ON(from > PAGE_CACHE_SIZE);
6889 BUG_ON(to > PAGE_CACHE_SIZE);
6890
6891 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6892 &phys);
6893
6894 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6895 }
6896 out:
6897 if (pages)
6898 ocfs2_unlock_and_free_pages(pages, numpages);
6899 }
6900
6901 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6902 struct page **pages, int *num)
6903 {
6904 int numpages, ret = 0;
6905 struct super_block *sb = inode->i_sb;
6906 struct address_space *mapping = inode->i_mapping;
6907 unsigned long index;
6908 loff_t last_page_bytes;
6909
6910 BUG_ON(start > end);
6911
6912 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6913 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6914
6915 numpages = 0;
6916 last_page_bytes = PAGE_ALIGN(end);
6917 index = start >> PAGE_CACHE_SHIFT;
6918 do {
6919 pages[numpages] = grab_cache_page(mapping, index);
6920 if (!pages[numpages]) {
6921 ret = -ENOMEM;
6922 mlog_errno(ret);
6923 goto out;
6924 }
6925
6926 numpages++;
6927 index++;
6928 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6929
6930 out:
6931 if (ret != 0) {
6932 if (pages)
6933 ocfs2_unlock_and_free_pages(pages, numpages);
6934 numpages = 0;
6935 }
6936
6937 *num = numpages;
6938
6939 return ret;
6940 }
6941
6942 /*
6943 * Zero the area past i_size but still within an allocated
6944 * cluster. This avoids exposing nonzero data on subsequent file
6945 * extends.
6946 *
6947 * We need to call this before i_size is updated on the inode because
6948 * otherwise block_write_full_page() will skip writeout of pages past
6949 * i_size. The new_i_size parameter is passed for this reason.
6950 */
6951 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6952 u64 range_start, u64 range_end)
6953 {
6954 int ret = 0, numpages;
6955 struct page **pages = NULL;
6956 u64 phys;
6957 unsigned int ext_flags;
6958 struct super_block *sb = inode->i_sb;
6959
6960 /*
6961 * File systems which don't support sparse files zero on every
6962 * extend.
6963 */
6964 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6965 return 0;
6966
6967 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6968 sizeof(struct page *), GFP_NOFS);
6969 if (pages == NULL) {
6970 ret = -ENOMEM;
6971 mlog_errno(ret);
6972 goto out;
6973 }
6974
6975 if (range_start == range_end)
6976 goto out;
6977
6978 ret = ocfs2_extent_map_get_blocks(inode,
6979 range_start >> sb->s_blocksize_bits,
6980 &phys, NULL, &ext_flags);
6981 if (ret) {
6982 mlog_errno(ret);
6983 goto out;
6984 }
6985
6986 /*
6987 * Tail is a hole, or is marked unwritten. In either case, we
6988 * can count on read and write to return/push zero's.
6989 */
6990 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6991 goto out;
6992
6993 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6994 &numpages);
6995 if (ret) {
6996 mlog_errno(ret);
6997 goto out;
6998 }
6999
7000 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
7001 numpages, phys, handle);
7002
7003 /*
7004 * Initiate writeout of the pages we zero'd here. We don't
7005 * wait on them - the truncate_inode_pages() call later will
7006 * do that for us.
7007 */
7008 ret = do_sync_mapping_range(inode->i_mapping, range_start,
7009 range_end - 1, SYNC_FILE_RANGE_WRITE);
7010 if (ret)
7011 mlog_errno(ret);
7012
7013 out:
7014 if (pages)
7015 kfree(pages);
7016
7017 return ret;
7018 }
7019
7020 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7021 struct ocfs2_dinode *di)
7022 {
7023 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7024 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7025
7026 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7027 memset(&di->id2, 0, blocksize -
7028 offsetof(struct ocfs2_dinode, id2) -
7029 xattrsize);
7030 else
7031 memset(&di->id2, 0, blocksize -
7032 offsetof(struct ocfs2_dinode, id2));
7033 }
7034
7035 void ocfs2_dinode_new_extent_list(struct inode *inode,
7036 struct ocfs2_dinode *di)
7037 {
7038 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7039 di->id2.i_list.l_tree_depth = 0;
7040 di->id2.i_list.l_next_free_rec = 0;
7041 di->id2.i_list.l_count = cpu_to_le16(
7042 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7043 }
7044
7045 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7046 {
7047 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7048 struct ocfs2_inline_data *idata = &di->id2.i_data;
7049
7050 spin_lock(&oi->ip_lock);
7051 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7052 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7053 spin_unlock(&oi->ip_lock);
7054
7055 /*
7056 * We clear the entire i_data structure here so that all
7057 * fields can be properly initialized.
7058 */
7059 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7060
7061 idata->id_count = cpu_to_le16(
7062 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7063 }
7064
7065 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7066 struct buffer_head *di_bh)
7067 {
7068 int ret, i, has_data, num_pages = 0;
7069 handle_t *handle;
7070 u64 uninitialized_var(block);
7071 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7072 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7073 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7074 struct ocfs2_alloc_context *data_ac = NULL;
7075 struct page **pages = NULL;
7076 loff_t end = osb->s_clustersize;
7077 struct ocfs2_extent_tree et;
7078 int did_quota = 0;
7079
7080 has_data = i_size_read(inode) ? 1 : 0;
7081
7082 if (has_data) {
7083 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
7084 sizeof(struct page *), GFP_NOFS);
7085 if (pages == NULL) {
7086 ret = -ENOMEM;
7087 mlog_errno(ret);
7088 goto out;
7089 }
7090
7091 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7092 if (ret) {
7093 mlog_errno(ret);
7094 goto out;
7095 }
7096 }
7097
7098 handle = ocfs2_start_trans(osb,
7099 ocfs2_inline_to_extents_credits(osb->sb));
7100 if (IS_ERR(handle)) {
7101 ret = PTR_ERR(handle);
7102 mlog_errno(ret);
7103 goto out_unlock;
7104 }
7105
7106 ret = ocfs2_journal_access_di(handle, inode, di_bh,
7107 OCFS2_JOURNAL_ACCESS_WRITE);
7108 if (ret) {
7109 mlog_errno(ret);
7110 goto out_commit;
7111 }
7112
7113 if (has_data) {
7114 u32 bit_off, num;
7115 unsigned int page_end;
7116 u64 phys;
7117
7118 if (vfs_dq_alloc_space_nodirty(inode,
7119 ocfs2_clusters_to_bytes(osb->sb, 1))) {
7120 ret = -EDQUOT;
7121 goto out_commit;
7122 }
7123 did_quota = 1;
7124
7125 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
7126 &num);
7127 if (ret) {
7128 mlog_errno(ret);
7129 goto out_commit;
7130 }
7131
7132 /*
7133 * Save two copies, one for insert, and one that can
7134 * be changed by ocfs2_map_and_dirty_page() below.
7135 */
7136 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7137
7138 /*
7139 * Non sparse file systems zero on extend, so no need
7140 * to do that now.
7141 */
7142 if (!ocfs2_sparse_alloc(osb) &&
7143 PAGE_CACHE_SIZE < osb->s_clustersize)
7144 end = PAGE_CACHE_SIZE;
7145
7146 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
7147 if (ret) {
7148 mlog_errno(ret);
7149 goto out_commit;
7150 }
7151
7152 /*
7153 * This should populate the 1st page for us and mark
7154 * it up to date.
7155 */
7156 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
7157 if (ret) {
7158 mlog_errno(ret);
7159 goto out_commit;
7160 }
7161
7162 page_end = PAGE_CACHE_SIZE;
7163 if (PAGE_CACHE_SIZE > osb->s_clustersize)
7164 page_end = osb->s_clustersize;
7165
7166 for (i = 0; i < num_pages; i++)
7167 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
7168 pages[i], i > 0, &phys);
7169 }
7170
7171 spin_lock(&oi->ip_lock);
7172 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7173 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7174 spin_unlock(&oi->ip_lock);
7175
7176 ocfs2_dinode_new_extent_list(inode, di);
7177
7178 ocfs2_journal_dirty(handle, di_bh);
7179
7180 if (has_data) {
7181 /*
7182 * An error at this point should be extremely rare. If
7183 * this proves to be false, we could always re-build
7184 * the in-inode data from our pages.
7185 */
7186 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
7187 ret = ocfs2_insert_extent(osb, handle, inode, &et,
7188 0, block, 1, 0, NULL);
7189 if (ret) {
7190 mlog_errno(ret);
7191 goto out_commit;
7192 }
7193
7194 inode->i_blocks = ocfs2_inode_sector_count(inode);
7195 }
7196
7197 out_commit:
7198 if (ret < 0 && did_quota)
7199 vfs_dq_free_space_nodirty(inode,
7200 ocfs2_clusters_to_bytes(osb->sb, 1));
7201
7202 ocfs2_commit_trans(osb, handle);
7203
7204 out_unlock:
7205 if (data_ac)
7206 ocfs2_free_alloc_context(data_ac);
7207
7208 out:
7209 if (pages) {
7210 ocfs2_unlock_and_free_pages(pages, num_pages);
7211 kfree(pages);
7212 }
7213
7214 return ret;
7215 }
7216
7217 /*
7218 * It is expected, that by the time you call this function,
7219 * inode->i_size and fe->i_size have been adjusted.
7220 *
7221 * WARNING: This will kfree the truncate context
7222 */
7223 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7224 struct inode *inode,
7225 struct buffer_head *fe_bh,
7226 struct ocfs2_truncate_context *tc)
7227 {
7228 int status, i, credits, tl_sem = 0;
7229 u32 clusters_to_del, new_highest_cpos, range;
7230 struct ocfs2_extent_list *el;
7231 handle_t *handle = NULL;
7232 struct inode *tl_inode = osb->osb_tl_inode;
7233 struct ocfs2_path *path = NULL;
7234 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
7235
7236 mlog_entry_void();
7237
7238 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7239 i_size_read(inode));
7240
7241 path = ocfs2_new_path(fe_bh, &di->id2.i_list,
7242 ocfs2_journal_access_di);
7243 if (!path) {
7244 status = -ENOMEM;
7245 mlog_errno(status);
7246 goto bail;
7247 }
7248
7249 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7250
7251 start:
7252 /*
7253 * Check that we still have allocation to delete.
7254 */
7255 if (OCFS2_I(inode)->ip_clusters == 0) {
7256 status = 0;
7257 goto bail;
7258 }
7259
7260 /*
7261 * Truncate always works against the rightmost tree branch.
7262 */
7263 status = ocfs2_find_path(inode, path, UINT_MAX);
7264 if (status) {
7265 mlog_errno(status);
7266 goto bail;
7267 }
7268
7269 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7270 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7271
7272 /*
7273 * By now, el will point to the extent list on the bottom most
7274 * portion of this tree. Only the tail record is considered in
7275 * each pass.
7276 *
7277 * We handle the following cases, in order:
7278 * - empty extent: delete the remaining branch
7279 * - remove the entire record
7280 * - remove a partial record
7281 * - no record needs to be removed (truncate has completed)
7282 */
7283 el = path_leaf_el(path);
7284 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7285 ocfs2_error(inode->i_sb,
7286 "Inode %llu has empty extent block at %llu\n",
7287 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7288 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7289 status = -EROFS;
7290 goto bail;
7291 }
7292
7293 i = le16_to_cpu(el->l_next_free_rec) - 1;
7294 range = le32_to_cpu(el->l_recs[i].e_cpos) +
7295 ocfs2_rec_clusters(el, &el->l_recs[i]);
7296 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7297 clusters_to_del = 0;
7298 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
7299 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
7300 } else if (range > new_highest_cpos) {
7301 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
7302 le32_to_cpu(el->l_recs[i].e_cpos)) -
7303 new_highest_cpos;
7304 } else {
7305 status = 0;
7306 goto bail;
7307 }
7308
7309 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7310 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7311
7312 mutex_lock(&tl_inode->i_mutex);
7313 tl_sem = 1;
7314 /* ocfs2_truncate_log_needs_flush guarantees us at least one
7315 * record is free for use. If there isn't any, we flush to get
7316 * an empty truncate log. */
7317 if (ocfs2_truncate_log_needs_flush(osb)) {
7318 status = __ocfs2_flush_truncate_log(osb);
7319 if (status < 0) {
7320 mlog_errno(status);
7321 goto bail;
7322 }
7323 }
7324
7325 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
7326 (struct ocfs2_dinode *)fe_bh->b_data,
7327 el);
7328 handle = ocfs2_start_trans(osb, credits);
7329 if (IS_ERR(handle)) {
7330 status = PTR_ERR(handle);
7331 handle = NULL;
7332 mlog_errno(status);
7333 goto bail;
7334 }
7335
7336 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7337 tc, path);
7338 if (status < 0) {
7339 mlog_errno(status);
7340 goto bail;
7341 }
7342
7343 mutex_unlock(&tl_inode->i_mutex);
7344 tl_sem = 0;
7345
7346 ocfs2_commit_trans(osb, handle);
7347 handle = NULL;
7348
7349 ocfs2_reinit_path(path, 1);
7350
7351 /*
7352 * The check above will catch the case where we've truncated
7353 * away all allocation.
7354 */
7355 goto start;
7356
7357 bail:
7358
7359 ocfs2_schedule_truncate_log_flush(osb, 1);
7360
7361 if (tl_sem)
7362 mutex_unlock(&tl_inode->i_mutex);
7363
7364 if (handle)
7365 ocfs2_commit_trans(osb, handle);
7366
7367 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7368
7369 ocfs2_free_path(path);
7370
7371 /* This will drop the ext_alloc cluster lock for us */
7372 ocfs2_free_truncate_context(tc);
7373
7374 mlog_exit(status);
7375 return status;
7376 }
7377
7378 /*
7379 * Expects the inode to already be locked.
7380 */
7381 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7382 struct inode *inode,
7383 struct buffer_head *fe_bh,
7384 struct ocfs2_truncate_context **tc)
7385 {
7386 int status;
7387 unsigned int new_i_clusters;
7388 struct ocfs2_dinode *fe;
7389 struct ocfs2_extent_block *eb;
7390 struct buffer_head *last_eb_bh = NULL;
7391
7392 mlog_entry_void();
7393
7394 *tc = NULL;
7395
7396 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7397 i_size_read(inode));
7398 fe = (struct ocfs2_dinode *) fe_bh->b_data;
7399
7400 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
7401 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7402 (unsigned long long)le64_to_cpu(fe->i_size));
7403
7404 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
7405 if (!(*tc)) {
7406 status = -ENOMEM;
7407 mlog_errno(status);
7408 goto bail;
7409 }
7410 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
7411
7412 if (fe->id2.i_list.l_tree_depth) {
7413 status = ocfs2_read_extent_block(inode,
7414 le64_to_cpu(fe->i_last_eb_blk),
7415 &last_eb_bh);
7416 if (status < 0) {
7417 mlog_errno(status);
7418 goto bail;
7419 }
7420 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
7421 }
7422
7423 (*tc)->tc_last_eb_bh = last_eb_bh;
7424
7425 status = 0;
7426 bail:
7427 if (status < 0) {
7428 if (*tc)
7429 ocfs2_free_truncate_context(*tc);
7430 *tc = NULL;
7431 }
7432 mlog_exit_void();
7433 return status;
7434 }
7435
7436 /*
7437 * 'start' is inclusive, 'end' is not.
7438 */
7439 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7440 unsigned int start, unsigned int end, int trunc)
7441 {
7442 int ret;
7443 unsigned int numbytes;
7444 handle_t *handle;
7445 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7446 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7447 struct ocfs2_inline_data *idata = &di->id2.i_data;
7448
7449 if (end > i_size_read(inode))
7450 end = i_size_read(inode);
7451
7452 BUG_ON(start >= end);
7453
7454 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7455 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7456 !ocfs2_supports_inline_data(osb)) {
7457 ocfs2_error(inode->i_sb,
7458 "Inline data flags for inode %llu don't agree! "
7459 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7460 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7461 le16_to_cpu(di->i_dyn_features),
7462 OCFS2_I(inode)->ip_dyn_features,
7463 osb->s_feature_incompat);
7464 ret = -EROFS;
7465 goto out;
7466 }
7467
7468 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7469 if (IS_ERR(handle)) {
7470 ret = PTR_ERR(handle);
7471 mlog_errno(ret);
7472 goto out;
7473 }
7474
7475 ret = ocfs2_journal_access_di(handle, inode, di_bh,
7476 OCFS2_JOURNAL_ACCESS_WRITE);
7477 if (ret) {
7478 mlog_errno(ret);
7479 goto out_commit;
7480 }
7481
7482 numbytes = end - start;
7483 memset(idata->id_data + start, 0, numbytes);
7484
7485 /*
7486 * No need to worry about the data page here - it's been
7487 * truncated already and inline data doesn't need it for
7488 * pushing zero's to disk, so we'll let readpage pick it up
7489 * later.
7490 */
7491 if (trunc) {
7492 i_size_write(inode, start);
7493 di->i_size = cpu_to_le64(start);
7494 }
7495
7496 inode->i_blocks = ocfs2_inode_sector_count(inode);
7497 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7498
7499 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7500 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7501
7502 ocfs2_journal_dirty(handle, di_bh);
7503
7504 out_commit:
7505 ocfs2_commit_trans(osb, handle);
7506
7507 out:
7508 return ret;
7509 }
7510
7511 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7512 {
7513 /*
7514 * The caller is responsible for completing deallocation
7515 * before freeing the context.
7516 */
7517 if (tc->tc_dealloc.c_first_suballocator != NULL)
7518 mlog(ML_NOTICE,
7519 "Truncate completion has non-empty dealloc context\n");
7520
7521 brelse(tc->tc_last_eb_bh);
7522
7523 kfree(tc);
7524 }
This page took 0.28713 seconds and 5 git commands to generate.