ocfs2: Use ocfs2_extent_list instead of ocfs2_dinode.
[deliverable/linux.git] / fs / ocfs2 / alloc.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * alloc.c
5 *
6 * Extent allocs and frees
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31
32 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "suballoc.h"
45 #include "sysfile.h"
46 #include "file.h"
47 #include "super.h"
48 #include "uptodate.h"
49
50 #include "buffer_head_io.h"
51
52 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
53 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54 struct ocfs2_extent_block *eb);
55
56 /*
57 * Structures which describe a path through a btree, and functions to
58 * manipulate them.
59 *
60 * The idea here is to be as generic as possible with the tree
61 * manipulation code.
62 */
63 struct ocfs2_path_item {
64 struct buffer_head *bh;
65 struct ocfs2_extent_list *el;
66 };
67
68 #define OCFS2_MAX_PATH_DEPTH 5
69
70 struct ocfs2_path {
71 int p_tree_depth;
72 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
73 };
74
75 #define path_root_bh(_path) ((_path)->p_node[0].bh)
76 #define path_root_el(_path) ((_path)->p_node[0].el)
77 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79 #define path_num_items(_path) ((_path)->p_tree_depth + 1)
80
81 /*
82 * Reset the actual path elements so that we can re-use the structure
83 * to build another path. Generally, this involves freeing the buffer
84 * heads.
85 */
86 static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87 {
88 int i, start = 0, depth = 0;
89 struct ocfs2_path_item *node;
90
91 if (keep_root)
92 start = 1;
93
94 for(i = start; i < path_num_items(path); i++) {
95 node = &path->p_node[i];
96
97 brelse(node->bh);
98 node->bh = NULL;
99 node->el = NULL;
100 }
101
102 /*
103 * Tree depth may change during truncate, or insert. If we're
104 * keeping the root extent list, then make sure that our path
105 * structure reflects the proper depth.
106 */
107 if (keep_root)
108 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109
110 path->p_tree_depth = depth;
111 }
112
113 static void ocfs2_free_path(struct ocfs2_path *path)
114 {
115 if (path) {
116 ocfs2_reinit_path(path, 0);
117 kfree(path);
118 }
119 }
120
121 /*
122 * All the elements of src into dest. After this call, src could be freed
123 * without affecting dest.
124 *
125 * Both paths should have the same root. Any non-root elements of dest
126 * will be freed.
127 */
128 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129 {
130 int i;
131
132 BUG_ON(path_root_bh(dest) != path_root_bh(src));
133 BUG_ON(path_root_el(dest) != path_root_el(src));
134
135 ocfs2_reinit_path(dest, 1);
136
137 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138 dest->p_node[i].bh = src->p_node[i].bh;
139 dest->p_node[i].el = src->p_node[i].el;
140
141 if (dest->p_node[i].bh)
142 get_bh(dest->p_node[i].bh);
143 }
144 }
145
146 /*
147 * Make the *dest path the same as src and re-initialize src path to
148 * have a root only.
149 */
150 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151 {
152 int i;
153
154 BUG_ON(path_root_bh(dest) != path_root_bh(src));
155
156 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157 brelse(dest->p_node[i].bh);
158
159 dest->p_node[i].bh = src->p_node[i].bh;
160 dest->p_node[i].el = src->p_node[i].el;
161
162 src->p_node[i].bh = NULL;
163 src->p_node[i].el = NULL;
164 }
165 }
166
167 /*
168 * Insert an extent block at given index.
169 *
170 * This will not take an additional reference on eb_bh.
171 */
172 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173 struct buffer_head *eb_bh)
174 {
175 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176
177 /*
178 * Right now, no root bh is an extent block, so this helps
179 * catch code errors with dinode trees. The assertion can be
180 * safely removed if we ever need to insert extent block
181 * structures at the root.
182 */
183 BUG_ON(index == 0);
184
185 path->p_node[index].bh = eb_bh;
186 path->p_node[index].el = &eb->h_list;
187 }
188
189 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190 struct ocfs2_extent_list *root_el)
191 {
192 struct ocfs2_path *path;
193
194 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195
196 path = kzalloc(sizeof(*path), GFP_NOFS);
197 if (path) {
198 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199 get_bh(root_bh);
200 path_root_bh(path) = root_bh;
201 path_root_el(path) = root_el;
202 }
203
204 return path;
205 }
206
207 /*
208 * Allocate and initialize a new path based on a disk inode tree.
209 */
210 static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211 {
212 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213 struct ocfs2_extent_list *el = &di->id2.i_list;
214
215 return ocfs2_new_path(di_bh, el);
216 }
217
218 /*
219 * Convenience function to journal all components in a path.
220 */
221 static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222 struct ocfs2_path *path)
223 {
224 int i, ret = 0;
225
226 if (!path)
227 goto out;
228
229 for(i = 0; i < path_num_items(path); i++) {
230 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231 OCFS2_JOURNAL_ACCESS_WRITE);
232 if (ret < 0) {
233 mlog_errno(ret);
234 goto out;
235 }
236 }
237
238 out:
239 return ret;
240 }
241
242 /*
243 * Return the index of the extent record which contains cluster #v_cluster.
244 * -1 is returned if it was not found.
245 *
246 * Should work fine on interior and exterior nodes.
247 */
248 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249 {
250 int ret = -1;
251 int i;
252 struct ocfs2_extent_rec *rec;
253 u32 rec_end, rec_start, clusters;
254
255 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256 rec = &el->l_recs[i];
257
258 rec_start = le32_to_cpu(rec->e_cpos);
259 clusters = ocfs2_rec_clusters(el, rec);
260
261 rec_end = rec_start + clusters;
262
263 if (v_cluster >= rec_start && v_cluster < rec_end) {
264 ret = i;
265 break;
266 }
267 }
268
269 return ret;
270 }
271
272 enum ocfs2_contig_type {
273 CONTIG_NONE = 0,
274 CONTIG_LEFT,
275 CONTIG_RIGHT,
276 CONTIG_LEFTRIGHT,
277 };
278
279
280 /*
281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282 * ocfs2_extent_contig only work properly against leaf nodes!
283 */
284 static int ocfs2_block_extent_contig(struct super_block *sb,
285 struct ocfs2_extent_rec *ext,
286 u64 blkno)
287 {
288 u64 blk_end = le64_to_cpu(ext->e_blkno);
289
290 blk_end += ocfs2_clusters_to_blocks(sb,
291 le16_to_cpu(ext->e_leaf_clusters));
292
293 return blkno == blk_end;
294 }
295
296 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297 struct ocfs2_extent_rec *right)
298 {
299 u32 left_range;
300
301 left_range = le32_to_cpu(left->e_cpos) +
302 le16_to_cpu(left->e_leaf_clusters);
303
304 return (left_range == le32_to_cpu(right->e_cpos));
305 }
306
307 static enum ocfs2_contig_type
308 ocfs2_extent_contig(struct inode *inode,
309 struct ocfs2_extent_rec *ext,
310 struct ocfs2_extent_rec *insert_rec)
311 {
312 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313
314 /*
315 * Refuse to coalesce extent records with different flag
316 * fields - we don't want to mix unwritten extents with user
317 * data.
318 */
319 if (ext->e_flags != insert_rec->e_flags)
320 return CONTIG_NONE;
321
322 if (ocfs2_extents_adjacent(ext, insert_rec) &&
323 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324 return CONTIG_RIGHT;
325
326 blkno = le64_to_cpu(ext->e_blkno);
327 if (ocfs2_extents_adjacent(insert_rec, ext) &&
328 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329 return CONTIG_LEFT;
330
331 return CONTIG_NONE;
332 }
333
334 /*
335 * NOTE: We can have pretty much any combination of contiguousness and
336 * appending.
337 *
338 * The usefulness of APPEND_TAIL is more in that it lets us know that
339 * we'll have to update the path to that leaf.
340 */
341 enum ocfs2_append_type {
342 APPEND_NONE = 0,
343 APPEND_TAIL,
344 };
345
346 enum ocfs2_split_type {
347 SPLIT_NONE = 0,
348 SPLIT_LEFT,
349 SPLIT_RIGHT,
350 };
351
352 struct ocfs2_insert_type {
353 enum ocfs2_split_type ins_split;
354 enum ocfs2_append_type ins_appending;
355 enum ocfs2_contig_type ins_contig;
356 int ins_contig_index;
357 int ins_tree_depth;
358 };
359
360 struct ocfs2_merge_ctxt {
361 enum ocfs2_contig_type c_contig_type;
362 int c_has_empty_extent;
363 int c_split_covers_rec;
364 };
365
366 /*
367 * How many free extents have we got before we need more meta data?
368 */
369 int ocfs2_num_free_extents(struct ocfs2_super *osb,
370 struct inode *inode,
371 struct buffer_head *bh)
372 {
373 int retval;
374 struct ocfs2_extent_list *el;
375 struct ocfs2_extent_block *eb;
376 struct buffer_head *eb_bh = NULL;
377 struct ocfs2_dinode *fe = (struct ocfs2_dinode *)bh->b_data;
378
379 mlog_entry_void();
380
381 if (!OCFS2_IS_VALID_DINODE(fe)) {
382 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
383 retval = -EIO;
384 goto bail;
385 }
386
387 if (fe->i_last_eb_blk) {
388 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
389 &eb_bh, OCFS2_BH_CACHED, inode);
390 if (retval < 0) {
391 mlog_errno(retval);
392 goto bail;
393 }
394 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
395 el = &eb->h_list;
396 } else
397 el = &fe->id2.i_list;
398
399 BUG_ON(el->l_tree_depth != 0);
400
401 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
402 bail:
403 if (eb_bh)
404 brelse(eb_bh);
405
406 mlog_exit(retval);
407 return retval;
408 }
409
410 /* expects array to already be allocated
411 *
412 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
413 * l_count for you
414 */
415 static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
416 handle_t *handle,
417 struct inode *inode,
418 int wanted,
419 struct ocfs2_alloc_context *meta_ac,
420 struct buffer_head *bhs[])
421 {
422 int count, status, i;
423 u16 suballoc_bit_start;
424 u32 num_got;
425 u64 first_blkno;
426 struct ocfs2_extent_block *eb;
427
428 mlog_entry_void();
429
430 count = 0;
431 while (count < wanted) {
432 status = ocfs2_claim_metadata(osb,
433 handle,
434 meta_ac,
435 wanted - count,
436 &suballoc_bit_start,
437 &num_got,
438 &first_blkno);
439 if (status < 0) {
440 mlog_errno(status);
441 goto bail;
442 }
443
444 for(i = count; i < (num_got + count); i++) {
445 bhs[i] = sb_getblk(osb->sb, first_blkno);
446 if (bhs[i] == NULL) {
447 status = -EIO;
448 mlog_errno(status);
449 goto bail;
450 }
451 ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
452
453 status = ocfs2_journal_access(handle, inode, bhs[i],
454 OCFS2_JOURNAL_ACCESS_CREATE);
455 if (status < 0) {
456 mlog_errno(status);
457 goto bail;
458 }
459
460 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
461 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
462 /* Ok, setup the minimal stuff here. */
463 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
464 eb->h_blkno = cpu_to_le64(first_blkno);
465 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
466 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
467 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
468 eb->h_list.l_count =
469 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
470
471 suballoc_bit_start++;
472 first_blkno++;
473
474 /* We'll also be dirtied by the caller, so
475 * this isn't absolutely necessary. */
476 status = ocfs2_journal_dirty(handle, bhs[i]);
477 if (status < 0) {
478 mlog_errno(status);
479 goto bail;
480 }
481 }
482
483 count += num_got;
484 }
485
486 status = 0;
487 bail:
488 if (status < 0) {
489 for(i = 0; i < wanted; i++) {
490 if (bhs[i])
491 brelse(bhs[i]);
492 bhs[i] = NULL;
493 }
494 }
495 mlog_exit(status);
496 return status;
497 }
498
499 /*
500 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
501 *
502 * Returns the sum of the rightmost extent rec logical offset and
503 * cluster count.
504 *
505 * ocfs2_add_branch() uses this to determine what logical cluster
506 * value should be populated into the leftmost new branch records.
507 *
508 * ocfs2_shift_tree_depth() uses this to determine the # clusters
509 * value for the new topmost tree record.
510 */
511 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
512 {
513 int i;
514
515 i = le16_to_cpu(el->l_next_free_rec) - 1;
516
517 return le32_to_cpu(el->l_recs[i].e_cpos) +
518 ocfs2_rec_clusters(el, &el->l_recs[i]);
519 }
520
521 /*
522 * Add an entire tree branch to our inode. eb_bh is the extent block
523 * to start at, if we don't want to start the branch at the dinode
524 * structure.
525 *
526 * last_eb_bh is required as we have to update it's next_leaf pointer
527 * for the new last extent block.
528 *
529 * the new branch will be 'empty' in the sense that every block will
530 * contain a single record with cluster count == 0.
531 */
532 static int ocfs2_add_branch(struct ocfs2_super *osb,
533 handle_t *handle,
534 struct inode *inode,
535 struct buffer_head *fe_bh,
536 struct buffer_head *eb_bh,
537 struct buffer_head **last_eb_bh,
538 struct ocfs2_alloc_context *meta_ac)
539 {
540 int status, new_blocks, i;
541 u64 next_blkno, new_last_eb_blk;
542 struct buffer_head *bh;
543 struct buffer_head **new_eb_bhs = NULL;
544 struct ocfs2_dinode *fe;
545 struct ocfs2_extent_block *eb;
546 struct ocfs2_extent_list *eb_el;
547 struct ocfs2_extent_list *el;
548 u32 new_cpos;
549
550 mlog_entry_void();
551
552 BUG_ON(!last_eb_bh || !*last_eb_bh);
553
554 fe = (struct ocfs2_dinode *) fe_bh->b_data;
555
556 if (eb_bh) {
557 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
558 el = &eb->h_list;
559 } else
560 el = &fe->id2.i_list;
561
562 /* we never add a branch to a leaf. */
563 BUG_ON(!el->l_tree_depth);
564
565 new_blocks = le16_to_cpu(el->l_tree_depth);
566
567 /* allocate the number of new eb blocks we need */
568 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
569 GFP_KERNEL);
570 if (!new_eb_bhs) {
571 status = -ENOMEM;
572 mlog_errno(status);
573 goto bail;
574 }
575
576 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
577 meta_ac, new_eb_bhs);
578 if (status < 0) {
579 mlog_errno(status);
580 goto bail;
581 }
582
583 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
584 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
585
586 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
587 * linked with the rest of the tree.
588 * conversly, new_eb_bhs[0] is the new bottommost leaf.
589 *
590 * when we leave the loop, new_last_eb_blk will point to the
591 * newest leaf, and next_blkno will point to the topmost extent
592 * block. */
593 next_blkno = new_last_eb_blk = 0;
594 for(i = 0; i < new_blocks; i++) {
595 bh = new_eb_bhs[i];
596 eb = (struct ocfs2_extent_block *) bh->b_data;
597 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
598 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
599 status = -EIO;
600 goto bail;
601 }
602 eb_el = &eb->h_list;
603
604 status = ocfs2_journal_access(handle, inode, bh,
605 OCFS2_JOURNAL_ACCESS_CREATE);
606 if (status < 0) {
607 mlog_errno(status);
608 goto bail;
609 }
610
611 eb->h_next_leaf_blk = 0;
612 eb_el->l_tree_depth = cpu_to_le16(i);
613 eb_el->l_next_free_rec = cpu_to_le16(1);
614 /*
615 * This actually counts as an empty extent as
616 * c_clusters == 0
617 */
618 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
619 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
620 /*
621 * eb_el isn't always an interior node, but even leaf
622 * nodes want a zero'd flags and reserved field so
623 * this gets the whole 32 bits regardless of use.
624 */
625 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
626 if (!eb_el->l_tree_depth)
627 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
628
629 status = ocfs2_journal_dirty(handle, bh);
630 if (status < 0) {
631 mlog_errno(status);
632 goto bail;
633 }
634
635 next_blkno = le64_to_cpu(eb->h_blkno);
636 }
637
638 /* This is a bit hairy. We want to update up to three blocks
639 * here without leaving any of them in an inconsistent state
640 * in case of error. We don't have to worry about
641 * journal_dirty erroring as it won't unless we've aborted the
642 * handle (in which case we would never be here) so reserving
643 * the write with journal_access is all we need to do. */
644 status = ocfs2_journal_access(handle, inode, *last_eb_bh,
645 OCFS2_JOURNAL_ACCESS_WRITE);
646 if (status < 0) {
647 mlog_errno(status);
648 goto bail;
649 }
650 status = ocfs2_journal_access(handle, inode, fe_bh,
651 OCFS2_JOURNAL_ACCESS_WRITE);
652 if (status < 0) {
653 mlog_errno(status);
654 goto bail;
655 }
656 if (eb_bh) {
657 status = ocfs2_journal_access(handle, inode, eb_bh,
658 OCFS2_JOURNAL_ACCESS_WRITE);
659 if (status < 0) {
660 mlog_errno(status);
661 goto bail;
662 }
663 }
664
665 /* Link the new branch into the rest of the tree (el will
666 * either be on the fe, or the extent block passed in. */
667 i = le16_to_cpu(el->l_next_free_rec);
668 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
669 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
670 el->l_recs[i].e_int_clusters = 0;
671 le16_add_cpu(&el->l_next_free_rec, 1);
672
673 /* fe needs a new last extent block pointer, as does the
674 * next_leaf on the previously last-extent-block. */
675 fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
676
677 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
678 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
679
680 status = ocfs2_journal_dirty(handle, *last_eb_bh);
681 if (status < 0)
682 mlog_errno(status);
683 status = ocfs2_journal_dirty(handle, fe_bh);
684 if (status < 0)
685 mlog_errno(status);
686 if (eb_bh) {
687 status = ocfs2_journal_dirty(handle, eb_bh);
688 if (status < 0)
689 mlog_errno(status);
690 }
691
692 /*
693 * Some callers want to track the rightmost leaf so pass it
694 * back here.
695 */
696 brelse(*last_eb_bh);
697 get_bh(new_eb_bhs[0]);
698 *last_eb_bh = new_eb_bhs[0];
699
700 status = 0;
701 bail:
702 if (new_eb_bhs) {
703 for (i = 0; i < new_blocks; i++)
704 if (new_eb_bhs[i])
705 brelse(new_eb_bhs[i]);
706 kfree(new_eb_bhs);
707 }
708
709 mlog_exit(status);
710 return status;
711 }
712
713 /*
714 * adds another level to the allocation tree.
715 * returns back the new extent block so you can add a branch to it
716 * after this call.
717 */
718 static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
719 handle_t *handle,
720 struct inode *inode,
721 struct buffer_head *fe_bh,
722 struct ocfs2_alloc_context *meta_ac,
723 struct buffer_head **ret_new_eb_bh)
724 {
725 int status, i;
726 u32 new_clusters;
727 struct buffer_head *new_eb_bh = NULL;
728 struct ocfs2_dinode *fe;
729 struct ocfs2_extent_block *eb;
730 struct ocfs2_extent_list *fe_el;
731 struct ocfs2_extent_list *eb_el;
732
733 mlog_entry_void();
734
735 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
736 &new_eb_bh);
737 if (status < 0) {
738 mlog_errno(status);
739 goto bail;
740 }
741
742 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
743 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
744 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
745 status = -EIO;
746 goto bail;
747 }
748
749 eb_el = &eb->h_list;
750 fe = (struct ocfs2_dinode *) fe_bh->b_data;
751 fe_el = &fe->id2.i_list;
752
753 status = ocfs2_journal_access(handle, inode, new_eb_bh,
754 OCFS2_JOURNAL_ACCESS_CREATE);
755 if (status < 0) {
756 mlog_errno(status);
757 goto bail;
758 }
759
760 /* copy the fe data into the new extent block */
761 eb_el->l_tree_depth = fe_el->l_tree_depth;
762 eb_el->l_next_free_rec = fe_el->l_next_free_rec;
763 for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
764 eb_el->l_recs[i] = fe_el->l_recs[i];
765
766 status = ocfs2_journal_dirty(handle, new_eb_bh);
767 if (status < 0) {
768 mlog_errno(status);
769 goto bail;
770 }
771
772 status = ocfs2_journal_access(handle, inode, fe_bh,
773 OCFS2_JOURNAL_ACCESS_WRITE);
774 if (status < 0) {
775 mlog_errno(status);
776 goto bail;
777 }
778
779 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
780
781 /* update fe now */
782 le16_add_cpu(&fe_el->l_tree_depth, 1);
783 fe_el->l_recs[0].e_cpos = 0;
784 fe_el->l_recs[0].e_blkno = eb->h_blkno;
785 fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
786 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
787 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
788 fe_el->l_next_free_rec = cpu_to_le16(1);
789
790 /* If this is our 1st tree depth shift, then last_eb_blk
791 * becomes the allocated extent block */
792 if (fe_el->l_tree_depth == cpu_to_le16(1))
793 fe->i_last_eb_blk = eb->h_blkno;
794
795 status = ocfs2_journal_dirty(handle, fe_bh);
796 if (status < 0) {
797 mlog_errno(status);
798 goto bail;
799 }
800
801 *ret_new_eb_bh = new_eb_bh;
802 new_eb_bh = NULL;
803 status = 0;
804 bail:
805 if (new_eb_bh)
806 brelse(new_eb_bh);
807
808 mlog_exit(status);
809 return status;
810 }
811
812 /*
813 * Should only be called when there is no space left in any of the
814 * leaf nodes. What we want to do is find the lowest tree depth
815 * non-leaf extent block with room for new records. There are three
816 * valid results of this search:
817 *
818 * 1) a lowest extent block is found, then we pass it back in
819 * *lowest_eb_bh and return '0'
820 *
821 * 2) the search fails to find anything, but the dinode has room. We
822 * pass NULL back in *lowest_eb_bh, but still return '0'
823 *
824 * 3) the search fails to find anything AND the dinode is full, in
825 * which case we return > 0
826 *
827 * return status < 0 indicates an error.
828 */
829 static int ocfs2_find_branch_target(struct ocfs2_super *osb,
830 struct inode *inode,
831 struct buffer_head *fe_bh,
832 struct buffer_head **target_bh)
833 {
834 int status = 0, i;
835 u64 blkno;
836 struct ocfs2_dinode *fe;
837 struct ocfs2_extent_block *eb;
838 struct ocfs2_extent_list *el;
839 struct buffer_head *bh = NULL;
840 struct buffer_head *lowest_bh = NULL;
841
842 mlog_entry_void();
843
844 *target_bh = NULL;
845
846 fe = (struct ocfs2_dinode *) fe_bh->b_data;
847 el = &fe->id2.i_list;
848
849 while(le16_to_cpu(el->l_tree_depth) > 1) {
850 if (le16_to_cpu(el->l_next_free_rec) == 0) {
851 ocfs2_error(inode->i_sb, "Dinode %llu has empty "
852 "extent list (next_free_rec == 0)",
853 (unsigned long long)OCFS2_I(inode)->ip_blkno);
854 status = -EIO;
855 goto bail;
856 }
857 i = le16_to_cpu(el->l_next_free_rec) - 1;
858 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
859 if (!blkno) {
860 ocfs2_error(inode->i_sb, "Dinode %llu has extent "
861 "list where extent # %d has no physical "
862 "block start",
863 (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
864 status = -EIO;
865 goto bail;
866 }
867
868 if (bh) {
869 brelse(bh);
870 bh = NULL;
871 }
872
873 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
874 inode);
875 if (status < 0) {
876 mlog_errno(status);
877 goto bail;
878 }
879
880 eb = (struct ocfs2_extent_block *) bh->b_data;
881 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
882 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
883 status = -EIO;
884 goto bail;
885 }
886 el = &eb->h_list;
887
888 if (le16_to_cpu(el->l_next_free_rec) <
889 le16_to_cpu(el->l_count)) {
890 if (lowest_bh)
891 brelse(lowest_bh);
892 lowest_bh = bh;
893 get_bh(lowest_bh);
894 }
895 }
896
897 /* If we didn't find one and the fe doesn't have any room,
898 * then return '1' */
899 if (!lowest_bh
900 && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
901 status = 1;
902
903 *target_bh = lowest_bh;
904 bail:
905 if (bh)
906 brelse(bh);
907
908 mlog_exit(status);
909 return status;
910 }
911
912 /*
913 * Grow a b-tree so that it has more records.
914 *
915 * We might shift the tree depth in which case existing paths should
916 * be considered invalid.
917 *
918 * Tree depth after the grow is returned via *final_depth.
919 *
920 * *last_eb_bh will be updated by ocfs2_add_branch().
921 */
922 static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
923 struct buffer_head *di_bh, int *final_depth,
924 struct buffer_head **last_eb_bh,
925 struct ocfs2_alloc_context *meta_ac)
926 {
927 int ret, shift;
928 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
929 int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
930 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
931 struct buffer_head *bh = NULL;
932
933 BUG_ON(meta_ac == NULL);
934
935 shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
936 if (shift < 0) {
937 ret = shift;
938 mlog_errno(ret);
939 goto out;
940 }
941
942 /* We traveled all the way to the bottom of the allocation tree
943 * and didn't find room for any more extents - we need to add
944 * another tree level */
945 if (shift) {
946 BUG_ON(bh);
947 mlog(0, "need to shift tree depth (current = %d)\n", depth);
948
949 /* ocfs2_shift_tree_depth will return us a buffer with
950 * the new extent block (so we can pass that to
951 * ocfs2_add_branch). */
952 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
953 meta_ac, &bh);
954 if (ret < 0) {
955 mlog_errno(ret);
956 goto out;
957 }
958 depth++;
959 if (depth == 1) {
960 /*
961 * Special case: we have room now if we shifted from
962 * tree_depth 0, so no more work needs to be done.
963 *
964 * We won't be calling add_branch, so pass
965 * back *last_eb_bh as the new leaf. At depth
966 * zero, it should always be null so there's
967 * no reason to brelse.
968 */
969 BUG_ON(*last_eb_bh);
970 get_bh(bh);
971 *last_eb_bh = bh;
972 goto out;
973 }
974 }
975
976 /* call ocfs2_add_branch to add the final part of the tree with
977 * the new data. */
978 mlog(0, "add branch. bh = %p\n", bh);
979 ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
980 meta_ac);
981 if (ret < 0) {
982 mlog_errno(ret);
983 goto out;
984 }
985
986 out:
987 if (final_depth)
988 *final_depth = depth;
989 brelse(bh);
990 return ret;
991 }
992
993 /*
994 * This function will discard the rightmost extent record.
995 */
996 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
997 {
998 int next_free = le16_to_cpu(el->l_next_free_rec);
999 int count = le16_to_cpu(el->l_count);
1000 unsigned int num_bytes;
1001
1002 BUG_ON(!next_free);
1003 /* This will cause us to go off the end of our extent list. */
1004 BUG_ON(next_free >= count);
1005
1006 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1007
1008 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1009 }
1010
1011 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1012 struct ocfs2_extent_rec *insert_rec)
1013 {
1014 int i, insert_index, next_free, has_empty, num_bytes;
1015 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1016 struct ocfs2_extent_rec *rec;
1017
1018 next_free = le16_to_cpu(el->l_next_free_rec);
1019 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1020
1021 BUG_ON(!next_free);
1022
1023 /* The tree code before us didn't allow enough room in the leaf. */
1024 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1025
1026 /*
1027 * The easiest way to approach this is to just remove the
1028 * empty extent and temporarily decrement next_free.
1029 */
1030 if (has_empty) {
1031 /*
1032 * If next_free was 1 (only an empty extent), this
1033 * loop won't execute, which is fine. We still want
1034 * the decrement above to happen.
1035 */
1036 for(i = 0; i < (next_free - 1); i++)
1037 el->l_recs[i] = el->l_recs[i+1];
1038
1039 next_free--;
1040 }
1041
1042 /*
1043 * Figure out what the new record index should be.
1044 */
1045 for(i = 0; i < next_free; i++) {
1046 rec = &el->l_recs[i];
1047
1048 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1049 break;
1050 }
1051 insert_index = i;
1052
1053 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1054 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1055
1056 BUG_ON(insert_index < 0);
1057 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1058 BUG_ON(insert_index > next_free);
1059
1060 /*
1061 * No need to memmove if we're just adding to the tail.
1062 */
1063 if (insert_index != next_free) {
1064 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1065
1066 num_bytes = next_free - insert_index;
1067 num_bytes *= sizeof(struct ocfs2_extent_rec);
1068 memmove(&el->l_recs[insert_index + 1],
1069 &el->l_recs[insert_index],
1070 num_bytes);
1071 }
1072
1073 /*
1074 * Either we had an empty extent, and need to re-increment or
1075 * there was no empty extent on a non full rightmost leaf node,
1076 * in which case we still need to increment.
1077 */
1078 next_free++;
1079 el->l_next_free_rec = cpu_to_le16(next_free);
1080 /*
1081 * Make sure none of the math above just messed up our tree.
1082 */
1083 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1084
1085 el->l_recs[insert_index] = *insert_rec;
1086
1087 }
1088
1089 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1090 {
1091 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1092
1093 BUG_ON(num_recs == 0);
1094
1095 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1096 num_recs--;
1097 size = num_recs * sizeof(struct ocfs2_extent_rec);
1098 memmove(&el->l_recs[0], &el->l_recs[1], size);
1099 memset(&el->l_recs[num_recs], 0,
1100 sizeof(struct ocfs2_extent_rec));
1101 el->l_next_free_rec = cpu_to_le16(num_recs);
1102 }
1103 }
1104
1105 /*
1106 * Create an empty extent record .
1107 *
1108 * l_next_free_rec may be updated.
1109 *
1110 * If an empty extent already exists do nothing.
1111 */
1112 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1113 {
1114 int next_free = le16_to_cpu(el->l_next_free_rec);
1115
1116 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1117
1118 if (next_free == 0)
1119 goto set_and_inc;
1120
1121 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1122 return;
1123
1124 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1125 "Asked to create an empty extent in a full list:\n"
1126 "count = %u, tree depth = %u",
1127 le16_to_cpu(el->l_count),
1128 le16_to_cpu(el->l_tree_depth));
1129
1130 ocfs2_shift_records_right(el);
1131
1132 set_and_inc:
1133 le16_add_cpu(&el->l_next_free_rec, 1);
1134 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1135 }
1136
1137 /*
1138 * For a rotation which involves two leaf nodes, the "root node" is
1139 * the lowest level tree node which contains a path to both leafs. This
1140 * resulting set of information can be used to form a complete "subtree"
1141 *
1142 * This function is passed two full paths from the dinode down to a
1143 * pair of adjacent leaves. It's task is to figure out which path
1144 * index contains the subtree root - this can be the root index itself
1145 * in a worst-case rotation.
1146 *
1147 * The array index of the subtree root is passed back.
1148 */
1149 static int ocfs2_find_subtree_root(struct inode *inode,
1150 struct ocfs2_path *left,
1151 struct ocfs2_path *right)
1152 {
1153 int i = 0;
1154
1155 /*
1156 * Check that the caller passed in two paths from the same tree.
1157 */
1158 BUG_ON(path_root_bh(left) != path_root_bh(right));
1159
1160 do {
1161 i++;
1162
1163 /*
1164 * The caller didn't pass two adjacent paths.
1165 */
1166 mlog_bug_on_msg(i > left->p_tree_depth,
1167 "Inode %lu, left depth %u, right depth %u\n"
1168 "left leaf blk %llu, right leaf blk %llu\n",
1169 inode->i_ino, left->p_tree_depth,
1170 right->p_tree_depth,
1171 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1172 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1173 } while (left->p_node[i].bh->b_blocknr ==
1174 right->p_node[i].bh->b_blocknr);
1175
1176 return i - 1;
1177 }
1178
1179 typedef void (path_insert_t)(void *, struct buffer_head *);
1180
1181 /*
1182 * Traverse a btree path in search of cpos, starting at root_el.
1183 *
1184 * This code can be called with a cpos larger than the tree, in which
1185 * case it will return the rightmost path.
1186 */
1187 static int __ocfs2_find_path(struct inode *inode,
1188 struct ocfs2_extent_list *root_el, u32 cpos,
1189 path_insert_t *func, void *data)
1190 {
1191 int i, ret = 0;
1192 u32 range;
1193 u64 blkno;
1194 struct buffer_head *bh = NULL;
1195 struct ocfs2_extent_block *eb;
1196 struct ocfs2_extent_list *el;
1197 struct ocfs2_extent_rec *rec;
1198 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1199
1200 el = root_el;
1201 while (el->l_tree_depth) {
1202 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1203 ocfs2_error(inode->i_sb,
1204 "Inode %llu has empty extent list at "
1205 "depth %u\n",
1206 (unsigned long long)oi->ip_blkno,
1207 le16_to_cpu(el->l_tree_depth));
1208 ret = -EROFS;
1209 goto out;
1210
1211 }
1212
1213 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1214 rec = &el->l_recs[i];
1215
1216 /*
1217 * In the case that cpos is off the allocation
1218 * tree, this should just wind up returning the
1219 * rightmost record.
1220 */
1221 range = le32_to_cpu(rec->e_cpos) +
1222 ocfs2_rec_clusters(el, rec);
1223 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1224 break;
1225 }
1226
1227 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1228 if (blkno == 0) {
1229 ocfs2_error(inode->i_sb,
1230 "Inode %llu has bad blkno in extent list "
1231 "at depth %u (index %d)\n",
1232 (unsigned long long)oi->ip_blkno,
1233 le16_to_cpu(el->l_tree_depth), i);
1234 ret = -EROFS;
1235 goto out;
1236 }
1237
1238 brelse(bh);
1239 bh = NULL;
1240 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1241 &bh, OCFS2_BH_CACHED, inode);
1242 if (ret) {
1243 mlog_errno(ret);
1244 goto out;
1245 }
1246
1247 eb = (struct ocfs2_extent_block *) bh->b_data;
1248 el = &eb->h_list;
1249 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1250 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1251 ret = -EIO;
1252 goto out;
1253 }
1254
1255 if (le16_to_cpu(el->l_next_free_rec) >
1256 le16_to_cpu(el->l_count)) {
1257 ocfs2_error(inode->i_sb,
1258 "Inode %llu has bad count in extent list "
1259 "at block %llu (next free=%u, count=%u)\n",
1260 (unsigned long long)oi->ip_blkno,
1261 (unsigned long long)bh->b_blocknr,
1262 le16_to_cpu(el->l_next_free_rec),
1263 le16_to_cpu(el->l_count));
1264 ret = -EROFS;
1265 goto out;
1266 }
1267
1268 if (func)
1269 func(data, bh);
1270 }
1271
1272 out:
1273 /*
1274 * Catch any trailing bh that the loop didn't handle.
1275 */
1276 brelse(bh);
1277
1278 return ret;
1279 }
1280
1281 /*
1282 * Given an initialized path (that is, it has a valid root extent
1283 * list), this function will traverse the btree in search of the path
1284 * which would contain cpos.
1285 *
1286 * The path traveled is recorded in the path structure.
1287 *
1288 * Note that this will not do any comparisons on leaf node extent
1289 * records, so it will work fine in the case that we just added a tree
1290 * branch.
1291 */
1292 struct find_path_data {
1293 int index;
1294 struct ocfs2_path *path;
1295 };
1296 static void find_path_ins(void *data, struct buffer_head *bh)
1297 {
1298 struct find_path_data *fp = data;
1299
1300 get_bh(bh);
1301 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1302 fp->index++;
1303 }
1304 static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1305 u32 cpos)
1306 {
1307 struct find_path_data data;
1308
1309 data.index = 1;
1310 data.path = path;
1311 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1312 find_path_ins, &data);
1313 }
1314
1315 static void find_leaf_ins(void *data, struct buffer_head *bh)
1316 {
1317 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1318 struct ocfs2_extent_list *el = &eb->h_list;
1319 struct buffer_head **ret = data;
1320
1321 /* We want to retain only the leaf block. */
1322 if (le16_to_cpu(el->l_tree_depth) == 0) {
1323 get_bh(bh);
1324 *ret = bh;
1325 }
1326 }
1327 /*
1328 * Find the leaf block in the tree which would contain cpos. No
1329 * checking of the actual leaf is done.
1330 *
1331 * Some paths want to call this instead of allocating a path structure
1332 * and calling ocfs2_find_path().
1333 *
1334 * This function doesn't handle non btree extent lists.
1335 */
1336 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1337 u32 cpos, struct buffer_head **leaf_bh)
1338 {
1339 int ret;
1340 struct buffer_head *bh = NULL;
1341
1342 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1343 if (ret) {
1344 mlog_errno(ret);
1345 goto out;
1346 }
1347
1348 *leaf_bh = bh;
1349 out:
1350 return ret;
1351 }
1352
1353 /*
1354 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1355 *
1356 * Basically, we've moved stuff around at the bottom of the tree and
1357 * we need to fix up the extent records above the changes to reflect
1358 * the new changes.
1359 *
1360 * left_rec: the record on the left.
1361 * left_child_el: is the child list pointed to by left_rec
1362 * right_rec: the record to the right of left_rec
1363 * right_child_el: is the child list pointed to by right_rec
1364 *
1365 * By definition, this only works on interior nodes.
1366 */
1367 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1368 struct ocfs2_extent_list *left_child_el,
1369 struct ocfs2_extent_rec *right_rec,
1370 struct ocfs2_extent_list *right_child_el)
1371 {
1372 u32 left_clusters, right_end;
1373
1374 /*
1375 * Interior nodes never have holes. Their cpos is the cpos of
1376 * the leftmost record in their child list. Their cluster
1377 * count covers the full theoretical range of their child list
1378 * - the range between their cpos and the cpos of the record
1379 * immediately to their right.
1380 */
1381 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1382 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1383 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1384 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1385 }
1386 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1387 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1388
1389 /*
1390 * Calculate the rightmost cluster count boundary before
1391 * moving cpos - we will need to adjust clusters after
1392 * updating e_cpos to keep the same highest cluster count.
1393 */
1394 right_end = le32_to_cpu(right_rec->e_cpos);
1395 right_end += le32_to_cpu(right_rec->e_int_clusters);
1396
1397 right_rec->e_cpos = left_rec->e_cpos;
1398 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1399
1400 right_end -= le32_to_cpu(right_rec->e_cpos);
1401 right_rec->e_int_clusters = cpu_to_le32(right_end);
1402 }
1403
1404 /*
1405 * Adjust the adjacent root node records involved in a
1406 * rotation. left_el_blkno is passed in as a key so that we can easily
1407 * find it's index in the root list.
1408 */
1409 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1410 struct ocfs2_extent_list *left_el,
1411 struct ocfs2_extent_list *right_el,
1412 u64 left_el_blkno)
1413 {
1414 int i;
1415
1416 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1417 le16_to_cpu(left_el->l_tree_depth));
1418
1419 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1420 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1421 break;
1422 }
1423
1424 /*
1425 * The path walking code should have never returned a root and
1426 * two paths which are not adjacent.
1427 */
1428 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1429
1430 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1431 &root_el->l_recs[i + 1], right_el);
1432 }
1433
1434 /*
1435 * We've changed a leaf block (in right_path) and need to reflect that
1436 * change back up the subtree.
1437 *
1438 * This happens in multiple places:
1439 * - When we've moved an extent record from the left path leaf to the right
1440 * path leaf to make room for an empty extent in the left path leaf.
1441 * - When our insert into the right path leaf is at the leftmost edge
1442 * and requires an update of the path immediately to it's left. This
1443 * can occur at the end of some types of rotation and appending inserts.
1444 * - When we've adjusted the last extent record in the left path leaf and the
1445 * 1st extent record in the right path leaf during cross extent block merge.
1446 */
1447 static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1448 struct ocfs2_path *left_path,
1449 struct ocfs2_path *right_path,
1450 int subtree_index)
1451 {
1452 int ret, i, idx;
1453 struct ocfs2_extent_list *el, *left_el, *right_el;
1454 struct ocfs2_extent_rec *left_rec, *right_rec;
1455 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1456
1457 /*
1458 * Update the counts and position values within all the
1459 * interior nodes to reflect the leaf rotation we just did.
1460 *
1461 * The root node is handled below the loop.
1462 *
1463 * We begin the loop with right_el and left_el pointing to the
1464 * leaf lists and work our way up.
1465 *
1466 * NOTE: within this loop, left_el and right_el always refer
1467 * to the *child* lists.
1468 */
1469 left_el = path_leaf_el(left_path);
1470 right_el = path_leaf_el(right_path);
1471 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1472 mlog(0, "Adjust records at index %u\n", i);
1473
1474 /*
1475 * One nice property of knowing that all of these
1476 * nodes are below the root is that we only deal with
1477 * the leftmost right node record and the rightmost
1478 * left node record.
1479 */
1480 el = left_path->p_node[i].el;
1481 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1482 left_rec = &el->l_recs[idx];
1483
1484 el = right_path->p_node[i].el;
1485 right_rec = &el->l_recs[0];
1486
1487 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1488 right_el);
1489
1490 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1491 if (ret)
1492 mlog_errno(ret);
1493
1494 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1495 if (ret)
1496 mlog_errno(ret);
1497
1498 /*
1499 * Setup our list pointers now so that the current
1500 * parents become children in the next iteration.
1501 */
1502 left_el = left_path->p_node[i].el;
1503 right_el = right_path->p_node[i].el;
1504 }
1505
1506 /*
1507 * At the root node, adjust the two adjacent records which
1508 * begin our path to the leaves.
1509 */
1510
1511 el = left_path->p_node[subtree_index].el;
1512 left_el = left_path->p_node[subtree_index + 1].el;
1513 right_el = right_path->p_node[subtree_index + 1].el;
1514
1515 ocfs2_adjust_root_records(el, left_el, right_el,
1516 left_path->p_node[subtree_index + 1].bh->b_blocknr);
1517
1518 root_bh = left_path->p_node[subtree_index].bh;
1519
1520 ret = ocfs2_journal_dirty(handle, root_bh);
1521 if (ret)
1522 mlog_errno(ret);
1523 }
1524
1525 static int ocfs2_rotate_subtree_right(struct inode *inode,
1526 handle_t *handle,
1527 struct ocfs2_path *left_path,
1528 struct ocfs2_path *right_path,
1529 int subtree_index)
1530 {
1531 int ret, i;
1532 struct buffer_head *right_leaf_bh;
1533 struct buffer_head *left_leaf_bh = NULL;
1534 struct buffer_head *root_bh;
1535 struct ocfs2_extent_list *right_el, *left_el;
1536 struct ocfs2_extent_rec move_rec;
1537
1538 left_leaf_bh = path_leaf_bh(left_path);
1539 left_el = path_leaf_el(left_path);
1540
1541 if (left_el->l_next_free_rec != left_el->l_count) {
1542 ocfs2_error(inode->i_sb,
1543 "Inode %llu has non-full interior leaf node %llu"
1544 "(next free = %u)",
1545 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1546 (unsigned long long)left_leaf_bh->b_blocknr,
1547 le16_to_cpu(left_el->l_next_free_rec));
1548 return -EROFS;
1549 }
1550
1551 /*
1552 * This extent block may already have an empty record, so we
1553 * return early if so.
1554 */
1555 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1556 return 0;
1557
1558 root_bh = left_path->p_node[subtree_index].bh;
1559 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1560
1561 ret = ocfs2_journal_access(handle, inode, root_bh,
1562 OCFS2_JOURNAL_ACCESS_WRITE);
1563 if (ret) {
1564 mlog_errno(ret);
1565 goto out;
1566 }
1567
1568 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1569 ret = ocfs2_journal_access(handle, inode,
1570 right_path->p_node[i].bh,
1571 OCFS2_JOURNAL_ACCESS_WRITE);
1572 if (ret) {
1573 mlog_errno(ret);
1574 goto out;
1575 }
1576
1577 ret = ocfs2_journal_access(handle, inode,
1578 left_path->p_node[i].bh,
1579 OCFS2_JOURNAL_ACCESS_WRITE);
1580 if (ret) {
1581 mlog_errno(ret);
1582 goto out;
1583 }
1584 }
1585
1586 right_leaf_bh = path_leaf_bh(right_path);
1587 right_el = path_leaf_el(right_path);
1588
1589 /* This is a code error, not a disk corruption. */
1590 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1591 "because rightmost leaf block %llu is empty\n",
1592 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1593 (unsigned long long)right_leaf_bh->b_blocknr);
1594
1595 ocfs2_create_empty_extent(right_el);
1596
1597 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1598 if (ret) {
1599 mlog_errno(ret);
1600 goto out;
1601 }
1602
1603 /* Do the copy now. */
1604 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1605 move_rec = left_el->l_recs[i];
1606 right_el->l_recs[0] = move_rec;
1607
1608 /*
1609 * Clear out the record we just copied and shift everything
1610 * over, leaving an empty extent in the left leaf.
1611 *
1612 * We temporarily subtract from next_free_rec so that the
1613 * shift will lose the tail record (which is now defunct).
1614 */
1615 le16_add_cpu(&left_el->l_next_free_rec, -1);
1616 ocfs2_shift_records_right(left_el);
1617 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1618 le16_add_cpu(&left_el->l_next_free_rec, 1);
1619
1620 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1621 if (ret) {
1622 mlog_errno(ret);
1623 goto out;
1624 }
1625
1626 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1627 subtree_index);
1628
1629 out:
1630 return ret;
1631 }
1632
1633 /*
1634 * Given a full path, determine what cpos value would return us a path
1635 * containing the leaf immediately to the left of the current one.
1636 *
1637 * Will return zero if the path passed in is already the leftmost path.
1638 */
1639 static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1640 struct ocfs2_path *path, u32 *cpos)
1641 {
1642 int i, j, ret = 0;
1643 u64 blkno;
1644 struct ocfs2_extent_list *el;
1645
1646 BUG_ON(path->p_tree_depth == 0);
1647
1648 *cpos = 0;
1649
1650 blkno = path_leaf_bh(path)->b_blocknr;
1651
1652 /* Start at the tree node just above the leaf and work our way up. */
1653 i = path->p_tree_depth - 1;
1654 while (i >= 0) {
1655 el = path->p_node[i].el;
1656
1657 /*
1658 * Find the extent record just before the one in our
1659 * path.
1660 */
1661 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1662 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1663 if (j == 0) {
1664 if (i == 0) {
1665 /*
1666 * We've determined that the
1667 * path specified is already
1668 * the leftmost one - return a
1669 * cpos of zero.
1670 */
1671 goto out;
1672 }
1673 /*
1674 * The leftmost record points to our
1675 * leaf - we need to travel up the
1676 * tree one level.
1677 */
1678 goto next_node;
1679 }
1680
1681 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
1682 *cpos = *cpos + ocfs2_rec_clusters(el,
1683 &el->l_recs[j - 1]);
1684 *cpos = *cpos - 1;
1685 goto out;
1686 }
1687 }
1688
1689 /*
1690 * If we got here, we never found a valid node where
1691 * the tree indicated one should be.
1692 */
1693 ocfs2_error(sb,
1694 "Invalid extent tree at extent block %llu\n",
1695 (unsigned long long)blkno);
1696 ret = -EROFS;
1697 goto out;
1698
1699 next_node:
1700 blkno = path->p_node[i].bh->b_blocknr;
1701 i--;
1702 }
1703
1704 out:
1705 return ret;
1706 }
1707
1708 /*
1709 * Extend the transaction by enough credits to complete the rotation,
1710 * and still leave at least the original number of credits allocated
1711 * to this transaction.
1712 */
1713 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
1714 int op_credits,
1715 struct ocfs2_path *path)
1716 {
1717 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
1718
1719 if (handle->h_buffer_credits < credits)
1720 return ocfs2_extend_trans(handle, credits);
1721
1722 return 0;
1723 }
1724
1725 /*
1726 * Trap the case where we're inserting into the theoretical range past
1727 * the _actual_ left leaf range. Otherwise, we'll rotate a record
1728 * whose cpos is less than ours into the right leaf.
1729 *
1730 * It's only necessary to look at the rightmost record of the left
1731 * leaf because the logic that calls us should ensure that the
1732 * theoretical ranges in the path components above the leaves are
1733 * correct.
1734 */
1735 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1736 u32 insert_cpos)
1737 {
1738 struct ocfs2_extent_list *left_el;
1739 struct ocfs2_extent_rec *rec;
1740 int next_free;
1741
1742 left_el = path_leaf_el(left_path);
1743 next_free = le16_to_cpu(left_el->l_next_free_rec);
1744 rec = &left_el->l_recs[next_free - 1];
1745
1746 if (insert_cpos > le32_to_cpu(rec->e_cpos))
1747 return 1;
1748 return 0;
1749 }
1750
1751 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1752 {
1753 int next_free = le16_to_cpu(el->l_next_free_rec);
1754 unsigned int range;
1755 struct ocfs2_extent_rec *rec;
1756
1757 if (next_free == 0)
1758 return 0;
1759
1760 rec = &el->l_recs[0];
1761 if (ocfs2_is_empty_extent(rec)) {
1762 /* Empty list. */
1763 if (next_free == 1)
1764 return 0;
1765 rec = &el->l_recs[1];
1766 }
1767
1768 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1769 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1770 return 1;
1771 return 0;
1772 }
1773
1774 /*
1775 * Rotate all the records in a btree right one record, starting at insert_cpos.
1776 *
1777 * The path to the rightmost leaf should be passed in.
1778 *
1779 * The array is assumed to be large enough to hold an entire path (tree depth).
1780 *
1781 * Upon succesful return from this function:
1782 *
1783 * - The 'right_path' array will contain a path to the leaf block
1784 * whose range contains e_cpos.
1785 * - That leaf block will have a single empty extent in list index 0.
1786 * - In the case that the rotation requires a post-insert update,
1787 * *ret_left_path will contain a valid path which can be passed to
1788 * ocfs2_insert_path().
1789 */
1790 static int ocfs2_rotate_tree_right(struct inode *inode,
1791 handle_t *handle,
1792 enum ocfs2_split_type split,
1793 u32 insert_cpos,
1794 struct ocfs2_path *right_path,
1795 struct ocfs2_path **ret_left_path)
1796 {
1797 int ret, start, orig_credits = handle->h_buffer_credits;
1798 u32 cpos;
1799 struct ocfs2_path *left_path = NULL;
1800
1801 *ret_left_path = NULL;
1802
1803 left_path = ocfs2_new_path(path_root_bh(right_path),
1804 path_root_el(right_path));
1805 if (!left_path) {
1806 ret = -ENOMEM;
1807 mlog_errno(ret);
1808 goto out;
1809 }
1810
1811 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1812 if (ret) {
1813 mlog_errno(ret);
1814 goto out;
1815 }
1816
1817 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1818
1819 /*
1820 * What we want to do here is:
1821 *
1822 * 1) Start with the rightmost path.
1823 *
1824 * 2) Determine a path to the leaf block directly to the left
1825 * of that leaf.
1826 *
1827 * 3) Determine the 'subtree root' - the lowest level tree node
1828 * which contains a path to both leaves.
1829 *
1830 * 4) Rotate the subtree.
1831 *
1832 * 5) Find the next subtree by considering the left path to be
1833 * the new right path.
1834 *
1835 * The check at the top of this while loop also accepts
1836 * insert_cpos == cpos because cpos is only a _theoretical_
1837 * value to get us the left path - insert_cpos might very well
1838 * be filling that hole.
1839 *
1840 * Stop at a cpos of '0' because we either started at the
1841 * leftmost branch (i.e., a tree with one branch and a
1842 * rotation inside of it), or we've gone as far as we can in
1843 * rotating subtrees.
1844 */
1845 while (cpos && insert_cpos <= cpos) {
1846 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1847 insert_cpos, cpos);
1848
1849 ret = ocfs2_find_path(inode, left_path, cpos);
1850 if (ret) {
1851 mlog_errno(ret);
1852 goto out;
1853 }
1854
1855 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1856 path_leaf_bh(right_path),
1857 "Inode %lu: error during insert of %u "
1858 "(left path cpos %u) results in two identical "
1859 "paths ending at %llu\n",
1860 inode->i_ino, insert_cpos, cpos,
1861 (unsigned long long)
1862 path_leaf_bh(left_path)->b_blocknr);
1863
1864 if (split == SPLIT_NONE &&
1865 ocfs2_rotate_requires_path_adjustment(left_path,
1866 insert_cpos)) {
1867
1868 /*
1869 * We've rotated the tree as much as we
1870 * should. The rest is up to
1871 * ocfs2_insert_path() to complete, after the
1872 * record insertion. We indicate this
1873 * situation by returning the left path.
1874 *
1875 * The reason we don't adjust the records here
1876 * before the record insert is that an error
1877 * later might break the rule where a parent
1878 * record e_cpos will reflect the actual
1879 * e_cpos of the 1st nonempty record of the
1880 * child list.
1881 */
1882 *ret_left_path = left_path;
1883 goto out_ret_path;
1884 }
1885
1886 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1887
1888 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1889 start,
1890 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1891 right_path->p_tree_depth);
1892
1893 ret = ocfs2_extend_rotate_transaction(handle, start,
1894 orig_credits, right_path);
1895 if (ret) {
1896 mlog_errno(ret);
1897 goto out;
1898 }
1899
1900 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1901 right_path, start);
1902 if (ret) {
1903 mlog_errno(ret);
1904 goto out;
1905 }
1906
1907 if (split != SPLIT_NONE &&
1908 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1909 insert_cpos)) {
1910 /*
1911 * A rotate moves the rightmost left leaf
1912 * record over to the leftmost right leaf
1913 * slot. If we're doing an extent split
1914 * instead of a real insert, then we have to
1915 * check that the extent to be split wasn't
1916 * just moved over. If it was, then we can
1917 * exit here, passing left_path back -
1918 * ocfs2_split_extent() is smart enough to
1919 * search both leaves.
1920 */
1921 *ret_left_path = left_path;
1922 goto out_ret_path;
1923 }
1924
1925 /*
1926 * There is no need to re-read the next right path
1927 * as we know that it'll be our current left
1928 * path. Optimize by copying values instead.
1929 */
1930 ocfs2_mv_path(right_path, left_path);
1931
1932 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1933 &cpos);
1934 if (ret) {
1935 mlog_errno(ret);
1936 goto out;
1937 }
1938 }
1939
1940 out:
1941 ocfs2_free_path(left_path);
1942
1943 out_ret_path:
1944 return ret;
1945 }
1946
1947 static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1948 struct ocfs2_path *path)
1949 {
1950 int i, idx;
1951 struct ocfs2_extent_rec *rec;
1952 struct ocfs2_extent_list *el;
1953 struct ocfs2_extent_block *eb;
1954 u32 range;
1955
1956 /* Path should always be rightmost. */
1957 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1958 BUG_ON(eb->h_next_leaf_blk != 0ULL);
1959
1960 el = &eb->h_list;
1961 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1962 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1963 rec = &el->l_recs[idx];
1964 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1965
1966 for (i = 0; i < path->p_tree_depth; i++) {
1967 el = path->p_node[i].el;
1968 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1969 rec = &el->l_recs[idx];
1970
1971 rec->e_int_clusters = cpu_to_le32(range);
1972 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
1973
1974 ocfs2_journal_dirty(handle, path->p_node[i].bh);
1975 }
1976 }
1977
1978 static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1979 struct ocfs2_cached_dealloc_ctxt *dealloc,
1980 struct ocfs2_path *path, int unlink_start)
1981 {
1982 int ret, i;
1983 struct ocfs2_extent_block *eb;
1984 struct ocfs2_extent_list *el;
1985 struct buffer_head *bh;
1986
1987 for(i = unlink_start; i < path_num_items(path); i++) {
1988 bh = path->p_node[i].bh;
1989
1990 eb = (struct ocfs2_extent_block *)bh->b_data;
1991 /*
1992 * Not all nodes might have had their final count
1993 * decremented by the caller - handle this here.
1994 */
1995 el = &eb->h_list;
1996 if (le16_to_cpu(el->l_next_free_rec) > 1) {
1997 mlog(ML_ERROR,
1998 "Inode %llu, attempted to remove extent block "
1999 "%llu with %u records\n",
2000 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2001 (unsigned long long)le64_to_cpu(eb->h_blkno),
2002 le16_to_cpu(el->l_next_free_rec));
2003
2004 ocfs2_journal_dirty(handle, bh);
2005 ocfs2_remove_from_cache(inode, bh);
2006 continue;
2007 }
2008
2009 el->l_next_free_rec = 0;
2010 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2011
2012 ocfs2_journal_dirty(handle, bh);
2013
2014 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2015 if (ret)
2016 mlog_errno(ret);
2017
2018 ocfs2_remove_from_cache(inode, bh);
2019 }
2020 }
2021
2022 static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2023 struct ocfs2_path *left_path,
2024 struct ocfs2_path *right_path,
2025 int subtree_index,
2026 struct ocfs2_cached_dealloc_ctxt *dealloc)
2027 {
2028 int i;
2029 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2030 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2031 struct ocfs2_extent_list *el;
2032 struct ocfs2_extent_block *eb;
2033
2034 el = path_leaf_el(left_path);
2035
2036 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2037
2038 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2039 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2040 break;
2041
2042 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2043
2044 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2045 le16_add_cpu(&root_el->l_next_free_rec, -1);
2046
2047 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2048 eb->h_next_leaf_blk = 0;
2049
2050 ocfs2_journal_dirty(handle, root_bh);
2051 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2052
2053 ocfs2_unlink_path(inode, handle, dealloc, right_path,
2054 subtree_index + 1);
2055 }
2056
2057 static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2058 struct ocfs2_path *left_path,
2059 struct ocfs2_path *right_path,
2060 int subtree_index,
2061 struct ocfs2_cached_dealloc_ctxt *dealloc,
2062 int *deleted)
2063 {
2064 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2065 struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2066 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2067 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2068 struct ocfs2_extent_block *eb;
2069
2070 *deleted = 0;
2071
2072 right_leaf_el = path_leaf_el(right_path);
2073 left_leaf_el = path_leaf_el(left_path);
2074 root_bh = left_path->p_node[subtree_index].bh;
2075 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2076
2077 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2078 return 0;
2079
2080 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2081 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2082 /*
2083 * It's legal for us to proceed if the right leaf is
2084 * the rightmost one and it has an empty extent. There
2085 * are two cases to handle - whether the leaf will be
2086 * empty after removal or not. If the leaf isn't empty
2087 * then just remove the empty extent up front. The
2088 * next block will handle empty leaves by flagging
2089 * them for unlink.
2090 *
2091 * Non rightmost leaves will throw -EAGAIN and the
2092 * caller can manually move the subtree and retry.
2093 */
2094
2095 if (eb->h_next_leaf_blk != 0ULL)
2096 return -EAGAIN;
2097
2098 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2099 ret = ocfs2_journal_access(handle, inode,
2100 path_leaf_bh(right_path),
2101 OCFS2_JOURNAL_ACCESS_WRITE);
2102 if (ret) {
2103 mlog_errno(ret);
2104 goto out;
2105 }
2106
2107 ocfs2_remove_empty_extent(right_leaf_el);
2108 } else
2109 right_has_empty = 1;
2110 }
2111
2112 if (eb->h_next_leaf_blk == 0ULL &&
2113 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2114 /*
2115 * We have to update i_last_eb_blk during the meta
2116 * data delete.
2117 */
2118 ret = ocfs2_journal_access(handle, inode, di_bh,
2119 OCFS2_JOURNAL_ACCESS_WRITE);
2120 if (ret) {
2121 mlog_errno(ret);
2122 goto out;
2123 }
2124
2125 del_right_subtree = 1;
2126 }
2127
2128 /*
2129 * Getting here with an empty extent in the right path implies
2130 * that it's the rightmost path and will be deleted.
2131 */
2132 BUG_ON(right_has_empty && !del_right_subtree);
2133
2134 ret = ocfs2_journal_access(handle, inode, root_bh,
2135 OCFS2_JOURNAL_ACCESS_WRITE);
2136 if (ret) {
2137 mlog_errno(ret);
2138 goto out;
2139 }
2140
2141 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2142 ret = ocfs2_journal_access(handle, inode,
2143 right_path->p_node[i].bh,
2144 OCFS2_JOURNAL_ACCESS_WRITE);
2145 if (ret) {
2146 mlog_errno(ret);
2147 goto out;
2148 }
2149
2150 ret = ocfs2_journal_access(handle, inode,
2151 left_path->p_node[i].bh,
2152 OCFS2_JOURNAL_ACCESS_WRITE);
2153 if (ret) {
2154 mlog_errno(ret);
2155 goto out;
2156 }
2157 }
2158
2159 if (!right_has_empty) {
2160 /*
2161 * Only do this if we're moving a real
2162 * record. Otherwise, the action is delayed until
2163 * after removal of the right path in which case we
2164 * can do a simple shift to remove the empty extent.
2165 */
2166 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2167 memset(&right_leaf_el->l_recs[0], 0,
2168 sizeof(struct ocfs2_extent_rec));
2169 }
2170 if (eb->h_next_leaf_blk == 0ULL) {
2171 /*
2172 * Move recs over to get rid of empty extent, decrease
2173 * next_free. This is allowed to remove the last
2174 * extent in our leaf (setting l_next_free_rec to
2175 * zero) - the delete code below won't care.
2176 */
2177 ocfs2_remove_empty_extent(right_leaf_el);
2178 }
2179
2180 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2181 if (ret)
2182 mlog_errno(ret);
2183 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2184 if (ret)
2185 mlog_errno(ret);
2186
2187 if (del_right_subtree) {
2188 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2189 subtree_index, dealloc);
2190 ocfs2_update_edge_lengths(inode, handle, left_path);
2191
2192 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2193 di->i_last_eb_blk = eb->h_blkno;
2194
2195 /*
2196 * Removal of the extent in the left leaf was skipped
2197 * above so we could delete the right path
2198 * 1st.
2199 */
2200 if (right_has_empty)
2201 ocfs2_remove_empty_extent(left_leaf_el);
2202
2203 ret = ocfs2_journal_dirty(handle, di_bh);
2204 if (ret)
2205 mlog_errno(ret);
2206
2207 *deleted = 1;
2208 } else
2209 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2210 subtree_index);
2211
2212 out:
2213 return ret;
2214 }
2215
2216 /*
2217 * Given a full path, determine what cpos value would return us a path
2218 * containing the leaf immediately to the right of the current one.
2219 *
2220 * Will return zero if the path passed in is already the rightmost path.
2221 *
2222 * This looks similar, but is subtly different to
2223 * ocfs2_find_cpos_for_left_leaf().
2224 */
2225 static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2226 struct ocfs2_path *path, u32 *cpos)
2227 {
2228 int i, j, ret = 0;
2229 u64 blkno;
2230 struct ocfs2_extent_list *el;
2231
2232 *cpos = 0;
2233
2234 if (path->p_tree_depth == 0)
2235 return 0;
2236
2237 blkno = path_leaf_bh(path)->b_blocknr;
2238
2239 /* Start at the tree node just above the leaf and work our way up. */
2240 i = path->p_tree_depth - 1;
2241 while (i >= 0) {
2242 int next_free;
2243
2244 el = path->p_node[i].el;
2245
2246 /*
2247 * Find the extent record just after the one in our
2248 * path.
2249 */
2250 next_free = le16_to_cpu(el->l_next_free_rec);
2251 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2252 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2253 if (j == (next_free - 1)) {
2254 if (i == 0) {
2255 /*
2256 * We've determined that the
2257 * path specified is already
2258 * the rightmost one - return a
2259 * cpos of zero.
2260 */
2261 goto out;
2262 }
2263 /*
2264 * The rightmost record points to our
2265 * leaf - we need to travel up the
2266 * tree one level.
2267 */
2268 goto next_node;
2269 }
2270
2271 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2272 goto out;
2273 }
2274 }
2275
2276 /*
2277 * If we got here, we never found a valid node where
2278 * the tree indicated one should be.
2279 */
2280 ocfs2_error(sb,
2281 "Invalid extent tree at extent block %llu\n",
2282 (unsigned long long)blkno);
2283 ret = -EROFS;
2284 goto out;
2285
2286 next_node:
2287 blkno = path->p_node[i].bh->b_blocknr;
2288 i--;
2289 }
2290
2291 out:
2292 return ret;
2293 }
2294
2295 static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2296 handle_t *handle,
2297 struct buffer_head *bh,
2298 struct ocfs2_extent_list *el)
2299 {
2300 int ret;
2301
2302 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2303 return 0;
2304
2305 ret = ocfs2_journal_access(handle, inode, bh,
2306 OCFS2_JOURNAL_ACCESS_WRITE);
2307 if (ret) {
2308 mlog_errno(ret);
2309 goto out;
2310 }
2311
2312 ocfs2_remove_empty_extent(el);
2313
2314 ret = ocfs2_journal_dirty(handle, bh);
2315 if (ret)
2316 mlog_errno(ret);
2317
2318 out:
2319 return ret;
2320 }
2321
2322 static int __ocfs2_rotate_tree_left(struct inode *inode,
2323 handle_t *handle, int orig_credits,
2324 struct ocfs2_path *path,
2325 struct ocfs2_cached_dealloc_ctxt *dealloc,
2326 struct ocfs2_path **empty_extent_path)
2327 {
2328 int ret, subtree_root, deleted;
2329 u32 right_cpos;
2330 struct ocfs2_path *left_path = NULL;
2331 struct ocfs2_path *right_path = NULL;
2332
2333 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2334
2335 *empty_extent_path = NULL;
2336
2337 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2338 &right_cpos);
2339 if (ret) {
2340 mlog_errno(ret);
2341 goto out;
2342 }
2343
2344 left_path = ocfs2_new_path(path_root_bh(path),
2345 path_root_el(path));
2346 if (!left_path) {
2347 ret = -ENOMEM;
2348 mlog_errno(ret);
2349 goto out;
2350 }
2351
2352 ocfs2_cp_path(left_path, path);
2353
2354 right_path = ocfs2_new_path(path_root_bh(path),
2355 path_root_el(path));
2356 if (!right_path) {
2357 ret = -ENOMEM;
2358 mlog_errno(ret);
2359 goto out;
2360 }
2361
2362 while (right_cpos) {
2363 ret = ocfs2_find_path(inode, right_path, right_cpos);
2364 if (ret) {
2365 mlog_errno(ret);
2366 goto out;
2367 }
2368
2369 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2370 right_path);
2371
2372 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2373 subtree_root,
2374 (unsigned long long)
2375 right_path->p_node[subtree_root].bh->b_blocknr,
2376 right_path->p_tree_depth);
2377
2378 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2379 orig_credits, left_path);
2380 if (ret) {
2381 mlog_errno(ret);
2382 goto out;
2383 }
2384
2385 /*
2386 * Caller might still want to make changes to the
2387 * tree root, so re-add it to the journal here.
2388 */
2389 ret = ocfs2_journal_access(handle, inode,
2390 path_root_bh(left_path),
2391 OCFS2_JOURNAL_ACCESS_WRITE);
2392 if (ret) {
2393 mlog_errno(ret);
2394 goto out;
2395 }
2396
2397 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2398 right_path, subtree_root,
2399 dealloc, &deleted);
2400 if (ret == -EAGAIN) {
2401 /*
2402 * The rotation has to temporarily stop due to
2403 * the right subtree having an empty
2404 * extent. Pass it back to the caller for a
2405 * fixup.
2406 */
2407 *empty_extent_path = right_path;
2408 right_path = NULL;
2409 goto out;
2410 }
2411 if (ret) {
2412 mlog_errno(ret);
2413 goto out;
2414 }
2415
2416 /*
2417 * The subtree rotate might have removed records on
2418 * the rightmost edge. If so, then rotation is
2419 * complete.
2420 */
2421 if (deleted)
2422 break;
2423
2424 ocfs2_mv_path(left_path, right_path);
2425
2426 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2427 &right_cpos);
2428 if (ret) {
2429 mlog_errno(ret);
2430 goto out;
2431 }
2432 }
2433
2434 out:
2435 ocfs2_free_path(right_path);
2436 ocfs2_free_path(left_path);
2437
2438 return ret;
2439 }
2440
2441 static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2442 struct ocfs2_path *path,
2443 struct ocfs2_cached_dealloc_ctxt *dealloc)
2444 {
2445 int ret, subtree_index;
2446 u32 cpos;
2447 struct ocfs2_path *left_path = NULL;
2448 struct ocfs2_dinode *di;
2449 struct ocfs2_extent_block *eb;
2450 struct ocfs2_extent_list *el;
2451
2452 /*
2453 * XXX: This code assumes that the root is an inode, which is
2454 * true for now but may change as tree code gets generic.
2455 */
2456 di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2457 if (!OCFS2_IS_VALID_DINODE(di)) {
2458 ret = -EIO;
2459 ocfs2_error(inode->i_sb,
2460 "Inode %llu has invalid path root",
2461 (unsigned long long)OCFS2_I(inode)->ip_blkno);
2462 goto out;
2463 }
2464
2465 /*
2466 * There's two ways we handle this depending on
2467 * whether path is the only existing one.
2468 */
2469 ret = ocfs2_extend_rotate_transaction(handle, 0,
2470 handle->h_buffer_credits,
2471 path);
2472 if (ret) {
2473 mlog_errno(ret);
2474 goto out;
2475 }
2476
2477 ret = ocfs2_journal_access_path(inode, handle, path);
2478 if (ret) {
2479 mlog_errno(ret);
2480 goto out;
2481 }
2482
2483 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2484 if (ret) {
2485 mlog_errno(ret);
2486 goto out;
2487 }
2488
2489 if (cpos) {
2490 /*
2491 * We have a path to the left of this one - it needs
2492 * an update too.
2493 */
2494 left_path = ocfs2_new_path(path_root_bh(path),
2495 path_root_el(path));
2496 if (!left_path) {
2497 ret = -ENOMEM;
2498 mlog_errno(ret);
2499 goto out;
2500 }
2501
2502 ret = ocfs2_find_path(inode, left_path, cpos);
2503 if (ret) {
2504 mlog_errno(ret);
2505 goto out;
2506 }
2507
2508 ret = ocfs2_journal_access_path(inode, handle, left_path);
2509 if (ret) {
2510 mlog_errno(ret);
2511 goto out;
2512 }
2513
2514 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2515
2516 ocfs2_unlink_subtree(inode, handle, left_path, path,
2517 subtree_index, dealloc);
2518 ocfs2_update_edge_lengths(inode, handle, left_path);
2519
2520 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2521 di->i_last_eb_blk = eb->h_blkno;
2522 } else {
2523 /*
2524 * 'path' is also the leftmost path which
2525 * means it must be the only one. This gets
2526 * handled differently because we want to
2527 * revert the inode back to having extents
2528 * in-line.
2529 */
2530 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2531
2532 el = &di->id2.i_list;
2533 el->l_tree_depth = 0;
2534 el->l_next_free_rec = 0;
2535 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2536
2537 di->i_last_eb_blk = 0;
2538 }
2539
2540 ocfs2_journal_dirty(handle, path_root_bh(path));
2541
2542 out:
2543 ocfs2_free_path(left_path);
2544 return ret;
2545 }
2546
2547 /*
2548 * Left rotation of btree records.
2549 *
2550 * In many ways, this is (unsurprisingly) the opposite of right
2551 * rotation. We start at some non-rightmost path containing an empty
2552 * extent in the leaf block. The code works its way to the rightmost
2553 * path by rotating records to the left in every subtree.
2554 *
2555 * This is used by any code which reduces the number of extent records
2556 * in a leaf. After removal, an empty record should be placed in the
2557 * leftmost list position.
2558 *
2559 * This won't handle a length update of the rightmost path records if
2560 * the rightmost tree leaf record is removed so the caller is
2561 * responsible for detecting and correcting that.
2562 */
2563 static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2564 struct ocfs2_path *path,
2565 struct ocfs2_cached_dealloc_ctxt *dealloc)
2566 {
2567 int ret, orig_credits = handle->h_buffer_credits;
2568 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2569 struct ocfs2_extent_block *eb;
2570 struct ocfs2_extent_list *el;
2571
2572 el = path_leaf_el(path);
2573 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2574 return 0;
2575
2576 if (path->p_tree_depth == 0) {
2577 rightmost_no_delete:
2578 /*
2579 * In-inode extents. This is trivially handled, so do
2580 * it up front.
2581 */
2582 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2583 path_leaf_bh(path),
2584 path_leaf_el(path));
2585 if (ret)
2586 mlog_errno(ret);
2587 goto out;
2588 }
2589
2590 /*
2591 * Handle rightmost branch now. There's several cases:
2592 * 1) simple rotation leaving records in there. That's trivial.
2593 * 2) rotation requiring a branch delete - there's no more
2594 * records left. Two cases of this:
2595 * a) There are branches to the left.
2596 * b) This is also the leftmost (the only) branch.
2597 *
2598 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2599 * 2a) we need the left branch so that we can update it with the unlink
2600 * 2b) we need to bring the inode back to inline extents.
2601 */
2602
2603 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2604 el = &eb->h_list;
2605 if (eb->h_next_leaf_blk == 0) {
2606 /*
2607 * This gets a bit tricky if we're going to delete the
2608 * rightmost path. Get the other cases out of the way
2609 * 1st.
2610 */
2611 if (le16_to_cpu(el->l_next_free_rec) > 1)
2612 goto rightmost_no_delete;
2613
2614 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2615 ret = -EIO;
2616 ocfs2_error(inode->i_sb,
2617 "Inode %llu has empty extent block at %llu",
2618 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2619 (unsigned long long)le64_to_cpu(eb->h_blkno));
2620 goto out;
2621 }
2622
2623 /*
2624 * XXX: The caller can not trust "path" any more after
2625 * this as it will have been deleted. What do we do?
2626 *
2627 * In theory the rotate-for-merge code will never get
2628 * here because it'll always ask for a rotate in a
2629 * nonempty list.
2630 */
2631
2632 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2633 dealloc);
2634 if (ret)
2635 mlog_errno(ret);
2636 goto out;
2637 }
2638
2639 /*
2640 * Now we can loop, remembering the path we get from -EAGAIN
2641 * and restarting from there.
2642 */
2643 try_rotate:
2644 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2645 dealloc, &restart_path);
2646 if (ret && ret != -EAGAIN) {
2647 mlog_errno(ret);
2648 goto out;
2649 }
2650
2651 while (ret == -EAGAIN) {
2652 tmp_path = restart_path;
2653 restart_path = NULL;
2654
2655 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2656 tmp_path, dealloc,
2657 &restart_path);
2658 if (ret && ret != -EAGAIN) {
2659 mlog_errno(ret);
2660 goto out;
2661 }
2662
2663 ocfs2_free_path(tmp_path);
2664 tmp_path = NULL;
2665
2666 if (ret == 0)
2667 goto try_rotate;
2668 }
2669
2670 out:
2671 ocfs2_free_path(tmp_path);
2672 ocfs2_free_path(restart_path);
2673 return ret;
2674 }
2675
2676 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2677 int index)
2678 {
2679 struct ocfs2_extent_rec *rec = &el->l_recs[index];
2680 unsigned int size;
2681
2682 if (rec->e_leaf_clusters == 0) {
2683 /*
2684 * We consumed all of the merged-from record. An empty
2685 * extent cannot exist anywhere but the 1st array
2686 * position, so move things over if the merged-from
2687 * record doesn't occupy that position.
2688 *
2689 * This creates a new empty extent so the caller
2690 * should be smart enough to have removed any existing
2691 * ones.
2692 */
2693 if (index > 0) {
2694 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2695 size = index * sizeof(struct ocfs2_extent_rec);
2696 memmove(&el->l_recs[1], &el->l_recs[0], size);
2697 }
2698
2699 /*
2700 * Always memset - the caller doesn't check whether it
2701 * created an empty extent, so there could be junk in
2702 * the other fields.
2703 */
2704 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2705 }
2706 }
2707
2708 static int ocfs2_get_right_path(struct inode *inode,
2709 struct ocfs2_path *left_path,
2710 struct ocfs2_path **ret_right_path)
2711 {
2712 int ret;
2713 u32 right_cpos;
2714 struct ocfs2_path *right_path = NULL;
2715 struct ocfs2_extent_list *left_el;
2716
2717 *ret_right_path = NULL;
2718
2719 /* This function shouldn't be called for non-trees. */
2720 BUG_ON(left_path->p_tree_depth == 0);
2721
2722 left_el = path_leaf_el(left_path);
2723 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
2724
2725 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2726 &right_cpos);
2727 if (ret) {
2728 mlog_errno(ret);
2729 goto out;
2730 }
2731
2732 /* This function shouldn't be called for the rightmost leaf. */
2733 BUG_ON(right_cpos == 0);
2734
2735 right_path = ocfs2_new_path(path_root_bh(left_path),
2736 path_root_el(left_path));
2737 if (!right_path) {
2738 ret = -ENOMEM;
2739 mlog_errno(ret);
2740 goto out;
2741 }
2742
2743 ret = ocfs2_find_path(inode, right_path, right_cpos);
2744 if (ret) {
2745 mlog_errno(ret);
2746 goto out;
2747 }
2748
2749 *ret_right_path = right_path;
2750 out:
2751 if (ret)
2752 ocfs2_free_path(right_path);
2753 return ret;
2754 }
2755
2756 /*
2757 * Remove split_rec clusters from the record at index and merge them
2758 * onto the beginning of the record "next" to it.
2759 * For index < l_count - 1, the next means the extent rec at index + 1.
2760 * For index == l_count - 1, the "next" means the 1st extent rec of the
2761 * next extent block.
2762 */
2763 static int ocfs2_merge_rec_right(struct inode *inode,
2764 struct ocfs2_path *left_path,
2765 handle_t *handle,
2766 struct ocfs2_extent_rec *split_rec,
2767 int index)
2768 {
2769 int ret, next_free, i;
2770 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2771 struct ocfs2_extent_rec *left_rec;
2772 struct ocfs2_extent_rec *right_rec;
2773 struct ocfs2_extent_list *right_el;
2774 struct ocfs2_path *right_path = NULL;
2775 int subtree_index = 0;
2776 struct ocfs2_extent_list *el = path_leaf_el(left_path);
2777 struct buffer_head *bh = path_leaf_bh(left_path);
2778 struct buffer_head *root_bh = NULL;
2779
2780 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2781 left_rec = &el->l_recs[index];
2782
2783 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
2784 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
2785 /* we meet with a cross extent block merge. */
2786 ret = ocfs2_get_right_path(inode, left_path, &right_path);
2787 if (ret) {
2788 mlog_errno(ret);
2789 goto out;
2790 }
2791
2792 right_el = path_leaf_el(right_path);
2793 next_free = le16_to_cpu(right_el->l_next_free_rec);
2794 BUG_ON(next_free <= 0);
2795 right_rec = &right_el->l_recs[0];
2796 if (ocfs2_is_empty_extent(right_rec)) {
2797 BUG_ON(next_free <= 1);
2798 right_rec = &right_el->l_recs[1];
2799 }
2800
2801 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2802 le16_to_cpu(left_rec->e_leaf_clusters) !=
2803 le32_to_cpu(right_rec->e_cpos));
2804
2805 subtree_index = ocfs2_find_subtree_root(inode,
2806 left_path, right_path);
2807
2808 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2809 handle->h_buffer_credits,
2810 right_path);
2811 if (ret) {
2812 mlog_errno(ret);
2813 goto out;
2814 }
2815
2816 root_bh = left_path->p_node[subtree_index].bh;
2817 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2818
2819 ret = ocfs2_journal_access(handle, inode, root_bh,
2820 OCFS2_JOURNAL_ACCESS_WRITE);
2821 if (ret) {
2822 mlog_errno(ret);
2823 goto out;
2824 }
2825
2826 for (i = subtree_index + 1;
2827 i < path_num_items(right_path); i++) {
2828 ret = ocfs2_journal_access(handle, inode,
2829 right_path->p_node[i].bh,
2830 OCFS2_JOURNAL_ACCESS_WRITE);
2831 if (ret) {
2832 mlog_errno(ret);
2833 goto out;
2834 }
2835
2836 ret = ocfs2_journal_access(handle, inode,
2837 left_path->p_node[i].bh,
2838 OCFS2_JOURNAL_ACCESS_WRITE);
2839 if (ret) {
2840 mlog_errno(ret);
2841 goto out;
2842 }
2843 }
2844
2845 } else {
2846 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
2847 right_rec = &el->l_recs[index + 1];
2848 }
2849
2850 ret = ocfs2_journal_access(handle, inode, bh,
2851 OCFS2_JOURNAL_ACCESS_WRITE);
2852 if (ret) {
2853 mlog_errno(ret);
2854 goto out;
2855 }
2856
2857 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2858
2859 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2860 le64_add_cpu(&right_rec->e_blkno,
2861 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2862 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2863
2864 ocfs2_cleanup_merge(el, index);
2865
2866 ret = ocfs2_journal_dirty(handle, bh);
2867 if (ret)
2868 mlog_errno(ret);
2869
2870 if (right_path) {
2871 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2872 if (ret)
2873 mlog_errno(ret);
2874
2875 ocfs2_complete_edge_insert(inode, handle, left_path,
2876 right_path, subtree_index);
2877 }
2878 out:
2879 if (right_path)
2880 ocfs2_free_path(right_path);
2881 return ret;
2882 }
2883
2884 static int ocfs2_get_left_path(struct inode *inode,
2885 struct ocfs2_path *right_path,
2886 struct ocfs2_path **ret_left_path)
2887 {
2888 int ret;
2889 u32 left_cpos;
2890 struct ocfs2_path *left_path = NULL;
2891
2892 *ret_left_path = NULL;
2893
2894 /* This function shouldn't be called for non-trees. */
2895 BUG_ON(right_path->p_tree_depth == 0);
2896
2897 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
2898 right_path, &left_cpos);
2899 if (ret) {
2900 mlog_errno(ret);
2901 goto out;
2902 }
2903
2904 /* This function shouldn't be called for the leftmost leaf. */
2905 BUG_ON(left_cpos == 0);
2906
2907 left_path = ocfs2_new_path(path_root_bh(right_path),
2908 path_root_el(right_path));
2909 if (!left_path) {
2910 ret = -ENOMEM;
2911 mlog_errno(ret);
2912 goto out;
2913 }
2914
2915 ret = ocfs2_find_path(inode, left_path, left_cpos);
2916 if (ret) {
2917 mlog_errno(ret);
2918 goto out;
2919 }
2920
2921 *ret_left_path = left_path;
2922 out:
2923 if (ret)
2924 ocfs2_free_path(left_path);
2925 return ret;
2926 }
2927
2928 /*
2929 * Remove split_rec clusters from the record at index and merge them
2930 * onto the tail of the record "before" it.
2931 * For index > 0, the "before" means the extent rec at index - 1.
2932 *
2933 * For index == 0, the "before" means the last record of the previous
2934 * extent block. And there is also a situation that we may need to
2935 * remove the rightmost leaf extent block in the right_path and change
2936 * the right path to indicate the new rightmost path.
2937 */
2938 static int ocfs2_merge_rec_left(struct inode *inode,
2939 struct ocfs2_path *right_path,
2940 handle_t *handle,
2941 struct ocfs2_extent_rec *split_rec,
2942 struct ocfs2_cached_dealloc_ctxt *dealloc,
2943 int index)
2944 {
2945 int ret, i, subtree_index = 0, has_empty_extent = 0;
2946 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2947 struct ocfs2_extent_rec *left_rec;
2948 struct ocfs2_extent_rec *right_rec;
2949 struct ocfs2_extent_list *el = path_leaf_el(right_path);
2950 struct buffer_head *bh = path_leaf_bh(right_path);
2951 struct buffer_head *root_bh = NULL;
2952 struct ocfs2_path *left_path = NULL;
2953 struct ocfs2_extent_list *left_el;
2954
2955 BUG_ON(index < 0);
2956
2957 right_rec = &el->l_recs[index];
2958 if (index == 0) {
2959 /* we meet with a cross extent block merge. */
2960 ret = ocfs2_get_left_path(inode, right_path, &left_path);
2961 if (ret) {
2962 mlog_errno(ret);
2963 goto out;
2964 }
2965
2966 left_el = path_leaf_el(left_path);
2967 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
2968 le16_to_cpu(left_el->l_count));
2969
2970 left_rec = &left_el->l_recs[
2971 le16_to_cpu(left_el->l_next_free_rec) - 1];
2972 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
2973 le16_to_cpu(left_rec->e_leaf_clusters) !=
2974 le32_to_cpu(split_rec->e_cpos));
2975
2976 subtree_index = ocfs2_find_subtree_root(inode,
2977 left_path, right_path);
2978
2979 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
2980 handle->h_buffer_credits,
2981 left_path);
2982 if (ret) {
2983 mlog_errno(ret);
2984 goto out;
2985 }
2986
2987 root_bh = left_path->p_node[subtree_index].bh;
2988 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2989
2990 ret = ocfs2_journal_access(handle, inode, root_bh,
2991 OCFS2_JOURNAL_ACCESS_WRITE);
2992 if (ret) {
2993 mlog_errno(ret);
2994 goto out;
2995 }
2996
2997 for (i = subtree_index + 1;
2998 i < path_num_items(right_path); i++) {
2999 ret = ocfs2_journal_access(handle, inode,
3000 right_path->p_node[i].bh,
3001 OCFS2_JOURNAL_ACCESS_WRITE);
3002 if (ret) {
3003 mlog_errno(ret);
3004 goto out;
3005 }
3006
3007 ret = ocfs2_journal_access(handle, inode,
3008 left_path->p_node[i].bh,
3009 OCFS2_JOURNAL_ACCESS_WRITE);
3010 if (ret) {
3011 mlog_errno(ret);
3012 goto out;
3013 }
3014 }
3015 } else {
3016 left_rec = &el->l_recs[index - 1];
3017 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3018 has_empty_extent = 1;
3019 }
3020
3021 ret = ocfs2_journal_access(handle, inode, bh,
3022 OCFS2_JOURNAL_ACCESS_WRITE);
3023 if (ret) {
3024 mlog_errno(ret);
3025 goto out;
3026 }
3027
3028 if (has_empty_extent && index == 1) {
3029 /*
3030 * The easy case - we can just plop the record right in.
3031 */
3032 *left_rec = *split_rec;
3033
3034 has_empty_extent = 0;
3035 } else
3036 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3037
3038 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3039 le64_add_cpu(&right_rec->e_blkno,
3040 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3041 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3042
3043 ocfs2_cleanup_merge(el, index);
3044
3045 ret = ocfs2_journal_dirty(handle, bh);
3046 if (ret)
3047 mlog_errno(ret);
3048
3049 if (left_path) {
3050 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3051 if (ret)
3052 mlog_errno(ret);
3053
3054 /*
3055 * In the situation that the right_rec is empty and the extent
3056 * block is empty also, ocfs2_complete_edge_insert can't handle
3057 * it and we need to delete the right extent block.
3058 */
3059 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3060 le16_to_cpu(el->l_next_free_rec) == 1) {
3061
3062 ret = ocfs2_remove_rightmost_path(inode, handle,
3063 right_path, dealloc);
3064 if (ret) {
3065 mlog_errno(ret);
3066 goto out;
3067 }
3068
3069 /* Now the rightmost extent block has been deleted.
3070 * So we use the new rightmost path.
3071 */
3072 ocfs2_mv_path(right_path, left_path);
3073 left_path = NULL;
3074 } else
3075 ocfs2_complete_edge_insert(inode, handle, left_path,
3076 right_path, subtree_index);
3077 }
3078 out:
3079 if (left_path)
3080 ocfs2_free_path(left_path);
3081 return ret;
3082 }
3083
3084 static int ocfs2_try_to_merge_extent(struct inode *inode,
3085 handle_t *handle,
3086 struct ocfs2_path *path,
3087 int split_index,
3088 struct ocfs2_extent_rec *split_rec,
3089 struct ocfs2_cached_dealloc_ctxt *dealloc,
3090 struct ocfs2_merge_ctxt *ctxt)
3091
3092 {
3093 int ret = 0;
3094 struct ocfs2_extent_list *el = path_leaf_el(path);
3095 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3096
3097 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3098
3099 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3100 /*
3101 * The merge code will need to create an empty
3102 * extent to take the place of the newly
3103 * emptied slot. Remove any pre-existing empty
3104 * extents - having more than one in a leaf is
3105 * illegal.
3106 */
3107 ret = ocfs2_rotate_tree_left(inode, handle, path,
3108 dealloc);
3109 if (ret) {
3110 mlog_errno(ret);
3111 goto out;
3112 }
3113 split_index--;
3114 rec = &el->l_recs[split_index];
3115 }
3116
3117 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3118 /*
3119 * Left-right contig implies this.
3120 */
3121 BUG_ON(!ctxt->c_split_covers_rec);
3122
3123 /*
3124 * Since the leftright insert always covers the entire
3125 * extent, this call will delete the insert record
3126 * entirely, resulting in an empty extent record added to
3127 * the extent block.
3128 *
3129 * Since the adding of an empty extent shifts
3130 * everything back to the right, there's no need to
3131 * update split_index here.
3132 *
3133 * When the split_index is zero, we need to merge it to the
3134 * prevoius extent block. It is more efficient and easier
3135 * if we do merge_right first and merge_left later.
3136 */
3137 ret = ocfs2_merge_rec_right(inode, path,
3138 handle, split_rec,
3139 split_index);
3140 if (ret) {
3141 mlog_errno(ret);
3142 goto out;
3143 }
3144
3145 /*
3146 * We can only get this from logic error above.
3147 */
3148 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3149
3150 /* The merge left us with an empty extent, remove it. */
3151 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
3152 if (ret) {
3153 mlog_errno(ret);
3154 goto out;
3155 }
3156
3157 rec = &el->l_recs[split_index];
3158
3159 /*
3160 * Note that we don't pass split_rec here on purpose -
3161 * we've merged it into the rec already.
3162 */
3163 ret = ocfs2_merge_rec_left(inode, path,
3164 handle, rec,
3165 dealloc,
3166 split_index);
3167
3168 if (ret) {
3169 mlog_errno(ret);
3170 goto out;
3171 }
3172
3173 ret = ocfs2_rotate_tree_left(inode, handle, path,
3174 dealloc);
3175 /*
3176 * Error from this last rotate is not critical, so
3177 * print but don't bubble it up.
3178 */
3179 if (ret)
3180 mlog_errno(ret);
3181 ret = 0;
3182 } else {
3183 /*
3184 * Merge a record to the left or right.
3185 *
3186 * 'contig_type' is relative to the existing record,
3187 * so for example, if we're "right contig", it's to
3188 * the record on the left (hence the left merge).
3189 */
3190 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3191 ret = ocfs2_merge_rec_left(inode,
3192 path,
3193 handle, split_rec,
3194 dealloc,
3195 split_index);
3196 if (ret) {
3197 mlog_errno(ret);
3198 goto out;
3199 }
3200 } else {
3201 ret = ocfs2_merge_rec_right(inode,
3202 path,
3203 handle, split_rec,
3204 split_index);
3205 if (ret) {
3206 mlog_errno(ret);
3207 goto out;
3208 }
3209 }
3210
3211 if (ctxt->c_split_covers_rec) {
3212 /*
3213 * The merge may have left an empty extent in
3214 * our leaf. Try to rotate it away.
3215 */
3216 ret = ocfs2_rotate_tree_left(inode, handle, path,
3217 dealloc);
3218 if (ret)
3219 mlog_errno(ret);
3220 ret = 0;
3221 }
3222 }
3223
3224 out:
3225 return ret;
3226 }
3227
3228 static void ocfs2_subtract_from_rec(struct super_block *sb,
3229 enum ocfs2_split_type split,
3230 struct ocfs2_extent_rec *rec,
3231 struct ocfs2_extent_rec *split_rec)
3232 {
3233 u64 len_blocks;
3234
3235 len_blocks = ocfs2_clusters_to_blocks(sb,
3236 le16_to_cpu(split_rec->e_leaf_clusters));
3237
3238 if (split == SPLIT_LEFT) {
3239 /*
3240 * Region is on the left edge of the existing
3241 * record.
3242 */
3243 le32_add_cpu(&rec->e_cpos,
3244 le16_to_cpu(split_rec->e_leaf_clusters));
3245 le64_add_cpu(&rec->e_blkno, len_blocks);
3246 le16_add_cpu(&rec->e_leaf_clusters,
3247 -le16_to_cpu(split_rec->e_leaf_clusters));
3248 } else {
3249 /*
3250 * Region is on the right edge of the existing
3251 * record.
3252 */
3253 le16_add_cpu(&rec->e_leaf_clusters,
3254 -le16_to_cpu(split_rec->e_leaf_clusters));
3255 }
3256 }
3257
3258 /*
3259 * Do the final bits of extent record insertion at the target leaf
3260 * list. If this leaf is part of an allocation tree, it is assumed
3261 * that the tree above has been prepared.
3262 */
3263 static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3264 struct ocfs2_extent_list *el,
3265 struct ocfs2_insert_type *insert,
3266 struct inode *inode)
3267 {
3268 int i = insert->ins_contig_index;
3269 unsigned int range;
3270 struct ocfs2_extent_rec *rec;
3271
3272 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3273
3274 if (insert->ins_split != SPLIT_NONE) {
3275 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3276 BUG_ON(i == -1);
3277 rec = &el->l_recs[i];
3278 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3279 insert_rec);
3280 goto rotate;
3281 }
3282
3283 /*
3284 * Contiguous insert - either left or right.
3285 */
3286 if (insert->ins_contig != CONTIG_NONE) {
3287 rec = &el->l_recs[i];
3288 if (insert->ins_contig == CONTIG_LEFT) {
3289 rec->e_blkno = insert_rec->e_blkno;
3290 rec->e_cpos = insert_rec->e_cpos;
3291 }
3292 le16_add_cpu(&rec->e_leaf_clusters,
3293 le16_to_cpu(insert_rec->e_leaf_clusters));
3294 return;
3295 }
3296
3297 /*
3298 * Handle insert into an empty leaf.
3299 */
3300 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3301 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3302 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3303 el->l_recs[0] = *insert_rec;
3304 el->l_next_free_rec = cpu_to_le16(1);
3305 return;
3306 }
3307
3308 /*
3309 * Appending insert.
3310 */
3311 if (insert->ins_appending == APPEND_TAIL) {
3312 i = le16_to_cpu(el->l_next_free_rec) - 1;
3313 rec = &el->l_recs[i];
3314 range = le32_to_cpu(rec->e_cpos)
3315 + le16_to_cpu(rec->e_leaf_clusters);
3316 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3317
3318 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3319 le16_to_cpu(el->l_count),
3320 "inode %lu, depth %u, count %u, next free %u, "
3321 "rec.cpos %u, rec.clusters %u, "
3322 "insert.cpos %u, insert.clusters %u\n",
3323 inode->i_ino,
3324 le16_to_cpu(el->l_tree_depth),
3325 le16_to_cpu(el->l_count),
3326 le16_to_cpu(el->l_next_free_rec),
3327 le32_to_cpu(el->l_recs[i].e_cpos),
3328 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3329 le32_to_cpu(insert_rec->e_cpos),
3330 le16_to_cpu(insert_rec->e_leaf_clusters));
3331 i++;
3332 el->l_recs[i] = *insert_rec;
3333 le16_add_cpu(&el->l_next_free_rec, 1);
3334 return;
3335 }
3336
3337 rotate:
3338 /*
3339 * Ok, we have to rotate.
3340 *
3341 * At this point, it is safe to assume that inserting into an
3342 * empty leaf and appending to a leaf have both been handled
3343 * above.
3344 *
3345 * This leaf needs to have space, either by the empty 1st
3346 * extent record, or by virtue of an l_next_rec < l_count.
3347 */
3348 ocfs2_rotate_leaf(el, insert_rec);
3349 }
3350
3351 static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3352 struct ocfs2_dinode *di,
3353 u32 clusters)
3354 {
3355 le32_add_cpu(&di->i_clusters, clusters);
3356 spin_lock(&OCFS2_I(inode)->ip_lock);
3357 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3358 spin_unlock(&OCFS2_I(inode)->ip_lock);
3359 }
3360
3361 static void ocfs2_adjust_rightmost_records(struct inode *inode,
3362 handle_t *handle,
3363 struct ocfs2_path *path,
3364 struct ocfs2_extent_rec *insert_rec)
3365 {
3366 int ret, i, next_free;
3367 struct buffer_head *bh;
3368 struct ocfs2_extent_list *el;
3369 struct ocfs2_extent_rec *rec;
3370
3371 /*
3372 * Update everything except the leaf block.
3373 */
3374 for (i = 0; i < path->p_tree_depth; i++) {
3375 bh = path->p_node[i].bh;
3376 el = path->p_node[i].el;
3377
3378 next_free = le16_to_cpu(el->l_next_free_rec);
3379 if (next_free == 0) {
3380 ocfs2_error(inode->i_sb,
3381 "Dinode %llu has a bad extent list",
3382 (unsigned long long)OCFS2_I(inode)->ip_blkno);
3383 ret = -EIO;
3384 return;
3385 }
3386
3387 rec = &el->l_recs[next_free - 1];
3388
3389 rec->e_int_clusters = insert_rec->e_cpos;
3390 le32_add_cpu(&rec->e_int_clusters,
3391 le16_to_cpu(insert_rec->e_leaf_clusters));
3392 le32_add_cpu(&rec->e_int_clusters,
3393 -le32_to_cpu(rec->e_cpos));
3394
3395 ret = ocfs2_journal_dirty(handle, bh);
3396 if (ret)
3397 mlog_errno(ret);
3398
3399 }
3400 }
3401
3402 static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3403 struct ocfs2_extent_rec *insert_rec,
3404 struct ocfs2_path *right_path,
3405 struct ocfs2_path **ret_left_path)
3406 {
3407 int ret, next_free;
3408 struct ocfs2_extent_list *el;
3409 struct ocfs2_path *left_path = NULL;
3410
3411 *ret_left_path = NULL;
3412
3413 /*
3414 * This shouldn't happen for non-trees. The extent rec cluster
3415 * count manipulation below only works for interior nodes.
3416 */
3417 BUG_ON(right_path->p_tree_depth == 0);
3418
3419 /*
3420 * If our appending insert is at the leftmost edge of a leaf,
3421 * then we might need to update the rightmost records of the
3422 * neighboring path.
3423 */
3424 el = path_leaf_el(right_path);
3425 next_free = le16_to_cpu(el->l_next_free_rec);
3426 if (next_free == 0 ||
3427 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3428 u32 left_cpos;
3429
3430 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3431 &left_cpos);
3432 if (ret) {
3433 mlog_errno(ret);
3434 goto out;
3435 }
3436
3437 mlog(0, "Append may need a left path update. cpos: %u, "
3438 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3439 left_cpos);
3440
3441 /*
3442 * No need to worry if the append is already in the
3443 * leftmost leaf.
3444 */
3445 if (left_cpos) {
3446 left_path = ocfs2_new_path(path_root_bh(right_path),
3447 path_root_el(right_path));
3448 if (!left_path) {
3449 ret = -ENOMEM;
3450 mlog_errno(ret);
3451 goto out;
3452 }
3453
3454 ret = ocfs2_find_path(inode, left_path, left_cpos);
3455 if (ret) {
3456 mlog_errno(ret);
3457 goto out;
3458 }
3459
3460 /*
3461 * ocfs2_insert_path() will pass the left_path to the
3462 * journal for us.
3463 */
3464 }
3465 }
3466
3467 ret = ocfs2_journal_access_path(inode, handle, right_path);
3468 if (ret) {
3469 mlog_errno(ret);
3470 goto out;
3471 }
3472
3473 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3474
3475 *ret_left_path = left_path;
3476 ret = 0;
3477 out:
3478 if (ret != 0)
3479 ocfs2_free_path(left_path);
3480
3481 return ret;
3482 }
3483
3484 static void ocfs2_split_record(struct inode *inode,
3485 struct ocfs2_path *left_path,
3486 struct ocfs2_path *right_path,
3487 struct ocfs2_extent_rec *split_rec,
3488 enum ocfs2_split_type split)
3489 {
3490 int index;
3491 u32 cpos = le32_to_cpu(split_rec->e_cpos);
3492 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3493 struct ocfs2_extent_rec *rec, *tmprec;
3494
3495 right_el = path_leaf_el(right_path);;
3496 if (left_path)
3497 left_el = path_leaf_el(left_path);
3498
3499 el = right_el;
3500 insert_el = right_el;
3501 index = ocfs2_search_extent_list(el, cpos);
3502 if (index != -1) {
3503 if (index == 0 && left_path) {
3504 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3505
3506 /*
3507 * This typically means that the record
3508 * started in the left path but moved to the
3509 * right as a result of rotation. We either
3510 * move the existing record to the left, or we
3511 * do the later insert there.
3512 *
3513 * In this case, the left path should always
3514 * exist as the rotate code will have passed
3515 * it back for a post-insert update.
3516 */
3517
3518 if (split == SPLIT_LEFT) {
3519 /*
3520 * It's a left split. Since we know
3521 * that the rotate code gave us an
3522 * empty extent in the left path, we
3523 * can just do the insert there.
3524 */
3525 insert_el = left_el;
3526 } else {
3527 /*
3528 * Right split - we have to move the
3529 * existing record over to the left
3530 * leaf. The insert will be into the
3531 * newly created empty extent in the
3532 * right leaf.
3533 */
3534 tmprec = &right_el->l_recs[index];
3535 ocfs2_rotate_leaf(left_el, tmprec);
3536 el = left_el;
3537
3538 memset(tmprec, 0, sizeof(*tmprec));
3539 index = ocfs2_search_extent_list(left_el, cpos);
3540 BUG_ON(index == -1);
3541 }
3542 }
3543 } else {
3544 BUG_ON(!left_path);
3545 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3546 /*
3547 * Left path is easy - we can just allow the insert to
3548 * happen.
3549 */
3550 el = left_el;
3551 insert_el = left_el;
3552 index = ocfs2_search_extent_list(el, cpos);
3553 BUG_ON(index == -1);
3554 }
3555
3556 rec = &el->l_recs[index];
3557 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3558 ocfs2_rotate_leaf(insert_el, split_rec);
3559 }
3560
3561 /*
3562 * This function only does inserts on an allocation b-tree. For dinode
3563 * lists, ocfs2_insert_at_leaf() is called directly.
3564 *
3565 * right_path is the path we want to do the actual insert
3566 * in. left_path should only be passed in if we need to update that
3567 * portion of the tree after an edge insert.
3568 */
3569 static int ocfs2_insert_path(struct inode *inode,
3570 handle_t *handle,
3571 struct ocfs2_path *left_path,
3572 struct ocfs2_path *right_path,
3573 struct ocfs2_extent_rec *insert_rec,
3574 struct ocfs2_insert_type *insert)
3575 {
3576 int ret, subtree_index;
3577 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
3578
3579 if (left_path) {
3580 int credits = handle->h_buffer_credits;
3581
3582 /*
3583 * There's a chance that left_path got passed back to
3584 * us without being accounted for in the
3585 * journal. Extend our transaction here to be sure we
3586 * can change those blocks.
3587 */
3588 credits += left_path->p_tree_depth;
3589
3590 ret = ocfs2_extend_trans(handle, credits);
3591 if (ret < 0) {
3592 mlog_errno(ret);
3593 goto out;
3594 }
3595
3596 ret = ocfs2_journal_access_path(inode, handle, left_path);
3597 if (ret < 0) {
3598 mlog_errno(ret);
3599 goto out;
3600 }
3601 }
3602
3603 /*
3604 * Pass both paths to the journal. The majority of inserts
3605 * will be touching all components anyway.
3606 */
3607 ret = ocfs2_journal_access_path(inode, handle, right_path);
3608 if (ret < 0) {
3609 mlog_errno(ret);
3610 goto out;
3611 }
3612
3613 if (insert->ins_split != SPLIT_NONE) {
3614 /*
3615 * We could call ocfs2_insert_at_leaf() for some types
3616 * of splits, but it's easier to just let one separate
3617 * function sort it all out.
3618 */
3619 ocfs2_split_record(inode, left_path, right_path,
3620 insert_rec, insert->ins_split);
3621
3622 /*
3623 * Split might have modified either leaf and we don't
3624 * have a guarantee that the later edge insert will
3625 * dirty this for us.
3626 */
3627 if (left_path)
3628 ret = ocfs2_journal_dirty(handle,
3629 path_leaf_bh(left_path));
3630 if (ret)
3631 mlog_errno(ret);
3632 } else
3633 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3634 insert, inode);
3635
3636 ret = ocfs2_journal_dirty(handle, leaf_bh);
3637 if (ret)
3638 mlog_errno(ret);
3639
3640 if (left_path) {
3641 /*
3642 * The rotate code has indicated that we need to fix
3643 * up portions of the tree after the insert.
3644 *
3645 * XXX: Should we extend the transaction here?
3646 */
3647 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3648 right_path);
3649 ocfs2_complete_edge_insert(inode, handle, left_path,
3650 right_path, subtree_index);
3651 }
3652
3653 ret = 0;
3654 out:
3655 return ret;
3656 }
3657
3658 static int ocfs2_do_insert_extent(struct inode *inode,
3659 handle_t *handle,
3660 struct buffer_head *di_bh,
3661 struct ocfs2_extent_rec *insert_rec,
3662 struct ocfs2_insert_type *type)
3663 {
3664 int ret, rotate = 0;
3665 u32 cpos;
3666 struct ocfs2_path *right_path = NULL;
3667 struct ocfs2_path *left_path = NULL;
3668 struct ocfs2_dinode *di;
3669 struct ocfs2_extent_list *el;
3670
3671 di = (struct ocfs2_dinode *) di_bh->b_data;
3672 el = &di->id2.i_list;
3673
3674 ret = ocfs2_journal_access(handle, inode, di_bh,
3675 OCFS2_JOURNAL_ACCESS_WRITE);
3676 if (ret) {
3677 mlog_errno(ret);
3678 goto out;
3679 }
3680
3681 if (le16_to_cpu(el->l_tree_depth) == 0) {
3682 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3683 goto out_update_clusters;
3684 }
3685
3686 right_path = ocfs2_new_inode_path(di_bh);
3687 if (!right_path) {
3688 ret = -ENOMEM;
3689 mlog_errno(ret);
3690 goto out;
3691 }
3692
3693 /*
3694 * Determine the path to start with. Rotations need the
3695 * rightmost path, everything else can go directly to the
3696 * target leaf.
3697 */
3698 cpos = le32_to_cpu(insert_rec->e_cpos);
3699 if (type->ins_appending == APPEND_NONE &&
3700 type->ins_contig == CONTIG_NONE) {
3701 rotate = 1;
3702 cpos = UINT_MAX;
3703 }
3704
3705 ret = ocfs2_find_path(inode, right_path, cpos);
3706 if (ret) {
3707 mlog_errno(ret);
3708 goto out;
3709 }
3710
3711 /*
3712 * Rotations and appends need special treatment - they modify
3713 * parts of the tree's above them.
3714 *
3715 * Both might pass back a path immediate to the left of the
3716 * one being inserted to. This will be cause
3717 * ocfs2_insert_path() to modify the rightmost records of
3718 * left_path to account for an edge insert.
3719 *
3720 * XXX: When modifying this code, keep in mind that an insert
3721 * can wind up skipping both of these two special cases...
3722 */
3723 if (rotate) {
3724 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
3725 le32_to_cpu(insert_rec->e_cpos),
3726 right_path, &left_path);
3727 if (ret) {
3728 mlog_errno(ret);
3729 goto out;
3730 }
3731
3732 /*
3733 * ocfs2_rotate_tree_right() might have extended the
3734 * transaction without re-journaling our tree root.
3735 */
3736 ret = ocfs2_journal_access(handle, inode, di_bh,
3737 OCFS2_JOURNAL_ACCESS_WRITE);
3738 if (ret) {
3739 mlog_errno(ret);
3740 goto out;
3741 }
3742 } else if (type->ins_appending == APPEND_TAIL
3743 && type->ins_contig != CONTIG_LEFT) {
3744 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3745 right_path, &left_path);
3746 if (ret) {
3747 mlog_errno(ret);
3748 goto out;
3749 }
3750 }
3751
3752 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3753 insert_rec, type);
3754 if (ret) {
3755 mlog_errno(ret);
3756 goto out;
3757 }
3758
3759 out_update_clusters:
3760 if (type->ins_split == SPLIT_NONE)
3761 ocfs2_update_dinode_clusters(inode, di,
3762 le16_to_cpu(insert_rec->e_leaf_clusters));
3763
3764 ret = ocfs2_journal_dirty(handle, di_bh);
3765 if (ret)
3766 mlog_errno(ret);
3767
3768 out:
3769 ocfs2_free_path(left_path);
3770 ocfs2_free_path(right_path);
3771
3772 return ret;
3773 }
3774
3775 static enum ocfs2_contig_type
3776 ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
3777 struct ocfs2_extent_list *el, int index,
3778 struct ocfs2_extent_rec *split_rec)
3779 {
3780 int status;
3781 enum ocfs2_contig_type ret = CONTIG_NONE;
3782 u32 left_cpos, right_cpos;
3783 struct ocfs2_extent_rec *rec = NULL;
3784 struct ocfs2_extent_list *new_el;
3785 struct ocfs2_path *left_path = NULL, *right_path = NULL;
3786 struct buffer_head *bh;
3787 struct ocfs2_extent_block *eb;
3788
3789 if (index > 0) {
3790 rec = &el->l_recs[index - 1];
3791 } else if (path->p_tree_depth > 0) {
3792 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3793 path, &left_cpos);
3794 if (status)
3795 goto out;
3796
3797 if (left_cpos != 0) {
3798 left_path = ocfs2_new_path(path_root_bh(path),
3799 path_root_el(path));
3800 if (!left_path)
3801 goto out;
3802
3803 status = ocfs2_find_path(inode, left_path, left_cpos);
3804 if (status)
3805 goto out;
3806
3807 new_el = path_leaf_el(left_path);
3808
3809 if (le16_to_cpu(new_el->l_next_free_rec) !=
3810 le16_to_cpu(new_el->l_count)) {
3811 bh = path_leaf_bh(left_path);
3812 eb = (struct ocfs2_extent_block *)bh->b_data;
3813 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3814 eb);
3815 goto out;
3816 }
3817 rec = &new_el->l_recs[
3818 le16_to_cpu(new_el->l_next_free_rec) - 1];
3819 }
3820 }
3821
3822 /*
3823 * We're careful to check for an empty extent record here -
3824 * the merge code will know what to do if it sees one.
3825 */
3826 if (rec) {
3827 if (index == 1 && ocfs2_is_empty_extent(rec)) {
3828 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3829 ret = CONTIG_RIGHT;
3830 } else {
3831 ret = ocfs2_extent_contig(inode, rec, split_rec);
3832 }
3833 }
3834
3835 rec = NULL;
3836 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
3837 rec = &el->l_recs[index + 1];
3838 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
3839 path->p_tree_depth > 0) {
3840 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
3841 path, &right_cpos);
3842 if (status)
3843 goto out;
3844
3845 if (right_cpos == 0)
3846 goto out;
3847
3848 right_path = ocfs2_new_path(path_root_bh(path),
3849 path_root_el(path));
3850 if (!right_path)
3851 goto out;
3852
3853 status = ocfs2_find_path(inode, right_path, right_cpos);
3854 if (status)
3855 goto out;
3856
3857 new_el = path_leaf_el(right_path);
3858 rec = &new_el->l_recs[0];
3859 if (ocfs2_is_empty_extent(rec)) {
3860 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
3861 bh = path_leaf_bh(right_path);
3862 eb = (struct ocfs2_extent_block *)bh->b_data;
3863 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
3864 eb);
3865 goto out;
3866 }
3867 rec = &new_el->l_recs[1];
3868 }
3869 }
3870
3871 if (rec) {
3872 enum ocfs2_contig_type contig_type;
3873
3874 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3875
3876 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3877 ret = CONTIG_LEFTRIGHT;
3878 else if (ret == CONTIG_NONE)
3879 ret = contig_type;
3880 }
3881
3882 out:
3883 if (left_path)
3884 ocfs2_free_path(left_path);
3885 if (right_path)
3886 ocfs2_free_path(right_path);
3887
3888 return ret;
3889 }
3890
3891 static void ocfs2_figure_contig_type(struct inode *inode,
3892 struct ocfs2_insert_type *insert,
3893 struct ocfs2_extent_list *el,
3894 struct ocfs2_extent_rec *insert_rec)
3895 {
3896 int i;
3897 enum ocfs2_contig_type contig_type = CONTIG_NONE;
3898
3899 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3900
3901 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3902 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3903 insert_rec);
3904 if (contig_type != CONTIG_NONE) {
3905 insert->ins_contig_index = i;
3906 break;
3907 }
3908 }
3909 insert->ins_contig = contig_type;
3910 }
3911
3912 /*
3913 * This should only be called against the righmost leaf extent list.
3914 *
3915 * ocfs2_figure_appending_type() will figure out whether we'll have to
3916 * insert at the tail of the rightmost leaf.
3917 *
3918 * This should also work against the dinode list for tree's with 0
3919 * depth. If we consider the dinode list to be the rightmost leaf node
3920 * then the logic here makes sense.
3921 */
3922 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3923 struct ocfs2_extent_list *el,
3924 struct ocfs2_extent_rec *insert_rec)
3925 {
3926 int i;
3927 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3928 struct ocfs2_extent_rec *rec;
3929
3930 insert->ins_appending = APPEND_NONE;
3931
3932 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3933
3934 if (!el->l_next_free_rec)
3935 goto set_tail_append;
3936
3937 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3938 /* Were all records empty? */
3939 if (le16_to_cpu(el->l_next_free_rec) == 1)
3940 goto set_tail_append;
3941 }
3942
3943 i = le16_to_cpu(el->l_next_free_rec) - 1;
3944 rec = &el->l_recs[i];
3945
3946 if (cpos >=
3947 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
3948 goto set_tail_append;
3949
3950 return;
3951
3952 set_tail_append:
3953 insert->ins_appending = APPEND_TAIL;
3954 }
3955
3956 /*
3957 * Helper function called at the begining of an insert.
3958 *
3959 * This computes a few things that are commonly used in the process of
3960 * inserting into the btree:
3961 * - Whether the new extent is contiguous with an existing one.
3962 * - The current tree depth.
3963 * - Whether the insert is an appending one.
3964 * - The total # of free records in the tree.
3965 *
3966 * All of the information is stored on the ocfs2_insert_type
3967 * structure.
3968 */
3969 static int ocfs2_figure_insert_type(struct inode *inode,
3970 struct buffer_head *di_bh,
3971 struct buffer_head **last_eb_bh,
3972 struct ocfs2_extent_rec *insert_rec,
3973 int *free_records,
3974 struct ocfs2_insert_type *insert)
3975 {
3976 int ret;
3977 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3978 struct ocfs2_extent_block *eb;
3979 struct ocfs2_extent_list *el;
3980 struct ocfs2_path *path = NULL;
3981 struct buffer_head *bh = NULL;
3982
3983 insert->ins_split = SPLIT_NONE;
3984
3985 el = &di->id2.i_list;
3986 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3987
3988 if (el->l_tree_depth) {
3989 /*
3990 * If we have tree depth, we read in the
3991 * rightmost extent block ahead of time as
3992 * ocfs2_figure_insert_type() and ocfs2_add_branch()
3993 * may want it later.
3994 */
3995 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3996 le64_to_cpu(di->i_last_eb_blk), &bh,
3997 OCFS2_BH_CACHED, inode);
3998 if (ret) {
3999 mlog_exit(ret);
4000 goto out;
4001 }
4002 eb = (struct ocfs2_extent_block *) bh->b_data;
4003 el = &eb->h_list;
4004 }
4005
4006 /*
4007 * Unless we have a contiguous insert, we'll need to know if
4008 * there is room left in our allocation tree for another
4009 * extent record.
4010 *
4011 * XXX: This test is simplistic, we can search for empty
4012 * extent records too.
4013 */
4014 *free_records = le16_to_cpu(el->l_count) -
4015 le16_to_cpu(el->l_next_free_rec);
4016
4017 if (!insert->ins_tree_depth) {
4018 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4019 ocfs2_figure_appending_type(insert, el, insert_rec);
4020 return 0;
4021 }
4022
4023 path = ocfs2_new_inode_path(di_bh);
4024 if (!path) {
4025 ret = -ENOMEM;
4026 mlog_errno(ret);
4027 goto out;
4028 }
4029
4030 /*
4031 * In the case that we're inserting past what the tree
4032 * currently accounts for, ocfs2_find_path() will return for
4033 * us the rightmost tree path. This is accounted for below in
4034 * the appending code.
4035 */
4036 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4037 if (ret) {
4038 mlog_errno(ret);
4039 goto out;
4040 }
4041
4042 el = path_leaf_el(path);
4043
4044 /*
4045 * Now that we have the path, there's two things we want to determine:
4046 * 1) Contiguousness (also set contig_index if this is so)
4047 *
4048 * 2) Are we doing an append? We can trivially break this up
4049 * into two types of appends: simple record append, or a
4050 * rotate inside the tail leaf.
4051 */
4052 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
4053
4054 /*
4055 * The insert code isn't quite ready to deal with all cases of
4056 * left contiguousness. Specifically, if it's an insert into
4057 * the 1st record in a leaf, it will require the adjustment of
4058 * cluster count on the last record of the path directly to it's
4059 * left. For now, just catch that case and fool the layers
4060 * above us. This works just fine for tree_depth == 0, which
4061 * is why we allow that above.
4062 */
4063 if (insert->ins_contig == CONTIG_LEFT &&
4064 insert->ins_contig_index == 0)
4065 insert->ins_contig = CONTIG_NONE;
4066
4067 /*
4068 * Ok, so we can simply compare against last_eb to figure out
4069 * whether the path doesn't exist. This will only happen in
4070 * the case that we're doing a tail append, so maybe we can
4071 * take advantage of that information somehow.
4072 */
4073 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
4074 /*
4075 * Ok, ocfs2_find_path() returned us the rightmost
4076 * tree path. This might be an appending insert. There are
4077 * two cases:
4078 * 1) We're doing a true append at the tail:
4079 * -This might even be off the end of the leaf
4080 * 2) We're "appending" by rotating in the tail
4081 */
4082 ocfs2_figure_appending_type(insert, el, insert_rec);
4083 }
4084
4085 out:
4086 ocfs2_free_path(path);
4087
4088 if (ret == 0)
4089 *last_eb_bh = bh;
4090 else
4091 brelse(bh);
4092 return ret;
4093 }
4094
4095 /*
4096 * Insert an extent into an inode btree.
4097 *
4098 * The caller needs to update fe->i_clusters
4099 */
4100 int ocfs2_insert_extent(struct ocfs2_super *osb,
4101 handle_t *handle,
4102 struct inode *inode,
4103 struct buffer_head *fe_bh,
4104 u32 cpos,
4105 u64 start_blk,
4106 u32 new_clusters,
4107 u8 flags,
4108 struct ocfs2_alloc_context *meta_ac)
4109 {
4110 int status;
4111 int uninitialized_var(free_records);
4112 struct buffer_head *last_eb_bh = NULL;
4113 struct ocfs2_insert_type insert = {0, };
4114 struct ocfs2_extent_rec rec;
4115
4116 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
4117
4118 mlog(0, "add %u clusters at position %u to inode %llu\n",
4119 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4120
4121 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
4122 (OCFS2_I(inode)->ip_clusters != cpos),
4123 "Device %s, asking for sparse allocation: inode %llu, "
4124 "cpos %u, clusters %u\n",
4125 osb->dev_str,
4126 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
4127 OCFS2_I(inode)->ip_clusters);
4128
4129 memset(&rec, 0, sizeof(rec));
4130 rec.e_cpos = cpu_to_le32(cpos);
4131 rec.e_blkno = cpu_to_le64(start_blk);
4132 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4133 rec.e_flags = flags;
4134
4135 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
4136 &free_records, &insert);
4137 if (status < 0) {
4138 mlog_errno(status);
4139 goto bail;
4140 }
4141
4142 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4143 "Insert.contig_index: %d, Insert.free_records: %d, "
4144 "Insert.tree_depth: %d\n",
4145 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
4146 free_records, insert.ins_tree_depth);
4147
4148 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4149 status = ocfs2_grow_tree(inode, handle, fe_bh,
4150 &insert.ins_tree_depth, &last_eb_bh,
4151 meta_ac);
4152 if (status) {
4153 mlog_errno(status);
4154 goto bail;
4155 }
4156 }
4157
4158 /* Finally, we can add clusters. This might rotate the tree for us. */
4159 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
4160 if (status < 0)
4161 mlog_errno(status);
4162 else
4163 ocfs2_extent_map_insert_rec(inode, &rec);
4164
4165 bail:
4166 if (last_eb_bh)
4167 brelse(last_eb_bh);
4168
4169 mlog_exit(status);
4170 return status;
4171 }
4172
4173 static void ocfs2_make_right_split_rec(struct super_block *sb,
4174 struct ocfs2_extent_rec *split_rec,
4175 u32 cpos,
4176 struct ocfs2_extent_rec *rec)
4177 {
4178 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4179 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4180
4181 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4182
4183 split_rec->e_cpos = cpu_to_le32(cpos);
4184 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4185
4186 split_rec->e_blkno = rec->e_blkno;
4187 le64_add_cpu(&split_rec->e_blkno,
4188 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4189
4190 split_rec->e_flags = rec->e_flags;
4191 }
4192
4193 static int ocfs2_split_and_insert(struct inode *inode,
4194 handle_t *handle,
4195 struct ocfs2_path *path,
4196 struct buffer_head *di_bh,
4197 struct buffer_head **last_eb_bh,
4198 int split_index,
4199 struct ocfs2_extent_rec *orig_split_rec,
4200 struct ocfs2_alloc_context *meta_ac)
4201 {
4202 int ret = 0, depth;
4203 unsigned int insert_range, rec_range, do_leftright = 0;
4204 struct ocfs2_extent_rec tmprec;
4205 struct ocfs2_extent_list *rightmost_el;
4206 struct ocfs2_extent_rec rec;
4207 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4208 struct ocfs2_insert_type insert;
4209 struct ocfs2_extent_block *eb;
4210 struct ocfs2_dinode *di;
4211
4212 leftright:
4213 /*
4214 * Store a copy of the record on the stack - it might move
4215 * around as the tree is manipulated below.
4216 */
4217 rec = path_leaf_el(path)->l_recs[split_index];
4218
4219 di = (struct ocfs2_dinode *)di_bh->b_data;
4220 rightmost_el = &di->id2.i_list;
4221
4222 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4223 if (depth) {
4224 BUG_ON(!(*last_eb_bh));
4225 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4226 rightmost_el = &eb->h_list;
4227 }
4228
4229 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4230 le16_to_cpu(rightmost_el->l_count)) {
4231 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
4232 meta_ac);
4233 if (ret) {
4234 mlog_errno(ret);
4235 goto out;
4236 }
4237 }
4238
4239 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4240 insert.ins_appending = APPEND_NONE;
4241 insert.ins_contig = CONTIG_NONE;
4242 insert.ins_tree_depth = depth;
4243
4244 insert_range = le32_to_cpu(split_rec.e_cpos) +
4245 le16_to_cpu(split_rec.e_leaf_clusters);
4246 rec_range = le32_to_cpu(rec.e_cpos) +
4247 le16_to_cpu(rec.e_leaf_clusters);
4248
4249 if (split_rec.e_cpos == rec.e_cpos) {
4250 insert.ins_split = SPLIT_LEFT;
4251 } else if (insert_range == rec_range) {
4252 insert.ins_split = SPLIT_RIGHT;
4253 } else {
4254 /*
4255 * Left/right split. We fake this as a right split
4256 * first and then make a second pass as a left split.
4257 */
4258 insert.ins_split = SPLIT_RIGHT;
4259
4260 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4261 &rec);
4262
4263 split_rec = tmprec;
4264
4265 BUG_ON(do_leftright);
4266 do_leftright = 1;
4267 }
4268
4269 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
4270 &insert);
4271 if (ret) {
4272 mlog_errno(ret);
4273 goto out;
4274 }
4275
4276 if (do_leftright == 1) {
4277 u32 cpos;
4278 struct ocfs2_extent_list *el;
4279
4280 do_leftright++;
4281 split_rec = *orig_split_rec;
4282
4283 ocfs2_reinit_path(path, 1);
4284
4285 cpos = le32_to_cpu(split_rec.e_cpos);
4286 ret = ocfs2_find_path(inode, path, cpos);
4287 if (ret) {
4288 mlog_errno(ret);
4289 goto out;
4290 }
4291
4292 el = path_leaf_el(path);
4293 split_index = ocfs2_search_extent_list(el, cpos);
4294 goto leftright;
4295 }
4296 out:
4297
4298 return ret;
4299 }
4300
4301 /*
4302 * Mark part or all of the extent record at split_index in the leaf
4303 * pointed to by path as written. This removes the unwritten
4304 * extent flag.
4305 *
4306 * Care is taken to handle contiguousness so as to not grow the tree.
4307 *
4308 * meta_ac is not strictly necessary - we only truly need it if growth
4309 * of the tree is required. All other cases will degrade into a less
4310 * optimal tree layout.
4311 *
4312 * last_eb_bh should be the rightmost leaf block for any inode with a
4313 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
4314 *
4315 * This code is optimized for readability - several passes might be
4316 * made over certain portions of the tree. All of those blocks will
4317 * have been brought into cache (and pinned via the journal), so the
4318 * extra overhead is not expressed in terms of disk reads.
4319 */
4320 static int __ocfs2_mark_extent_written(struct inode *inode,
4321 struct buffer_head *di_bh,
4322 handle_t *handle,
4323 struct ocfs2_path *path,
4324 int split_index,
4325 struct ocfs2_extent_rec *split_rec,
4326 struct ocfs2_alloc_context *meta_ac,
4327 struct ocfs2_cached_dealloc_ctxt *dealloc)
4328 {
4329 int ret = 0;
4330 struct ocfs2_extent_list *el = path_leaf_el(path);
4331 struct buffer_head *last_eb_bh = NULL;
4332 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4333 struct ocfs2_merge_ctxt ctxt;
4334 struct ocfs2_extent_list *rightmost_el;
4335
4336 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
4337 ret = -EIO;
4338 mlog_errno(ret);
4339 goto out;
4340 }
4341
4342 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4343 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4344 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4345 ret = -EIO;
4346 mlog_errno(ret);
4347 goto out;
4348 }
4349
4350 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
4351 split_index,
4352 split_rec);
4353
4354 /*
4355 * The core merge / split code wants to know how much room is
4356 * left in this inodes allocation tree, so we pass the
4357 * rightmost extent list.
4358 */
4359 if (path->p_tree_depth) {
4360 struct ocfs2_extent_block *eb;
4361 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4362
4363 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4364 le64_to_cpu(di->i_last_eb_blk),
4365 &last_eb_bh, OCFS2_BH_CACHED, inode);
4366 if (ret) {
4367 mlog_exit(ret);
4368 goto out;
4369 }
4370
4371 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4372 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4373 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4374 ret = -EROFS;
4375 goto out;
4376 }
4377
4378 rightmost_el = &eb->h_list;
4379 } else
4380 rightmost_el = path_root_el(path);
4381
4382 if (rec->e_cpos == split_rec->e_cpos &&
4383 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4384 ctxt.c_split_covers_rec = 1;
4385 else
4386 ctxt.c_split_covers_rec = 0;
4387
4388 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4389
4390 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4391 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4392 ctxt.c_split_covers_rec);
4393
4394 if (ctxt.c_contig_type == CONTIG_NONE) {
4395 if (ctxt.c_split_covers_rec)
4396 el->l_recs[split_index] = *split_rec;
4397 else
4398 ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4399 &last_eb_bh, split_index,
4400 split_rec, meta_ac);
4401 if (ret)
4402 mlog_errno(ret);
4403 } else {
4404 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4405 split_index, split_rec,
4406 dealloc, &ctxt);
4407 if (ret)
4408 mlog_errno(ret);
4409 }
4410
4411 out:
4412 brelse(last_eb_bh);
4413 return ret;
4414 }
4415
4416 /*
4417 * Mark the already-existing extent at cpos as written for len clusters.
4418 *
4419 * If the existing extent is larger than the request, initiate a
4420 * split. An attempt will be made at merging with adjacent extents.
4421 *
4422 * The caller is responsible for passing down meta_ac if we'll need it.
4423 */
4424 int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4425 handle_t *handle, u32 cpos, u32 len, u32 phys,
4426 struct ocfs2_alloc_context *meta_ac,
4427 struct ocfs2_cached_dealloc_ctxt *dealloc)
4428 {
4429 int ret, index;
4430 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4431 struct ocfs2_extent_rec split_rec;
4432 struct ocfs2_path *left_path = NULL;
4433 struct ocfs2_extent_list *el;
4434
4435 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4436 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4437
4438 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4439 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4440 "that are being written to, but the feature bit "
4441 "is not set in the super block.",
4442 (unsigned long long)OCFS2_I(inode)->ip_blkno);
4443 ret = -EROFS;
4444 goto out;
4445 }
4446
4447 /*
4448 * XXX: This should be fixed up so that we just re-insert the
4449 * next extent records.
4450 */
4451 ocfs2_extent_map_trunc(inode, 0);
4452
4453 left_path = ocfs2_new_inode_path(di_bh);
4454 if (!left_path) {
4455 ret = -ENOMEM;
4456 mlog_errno(ret);
4457 goto out;
4458 }
4459
4460 ret = ocfs2_find_path(inode, left_path, cpos);
4461 if (ret) {
4462 mlog_errno(ret);
4463 goto out;
4464 }
4465 el = path_leaf_el(left_path);
4466
4467 index = ocfs2_search_extent_list(el, cpos);
4468 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4469 ocfs2_error(inode->i_sb,
4470 "Inode %llu has an extent at cpos %u which can no "
4471 "longer be found.\n",
4472 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4473 ret = -EROFS;
4474 goto out;
4475 }
4476
4477 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4478 split_rec.e_cpos = cpu_to_le32(cpos);
4479 split_rec.e_leaf_clusters = cpu_to_le16(len);
4480 split_rec.e_blkno = cpu_to_le64(start_blkno);
4481 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4482 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4483
4484 ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4485 index, &split_rec, meta_ac, dealloc);
4486 if (ret)
4487 mlog_errno(ret);
4488
4489 out:
4490 ocfs2_free_path(left_path);
4491 return ret;
4492 }
4493
4494 static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
4495 handle_t *handle, struct ocfs2_path *path,
4496 int index, u32 new_range,
4497 struct ocfs2_alloc_context *meta_ac)
4498 {
4499 int ret, depth, credits = handle->h_buffer_credits;
4500 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4501 struct buffer_head *last_eb_bh = NULL;
4502 struct ocfs2_extent_block *eb;
4503 struct ocfs2_extent_list *rightmost_el, *el;
4504 struct ocfs2_extent_rec split_rec;
4505 struct ocfs2_extent_rec *rec;
4506 struct ocfs2_insert_type insert;
4507
4508 /*
4509 * Setup the record to split before we grow the tree.
4510 */
4511 el = path_leaf_el(path);
4512 rec = &el->l_recs[index];
4513 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4514
4515 depth = path->p_tree_depth;
4516 if (depth > 0) {
4517 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4518 le64_to_cpu(di->i_last_eb_blk),
4519 &last_eb_bh, OCFS2_BH_CACHED, inode);
4520 if (ret < 0) {
4521 mlog_errno(ret);
4522 goto out;
4523 }
4524
4525 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4526 rightmost_el = &eb->h_list;
4527 } else
4528 rightmost_el = path_leaf_el(path);
4529
4530 credits += path->p_tree_depth +
4531 ocfs2_extend_meta_needed(&di->id2.i_list);
4532 ret = ocfs2_extend_trans(handle, credits);
4533 if (ret) {
4534 mlog_errno(ret);
4535 goto out;
4536 }
4537
4538 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4539 le16_to_cpu(rightmost_el->l_count)) {
4540 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
4541 meta_ac);
4542 if (ret) {
4543 mlog_errno(ret);
4544 goto out;
4545 }
4546 }
4547
4548 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4549 insert.ins_appending = APPEND_NONE;
4550 insert.ins_contig = CONTIG_NONE;
4551 insert.ins_split = SPLIT_RIGHT;
4552 insert.ins_tree_depth = depth;
4553
4554 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
4555 if (ret)
4556 mlog_errno(ret);
4557
4558 out:
4559 brelse(last_eb_bh);
4560 return ret;
4561 }
4562
4563 static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
4564 struct ocfs2_path *path, int index,
4565 struct ocfs2_cached_dealloc_ctxt *dealloc,
4566 u32 cpos, u32 len)
4567 {
4568 int ret;
4569 u32 left_cpos, rec_range, trunc_range;
4570 int wants_rotate = 0, is_rightmost_tree_rec = 0;
4571 struct super_block *sb = inode->i_sb;
4572 struct ocfs2_path *left_path = NULL;
4573 struct ocfs2_extent_list *el = path_leaf_el(path);
4574 struct ocfs2_extent_rec *rec;
4575 struct ocfs2_extent_block *eb;
4576
4577 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
4578 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4579 if (ret) {
4580 mlog_errno(ret);
4581 goto out;
4582 }
4583
4584 index--;
4585 }
4586
4587 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
4588 path->p_tree_depth) {
4589 /*
4590 * Check whether this is the rightmost tree record. If
4591 * we remove all of this record or part of its right
4592 * edge then an update of the record lengths above it
4593 * will be required.
4594 */
4595 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
4596 if (eb->h_next_leaf_blk == 0)
4597 is_rightmost_tree_rec = 1;
4598 }
4599
4600 rec = &el->l_recs[index];
4601 if (index == 0 && path->p_tree_depth &&
4602 le32_to_cpu(rec->e_cpos) == cpos) {
4603 /*
4604 * Changing the leftmost offset (via partial or whole
4605 * record truncate) of an interior (or rightmost) path
4606 * means we have to update the subtree that is formed
4607 * by this leaf and the one to it's left.
4608 *
4609 * There are two cases we can skip:
4610 * 1) Path is the leftmost one in our inode tree.
4611 * 2) The leaf is rightmost and will be empty after
4612 * we remove the extent record - the rotate code
4613 * knows how to update the newly formed edge.
4614 */
4615
4616 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
4617 &left_cpos);
4618 if (ret) {
4619 mlog_errno(ret);
4620 goto out;
4621 }
4622
4623 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
4624 left_path = ocfs2_new_path(path_root_bh(path),
4625 path_root_el(path));
4626 if (!left_path) {
4627 ret = -ENOMEM;
4628 mlog_errno(ret);
4629 goto out;
4630 }
4631
4632 ret = ocfs2_find_path(inode, left_path, left_cpos);
4633 if (ret) {
4634 mlog_errno(ret);
4635 goto out;
4636 }
4637 }
4638 }
4639
4640 ret = ocfs2_extend_rotate_transaction(handle, 0,
4641 handle->h_buffer_credits,
4642 path);
4643 if (ret) {
4644 mlog_errno(ret);
4645 goto out;
4646 }
4647
4648 ret = ocfs2_journal_access_path(inode, handle, path);
4649 if (ret) {
4650 mlog_errno(ret);
4651 goto out;
4652 }
4653
4654 ret = ocfs2_journal_access_path(inode, handle, left_path);
4655 if (ret) {
4656 mlog_errno(ret);
4657 goto out;
4658 }
4659
4660 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4661 trunc_range = cpos + len;
4662
4663 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
4664 int next_free;
4665
4666 memset(rec, 0, sizeof(*rec));
4667 ocfs2_cleanup_merge(el, index);
4668 wants_rotate = 1;
4669
4670 next_free = le16_to_cpu(el->l_next_free_rec);
4671 if (is_rightmost_tree_rec && next_free > 1) {
4672 /*
4673 * We skip the edge update if this path will
4674 * be deleted by the rotate code.
4675 */
4676 rec = &el->l_recs[next_free - 1];
4677 ocfs2_adjust_rightmost_records(inode, handle, path,
4678 rec);
4679 }
4680 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
4681 /* Remove leftmost portion of the record. */
4682 le32_add_cpu(&rec->e_cpos, len);
4683 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
4684 le16_add_cpu(&rec->e_leaf_clusters, -len);
4685 } else if (rec_range == trunc_range) {
4686 /* Remove rightmost portion of the record */
4687 le16_add_cpu(&rec->e_leaf_clusters, -len);
4688 if (is_rightmost_tree_rec)
4689 ocfs2_adjust_rightmost_records(inode, handle, path, rec);
4690 } else {
4691 /* Caller should have trapped this. */
4692 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
4693 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
4694 le32_to_cpu(rec->e_cpos),
4695 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
4696 BUG();
4697 }
4698
4699 if (left_path) {
4700 int subtree_index;
4701
4702 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
4703 ocfs2_complete_edge_insert(inode, handle, left_path, path,
4704 subtree_index);
4705 }
4706
4707 ocfs2_journal_dirty(handle, path_leaf_bh(path));
4708
4709 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
4710 if (ret) {
4711 mlog_errno(ret);
4712 goto out;
4713 }
4714
4715 out:
4716 ocfs2_free_path(left_path);
4717 return ret;
4718 }
4719
4720 int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
4721 u32 cpos, u32 len, handle_t *handle,
4722 struct ocfs2_alloc_context *meta_ac,
4723 struct ocfs2_cached_dealloc_ctxt *dealloc)
4724 {
4725 int ret, index;
4726 u32 rec_range, trunc_range;
4727 struct ocfs2_extent_rec *rec;
4728 struct ocfs2_extent_list *el;
4729 struct ocfs2_path *path;
4730
4731 ocfs2_extent_map_trunc(inode, 0);
4732
4733 path = ocfs2_new_inode_path(di_bh);
4734 if (!path) {
4735 ret = -ENOMEM;
4736 mlog_errno(ret);
4737 goto out;
4738 }
4739
4740 ret = ocfs2_find_path(inode, path, cpos);
4741 if (ret) {
4742 mlog_errno(ret);
4743 goto out;
4744 }
4745
4746 el = path_leaf_el(path);
4747 index = ocfs2_search_extent_list(el, cpos);
4748 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4749 ocfs2_error(inode->i_sb,
4750 "Inode %llu has an extent at cpos %u which can no "
4751 "longer be found.\n",
4752 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4753 ret = -EROFS;
4754 goto out;
4755 }
4756
4757 /*
4758 * We have 3 cases of extent removal:
4759 * 1) Range covers the entire extent rec
4760 * 2) Range begins or ends on one edge of the extent rec
4761 * 3) Range is in the middle of the extent rec (no shared edges)
4762 *
4763 * For case 1 we remove the extent rec and left rotate to
4764 * fill the hole.
4765 *
4766 * For case 2 we just shrink the existing extent rec, with a
4767 * tree update if the shrinking edge is also the edge of an
4768 * extent block.
4769 *
4770 * For case 3 we do a right split to turn the extent rec into
4771 * something case 2 can handle.
4772 */
4773 rec = &el->l_recs[index];
4774 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
4775 trunc_range = cpos + len;
4776
4777 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
4778
4779 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
4780 "(cpos %u, len %u)\n",
4781 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
4782 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
4783
4784 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
4785 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4786 cpos, len);
4787 if (ret) {
4788 mlog_errno(ret);
4789 goto out;
4790 }
4791 } else {
4792 ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
4793 trunc_range, meta_ac);
4794 if (ret) {
4795 mlog_errno(ret);
4796 goto out;
4797 }
4798
4799 /*
4800 * The split could have manipulated the tree enough to
4801 * move the record location, so we have to look for it again.
4802 */
4803 ocfs2_reinit_path(path, 1);
4804
4805 ret = ocfs2_find_path(inode, path, cpos);
4806 if (ret) {
4807 mlog_errno(ret);
4808 goto out;
4809 }
4810
4811 el = path_leaf_el(path);
4812 index = ocfs2_search_extent_list(el, cpos);
4813 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4814 ocfs2_error(inode->i_sb,
4815 "Inode %llu: split at cpos %u lost record.",
4816 (unsigned long long)OCFS2_I(inode)->ip_blkno,
4817 cpos);
4818 ret = -EROFS;
4819 goto out;
4820 }
4821
4822 /*
4823 * Double check our values here. If anything is fishy,
4824 * it's easier to catch it at the top level.
4825 */
4826 rec = &el->l_recs[index];
4827 rec_range = le32_to_cpu(rec->e_cpos) +
4828 ocfs2_rec_clusters(el, rec);
4829 if (rec_range != trunc_range) {
4830 ocfs2_error(inode->i_sb,
4831 "Inode %llu: error after split at cpos %u"
4832 "trunc len %u, existing record is (%u,%u)",
4833 (unsigned long long)OCFS2_I(inode)->ip_blkno,
4834 cpos, len, le32_to_cpu(rec->e_cpos),
4835 ocfs2_rec_clusters(el, rec));
4836 ret = -EROFS;
4837 goto out;
4838 }
4839
4840 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
4841 cpos, len);
4842 if (ret) {
4843 mlog_errno(ret);
4844 goto out;
4845 }
4846 }
4847
4848 out:
4849 ocfs2_free_path(path);
4850 return ret;
4851 }
4852
4853 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4854 {
4855 struct buffer_head *tl_bh = osb->osb_tl_bh;
4856 struct ocfs2_dinode *di;
4857 struct ocfs2_truncate_log *tl;
4858
4859 di = (struct ocfs2_dinode *) tl_bh->b_data;
4860 tl = &di->id2.i_dealloc;
4861
4862 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4863 "slot %d, invalid truncate log parameters: used = "
4864 "%u, count = %u\n", osb->slot_num,
4865 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4866 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4867 }
4868
4869 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4870 unsigned int new_start)
4871 {
4872 unsigned int tail_index;
4873 unsigned int current_tail;
4874
4875 /* No records, nothing to coalesce */
4876 if (!le16_to_cpu(tl->tl_used))
4877 return 0;
4878
4879 tail_index = le16_to_cpu(tl->tl_used) - 1;
4880 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4881 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4882
4883 return current_tail == new_start;
4884 }
4885
4886 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
4887 handle_t *handle,
4888 u64 start_blk,
4889 unsigned int num_clusters)
4890 {
4891 int status, index;
4892 unsigned int start_cluster, tl_count;
4893 struct inode *tl_inode = osb->osb_tl_inode;
4894 struct buffer_head *tl_bh = osb->osb_tl_bh;
4895 struct ocfs2_dinode *di;
4896 struct ocfs2_truncate_log *tl;
4897
4898 mlog_entry("start_blk = %llu, num_clusters = %u\n",
4899 (unsigned long long)start_blk, num_clusters);
4900
4901 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
4902
4903 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4904
4905 di = (struct ocfs2_dinode *) tl_bh->b_data;
4906 tl = &di->id2.i_dealloc;
4907 if (!OCFS2_IS_VALID_DINODE(di)) {
4908 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4909 status = -EIO;
4910 goto bail;
4911 }
4912
4913 tl_count = le16_to_cpu(tl->tl_count);
4914 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4915 tl_count == 0,
4916 "Truncate record count on #%llu invalid "
4917 "wanted %u, actual %u\n",
4918 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
4919 ocfs2_truncate_recs_per_inode(osb->sb),
4920 le16_to_cpu(tl->tl_count));
4921
4922 /* Caller should have known to flush before calling us. */
4923 index = le16_to_cpu(tl->tl_used);
4924 if (index >= tl_count) {
4925 status = -ENOSPC;
4926 mlog_errno(status);
4927 goto bail;
4928 }
4929
4930 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4931 OCFS2_JOURNAL_ACCESS_WRITE);
4932 if (status < 0) {
4933 mlog_errno(status);
4934 goto bail;
4935 }
4936
4937 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
4938 "%llu (index = %d)\n", num_clusters, start_cluster,
4939 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
4940
4941 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4942 /*
4943 * Move index back to the record we are coalescing with.
4944 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4945 */
4946 index--;
4947
4948 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4949 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4950 index, le32_to_cpu(tl->tl_recs[index].t_start),
4951 num_clusters);
4952 } else {
4953 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4954 tl->tl_used = cpu_to_le16(index + 1);
4955 }
4956 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4957
4958 status = ocfs2_journal_dirty(handle, tl_bh);
4959 if (status < 0) {
4960 mlog_errno(status);
4961 goto bail;
4962 }
4963
4964 bail:
4965 mlog_exit(status);
4966 return status;
4967 }
4968
4969 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
4970 handle_t *handle,
4971 struct inode *data_alloc_inode,
4972 struct buffer_head *data_alloc_bh)
4973 {
4974 int status = 0;
4975 int i;
4976 unsigned int num_clusters;
4977 u64 start_blk;
4978 struct ocfs2_truncate_rec rec;
4979 struct ocfs2_dinode *di;
4980 struct ocfs2_truncate_log *tl;
4981 struct inode *tl_inode = osb->osb_tl_inode;
4982 struct buffer_head *tl_bh = osb->osb_tl_bh;
4983
4984 mlog_entry_void();
4985
4986 di = (struct ocfs2_dinode *) tl_bh->b_data;
4987 tl = &di->id2.i_dealloc;
4988 i = le16_to_cpu(tl->tl_used) - 1;
4989 while (i >= 0) {
4990 /* Caller has given us at least enough credits to
4991 * update the truncate log dinode */
4992 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4993 OCFS2_JOURNAL_ACCESS_WRITE);
4994 if (status < 0) {
4995 mlog_errno(status);
4996 goto bail;
4997 }
4998
4999 tl->tl_used = cpu_to_le16(i);
5000
5001 status = ocfs2_journal_dirty(handle, tl_bh);
5002 if (status < 0) {
5003 mlog_errno(status);
5004 goto bail;
5005 }
5006
5007 /* TODO: Perhaps we can calculate the bulk of the
5008 * credits up front rather than extending like
5009 * this. */
5010 status = ocfs2_extend_trans(handle,
5011 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5012 if (status < 0) {
5013 mlog_errno(status);
5014 goto bail;
5015 }
5016
5017 rec = tl->tl_recs[i];
5018 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5019 le32_to_cpu(rec.t_start));
5020 num_clusters = le32_to_cpu(rec.t_clusters);
5021
5022 /* if start_blk is not set, we ignore the record as
5023 * invalid. */
5024 if (start_blk) {
5025 mlog(0, "free record %d, start = %u, clusters = %u\n",
5026 i, le32_to_cpu(rec.t_start), num_clusters);
5027
5028 status = ocfs2_free_clusters(handle, data_alloc_inode,
5029 data_alloc_bh, start_blk,
5030 num_clusters);
5031 if (status < 0) {
5032 mlog_errno(status);
5033 goto bail;
5034 }
5035 }
5036 i--;
5037 }
5038
5039 bail:
5040 mlog_exit(status);
5041 return status;
5042 }
5043
5044 /* Expects you to already be holding tl_inode->i_mutex */
5045 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5046 {
5047 int status;
5048 unsigned int num_to_flush;
5049 handle_t *handle;
5050 struct inode *tl_inode = osb->osb_tl_inode;
5051 struct inode *data_alloc_inode = NULL;
5052 struct buffer_head *tl_bh = osb->osb_tl_bh;
5053 struct buffer_head *data_alloc_bh = NULL;
5054 struct ocfs2_dinode *di;
5055 struct ocfs2_truncate_log *tl;
5056
5057 mlog_entry_void();
5058
5059 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5060
5061 di = (struct ocfs2_dinode *) tl_bh->b_data;
5062 tl = &di->id2.i_dealloc;
5063 if (!OCFS2_IS_VALID_DINODE(di)) {
5064 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
5065 status = -EIO;
5066 goto out;
5067 }
5068
5069 num_to_flush = le16_to_cpu(tl->tl_used);
5070 mlog(0, "Flush %u records from truncate log #%llu\n",
5071 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
5072 if (!num_to_flush) {
5073 status = 0;
5074 goto out;
5075 }
5076
5077 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5078 GLOBAL_BITMAP_SYSTEM_INODE,
5079 OCFS2_INVALID_SLOT);
5080 if (!data_alloc_inode) {
5081 status = -EINVAL;
5082 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5083 goto out;
5084 }
5085
5086 mutex_lock(&data_alloc_inode->i_mutex);
5087
5088 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5089 if (status < 0) {
5090 mlog_errno(status);
5091 goto out_mutex;
5092 }
5093
5094 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5095 if (IS_ERR(handle)) {
5096 status = PTR_ERR(handle);
5097 mlog_errno(status);
5098 goto out_unlock;
5099 }
5100
5101 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5102 data_alloc_bh);
5103 if (status < 0)
5104 mlog_errno(status);
5105
5106 ocfs2_commit_trans(osb, handle);
5107
5108 out_unlock:
5109 brelse(data_alloc_bh);
5110 ocfs2_inode_unlock(data_alloc_inode, 1);
5111
5112 out_mutex:
5113 mutex_unlock(&data_alloc_inode->i_mutex);
5114 iput(data_alloc_inode);
5115
5116 out:
5117 mlog_exit(status);
5118 return status;
5119 }
5120
5121 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5122 {
5123 int status;
5124 struct inode *tl_inode = osb->osb_tl_inode;
5125
5126 mutex_lock(&tl_inode->i_mutex);
5127 status = __ocfs2_flush_truncate_log(osb);
5128 mutex_unlock(&tl_inode->i_mutex);
5129
5130 return status;
5131 }
5132
5133 static void ocfs2_truncate_log_worker(struct work_struct *work)
5134 {
5135 int status;
5136 struct ocfs2_super *osb =
5137 container_of(work, struct ocfs2_super,
5138 osb_truncate_log_wq.work);
5139
5140 mlog_entry_void();
5141
5142 status = ocfs2_flush_truncate_log(osb);
5143 if (status < 0)
5144 mlog_errno(status);
5145 else
5146 ocfs2_init_inode_steal_slot(osb);
5147
5148 mlog_exit(status);
5149 }
5150
5151 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5152 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5153 int cancel)
5154 {
5155 if (osb->osb_tl_inode) {
5156 /* We want to push off log flushes while truncates are
5157 * still running. */
5158 if (cancel)
5159 cancel_delayed_work(&osb->osb_truncate_log_wq);
5160
5161 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5162 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5163 }
5164 }
5165
5166 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5167 int slot_num,
5168 struct inode **tl_inode,
5169 struct buffer_head **tl_bh)
5170 {
5171 int status;
5172 struct inode *inode = NULL;
5173 struct buffer_head *bh = NULL;
5174
5175 inode = ocfs2_get_system_file_inode(osb,
5176 TRUNCATE_LOG_SYSTEM_INODE,
5177 slot_num);
5178 if (!inode) {
5179 status = -EINVAL;
5180 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5181 goto bail;
5182 }
5183
5184 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
5185 OCFS2_BH_CACHED, inode);
5186 if (status < 0) {
5187 iput(inode);
5188 mlog_errno(status);
5189 goto bail;
5190 }
5191
5192 *tl_inode = inode;
5193 *tl_bh = bh;
5194 bail:
5195 mlog_exit(status);
5196 return status;
5197 }
5198
5199 /* called during the 1st stage of node recovery. we stamp a clean
5200 * truncate log and pass back a copy for processing later. if the
5201 * truncate log does not require processing, a *tl_copy is set to
5202 * NULL. */
5203 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5204 int slot_num,
5205 struct ocfs2_dinode **tl_copy)
5206 {
5207 int status;
5208 struct inode *tl_inode = NULL;
5209 struct buffer_head *tl_bh = NULL;
5210 struct ocfs2_dinode *di;
5211 struct ocfs2_truncate_log *tl;
5212
5213 *tl_copy = NULL;
5214
5215 mlog(0, "recover truncate log from slot %d\n", slot_num);
5216
5217 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5218 if (status < 0) {
5219 mlog_errno(status);
5220 goto bail;
5221 }
5222
5223 di = (struct ocfs2_dinode *) tl_bh->b_data;
5224 tl = &di->id2.i_dealloc;
5225 if (!OCFS2_IS_VALID_DINODE(di)) {
5226 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
5227 status = -EIO;
5228 goto bail;
5229 }
5230
5231 if (le16_to_cpu(tl->tl_used)) {
5232 mlog(0, "We'll have %u logs to recover\n",
5233 le16_to_cpu(tl->tl_used));
5234
5235 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5236 if (!(*tl_copy)) {
5237 status = -ENOMEM;
5238 mlog_errno(status);
5239 goto bail;
5240 }
5241
5242 /* Assuming the write-out below goes well, this copy
5243 * will be passed back to recovery for processing. */
5244 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5245
5246 /* All we need to do to clear the truncate log is set
5247 * tl_used. */
5248 tl->tl_used = 0;
5249
5250 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5251 if (status < 0) {
5252 mlog_errno(status);
5253 goto bail;
5254 }
5255 }
5256
5257 bail:
5258 if (tl_inode)
5259 iput(tl_inode);
5260 if (tl_bh)
5261 brelse(tl_bh);
5262
5263 if (status < 0 && (*tl_copy)) {
5264 kfree(*tl_copy);
5265 *tl_copy = NULL;
5266 }
5267
5268 mlog_exit(status);
5269 return status;
5270 }
5271
5272 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5273 struct ocfs2_dinode *tl_copy)
5274 {
5275 int status = 0;
5276 int i;
5277 unsigned int clusters, num_recs, start_cluster;
5278 u64 start_blk;
5279 handle_t *handle;
5280 struct inode *tl_inode = osb->osb_tl_inode;
5281 struct ocfs2_truncate_log *tl;
5282
5283 mlog_entry_void();
5284
5285 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5286 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5287 return -EINVAL;
5288 }
5289
5290 tl = &tl_copy->id2.i_dealloc;
5291 num_recs = le16_to_cpu(tl->tl_used);
5292 mlog(0, "cleanup %u records from %llu\n", num_recs,
5293 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
5294
5295 mutex_lock(&tl_inode->i_mutex);
5296 for(i = 0; i < num_recs; i++) {
5297 if (ocfs2_truncate_log_needs_flush(osb)) {
5298 status = __ocfs2_flush_truncate_log(osb);
5299 if (status < 0) {
5300 mlog_errno(status);
5301 goto bail_up;
5302 }
5303 }
5304
5305 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
5306 if (IS_ERR(handle)) {
5307 status = PTR_ERR(handle);
5308 mlog_errno(status);
5309 goto bail_up;
5310 }
5311
5312 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5313 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5314 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5315
5316 status = ocfs2_truncate_log_append(osb, handle,
5317 start_blk, clusters);
5318 ocfs2_commit_trans(osb, handle);
5319 if (status < 0) {
5320 mlog_errno(status);
5321 goto bail_up;
5322 }
5323 }
5324
5325 bail_up:
5326 mutex_unlock(&tl_inode->i_mutex);
5327
5328 mlog_exit(status);
5329 return status;
5330 }
5331
5332 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5333 {
5334 int status;
5335 struct inode *tl_inode = osb->osb_tl_inode;
5336
5337 mlog_entry_void();
5338
5339 if (tl_inode) {
5340 cancel_delayed_work(&osb->osb_truncate_log_wq);
5341 flush_workqueue(ocfs2_wq);
5342
5343 status = ocfs2_flush_truncate_log(osb);
5344 if (status < 0)
5345 mlog_errno(status);
5346
5347 brelse(osb->osb_tl_bh);
5348 iput(osb->osb_tl_inode);
5349 }
5350
5351 mlog_exit_void();
5352 }
5353
5354 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5355 {
5356 int status;
5357 struct inode *tl_inode = NULL;
5358 struct buffer_head *tl_bh = NULL;
5359
5360 mlog_entry_void();
5361
5362 status = ocfs2_get_truncate_log_info(osb,
5363 osb->slot_num,
5364 &tl_inode,
5365 &tl_bh);
5366 if (status < 0)
5367 mlog_errno(status);
5368
5369 /* ocfs2_truncate_log_shutdown keys on the existence of
5370 * osb->osb_tl_inode so we don't set any of the osb variables
5371 * until we're sure all is well. */
5372 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5373 ocfs2_truncate_log_worker);
5374 osb->osb_tl_bh = tl_bh;
5375 osb->osb_tl_inode = tl_inode;
5376
5377 mlog_exit(status);
5378 return status;
5379 }
5380
5381 /*
5382 * Delayed de-allocation of suballocator blocks.
5383 *
5384 * Some sets of block de-allocations might involve multiple suballocator inodes.
5385 *
5386 * The locking for this can get extremely complicated, especially when
5387 * the suballocator inodes to delete from aren't known until deep
5388 * within an unrelated codepath.
5389 *
5390 * ocfs2_extent_block structures are a good example of this - an inode
5391 * btree could have been grown by any number of nodes each allocating
5392 * out of their own suballoc inode.
5393 *
5394 * These structures allow the delay of block de-allocation until a
5395 * later time, when locking of multiple cluster inodes won't cause
5396 * deadlock.
5397 */
5398
5399 /*
5400 * Describes a single block free from a suballocator
5401 */
5402 struct ocfs2_cached_block_free {
5403 struct ocfs2_cached_block_free *free_next;
5404 u64 free_blk;
5405 unsigned int free_bit;
5406 };
5407
5408 struct ocfs2_per_slot_free_list {
5409 struct ocfs2_per_slot_free_list *f_next_suballocator;
5410 int f_inode_type;
5411 int f_slot;
5412 struct ocfs2_cached_block_free *f_first;
5413 };
5414
5415 static int ocfs2_free_cached_items(struct ocfs2_super *osb,
5416 int sysfile_type,
5417 int slot,
5418 struct ocfs2_cached_block_free *head)
5419 {
5420 int ret;
5421 u64 bg_blkno;
5422 handle_t *handle;
5423 struct inode *inode;
5424 struct buffer_head *di_bh = NULL;
5425 struct ocfs2_cached_block_free *tmp;
5426
5427 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5428 if (!inode) {
5429 ret = -EINVAL;
5430 mlog_errno(ret);
5431 goto out;
5432 }
5433
5434 mutex_lock(&inode->i_mutex);
5435
5436 ret = ocfs2_inode_lock(inode, &di_bh, 1);
5437 if (ret) {
5438 mlog_errno(ret);
5439 goto out_mutex;
5440 }
5441
5442 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5443 if (IS_ERR(handle)) {
5444 ret = PTR_ERR(handle);
5445 mlog_errno(ret);
5446 goto out_unlock;
5447 }
5448
5449 while (head) {
5450 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5451 head->free_bit);
5452 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5453 head->free_bit, (unsigned long long)head->free_blk);
5454
5455 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5456 head->free_bit, bg_blkno, 1);
5457 if (ret) {
5458 mlog_errno(ret);
5459 goto out_journal;
5460 }
5461
5462 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5463 if (ret) {
5464 mlog_errno(ret);
5465 goto out_journal;
5466 }
5467
5468 tmp = head;
5469 head = head->free_next;
5470 kfree(tmp);
5471 }
5472
5473 out_journal:
5474 ocfs2_commit_trans(osb, handle);
5475
5476 out_unlock:
5477 ocfs2_inode_unlock(inode, 1);
5478 brelse(di_bh);
5479 out_mutex:
5480 mutex_unlock(&inode->i_mutex);
5481 iput(inode);
5482 out:
5483 while(head) {
5484 /* Premature exit may have left some dangling items. */
5485 tmp = head;
5486 head = head->free_next;
5487 kfree(tmp);
5488 }
5489
5490 return ret;
5491 }
5492
5493 int ocfs2_run_deallocs(struct ocfs2_super *osb,
5494 struct ocfs2_cached_dealloc_ctxt *ctxt)
5495 {
5496 int ret = 0, ret2;
5497 struct ocfs2_per_slot_free_list *fl;
5498
5499 if (!ctxt)
5500 return 0;
5501
5502 while (ctxt->c_first_suballocator) {
5503 fl = ctxt->c_first_suballocator;
5504
5505 if (fl->f_first) {
5506 mlog(0, "Free items: (type %u, slot %d)\n",
5507 fl->f_inode_type, fl->f_slot);
5508 ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
5509 fl->f_slot, fl->f_first);
5510 if (ret2)
5511 mlog_errno(ret2);
5512 if (!ret)
5513 ret = ret2;
5514 }
5515
5516 ctxt->c_first_suballocator = fl->f_next_suballocator;
5517 kfree(fl);
5518 }
5519
5520 return ret;
5521 }
5522
5523 static struct ocfs2_per_slot_free_list *
5524 ocfs2_find_per_slot_free_list(int type,
5525 int slot,
5526 struct ocfs2_cached_dealloc_ctxt *ctxt)
5527 {
5528 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
5529
5530 while (fl) {
5531 if (fl->f_inode_type == type && fl->f_slot == slot)
5532 return fl;
5533
5534 fl = fl->f_next_suballocator;
5535 }
5536
5537 fl = kmalloc(sizeof(*fl), GFP_NOFS);
5538 if (fl) {
5539 fl->f_inode_type = type;
5540 fl->f_slot = slot;
5541 fl->f_first = NULL;
5542 fl->f_next_suballocator = ctxt->c_first_suballocator;
5543
5544 ctxt->c_first_suballocator = fl;
5545 }
5546 return fl;
5547 }
5548
5549 static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
5550 int type, int slot, u64 blkno,
5551 unsigned int bit)
5552 {
5553 int ret;
5554 struct ocfs2_per_slot_free_list *fl;
5555 struct ocfs2_cached_block_free *item;
5556
5557 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
5558 if (fl == NULL) {
5559 ret = -ENOMEM;
5560 mlog_errno(ret);
5561 goto out;
5562 }
5563
5564 item = kmalloc(sizeof(*item), GFP_NOFS);
5565 if (item == NULL) {
5566 ret = -ENOMEM;
5567 mlog_errno(ret);
5568 goto out;
5569 }
5570
5571 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
5572 type, slot, bit, (unsigned long long)blkno);
5573
5574 item->free_blk = blkno;
5575 item->free_bit = bit;
5576 item->free_next = fl->f_first;
5577
5578 fl->f_first = item;
5579
5580 ret = 0;
5581 out:
5582 return ret;
5583 }
5584
5585 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
5586 struct ocfs2_extent_block *eb)
5587 {
5588 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
5589 le16_to_cpu(eb->h_suballoc_slot),
5590 le64_to_cpu(eb->h_blkno),
5591 le16_to_cpu(eb->h_suballoc_bit));
5592 }
5593
5594 /* This function will figure out whether the currently last extent
5595 * block will be deleted, and if it will, what the new last extent
5596 * block will be so we can update his h_next_leaf_blk field, as well
5597 * as the dinodes i_last_eb_blk */
5598 static int ocfs2_find_new_last_ext_blk(struct inode *inode,
5599 unsigned int clusters_to_del,
5600 struct ocfs2_path *path,
5601 struct buffer_head **new_last_eb)
5602 {
5603 int next_free, ret = 0;
5604 u32 cpos;
5605 struct ocfs2_extent_rec *rec;
5606 struct ocfs2_extent_block *eb;
5607 struct ocfs2_extent_list *el;
5608 struct buffer_head *bh = NULL;
5609
5610 *new_last_eb = NULL;
5611
5612 /* we have no tree, so of course, no last_eb. */
5613 if (!path->p_tree_depth)
5614 goto out;
5615
5616 /* trunc to zero special case - this makes tree_depth = 0
5617 * regardless of what it is. */
5618 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
5619 goto out;
5620
5621 el = path_leaf_el(path);
5622 BUG_ON(!el->l_next_free_rec);
5623
5624 /*
5625 * Make sure that this extent list will actually be empty
5626 * after we clear away the data. We can shortcut out if
5627 * there's more than one non-empty extent in the
5628 * list. Otherwise, a check of the remaining extent is
5629 * necessary.
5630 */
5631 next_free = le16_to_cpu(el->l_next_free_rec);
5632 rec = NULL;
5633 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5634 if (next_free > 2)
5635 goto out;
5636
5637 /* We may have a valid extent in index 1, check it. */
5638 if (next_free == 2)
5639 rec = &el->l_recs[1];
5640
5641 /*
5642 * Fall through - no more nonempty extents, so we want
5643 * to delete this leaf.
5644 */
5645 } else {
5646 if (next_free > 1)
5647 goto out;
5648
5649 rec = &el->l_recs[0];
5650 }
5651
5652 if (rec) {
5653 /*
5654 * Check it we'll only be trimming off the end of this
5655 * cluster.
5656 */
5657 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
5658 goto out;
5659 }
5660
5661 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
5662 if (ret) {
5663 mlog_errno(ret);
5664 goto out;
5665 }
5666
5667 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
5668 if (ret) {
5669 mlog_errno(ret);
5670 goto out;
5671 }
5672
5673 eb = (struct ocfs2_extent_block *) bh->b_data;
5674 el = &eb->h_list;
5675 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5676 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5677 ret = -EROFS;
5678 goto out;
5679 }
5680
5681 *new_last_eb = bh;
5682 get_bh(*new_last_eb);
5683 mlog(0, "returning block %llu, (cpos: %u)\n",
5684 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
5685 out:
5686 brelse(bh);
5687
5688 return ret;
5689 }
5690
5691 /*
5692 * Trim some clusters off the rightmost edge of a tree. Only called
5693 * during truncate.
5694 *
5695 * The caller needs to:
5696 * - start journaling of each path component.
5697 * - compute and fully set up any new last ext block
5698 */
5699 static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
5700 handle_t *handle, struct ocfs2_truncate_context *tc,
5701 u32 clusters_to_del, u64 *delete_start)
5702 {
5703 int ret, i, index = path->p_tree_depth;
5704 u32 new_edge = 0;
5705 u64 deleted_eb = 0;
5706 struct buffer_head *bh;
5707 struct ocfs2_extent_list *el;
5708 struct ocfs2_extent_rec *rec;
5709
5710 *delete_start = 0;
5711
5712 while (index >= 0) {
5713 bh = path->p_node[index].bh;
5714 el = path->p_node[index].el;
5715
5716 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5717 index, (unsigned long long)bh->b_blocknr);
5718
5719 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5720
5721 if (index !=
5722 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5723 ocfs2_error(inode->i_sb,
5724 "Inode %lu has invalid ext. block %llu",
5725 inode->i_ino,
5726 (unsigned long long)bh->b_blocknr);
5727 ret = -EROFS;
5728 goto out;
5729 }
5730
5731 find_tail_record:
5732 i = le16_to_cpu(el->l_next_free_rec) - 1;
5733 rec = &el->l_recs[i];
5734
5735 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5736 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
5737 ocfs2_rec_clusters(el, rec),
5738 (unsigned long long)le64_to_cpu(rec->e_blkno),
5739 le16_to_cpu(el->l_next_free_rec));
5740
5741 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
5742
5743 if (le16_to_cpu(el->l_tree_depth) == 0) {
5744 /*
5745 * If the leaf block contains a single empty
5746 * extent and no records, we can just remove
5747 * the block.
5748 */
5749 if (i == 0 && ocfs2_is_empty_extent(rec)) {
5750 memset(rec, 0,
5751 sizeof(struct ocfs2_extent_rec));
5752 el->l_next_free_rec = cpu_to_le16(0);
5753
5754 goto delete;
5755 }
5756
5757 /*
5758 * Remove any empty extents by shifting things
5759 * left. That should make life much easier on
5760 * the code below. This condition is rare
5761 * enough that we shouldn't see a performance
5762 * hit.
5763 */
5764 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5765 le16_add_cpu(&el->l_next_free_rec, -1);
5766
5767 for(i = 0;
5768 i < le16_to_cpu(el->l_next_free_rec); i++)
5769 el->l_recs[i] = el->l_recs[i + 1];
5770
5771 memset(&el->l_recs[i], 0,
5772 sizeof(struct ocfs2_extent_rec));
5773
5774 /*
5775 * We've modified our extent list. The
5776 * simplest way to handle this change
5777 * is to being the search from the
5778 * start again.
5779 */
5780 goto find_tail_record;
5781 }
5782
5783 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
5784
5785 /*
5786 * We'll use "new_edge" on our way back up the
5787 * tree to know what our rightmost cpos is.
5788 */
5789 new_edge = le16_to_cpu(rec->e_leaf_clusters);
5790 new_edge += le32_to_cpu(rec->e_cpos);
5791
5792 /*
5793 * The caller will use this to delete data blocks.
5794 */
5795 *delete_start = le64_to_cpu(rec->e_blkno)
5796 + ocfs2_clusters_to_blocks(inode->i_sb,
5797 le16_to_cpu(rec->e_leaf_clusters));
5798
5799 /*
5800 * If it's now empty, remove this record.
5801 */
5802 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
5803 memset(rec, 0,
5804 sizeof(struct ocfs2_extent_rec));
5805 le16_add_cpu(&el->l_next_free_rec, -1);
5806 }
5807 } else {
5808 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5809 memset(rec, 0,
5810 sizeof(struct ocfs2_extent_rec));
5811 le16_add_cpu(&el->l_next_free_rec, -1);
5812
5813 goto delete;
5814 }
5815
5816 /* Can this actually happen? */
5817 if (le16_to_cpu(el->l_next_free_rec) == 0)
5818 goto delete;
5819
5820 /*
5821 * We never actually deleted any clusters
5822 * because our leaf was empty. There's no
5823 * reason to adjust the rightmost edge then.
5824 */
5825 if (new_edge == 0)
5826 goto delete;
5827
5828 rec->e_int_clusters = cpu_to_le32(new_edge);
5829 le32_add_cpu(&rec->e_int_clusters,
5830 -le32_to_cpu(rec->e_cpos));
5831
5832 /*
5833 * A deleted child record should have been
5834 * caught above.
5835 */
5836 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
5837 }
5838
5839 delete:
5840 ret = ocfs2_journal_dirty(handle, bh);
5841 if (ret) {
5842 mlog_errno(ret);
5843 goto out;
5844 }
5845
5846 mlog(0, "extent list container %llu, after: record %d: "
5847 "(%u, %u, %llu), next = %u.\n",
5848 (unsigned long long)bh->b_blocknr, i,
5849 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
5850 (unsigned long long)le64_to_cpu(rec->e_blkno),
5851 le16_to_cpu(el->l_next_free_rec));
5852
5853 /*
5854 * We must be careful to only attempt delete of an
5855 * extent block (and not the root inode block).
5856 */
5857 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5858 struct ocfs2_extent_block *eb =
5859 (struct ocfs2_extent_block *)bh->b_data;
5860
5861 /*
5862 * Save this for use when processing the
5863 * parent block.
5864 */
5865 deleted_eb = le64_to_cpu(eb->h_blkno);
5866
5867 mlog(0, "deleting this extent block.\n");
5868
5869 ocfs2_remove_from_cache(inode, bh);
5870
5871 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
5872 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5873 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5874
5875 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5876 /* An error here is not fatal. */
5877 if (ret < 0)
5878 mlog_errno(ret);
5879 } else {
5880 deleted_eb = 0;
5881 }
5882
5883 index--;
5884 }
5885
5886 ret = 0;
5887 out:
5888 return ret;
5889 }
5890
5891 static int ocfs2_do_truncate(struct ocfs2_super *osb,
5892 unsigned int clusters_to_del,
5893 struct inode *inode,
5894 struct buffer_head *fe_bh,
5895 handle_t *handle,
5896 struct ocfs2_truncate_context *tc,
5897 struct ocfs2_path *path)
5898 {
5899 int status;
5900 struct ocfs2_dinode *fe;
5901 struct ocfs2_extent_block *last_eb = NULL;
5902 struct ocfs2_extent_list *el;
5903 struct buffer_head *last_eb_bh = NULL;
5904 u64 delete_blk = 0;
5905
5906 fe = (struct ocfs2_dinode *) fe_bh->b_data;
5907
5908 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
5909 path, &last_eb_bh);
5910 if (status < 0) {
5911 mlog_errno(status);
5912 goto bail;
5913 }
5914
5915 /*
5916 * Each component will be touched, so we might as well journal
5917 * here to avoid having to handle errors later.
5918 */
5919 status = ocfs2_journal_access_path(inode, handle, path);
5920 if (status < 0) {
5921 mlog_errno(status);
5922 goto bail;
5923 }
5924
5925 if (last_eb_bh) {
5926 status = ocfs2_journal_access(handle, inode, last_eb_bh,
5927 OCFS2_JOURNAL_ACCESS_WRITE);
5928 if (status < 0) {
5929 mlog_errno(status);
5930 goto bail;
5931 }
5932
5933 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5934 }
5935
5936 el = &(fe->id2.i_list);
5937
5938 /*
5939 * Lower levels depend on this never happening, but it's best
5940 * to check it up here before changing the tree.
5941 */
5942 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
5943 ocfs2_error(inode->i_sb,
5944 "Inode %lu has an empty extent record, depth %u\n",
5945 inode->i_ino, le16_to_cpu(el->l_tree_depth));
5946 status = -EROFS;
5947 goto bail;
5948 }
5949
5950 spin_lock(&OCFS2_I(inode)->ip_lock);
5951 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5952 clusters_to_del;
5953 spin_unlock(&OCFS2_I(inode)->ip_lock);
5954 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
5955 inode->i_blocks = ocfs2_inode_sector_count(inode);
5956
5957 status = ocfs2_trim_tree(inode, path, handle, tc,
5958 clusters_to_del, &delete_blk);
5959 if (status) {
5960 mlog_errno(status);
5961 goto bail;
5962 }
5963
5964 if (le32_to_cpu(fe->i_clusters) == 0) {
5965 /* trunc to zero is a special case. */
5966 el->l_tree_depth = 0;
5967 fe->i_last_eb_blk = 0;
5968 } else if (last_eb)
5969 fe->i_last_eb_blk = last_eb->h_blkno;
5970
5971 status = ocfs2_journal_dirty(handle, fe_bh);
5972 if (status < 0) {
5973 mlog_errno(status);
5974 goto bail;
5975 }
5976
5977 if (last_eb) {
5978 /* If there will be a new last extent block, then by
5979 * definition, there cannot be any leaves to the right of
5980 * him. */
5981 last_eb->h_next_leaf_blk = 0;
5982 status = ocfs2_journal_dirty(handle, last_eb_bh);
5983 if (status < 0) {
5984 mlog_errno(status);
5985 goto bail;
5986 }
5987 }
5988
5989 if (delete_blk) {
5990 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5991 clusters_to_del);
5992 if (status < 0) {
5993 mlog_errno(status);
5994 goto bail;
5995 }
5996 }
5997 status = 0;
5998 bail:
5999
6000 mlog_exit(status);
6001 return status;
6002 }
6003
6004 static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
6005 {
6006 set_buffer_uptodate(bh);
6007 mark_buffer_dirty(bh);
6008 return 0;
6009 }
6010
6011 static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
6012 {
6013 set_buffer_uptodate(bh);
6014 mark_buffer_dirty(bh);
6015 return ocfs2_journal_dirty_data(handle, bh);
6016 }
6017
6018 static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6019 unsigned int from, unsigned int to,
6020 struct page *page, int zero, u64 *phys)
6021 {
6022 int ret, partial = 0;
6023
6024 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6025 if (ret)
6026 mlog_errno(ret);
6027
6028 if (zero)
6029 zero_user_segment(page, from, to);
6030
6031 /*
6032 * Need to set the buffers we zero'd into uptodate
6033 * here if they aren't - ocfs2_map_page_blocks()
6034 * might've skipped some
6035 */
6036 if (ocfs2_should_order_data(inode)) {
6037 ret = walk_page_buffers(handle,
6038 page_buffers(page),
6039 from, to, &partial,
6040 ocfs2_ordered_zero_func);
6041 if (ret < 0)
6042 mlog_errno(ret);
6043 } else {
6044 ret = walk_page_buffers(handle, page_buffers(page),
6045 from, to, &partial,
6046 ocfs2_writeback_zero_func);
6047 if (ret < 0)
6048 mlog_errno(ret);
6049 }
6050
6051 if (!partial)
6052 SetPageUptodate(page);
6053
6054 flush_dcache_page(page);
6055 }
6056
6057 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6058 loff_t end, struct page **pages,
6059 int numpages, u64 phys, handle_t *handle)
6060 {
6061 int i;
6062 struct page *page;
6063 unsigned int from, to = PAGE_CACHE_SIZE;
6064 struct super_block *sb = inode->i_sb;
6065
6066 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6067
6068 if (numpages == 0)
6069 goto out;
6070
6071 to = PAGE_CACHE_SIZE;
6072 for(i = 0; i < numpages; i++) {
6073 page = pages[i];
6074
6075 from = start & (PAGE_CACHE_SIZE - 1);
6076 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6077 to = end & (PAGE_CACHE_SIZE - 1);
6078
6079 BUG_ON(from > PAGE_CACHE_SIZE);
6080 BUG_ON(to > PAGE_CACHE_SIZE);
6081
6082 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6083 &phys);
6084
6085 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6086 }
6087 out:
6088 if (pages)
6089 ocfs2_unlock_and_free_pages(pages, numpages);
6090 }
6091
6092 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6093 struct page **pages, int *num)
6094 {
6095 int numpages, ret = 0;
6096 struct super_block *sb = inode->i_sb;
6097 struct address_space *mapping = inode->i_mapping;
6098 unsigned long index;
6099 loff_t last_page_bytes;
6100
6101 BUG_ON(start > end);
6102
6103 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6104 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6105
6106 numpages = 0;
6107 last_page_bytes = PAGE_ALIGN(end);
6108 index = start >> PAGE_CACHE_SHIFT;
6109 do {
6110 pages[numpages] = grab_cache_page(mapping, index);
6111 if (!pages[numpages]) {
6112 ret = -ENOMEM;
6113 mlog_errno(ret);
6114 goto out;
6115 }
6116
6117 numpages++;
6118 index++;
6119 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6120
6121 out:
6122 if (ret != 0) {
6123 if (pages)
6124 ocfs2_unlock_and_free_pages(pages, numpages);
6125 numpages = 0;
6126 }
6127
6128 *num = numpages;
6129
6130 return ret;
6131 }
6132
6133 /*
6134 * Zero the area past i_size but still within an allocated
6135 * cluster. This avoids exposing nonzero data on subsequent file
6136 * extends.
6137 *
6138 * We need to call this before i_size is updated on the inode because
6139 * otherwise block_write_full_page() will skip writeout of pages past
6140 * i_size. The new_i_size parameter is passed for this reason.
6141 */
6142 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6143 u64 range_start, u64 range_end)
6144 {
6145 int ret = 0, numpages;
6146 struct page **pages = NULL;
6147 u64 phys;
6148 unsigned int ext_flags;
6149 struct super_block *sb = inode->i_sb;
6150
6151 /*
6152 * File systems which don't support sparse files zero on every
6153 * extend.
6154 */
6155 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6156 return 0;
6157
6158 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6159 sizeof(struct page *), GFP_NOFS);
6160 if (pages == NULL) {
6161 ret = -ENOMEM;
6162 mlog_errno(ret);
6163 goto out;
6164 }
6165
6166 if (range_start == range_end)
6167 goto out;
6168
6169 ret = ocfs2_extent_map_get_blocks(inode,
6170 range_start >> sb->s_blocksize_bits,
6171 &phys, NULL, &ext_flags);
6172 if (ret) {
6173 mlog_errno(ret);
6174 goto out;
6175 }
6176
6177 /*
6178 * Tail is a hole, or is marked unwritten. In either case, we
6179 * can count on read and write to return/push zero's.
6180 */
6181 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6182 goto out;
6183
6184 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6185 &numpages);
6186 if (ret) {
6187 mlog_errno(ret);
6188 goto out;
6189 }
6190
6191 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6192 numpages, phys, handle);
6193
6194 /*
6195 * Initiate writeout of the pages we zero'd here. We don't
6196 * wait on them - the truncate_inode_pages() call later will
6197 * do that for us.
6198 */
6199 ret = do_sync_mapping_range(inode->i_mapping, range_start,
6200 range_end - 1, SYNC_FILE_RANGE_WRITE);
6201 if (ret)
6202 mlog_errno(ret);
6203
6204 out:
6205 if (pages)
6206 kfree(pages);
6207
6208 return ret;
6209 }
6210
6211 static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di)
6212 {
6213 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6214
6215 memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2));
6216 }
6217
6218 void ocfs2_dinode_new_extent_list(struct inode *inode,
6219 struct ocfs2_dinode *di)
6220 {
6221 ocfs2_zero_dinode_id2(inode, di);
6222 di->id2.i_list.l_tree_depth = 0;
6223 di->id2.i_list.l_next_free_rec = 0;
6224 di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb));
6225 }
6226
6227 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6228 {
6229 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6230 struct ocfs2_inline_data *idata = &di->id2.i_data;
6231
6232 spin_lock(&oi->ip_lock);
6233 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6234 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6235 spin_unlock(&oi->ip_lock);
6236
6237 /*
6238 * We clear the entire i_data structure here so that all
6239 * fields can be properly initialized.
6240 */
6241 ocfs2_zero_dinode_id2(inode, di);
6242
6243 idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb));
6244 }
6245
6246 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6247 struct buffer_head *di_bh)
6248 {
6249 int ret, i, has_data, num_pages = 0;
6250 handle_t *handle;
6251 u64 uninitialized_var(block);
6252 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6253 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6254 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6255 struct ocfs2_alloc_context *data_ac = NULL;
6256 struct page **pages = NULL;
6257 loff_t end = osb->s_clustersize;
6258
6259 has_data = i_size_read(inode) ? 1 : 0;
6260
6261 if (has_data) {
6262 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6263 sizeof(struct page *), GFP_NOFS);
6264 if (pages == NULL) {
6265 ret = -ENOMEM;
6266 mlog_errno(ret);
6267 goto out;
6268 }
6269
6270 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6271 if (ret) {
6272 mlog_errno(ret);
6273 goto out;
6274 }
6275 }
6276
6277 handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6278 if (IS_ERR(handle)) {
6279 ret = PTR_ERR(handle);
6280 mlog_errno(ret);
6281 goto out_unlock;
6282 }
6283
6284 ret = ocfs2_journal_access(handle, inode, di_bh,
6285 OCFS2_JOURNAL_ACCESS_WRITE);
6286 if (ret) {
6287 mlog_errno(ret);
6288 goto out_commit;
6289 }
6290
6291 if (has_data) {
6292 u32 bit_off, num;
6293 unsigned int page_end;
6294 u64 phys;
6295
6296 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6297 &num);
6298 if (ret) {
6299 mlog_errno(ret);
6300 goto out_commit;
6301 }
6302
6303 /*
6304 * Save two copies, one for insert, and one that can
6305 * be changed by ocfs2_map_and_dirty_page() below.
6306 */
6307 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6308
6309 /*
6310 * Non sparse file systems zero on extend, so no need
6311 * to do that now.
6312 */
6313 if (!ocfs2_sparse_alloc(osb) &&
6314 PAGE_CACHE_SIZE < osb->s_clustersize)
6315 end = PAGE_CACHE_SIZE;
6316
6317 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6318 if (ret) {
6319 mlog_errno(ret);
6320 goto out_commit;
6321 }
6322
6323 /*
6324 * This should populate the 1st page for us and mark
6325 * it up to date.
6326 */
6327 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6328 if (ret) {
6329 mlog_errno(ret);
6330 goto out_commit;
6331 }
6332
6333 page_end = PAGE_CACHE_SIZE;
6334 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6335 page_end = osb->s_clustersize;
6336
6337 for (i = 0; i < num_pages; i++)
6338 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6339 pages[i], i > 0, &phys);
6340 }
6341
6342 spin_lock(&oi->ip_lock);
6343 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6344 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6345 spin_unlock(&oi->ip_lock);
6346
6347 ocfs2_dinode_new_extent_list(inode, di);
6348
6349 ocfs2_journal_dirty(handle, di_bh);
6350
6351 if (has_data) {
6352 /*
6353 * An error at this point should be extremely rare. If
6354 * this proves to be false, we could always re-build
6355 * the in-inode data from our pages.
6356 */
6357 ret = ocfs2_insert_extent(osb, handle, inode, di_bh,
6358 0, block, 1, 0, NULL);
6359 if (ret) {
6360 mlog_errno(ret);
6361 goto out_commit;
6362 }
6363
6364 inode->i_blocks = ocfs2_inode_sector_count(inode);
6365 }
6366
6367 out_commit:
6368 ocfs2_commit_trans(osb, handle);
6369
6370 out_unlock:
6371 if (data_ac)
6372 ocfs2_free_alloc_context(data_ac);
6373
6374 out:
6375 if (pages) {
6376 ocfs2_unlock_and_free_pages(pages, num_pages);
6377 kfree(pages);
6378 }
6379
6380 return ret;
6381 }
6382
6383 /*
6384 * It is expected, that by the time you call this function,
6385 * inode->i_size and fe->i_size have been adjusted.
6386 *
6387 * WARNING: This will kfree the truncate context
6388 */
6389 int ocfs2_commit_truncate(struct ocfs2_super *osb,
6390 struct inode *inode,
6391 struct buffer_head *fe_bh,
6392 struct ocfs2_truncate_context *tc)
6393 {
6394 int status, i, credits, tl_sem = 0;
6395 u32 clusters_to_del, new_highest_cpos, range;
6396 struct ocfs2_extent_list *el;
6397 handle_t *handle = NULL;
6398 struct inode *tl_inode = osb->osb_tl_inode;
6399 struct ocfs2_path *path = NULL;
6400
6401 mlog_entry_void();
6402
6403 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
6404 i_size_read(inode));
6405
6406 path = ocfs2_new_inode_path(fe_bh);
6407 if (!path) {
6408 status = -ENOMEM;
6409 mlog_errno(status);
6410 goto bail;
6411 }
6412
6413 ocfs2_extent_map_trunc(inode, new_highest_cpos);
6414
6415 start:
6416 /*
6417 * Check that we still have allocation to delete.
6418 */
6419 if (OCFS2_I(inode)->ip_clusters == 0) {
6420 status = 0;
6421 goto bail;
6422 }
6423
6424 /*
6425 * Truncate always works against the rightmost tree branch.
6426 */
6427 status = ocfs2_find_path(inode, path, UINT_MAX);
6428 if (status) {
6429 mlog_errno(status);
6430 goto bail;
6431 }
6432
6433 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
6434 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
6435
6436 /*
6437 * By now, el will point to the extent list on the bottom most
6438 * portion of this tree. Only the tail record is considered in
6439 * each pass.
6440 *
6441 * We handle the following cases, in order:
6442 * - empty extent: delete the remaining branch
6443 * - remove the entire record
6444 * - remove a partial record
6445 * - no record needs to be removed (truncate has completed)
6446 */
6447 el = path_leaf_el(path);
6448 if (le16_to_cpu(el->l_next_free_rec) == 0) {
6449 ocfs2_error(inode->i_sb,
6450 "Inode %llu has empty extent block at %llu\n",
6451 (unsigned long long)OCFS2_I(inode)->ip_blkno,
6452 (unsigned long long)path_leaf_bh(path)->b_blocknr);
6453 status = -EROFS;
6454 goto bail;
6455 }
6456
6457 i = le16_to_cpu(el->l_next_free_rec) - 1;
6458 range = le32_to_cpu(el->l_recs[i].e_cpos) +
6459 ocfs2_rec_clusters(el, &el->l_recs[i]);
6460 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
6461 clusters_to_del = 0;
6462 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
6463 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
6464 } else if (range > new_highest_cpos) {
6465 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
6466 le32_to_cpu(el->l_recs[i].e_cpos)) -
6467 new_highest_cpos;
6468 } else {
6469 status = 0;
6470 goto bail;
6471 }
6472
6473 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
6474 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
6475
6476 mutex_lock(&tl_inode->i_mutex);
6477 tl_sem = 1;
6478 /* ocfs2_truncate_log_needs_flush guarantees us at least one
6479 * record is free for use. If there isn't any, we flush to get
6480 * an empty truncate log. */
6481 if (ocfs2_truncate_log_needs_flush(osb)) {
6482 status = __ocfs2_flush_truncate_log(osb);
6483 if (status < 0) {
6484 mlog_errno(status);
6485 goto bail;
6486 }
6487 }
6488
6489 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
6490 (struct ocfs2_dinode *)fe_bh->b_data,
6491 el);
6492 handle = ocfs2_start_trans(osb, credits);
6493 if (IS_ERR(handle)) {
6494 status = PTR_ERR(handle);
6495 handle = NULL;
6496 mlog_errno(status);
6497 goto bail;
6498 }
6499
6500 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
6501 tc, path);
6502 if (status < 0) {
6503 mlog_errno(status);
6504 goto bail;
6505 }
6506
6507 mutex_unlock(&tl_inode->i_mutex);
6508 tl_sem = 0;
6509
6510 ocfs2_commit_trans(osb, handle);
6511 handle = NULL;
6512
6513 ocfs2_reinit_path(path, 1);
6514
6515 /*
6516 * The check above will catch the case where we've truncated
6517 * away all allocation.
6518 */
6519 goto start;
6520
6521 bail:
6522
6523 ocfs2_schedule_truncate_log_flush(osb, 1);
6524
6525 if (tl_sem)
6526 mutex_unlock(&tl_inode->i_mutex);
6527
6528 if (handle)
6529 ocfs2_commit_trans(osb, handle);
6530
6531 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
6532
6533 ocfs2_free_path(path);
6534
6535 /* This will drop the ext_alloc cluster lock for us */
6536 ocfs2_free_truncate_context(tc);
6537
6538 mlog_exit(status);
6539 return status;
6540 }
6541
6542 /*
6543 * Expects the inode to already be locked.
6544 */
6545 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
6546 struct inode *inode,
6547 struct buffer_head *fe_bh,
6548 struct ocfs2_truncate_context **tc)
6549 {
6550 int status;
6551 unsigned int new_i_clusters;
6552 struct ocfs2_dinode *fe;
6553 struct ocfs2_extent_block *eb;
6554 struct buffer_head *last_eb_bh = NULL;
6555
6556 mlog_entry_void();
6557
6558 *tc = NULL;
6559
6560 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
6561 i_size_read(inode));
6562 fe = (struct ocfs2_dinode *) fe_bh->b_data;
6563
6564 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
6565 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
6566 (unsigned long long)le64_to_cpu(fe->i_size));
6567
6568 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
6569 if (!(*tc)) {
6570 status = -ENOMEM;
6571 mlog_errno(status);
6572 goto bail;
6573 }
6574 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
6575
6576 if (fe->id2.i_list.l_tree_depth) {
6577 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
6578 &last_eb_bh, OCFS2_BH_CACHED, inode);
6579 if (status < 0) {
6580 mlog_errno(status);
6581 goto bail;
6582 }
6583 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
6584 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
6585 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
6586
6587 brelse(last_eb_bh);
6588 status = -EIO;
6589 goto bail;
6590 }
6591 }
6592
6593 (*tc)->tc_last_eb_bh = last_eb_bh;
6594
6595 status = 0;
6596 bail:
6597 if (status < 0) {
6598 if (*tc)
6599 ocfs2_free_truncate_context(*tc);
6600 *tc = NULL;
6601 }
6602 mlog_exit_void();
6603 return status;
6604 }
6605
6606 /*
6607 * 'start' is inclusive, 'end' is not.
6608 */
6609 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
6610 unsigned int start, unsigned int end, int trunc)
6611 {
6612 int ret;
6613 unsigned int numbytes;
6614 handle_t *handle;
6615 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6616 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6617 struct ocfs2_inline_data *idata = &di->id2.i_data;
6618
6619 if (end > i_size_read(inode))
6620 end = i_size_read(inode);
6621
6622 BUG_ON(start >= end);
6623
6624 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
6625 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
6626 !ocfs2_supports_inline_data(osb)) {
6627 ocfs2_error(inode->i_sb,
6628 "Inline data flags for inode %llu don't agree! "
6629 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
6630 (unsigned long long)OCFS2_I(inode)->ip_blkno,
6631 le16_to_cpu(di->i_dyn_features),
6632 OCFS2_I(inode)->ip_dyn_features,
6633 osb->s_feature_incompat);
6634 ret = -EROFS;
6635 goto out;
6636 }
6637
6638 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
6639 if (IS_ERR(handle)) {
6640 ret = PTR_ERR(handle);
6641 mlog_errno(ret);
6642 goto out;
6643 }
6644
6645 ret = ocfs2_journal_access(handle, inode, di_bh,
6646 OCFS2_JOURNAL_ACCESS_WRITE);
6647 if (ret) {
6648 mlog_errno(ret);
6649 goto out_commit;
6650 }
6651
6652 numbytes = end - start;
6653 memset(idata->id_data + start, 0, numbytes);
6654
6655 /*
6656 * No need to worry about the data page here - it's been
6657 * truncated already and inline data doesn't need it for
6658 * pushing zero's to disk, so we'll let readpage pick it up
6659 * later.
6660 */
6661 if (trunc) {
6662 i_size_write(inode, start);
6663 di->i_size = cpu_to_le64(start);
6664 }
6665
6666 inode->i_blocks = ocfs2_inode_sector_count(inode);
6667 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
6668
6669 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
6670 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
6671
6672 ocfs2_journal_dirty(handle, di_bh);
6673
6674 out_commit:
6675 ocfs2_commit_trans(osb, handle);
6676
6677 out:
6678 return ret;
6679 }
6680
6681 static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
6682 {
6683 /*
6684 * The caller is responsible for completing deallocation
6685 * before freeing the context.
6686 */
6687 if (tc->tc_dealloc.c_first_suballocator != NULL)
6688 mlog(ML_NOTICE,
6689 "Truncate completion has non-empty dealloc context\n");
6690
6691 if (tc->tc_last_eb_bh)
6692 brelse(tc->tc_last_eb_bh);
6693
6694 kfree(tc);
6695 }
This page took 0.1725 seconds and 5 git commands to generate.