Merge branch 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "aops.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "file.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "suballoc.h"
45 #include "super.h"
46 #include "symlink.h"
47 #include "refcounttree.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53 {
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
63 (unsigned long long)iblock, bh_result, create);
64
65 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66
67 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
68 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
69 (unsigned long long)iblock);
70 goto bail;
71 }
72
73 status = ocfs2_read_inode_block(inode, &bh);
74 if (status < 0) {
75 mlog_errno(status);
76 goto bail;
77 }
78 fe = (struct ocfs2_dinode *) bh->b_data;
79
80 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
81 le32_to_cpu(fe->i_clusters))) {
82 mlog(ML_ERROR, "block offset is outside the allocated size: "
83 "%llu\n", (unsigned long long)iblock);
84 goto bail;
85 }
86
87 /* We don't use the page cache to create symlink data, so if
88 * need be, copy it over from the buffer cache. */
89 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
90 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 iblock;
92 buffer_cache_bh = sb_getblk(osb->sb, blkno);
93 if (!buffer_cache_bh) {
94 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
95 goto bail;
96 }
97
98 /* we haven't locked out transactions, so a commit
99 * could've happened. Since we've got a reference on
100 * the bh, even if it commits while we're doing the
101 * copy, the data is still good. */
102 if (buffer_jbd(buffer_cache_bh)
103 && ocfs2_inode_is_new(inode)) {
104 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 if (!kaddr) {
106 mlog(ML_ERROR, "couldn't kmap!\n");
107 goto bail;
108 }
109 memcpy(kaddr + (bh_result->b_size * iblock),
110 buffer_cache_bh->b_data,
111 bh_result->b_size);
112 kunmap_atomic(kaddr, KM_USER0);
113 set_buffer_uptodate(bh_result);
114 }
115 brelse(buffer_cache_bh);
116 }
117
118 map_bh(bh_result, inode->i_sb,
119 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
120
121 err = 0;
122
123 bail:
124 brelse(bh);
125
126 mlog_exit(err);
127 return err;
128 }
129
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
132 {
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
159 }
160
161 if (max_blocks < count)
162 count = max_blocks;
163
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows block_prepare_write() to zero.
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
174 */
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
180
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
185 bh_result->b_size = count << inode->i_blkbits;
186
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
198 }
199 }
200
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
203 (unsigned long long)past_eof);
204 if (create && (iblock >= past_eof))
205 set_buffer_new(bh_result);
206
207 bail:
208 if (err < 0)
209 err = -EIO;
210
211 mlog_exit(err);
212 return err;
213 }
214
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
217 {
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250 }
251
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 int ret;
255 struct buffer_head *di_bh = NULL;
256
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272 }
273
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282
283 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284 if (ret != 0) {
285 if (ret == AOP_TRUNCATED_PAGE)
286 unlock = 0;
287 mlog_errno(ret);
288 goto out;
289 }
290
291 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
292 ret = AOP_TRUNCATED_PAGE;
293 goto out_inode_unlock;
294 }
295
296 /*
297 * i_size might have just been updated as we grabed the meta lock. We
298 * might now be discovering a truncate that hit on another node.
299 * block_read_full_page->get_block freaks out if it is asked to read
300 * beyond the end of a file, so we check here. Callers
301 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
302 * and notice that the page they just read isn't needed.
303 *
304 * XXX sys_readahead() seems to get that wrong?
305 */
306 if (start >= i_size_read(inode)) {
307 zero_user(page, 0, PAGE_SIZE);
308 SetPageUptodate(page);
309 ret = 0;
310 goto out_alloc;
311 }
312
313 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
314 ret = ocfs2_readpage_inline(inode, page);
315 else
316 ret = block_read_full_page(page, ocfs2_get_block);
317 unlock = 0;
318
319 out_alloc:
320 up_read(&OCFS2_I(inode)->ip_alloc_sem);
321 out_inode_unlock:
322 ocfs2_inode_unlock(inode, 0);
323 out:
324 if (unlock)
325 unlock_page(page);
326 mlog_exit(ret);
327 return ret;
328 }
329
330 /*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341 {
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379 out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384 }
385
386 /* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398 {
399 int ret;
400
401 mlog_entry("(0x%p)\n", page);
402
403 ret = block_write_full_page(page, ocfs2_get_block, wbc);
404
405 mlog_exit(ret);
406
407 return ret;
408 }
409
410 /*
411 * This is called from ocfs2_write_zero_page() which has handled it's
412 * own cluster locking and has ensured allocation exists for those
413 * blocks to be written.
414 */
415 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
416 unsigned from, unsigned to)
417 {
418 int ret;
419
420 ret = block_prepare_write(page, from, to, ocfs2_get_block);
421
422 return ret;
423 }
424
425 /* Taken from ext3. We don't necessarily need the full blown
426 * functionality yet, but IMHO it's better to cut and paste the whole
427 * thing so we can avoid introducing our own bugs (and easily pick up
428 * their fixes when they happen) --Mark */
429 int walk_page_buffers( handle_t *handle,
430 struct buffer_head *head,
431 unsigned from,
432 unsigned to,
433 int *partial,
434 int (*fn)( handle_t *handle,
435 struct buffer_head *bh))
436 {
437 struct buffer_head *bh;
438 unsigned block_start, block_end;
439 unsigned blocksize = head->b_size;
440 int err, ret = 0;
441 struct buffer_head *next;
442
443 for ( bh = head, block_start = 0;
444 ret == 0 && (bh != head || !block_start);
445 block_start = block_end, bh = next)
446 {
447 next = bh->b_this_page;
448 block_end = block_start + blocksize;
449 if (block_end <= from || block_start >= to) {
450 if (partial && !buffer_uptodate(bh))
451 *partial = 1;
452 continue;
453 }
454 err = (*fn)(handle, bh);
455 if (!ret)
456 ret = err;
457 }
458 return ret;
459 }
460
461 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
462 {
463 sector_t status;
464 u64 p_blkno = 0;
465 int err = 0;
466 struct inode *inode = mapping->host;
467
468 mlog_entry("(block = %llu)\n", (unsigned long long)block);
469
470 /* We don't need to lock journal system files, since they aren't
471 * accessed concurrently from multiple nodes.
472 */
473 if (!INODE_JOURNAL(inode)) {
474 err = ocfs2_inode_lock(inode, NULL, 0);
475 if (err) {
476 if (err != -ENOENT)
477 mlog_errno(err);
478 goto bail;
479 }
480 down_read(&OCFS2_I(inode)->ip_alloc_sem);
481 }
482
483 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
484 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
485 NULL);
486
487 if (!INODE_JOURNAL(inode)) {
488 up_read(&OCFS2_I(inode)->ip_alloc_sem);
489 ocfs2_inode_unlock(inode, 0);
490 }
491
492 if (err) {
493 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
494 (unsigned long long)block);
495 mlog_errno(err);
496 goto bail;
497 }
498
499 bail:
500 status = err ? 0 : p_blkno;
501
502 mlog_exit((int)status);
503
504 return status;
505 }
506
507 /*
508 * TODO: Make this into a generic get_blocks function.
509 *
510 * From do_direct_io in direct-io.c:
511 * "So what we do is to permit the ->get_blocks function to populate
512 * bh.b_size with the size of IO which is permitted at this offset and
513 * this i_blkbits."
514 *
515 * This function is called directly from get_more_blocks in direct-io.c.
516 *
517 * called like this: dio->get_blocks(dio->inode, fs_startblk,
518 * fs_count, map_bh, dio->rw == WRITE);
519 *
520 * Note that we never bother to allocate blocks here, and thus ignore the
521 * create argument.
522 */
523 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
524 struct buffer_head *bh_result, int create)
525 {
526 int ret;
527 u64 p_blkno, inode_blocks, contig_blocks;
528 unsigned int ext_flags;
529 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
530 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
531
532 /* This function won't even be called if the request isn't all
533 * nicely aligned and of the right size, so there's no need
534 * for us to check any of that. */
535
536 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
537
538 /* This figures out the size of the next contiguous block, and
539 * our logical offset */
540 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
541 &contig_blocks, &ext_flags);
542 if (ret) {
543 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
544 (unsigned long long)iblock);
545 ret = -EIO;
546 goto bail;
547 }
548
549 /* We should already CoW the refcounted extent in case of create. */
550 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
551
552 /*
553 * get_more_blocks() expects us to describe a hole by clearing
554 * the mapped bit on bh_result().
555 *
556 * Consider an unwritten extent as a hole.
557 */
558 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
559 map_bh(bh_result, inode->i_sb, p_blkno);
560 else
561 clear_buffer_mapped(bh_result);
562
563 /* make sure we don't map more than max_blocks blocks here as
564 that's all the kernel will handle at this point. */
565 if (max_blocks < contig_blocks)
566 contig_blocks = max_blocks;
567 bh_result->b_size = contig_blocks << blocksize_bits;
568 bail:
569 return ret;
570 }
571
572 /*
573 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
574 * particularly interested in the aio/dio case. Like the core uses
575 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
576 * truncation on another.
577 */
578 static void ocfs2_dio_end_io(struct kiocb *iocb,
579 loff_t offset,
580 ssize_t bytes,
581 void *private,
582 int ret,
583 bool is_async)
584 {
585 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
586 int level;
587
588 /* this io's submitter should not have unlocked this before we could */
589 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
590
591 ocfs2_iocb_clear_rw_locked(iocb);
592
593 level = ocfs2_iocb_rw_locked_level(iocb);
594 if (!level)
595 up_read(&inode->i_alloc_sem);
596 ocfs2_rw_unlock(inode, level);
597
598 if (is_async)
599 aio_complete(iocb, ret, 0);
600 }
601
602 /*
603 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
604 * from ext3. PageChecked() bits have been removed as OCFS2 does not
605 * do journalled data.
606 */
607 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
608 {
609 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
610
611 jbd2_journal_invalidatepage(journal, page, offset);
612 }
613
614 static int ocfs2_releasepage(struct page *page, gfp_t wait)
615 {
616 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
617
618 if (!page_has_buffers(page))
619 return 0;
620 return jbd2_journal_try_to_free_buffers(journal, page, wait);
621 }
622
623 static ssize_t ocfs2_direct_IO(int rw,
624 struct kiocb *iocb,
625 const struct iovec *iov,
626 loff_t offset,
627 unsigned long nr_segs)
628 {
629 struct file *file = iocb->ki_filp;
630 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
631 int ret;
632
633 mlog_entry_void();
634
635 /*
636 * Fallback to buffered I/O if we see an inode without
637 * extents.
638 */
639 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
640 return 0;
641
642 /* Fallback to buffered I/O if we are appending. */
643 if (i_size_read(inode) <= offset)
644 return 0;
645
646 ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
647 iov, offset, nr_segs,
648 ocfs2_direct_IO_get_blocks,
649 ocfs2_dio_end_io, NULL, 0);
650
651 mlog_exit(ret);
652 return ret;
653 }
654
655 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
656 u32 cpos,
657 unsigned int *start,
658 unsigned int *end)
659 {
660 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
661
662 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
663 unsigned int cpp;
664
665 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
666
667 cluster_start = cpos % cpp;
668 cluster_start = cluster_start << osb->s_clustersize_bits;
669
670 cluster_end = cluster_start + osb->s_clustersize;
671 }
672
673 BUG_ON(cluster_start > PAGE_SIZE);
674 BUG_ON(cluster_end > PAGE_SIZE);
675
676 if (start)
677 *start = cluster_start;
678 if (end)
679 *end = cluster_end;
680 }
681
682 /*
683 * 'from' and 'to' are the region in the page to avoid zeroing.
684 *
685 * If pagesize > clustersize, this function will avoid zeroing outside
686 * of the cluster boundary.
687 *
688 * from == to == 0 is code for "zero the entire cluster region"
689 */
690 static void ocfs2_clear_page_regions(struct page *page,
691 struct ocfs2_super *osb, u32 cpos,
692 unsigned from, unsigned to)
693 {
694 void *kaddr;
695 unsigned int cluster_start, cluster_end;
696
697 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
698
699 kaddr = kmap_atomic(page, KM_USER0);
700
701 if (from || to) {
702 if (from > cluster_start)
703 memset(kaddr + cluster_start, 0, from - cluster_start);
704 if (to < cluster_end)
705 memset(kaddr + to, 0, cluster_end - to);
706 } else {
707 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
708 }
709
710 kunmap_atomic(kaddr, KM_USER0);
711 }
712
713 /*
714 * Nonsparse file systems fully allocate before we get to the write
715 * code. This prevents ocfs2_write() from tagging the write as an
716 * allocating one, which means ocfs2_map_page_blocks() might try to
717 * read-in the blocks at the tail of our file. Avoid reading them by
718 * testing i_size against each block offset.
719 */
720 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
721 unsigned int block_start)
722 {
723 u64 offset = page_offset(page) + block_start;
724
725 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
726 return 1;
727
728 if (i_size_read(inode) > offset)
729 return 1;
730
731 return 0;
732 }
733
734 /*
735 * Some of this taken from block_prepare_write(). We already have our
736 * mapping by now though, and the entire write will be allocating or
737 * it won't, so not much need to use BH_New.
738 *
739 * This will also skip zeroing, which is handled externally.
740 */
741 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
742 struct inode *inode, unsigned int from,
743 unsigned int to, int new)
744 {
745 int ret = 0;
746 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
747 unsigned int block_end, block_start;
748 unsigned int bsize = 1 << inode->i_blkbits;
749
750 if (!page_has_buffers(page))
751 create_empty_buffers(page, bsize, 0);
752
753 head = page_buffers(page);
754 for (bh = head, block_start = 0; bh != head || !block_start;
755 bh = bh->b_this_page, block_start += bsize) {
756 block_end = block_start + bsize;
757
758 clear_buffer_new(bh);
759
760 /*
761 * Ignore blocks outside of our i/o range -
762 * they may belong to unallocated clusters.
763 */
764 if (block_start >= to || block_end <= from) {
765 if (PageUptodate(page))
766 set_buffer_uptodate(bh);
767 continue;
768 }
769
770 /*
771 * For an allocating write with cluster size >= page
772 * size, we always write the entire page.
773 */
774 if (new)
775 set_buffer_new(bh);
776
777 if (!buffer_mapped(bh)) {
778 map_bh(bh, inode->i_sb, *p_blkno);
779 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
780 }
781
782 if (PageUptodate(page)) {
783 if (!buffer_uptodate(bh))
784 set_buffer_uptodate(bh);
785 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
786 !buffer_new(bh) &&
787 ocfs2_should_read_blk(inode, page, block_start) &&
788 (block_start < from || block_end > to)) {
789 ll_rw_block(READ, 1, &bh);
790 *wait_bh++=bh;
791 }
792
793 *p_blkno = *p_blkno + 1;
794 }
795
796 /*
797 * If we issued read requests - let them complete.
798 */
799 while(wait_bh > wait) {
800 wait_on_buffer(*--wait_bh);
801 if (!buffer_uptodate(*wait_bh))
802 ret = -EIO;
803 }
804
805 if (ret == 0 || !new)
806 return ret;
807
808 /*
809 * If we get -EIO above, zero out any newly allocated blocks
810 * to avoid exposing stale data.
811 */
812 bh = head;
813 block_start = 0;
814 do {
815 block_end = block_start + bsize;
816 if (block_end <= from)
817 goto next_bh;
818 if (block_start >= to)
819 break;
820
821 zero_user(page, block_start, bh->b_size);
822 set_buffer_uptodate(bh);
823 mark_buffer_dirty(bh);
824
825 next_bh:
826 block_start = block_end;
827 bh = bh->b_this_page;
828 } while (bh != head);
829
830 return ret;
831 }
832
833 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
834 #define OCFS2_MAX_CTXT_PAGES 1
835 #else
836 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
837 #endif
838
839 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
840
841 /*
842 * Describe the state of a single cluster to be written to.
843 */
844 struct ocfs2_write_cluster_desc {
845 u32 c_cpos;
846 u32 c_phys;
847 /*
848 * Give this a unique field because c_phys eventually gets
849 * filled.
850 */
851 unsigned c_new;
852 unsigned c_unwritten;
853 unsigned c_needs_zero;
854 };
855
856 struct ocfs2_write_ctxt {
857 /* Logical cluster position / len of write */
858 u32 w_cpos;
859 u32 w_clen;
860
861 /* First cluster allocated in a nonsparse extend */
862 u32 w_first_new_cpos;
863
864 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
865
866 /*
867 * This is true if page_size > cluster_size.
868 *
869 * It triggers a set of special cases during write which might
870 * have to deal with allocating writes to partial pages.
871 */
872 unsigned int w_large_pages;
873
874 /*
875 * Pages involved in this write.
876 *
877 * w_target_page is the page being written to by the user.
878 *
879 * w_pages is an array of pages which always contains
880 * w_target_page, and in the case of an allocating write with
881 * page_size < cluster size, it will contain zero'd and mapped
882 * pages adjacent to w_target_page which need to be written
883 * out in so that future reads from that region will get
884 * zero's.
885 */
886 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
887 unsigned int w_num_pages;
888 struct page *w_target_page;
889
890 /*
891 * ocfs2_write_end() uses this to know what the real range to
892 * write in the target should be.
893 */
894 unsigned int w_target_from;
895 unsigned int w_target_to;
896
897 /*
898 * We could use journal_current_handle() but this is cleaner,
899 * IMHO -Mark
900 */
901 handle_t *w_handle;
902
903 struct buffer_head *w_di_bh;
904
905 struct ocfs2_cached_dealloc_ctxt w_dealloc;
906 };
907
908 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
909 {
910 int i;
911
912 for(i = 0; i < num_pages; i++) {
913 if (pages[i]) {
914 unlock_page(pages[i]);
915 mark_page_accessed(pages[i]);
916 page_cache_release(pages[i]);
917 }
918 }
919 }
920
921 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
922 {
923 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
924
925 brelse(wc->w_di_bh);
926 kfree(wc);
927 }
928
929 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
930 struct ocfs2_super *osb, loff_t pos,
931 unsigned len, struct buffer_head *di_bh)
932 {
933 u32 cend;
934 struct ocfs2_write_ctxt *wc;
935
936 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
937 if (!wc)
938 return -ENOMEM;
939
940 wc->w_cpos = pos >> osb->s_clustersize_bits;
941 wc->w_first_new_cpos = UINT_MAX;
942 cend = (pos + len - 1) >> osb->s_clustersize_bits;
943 wc->w_clen = cend - wc->w_cpos + 1;
944 get_bh(di_bh);
945 wc->w_di_bh = di_bh;
946
947 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
948 wc->w_large_pages = 1;
949 else
950 wc->w_large_pages = 0;
951
952 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
953
954 *wcp = wc;
955
956 return 0;
957 }
958
959 /*
960 * If a page has any new buffers, zero them out here, and mark them uptodate
961 * and dirty so they'll be written out (in order to prevent uninitialised
962 * block data from leaking). And clear the new bit.
963 */
964 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
965 {
966 unsigned int block_start, block_end;
967 struct buffer_head *head, *bh;
968
969 BUG_ON(!PageLocked(page));
970 if (!page_has_buffers(page))
971 return;
972
973 bh = head = page_buffers(page);
974 block_start = 0;
975 do {
976 block_end = block_start + bh->b_size;
977
978 if (buffer_new(bh)) {
979 if (block_end > from && block_start < to) {
980 if (!PageUptodate(page)) {
981 unsigned start, end;
982
983 start = max(from, block_start);
984 end = min(to, block_end);
985
986 zero_user_segment(page, start, end);
987 set_buffer_uptodate(bh);
988 }
989
990 clear_buffer_new(bh);
991 mark_buffer_dirty(bh);
992 }
993 }
994
995 block_start = block_end;
996 bh = bh->b_this_page;
997 } while (bh != head);
998 }
999
1000 /*
1001 * Only called when we have a failure during allocating write to write
1002 * zero's to the newly allocated region.
1003 */
1004 static void ocfs2_write_failure(struct inode *inode,
1005 struct ocfs2_write_ctxt *wc,
1006 loff_t user_pos, unsigned user_len)
1007 {
1008 int i;
1009 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1010 to = user_pos + user_len;
1011 struct page *tmppage;
1012
1013 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1014
1015 for(i = 0; i < wc->w_num_pages; i++) {
1016 tmppage = wc->w_pages[i];
1017
1018 if (page_has_buffers(tmppage)) {
1019 if (ocfs2_should_order_data(inode))
1020 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1021
1022 block_commit_write(tmppage, from, to);
1023 }
1024 }
1025 }
1026
1027 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1028 struct ocfs2_write_ctxt *wc,
1029 struct page *page, u32 cpos,
1030 loff_t user_pos, unsigned user_len,
1031 int new)
1032 {
1033 int ret;
1034 unsigned int map_from = 0, map_to = 0;
1035 unsigned int cluster_start, cluster_end;
1036 unsigned int user_data_from = 0, user_data_to = 0;
1037
1038 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1039 &cluster_start, &cluster_end);
1040
1041 if (page == wc->w_target_page) {
1042 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1043 map_to = map_from + user_len;
1044
1045 if (new)
1046 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047 cluster_start, cluster_end,
1048 new);
1049 else
1050 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1051 map_from, map_to, new);
1052 if (ret) {
1053 mlog_errno(ret);
1054 goto out;
1055 }
1056
1057 user_data_from = map_from;
1058 user_data_to = map_to;
1059 if (new) {
1060 map_from = cluster_start;
1061 map_to = cluster_end;
1062 }
1063 } else {
1064 /*
1065 * If we haven't allocated the new page yet, we
1066 * shouldn't be writing it out without copying user
1067 * data. This is likely a math error from the caller.
1068 */
1069 BUG_ON(!new);
1070
1071 map_from = cluster_start;
1072 map_to = cluster_end;
1073
1074 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1075 cluster_start, cluster_end, new);
1076 if (ret) {
1077 mlog_errno(ret);
1078 goto out;
1079 }
1080 }
1081
1082 /*
1083 * Parts of newly allocated pages need to be zero'd.
1084 *
1085 * Above, we have also rewritten 'to' and 'from' - as far as
1086 * the rest of the function is concerned, the entire cluster
1087 * range inside of a page needs to be written.
1088 *
1089 * We can skip this if the page is up to date - it's already
1090 * been zero'd from being read in as a hole.
1091 */
1092 if (new && !PageUptodate(page))
1093 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1094 cpos, user_data_from, user_data_to);
1095
1096 flush_dcache_page(page);
1097
1098 out:
1099 return ret;
1100 }
1101
1102 /*
1103 * This function will only grab one clusters worth of pages.
1104 */
1105 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1106 struct ocfs2_write_ctxt *wc,
1107 u32 cpos, loff_t user_pos,
1108 unsigned user_len, int new,
1109 struct page *mmap_page)
1110 {
1111 int ret = 0, i;
1112 unsigned long start, target_index, end_index, index;
1113 struct inode *inode = mapping->host;
1114 loff_t last_byte;
1115
1116 target_index = user_pos >> PAGE_CACHE_SHIFT;
1117
1118 /*
1119 * Figure out how many pages we'll be manipulating here. For
1120 * non allocating write, we just change the one
1121 * page. Otherwise, we'll need a whole clusters worth. If we're
1122 * writing past i_size, we only need enough pages to cover the
1123 * last page of the write.
1124 */
1125 if (new) {
1126 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1127 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1128 /*
1129 * We need the index *past* the last page we could possibly
1130 * touch. This is the page past the end of the write or
1131 * i_size, whichever is greater.
1132 */
1133 last_byte = max(user_pos + user_len, i_size_read(inode));
1134 BUG_ON(last_byte < 1);
1135 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1136 if ((start + wc->w_num_pages) > end_index)
1137 wc->w_num_pages = end_index - start;
1138 } else {
1139 wc->w_num_pages = 1;
1140 start = target_index;
1141 }
1142
1143 for(i = 0; i < wc->w_num_pages; i++) {
1144 index = start + i;
1145
1146 if (index == target_index && mmap_page) {
1147 /*
1148 * ocfs2_pagemkwrite() is a little different
1149 * and wants us to directly use the page
1150 * passed in.
1151 */
1152 lock_page(mmap_page);
1153
1154 if (mmap_page->mapping != mapping) {
1155 unlock_page(mmap_page);
1156 /*
1157 * Sanity check - the locking in
1158 * ocfs2_pagemkwrite() should ensure
1159 * that this code doesn't trigger.
1160 */
1161 ret = -EINVAL;
1162 mlog_errno(ret);
1163 goto out;
1164 }
1165
1166 page_cache_get(mmap_page);
1167 wc->w_pages[i] = mmap_page;
1168 } else {
1169 wc->w_pages[i] = find_or_create_page(mapping, index,
1170 GFP_NOFS);
1171 if (!wc->w_pages[i]) {
1172 ret = -ENOMEM;
1173 mlog_errno(ret);
1174 goto out;
1175 }
1176 }
1177
1178 if (index == target_index)
1179 wc->w_target_page = wc->w_pages[i];
1180 }
1181 out:
1182 return ret;
1183 }
1184
1185 /*
1186 * Prepare a single cluster for write one cluster into the file.
1187 */
1188 static int ocfs2_write_cluster(struct address_space *mapping,
1189 u32 phys, unsigned int unwritten,
1190 unsigned int should_zero,
1191 struct ocfs2_alloc_context *data_ac,
1192 struct ocfs2_alloc_context *meta_ac,
1193 struct ocfs2_write_ctxt *wc, u32 cpos,
1194 loff_t user_pos, unsigned user_len)
1195 {
1196 int ret, i, new;
1197 u64 v_blkno, p_blkno;
1198 struct inode *inode = mapping->host;
1199 struct ocfs2_extent_tree et;
1200
1201 new = phys == 0 ? 1 : 0;
1202 if (new) {
1203 u32 tmp_pos;
1204
1205 /*
1206 * This is safe to call with the page locks - it won't take
1207 * any additional semaphores or cluster locks.
1208 */
1209 tmp_pos = cpos;
1210 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1211 &tmp_pos, 1, 0, wc->w_di_bh,
1212 wc->w_handle, data_ac,
1213 meta_ac, NULL);
1214 /*
1215 * This shouldn't happen because we must have already
1216 * calculated the correct meta data allocation required. The
1217 * internal tree allocation code should know how to increase
1218 * transaction credits itself.
1219 *
1220 * If need be, we could handle -EAGAIN for a
1221 * RESTART_TRANS here.
1222 */
1223 mlog_bug_on_msg(ret == -EAGAIN,
1224 "Inode %llu: EAGAIN return during allocation.\n",
1225 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1226 if (ret < 0) {
1227 mlog_errno(ret);
1228 goto out;
1229 }
1230 } else if (unwritten) {
1231 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1232 wc->w_di_bh);
1233 ret = ocfs2_mark_extent_written(inode, &et,
1234 wc->w_handle, cpos, 1, phys,
1235 meta_ac, &wc->w_dealloc);
1236 if (ret < 0) {
1237 mlog_errno(ret);
1238 goto out;
1239 }
1240 }
1241
1242 if (should_zero)
1243 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1244 else
1245 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1246
1247 /*
1248 * The only reason this should fail is due to an inability to
1249 * find the extent added.
1250 */
1251 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1252 NULL);
1253 if (ret < 0) {
1254 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1255 "at logical block %llu",
1256 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1257 (unsigned long long)v_blkno);
1258 goto out;
1259 }
1260
1261 BUG_ON(p_blkno == 0);
1262
1263 for(i = 0; i < wc->w_num_pages; i++) {
1264 int tmpret;
1265
1266 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1267 wc->w_pages[i], cpos,
1268 user_pos, user_len,
1269 should_zero);
1270 if (tmpret) {
1271 mlog_errno(tmpret);
1272 if (ret == 0)
1273 ret = tmpret;
1274 }
1275 }
1276
1277 /*
1278 * We only have cleanup to do in case of allocating write.
1279 */
1280 if (ret && new)
1281 ocfs2_write_failure(inode, wc, user_pos, user_len);
1282
1283 out:
1284
1285 return ret;
1286 }
1287
1288 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1289 struct ocfs2_alloc_context *data_ac,
1290 struct ocfs2_alloc_context *meta_ac,
1291 struct ocfs2_write_ctxt *wc,
1292 loff_t pos, unsigned len)
1293 {
1294 int ret, i;
1295 loff_t cluster_off;
1296 unsigned int local_len = len;
1297 struct ocfs2_write_cluster_desc *desc;
1298 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1299
1300 for (i = 0; i < wc->w_clen; i++) {
1301 desc = &wc->w_desc[i];
1302
1303 /*
1304 * We have to make sure that the total write passed in
1305 * doesn't extend past a single cluster.
1306 */
1307 local_len = len;
1308 cluster_off = pos & (osb->s_clustersize - 1);
1309 if ((cluster_off + local_len) > osb->s_clustersize)
1310 local_len = osb->s_clustersize - cluster_off;
1311
1312 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1313 desc->c_unwritten,
1314 desc->c_needs_zero,
1315 data_ac, meta_ac,
1316 wc, desc->c_cpos, pos, local_len);
1317 if (ret) {
1318 mlog_errno(ret);
1319 goto out;
1320 }
1321
1322 len -= local_len;
1323 pos += local_len;
1324 }
1325
1326 ret = 0;
1327 out:
1328 return ret;
1329 }
1330
1331 /*
1332 * ocfs2_write_end() wants to know which parts of the target page it
1333 * should complete the write on. It's easiest to compute them ahead of
1334 * time when a more complete view of the write is available.
1335 */
1336 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1337 struct ocfs2_write_ctxt *wc,
1338 loff_t pos, unsigned len, int alloc)
1339 {
1340 struct ocfs2_write_cluster_desc *desc;
1341
1342 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1343 wc->w_target_to = wc->w_target_from + len;
1344
1345 if (alloc == 0)
1346 return;
1347
1348 /*
1349 * Allocating write - we may have different boundaries based
1350 * on page size and cluster size.
1351 *
1352 * NOTE: We can no longer compute one value from the other as
1353 * the actual write length and user provided length may be
1354 * different.
1355 */
1356
1357 if (wc->w_large_pages) {
1358 /*
1359 * We only care about the 1st and last cluster within
1360 * our range and whether they should be zero'd or not. Either
1361 * value may be extended out to the start/end of a
1362 * newly allocated cluster.
1363 */
1364 desc = &wc->w_desc[0];
1365 if (desc->c_needs_zero)
1366 ocfs2_figure_cluster_boundaries(osb,
1367 desc->c_cpos,
1368 &wc->w_target_from,
1369 NULL);
1370
1371 desc = &wc->w_desc[wc->w_clen - 1];
1372 if (desc->c_needs_zero)
1373 ocfs2_figure_cluster_boundaries(osb,
1374 desc->c_cpos,
1375 NULL,
1376 &wc->w_target_to);
1377 } else {
1378 wc->w_target_from = 0;
1379 wc->w_target_to = PAGE_CACHE_SIZE;
1380 }
1381 }
1382
1383 /*
1384 * Populate each single-cluster write descriptor in the write context
1385 * with information about the i/o to be done.
1386 *
1387 * Returns the number of clusters that will have to be allocated, as
1388 * well as a worst case estimate of the number of extent records that
1389 * would have to be created during a write to an unwritten region.
1390 */
1391 static int ocfs2_populate_write_desc(struct inode *inode,
1392 struct ocfs2_write_ctxt *wc,
1393 unsigned int *clusters_to_alloc,
1394 unsigned int *extents_to_split)
1395 {
1396 int ret;
1397 struct ocfs2_write_cluster_desc *desc;
1398 unsigned int num_clusters = 0;
1399 unsigned int ext_flags = 0;
1400 u32 phys = 0;
1401 int i;
1402
1403 *clusters_to_alloc = 0;
1404 *extents_to_split = 0;
1405
1406 for (i = 0; i < wc->w_clen; i++) {
1407 desc = &wc->w_desc[i];
1408 desc->c_cpos = wc->w_cpos + i;
1409
1410 if (num_clusters == 0) {
1411 /*
1412 * Need to look up the next extent record.
1413 */
1414 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1415 &num_clusters, &ext_flags);
1416 if (ret) {
1417 mlog_errno(ret);
1418 goto out;
1419 }
1420
1421 /* We should already CoW the refcountd extent. */
1422 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1423
1424 /*
1425 * Assume worst case - that we're writing in
1426 * the middle of the extent.
1427 *
1428 * We can assume that the write proceeds from
1429 * left to right, in which case the extent
1430 * insert code is smart enough to coalesce the
1431 * next splits into the previous records created.
1432 */
1433 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1434 *extents_to_split = *extents_to_split + 2;
1435 } else if (phys) {
1436 /*
1437 * Only increment phys if it doesn't describe
1438 * a hole.
1439 */
1440 phys++;
1441 }
1442
1443 /*
1444 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1445 * file that got extended. w_first_new_cpos tells us
1446 * where the newly allocated clusters are so we can
1447 * zero them.
1448 */
1449 if (desc->c_cpos >= wc->w_first_new_cpos) {
1450 BUG_ON(phys == 0);
1451 desc->c_needs_zero = 1;
1452 }
1453
1454 desc->c_phys = phys;
1455 if (phys == 0) {
1456 desc->c_new = 1;
1457 desc->c_needs_zero = 1;
1458 *clusters_to_alloc = *clusters_to_alloc + 1;
1459 }
1460
1461 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1462 desc->c_unwritten = 1;
1463 desc->c_needs_zero = 1;
1464 }
1465
1466 num_clusters--;
1467 }
1468
1469 ret = 0;
1470 out:
1471 return ret;
1472 }
1473
1474 static int ocfs2_write_begin_inline(struct address_space *mapping,
1475 struct inode *inode,
1476 struct ocfs2_write_ctxt *wc)
1477 {
1478 int ret;
1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 struct page *page;
1481 handle_t *handle;
1482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
1484 page = find_or_create_page(mapping, 0, GFP_NOFS);
1485 if (!page) {
1486 ret = -ENOMEM;
1487 mlog_errno(ret);
1488 goto out;
1489 }
1490 /*
1491 * If we don't set w_num_pages then this page won't get unlocked
1492 * and freed on cleanup of the write context.
1493 */
1494 wc->w_pages[0] = wc->w_target_page = page;
1495 wc->w_num_pages = 1;
1496
1497 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1498 if (IS_ERR(handle)) {
1499 ret = PTR_ERR(handle);
1500 mlog_errno(ret);
1501 goto out;
1502 }
1503
1504 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1505 OCFS2_JOURNAL_ACCESS_WRITE);
1506 if (ret) {
1507 ocfs2_commit_trans(osb, handle);
1508
1509 mlog_errno(ret);
1510 goto out;
1511 }
1512
1513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514 ocfs2_set_inode_data_inline(inode, di);
1515
1516 if (!PageUptodate(page)) {
1517 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518 if (ret) {
1519 ocfs2_commit_trans(osb, handle);
1520
1521 goto out;
1522 }
1523 }
1524
1525 wc->w_handle = handle;
1526 out:
1527 return ret;
1528 }
1529
1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1531 {
1532 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1533
1534 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1535 return 1;
1536 return 0;
1537 }
1538
1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540 struct inode *inode, loff_t pos,
1541 unsigned len, struct page *mmap_page,
1542 struct ocfs2_write_ctxt *wc)
1543 {
1544 int ret, written = 0;
1545 loff_t end = pos + len;
1546 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1547 struct ocfs2_dinode *di = NULL;
1548
1549 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1550 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1551 oi->ip_dyn_features);
1552
1553 /*
1554 * Handle inodes which already have inline data 1st.
1555 */
1556 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557 if (mmap_page == NULL &&
1558 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559 goto do_inline_write;
1560
1561 /*
1562 * The write won't fit - we have to give this inode an
1563 * inline extent list now.
1564 */
1565 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566 if (ret)
1567 mlog_errno(ret);
1568 goto out;
1569 }
1570
1571 /*
1572 * Check whether the inode can accept inline data.
1573 */
1574 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575 return 0;
1576
1577 /*
1578 * Check whether the write can fit.
1579 */
1580 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581 if (mmap_page ||
1582 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1583 return 0;
1584
1585 do_inline_write:
1586 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587 if (ret) {
1588 mlog_errno(ret);
1589 goto out;
1590 }
1591
1592 /*
1593 * This signals to the caller that the data can be written
1594 * inline.
1595 */
1596 written = 1;
1597 out:
1598 return written ? written : ret;
1599 }
1600
1601 /*
1602 * This function only does anything for file systems which can't
1603 * handle sparse files.
1604 *
1605 * What we want to do here is fill in any hole between the current end
1606 * of allocation and the end of our write. That way the rest of the
1607 * write path can treat it as an non-allocating write, which has no
1608 * special case code for sparse/nonsparse files.
1609 */
1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611 struct buffer_head *di_bh,
1612 loff_t pos, unsigned len,
1613 struct ocfs2_write_ctxt *wc)
1614 {
1615 int ret;
1616 loff_t newsize = pos + len;
1617
1618 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1619
1620 if (newsize <= i_size_read(inode))
1621 return 0;
1622
1623 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1624 if (ret)
1625 mlog_errno(ret);
1626
1627 wc->w_first_new_cpos =
1628 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1629
1630 return ret;
1631 }
1632
1633 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1634 loff_t pos)
1635 {
1636 int ret = 0;
1637
1638 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1639 if (pos > i_size_read(inode))
1640 ret = ocfs2_zero_extend(inode, di_bh, pos);
1641
1642 return ret;
1643 }
1644
1645 int ocfs2_write_begin_nolock(struct address_space *mapping,
1646 loff_t pos, unsigned len, unsigned flags,
1647 struct page **pagep, void **fsdata,
1648 struct buffer_head *di_bh, struct page *mmap_page)
1649 {
1650 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1651 unsigned int clusters_to_alloc, extents_to_split;
1652 struct ocfs2_write_ctxt *wc;
1653 struct inode *inode = mapping->host;
1654 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1655 struct ocfs2_dinode *di;
1656 struct ocfs2_alloc_context *data_ac = NULL;
1657 struct ocfs2_alloc_context *meta_ac = NULL;
1658 handle_t *handle;
1659 struct ocfs2_extent_tree et;
1660
1661 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1662 if (ret) {
1663 mlog_errno(ret);
1664 return ret;
1665 }
1666
1667 if (ocfs2_supports_inline_data(osb)) {
1668 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1669 mmap_page, wc);
1670 if (ret == 1) {
1671 ret = 0;
1672 goto success;
1673 }
1674 if (ret < 0) {
1675 mlog_errno(ret);
1676 goto out;
1677 }
1678 }
1679
1680 if (ocfs2_sparse_alloc(osb))
1681 ret = ocfs2_zero_tail(inode, di_bh, pos);
1682 else
1683 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1684 wc);
1685 if (ret) {
1686 mlog_errno(ret);
1687 goto out;
1688 }
1689
1690 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1691 if (ret < 0) {
1692 mlog_errno(ret);
1693 goto out;
1694 } else if (ret == 1) {
1695 ret = ocfs2_refcount_cow(inode, di_bh,
1696 wc->w_cpos, wc->w_clen, UINT_MAX);
1697 if (ret) {
1698 mlog_errno(ret);
1699 goto out;
1700 }
1701 }
1702
1703 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1704 &extents_to_split);
1705 if (ret) {
1706 mlog_errno(ret);
1707 goto out;
1708 }
1709
1710 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1711
1712 /*
1713 * We set w_target_from, w_target_to here so that
1714 * ocfs2_write_end() knows which range in the target page to
1715 * write out. An allocation requires that we write the entire
1716 * cluster range.
1717 */
1718 if (clusters_to_alloc || extents_to_split) {
1719 /*
1720 * XXX: We are stretching the limits of
1721 * ocfs2_lock_allocators(). It greatly over-estimates
1722 * the work to be done.
1723 */
1724 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1725 " clusters_to_add = %u, extents_to_split = %u\n",
1726 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1727 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1728 clusters_to_alloc, extents_to_split);
1729
1730 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1731 wc->w_di_bh);
1732 ret = ocfs2_lock_allocators(inode, &et,
1733 clusters_to_alloc, extents_to_split,
1734 &data_ac, &meta_ac);
1735 if (ret) {
1736 mlog_errno(ret);
1737 goto out;
1738 }
1739
1740 if (data_ac)
1741 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1742
1743 credits = ocfs2_calc_extend_credits(inode->i_sb,
1744 &di->id2.i_list,
1745 clusters_to_alloc);
1746
1747 }
1748
1749 /*
1750 * We have to zero sparse allocated clusters, unwritten extent clusters,
1751 * and non-sparse clusters we just extended. For non-sparse writes,
1752 * we know zeros will only be needed in the first and/or last cluster.
1753 */
1754 if (clusters_to_alloc || extents_to_split ||
1755 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1756 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1757 cluster_of_pages = 1;
1758 else
1759 cluster_of_pages = 0;
1760
1761 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1762
1763 handle = ocfs2_start_trans(osb, credits);
1764 if (IS_ERR(handle)) {
1765 ret = PTR_ERR(handle);
1766 mlog_errno(ret);
1767 goto out;
1768 }
1769
1770 wc->w_handle = handle;
1771
1772 if (clusters_to_alloc) {
1773 ret = dquot_alloc_space_nodirty(inode,
1774 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1775 if (ret)
1776 goto out_commit;
1777 }
1778 /*
1779 * We don't want this to fail in ocfs2_write_end(), so do it
1780 * here.
1781 */
1782 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1783 OCFS2_JOURNAL_ACCESS_WRITE);
1784 if (ret) {
1785 mlog_errno(ret);
1786 goto out_quota;
1787 }
1788
1789 /*
1790 * Fill our page array first. That way we've grabbed enough so
1791 * that we can zero and flush if we error after adding the
1792 * extent.
1793 */
1794 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1795 cluster_of_pages, mmap_page);
1796 if (ret) {
1797 mlog_errno(ret);
1798 goto out_quota;
1799 }
1800
1801 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1802 len);
1803 if (ret) {
1804 mlog_errno(ret);
1805 goto out_quota;
1806 }
1807
1808 if (data_ac)
1809 ocfs2_free_alloc_context(data_ac);
1810 if (meta_ac)
1811 ocfs2_free_alloc_context(meta_ac);
1812
1813 success:
1814 *pagep = wc->w_target_page;
1815 *fsdata = wc;
1816 return 0;
1817 out_quota:
1818 if (clusters_to_alloc)
1819 dquot_free_space(inode,
1820 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1821 out_commit:
1822 ocfs2_commit_trans(osb, handle);
1823
1824 out:
1825 ocfs2_free_write_ctxt(wc);
1826
1827 if (data_ac)
1828 ocfs2_free_alloc_context(data_ac);
1829 if (meta_ac)
1830 ocfs2_free_alloc_context(meta_ac);
1831 return ret;
1832 }
1833
1834 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1835 loff_t pos, unsigned len, unsigned flags,
1836 struct page **pagep, void **fsdata)
1837 {
1838 int ret;
1839 struct buffer_head *di_bh = NULL;
1840 struct inode *inode = mapping->host;
1841
1842 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1843 if (ret) {
1844 mlog_errno(ret);
1845 return ret;
1846 }
1847
1848 /*
1849 * Take alloc sem here to prevent concurrent lookups. That way
1850 * the mapping, zeroing and tree manipulation within
1851 * ocfs2_write() will be safe against ->readpage(). This
1852 * should also serve to lock out allocation from a shared
1853 * writeable region.
1854 */
1855 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1856
1857 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1858 fsdata, di_bh, NULL);
1859 if (ret) {
1860 mlog_errno(ret);
1861 goto out_fail;
1862 }
1863
1864 brelse(di_bh);
1865
1866 return 0;
1867
1868 out_fail:
1869 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1870
1871 brelse(di_bh);
1872 ocfs2_inode_unlock(inode, 1);
1873
1874 return ret;
1875 }
1876
1877 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1878 unsigned len, unsigned *copied,
1879 struct ocfs2_dinode *di,
1880 struct ocfs2_write_ctxt *wc)
1881 {
1882 void *kaddr;
1883
1884 if (unlikely(*copied < len)) {
1885 if (!PageUptodate(wc->w_target_page)) {
1886 *copied = 0;
1887 return;
1888 }
1889 }
1890
1891 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1892 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1893 kunmap_atomic(kaddr, KM_USER0);
1894
1895 mlog(0, "Data written to inode at offset %llu. "
1896 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1897 (unsigned long long)pos, *copied,
1898 le16_to_cpu(di->id2.i_data.id_count),
1899 le16_to_cpu(di->i_dyn_features));
1900 }
1901
1902 int ocfs2_write_end_nolock(struct address_space *mapping,
1903 loff_t pos, unsigned len, unsigned copied,
1904 struct page *page, void *fsdata)
1905 {
1906 int i;
1907 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1908 struct inode *inode = mapping->host;
1909 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1910 struct ocfs2_write_ctxt *wc = fsdata;
1911 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1912 handle_t *handle = wc->w_handle;
1913 struct page *tmppage;
1914
1915 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1916 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1917 goto out_write_size;
1918 }
1919
1920 if (unlikely(copied < len)) {
1921 if (!PageUptodate(wc->w_target_page))
1922 copied = 0;
1923
1924 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1925 start+len);
1926 }
1927 flush_dcache_page(wc->w_target_page);
1928
1929 for(i = 0; i < wc->w_num_pages; i++) {
1930 tmppage = wc->w_pages[i];
1931
1932 if (tmppage == wc->w_target_page) {
1933 from = wc->w_target_from;
1934 to = wc->w_target_to;
1935
1936 BUG_ON(from > PAGE_CACHE_SIZE ||
1937 to > PAGE_CACHE_SIZE ||
1938 to < from);
1939 } else {
1940 /*
1941 * Pages adjacent to the target (if any) imply
1942 * a hole-filling write in which case we want
1943 * to flush their entire range.
1944 */
1945 from = 0;
1946 to = PAGE_CACHE_SIZE;
1947 }
1948
1949 if (page_has_buffers(tmppage)) {
1950 if (ocfs2_should_order_data(inode))
1951 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1952 block_commit_write(tmppage, from, to);
1953 }
1954 }
1955
1956 out_write_size:
1957 pos += copied;
1958 if (pos > inode->i_size) {
1959 i_size_write(inode, pos);
1960 mark_inode_dirty(inode);
1961 }
1962 inode->i_blocks = ocfs2_inode_sector_count(inode);
1963 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1964 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1965 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1966 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1967 ocfs2_journal_dirty(handle, wc->w_di_bh);
1968
1969 ocfs2_commit_trans(osb, handle);
1970
1971 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1972
1973 ocfs2_free_write_ctxt(wc);
1974
1975 return copied;
1976 }
1977
1978 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1979 loff_t pos, unsigned len, unsigned copied,
1980 struct page *page, void *fsdata)
1981 {
1982 int ret;
1983 struct inode *inode = mapping->host;
1984
1985 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1986
1987 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1988 ocfs2_inode_unlock(inode, 1);
1989
1990 return ret;
1991 }
1992
1993 const struct address_space_operations ocfs2_aops = {
1994 .readpage = ocfs2_readpage,
1995 .readpages = ocfs2_readpages,
1996 .writepage = ocfs2_writepage,
1997 .write_begin = ocfs2_write_begin,
1998 .write_end = ocfs2_write_end,
1999 .bmap = ocfs2_bmap,
2000 .sync_page = block_sync_page,
2001 .direct_IO = ocfs2_direct_IO,
2002 .invalidatepage = ocfs2_invalidatepage,
2003 .releasepage = ocfs2_releasepage,
2004 .migratepage = buffer_migrate_page,
2005 .is_partially_uptodate = block_is_partially_uptodate,
2006 .error_remove_page = generic_error_remove_page,
2007 };
This page took 0.072691 seconds and 5 git commands to generate.