fs: always maintain i_dio_count
[deliverable/linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53 {
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
74 status = ocfs2_read_inode_block(inode, &bh);
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
105 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
113 kunmap_atomic(kaddr, KM_USER0);
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124 bail:
125 brelse(bh);
126
127 return err;
128 }
129
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
132 {
133 int err = 0;
134 unsigned int ext_flags;
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153 &ext_flags);
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
158 goto bail;
159 }
160
161 if (max_blocks < count)
162 count = max_blocks;
163
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows __block_write_begin() to zero.
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
174 */
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
180
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
185 bh_result->b_size = count << inode->i_blkbits;
186
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
197 goto bail;
198 }
199 }
200
201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
208 bail:
209 if (err < 0)
210 err = -EIO;
211
212 return err;
213 }
214
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
217 {
218 void *kaddr;
219 loff_t size;
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232 ocfs2_error(inode->i_sb,
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
236 return -EROFS;
237 }
238
239 kaddr = kmap_atomic(page, KM_USER0);
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
245 kunmap_atomic(kaddr, KM_USER0);
246
247 SetPageUptodate(page);
248
249 return 0;
250 }
251
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254 int ret;
255 struct buffer_head *di_bh = NULL;
256
257 BUG_ON(!PageLocked(page));
258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260 ret = ocfs2_read_inode_block(inode, &di_bh);
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272 }
273
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276 struct inode *inode = page->mapping->host;
277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
283
284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293 ret = AOP_TRUNCATED_PAGE;
294 goto out_inode_unlock;
295 }
296
297 /*
298 * i_size might have just been updated as we grabed the meta lock. We
299 * might now be discovering a truncate that hit on another node.
300 * block_read_full_page->get_block freaks out if it is asked to read
301 * beyond the end of a file, so we check here. Callers
302 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
303 * and notice that the page they just read isn't needed.
304 *
305 * XXX sys_readahead() seems to get that wrong?
306 */
307 if (start >= i_size_read(inode)) {
308 zero_user(page, 0, PAGE_SIZE);
309 SetPageUptodate(page);
310 ret = 0;
311 goto out_alloc;
312 }
313
314 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
315 ret = ocfs2_readpage_inline(inode, page);
316 else
317 ret = block_read_full_page(page, ocfs2_get_block);
318 unlock = 0;
319
320 out_alloc:
321 up_read(&OCFS2_I(inode)->ip_alloc_sem);
322 out_inode_unlock:
323 ocfs2_inode_unlock(inode, 0);
324 out:
325 if (unlock)
326 unlock_page(page);
327 return ret;
328 }
329
330 /*
331 * This is used only for read-ahead. Failures or difficult to handle
332 * situations are safe to ignore.
333 *
334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
335 * are quite large (243 extents on 4k blocks), so most inodes don't
336 * grow out to a tree. If need be, detecting boundary extents could
337 * trivially be added in a future version of ocfs2_get_block().
338 */
339 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
340 struct list_head *pages, unsigned nr_pages)
341 {
342 int ret, err = -EIO;
343 struct inode *inode = mapping->host;
344 struct ocfs2_inode_info *oi = OCFS2_I(inode);
345 loff_t start;
346 struct page *last;
347
348 /*
349 * Use the nonblocking flag for the dlm code to avoid page
350 * lock inversion, but don't bother with retrying.
351 */
352 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
353 if (ret)
354 return err;
355
356 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
357 ocfs2_inode_unlock(inode, 0);
358 return err;
359 }
360
361 /*
362 * Don't bother with inline-data. There isn't anything
363 * to read-ahead in that case anyway...
364 */
365 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
366 goto out_unlock;
367
368 /*
369 * Check whether a remote node truncated this file - we just
370 * drop out in that case as it's not worth handling here.
371 */
372 last = list_entry(pages->prev, struct page, lru);
373 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
374 if (start >= i_size_read(inode))
375 goto out_unlock;
376
377 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
378
379 out_unlock:
380 up_read(&oi->ip_alloc_sem);
381 ocfs2_inode_unlock(inode, 0);
382
383 return err;
384 }
385
386 /* Note: Because we don't support holes, our allocation has
387 * already happened (allocation writes zeros to the file data)
388 * so we don't have to worry about ordered writes in
389 * ocfs2_writepage.
390 *
391 * ->writepage is called during the process of invalidating the page cache
392 * during blocked lock processing. It can't block on any cluster locks
393 * to during block mapping. It's relying on the fact that the block
394 * mapping can't have disappeared under the dirty pages that it is
395 * being asked to write back.
396 */
397 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
398 {
399 trace_ocfs2_writepage(
400 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
401 page->index);
402
403 return block_write_full_page(page, ocfs2_get_block, wbc);
404 }
405
406 /* Taken from ext3. We don't necessarily need the full blown
407 * functionality yet, but IMHO it's better to cut and paste the whole
408 * thing so we can avoid introducing our own bugs (and easily pick up
409 * their fixes when they happen) --Mark */
410 int walk_page_buffers( handle_t *handle,
411 struct buffer_head *head,
412 unsigned from,
413 unsigned to,
414 int *partial,
415 int (*fn)( handle_t *handle,
416 struct buffer_head *bh))
417 {
418 struct buffer_head *bh;
419 unsigned block_start, block_end;
420 unsigned blocksize = head->b_size;
421 int err, ret = 0;
422 struct buffer_head *next;
423
424 for ( bh = head, block_start = 0;
425 ret == 0 && (bh != head || !block_start);
426 block_start = block_end, bh = next)
427 {
428 next = bh->b_this_page;
429 block_end = block_start + blocksize;
430 if (block_end <= from || block_start >= to) {
431 if (partial && !buffer_uptodate(bh))
432 *partial = 1;
433 continue;
434 }
435 err = (*fn)(handle, bh);
436 if (!ret)
437 ret = err;
438 }
439 return ret;
440 }
441
442 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
443 {
444 sector_t status;
445 u64 p_blkno = 0;
446 int err = 0;
447 struct inode *inode = mapping->host;
448
449 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
450 (unsigned long long)block);
451
452 /* We don't need to lock journal system files, since they aren't
453 * accessed concurrently from multiple nodes.
454 */
455 if (!INODE_JOURNAL(inode)) {
456 err = ocfs2_inode_lock(inode, NULL, 0);
457 if (err) {
458 if (err != -ENOENT)
459 mlog_errno(err);
460 goto bail;
461 }
462 down_read(&OCFS2_I(inode)->ip_alloc_sem);
463 }
464
465 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
466 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
467 NULL);
468
469 if (!INODE_JOURNAL(inode)) {
470 up_read(&OCFS2_I(inode)->ip_alloc_sem);
471 ocfs2_inode_unlock(inode, 0);
472 }
473
474 if (err) {
475 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
476 (unsigned long long)block);
477 mlog_errno(err);
478 goto bail;
479 }
480
481 bail:
482 status = err ? 0 : p_blkno;
483
484 return status;
485 }
486
487 /*
488 * TODO: Make this into a generic get_blocks function.
489 *
490 * From do_direct_io in direct-io.c:
491 * "So what we do is to permit the ->get_blocks function to populate
492 * bh.b_size with the size of IO which is permitted at this offset and
493 * this i_blkbits."
494 *
495 * This function is called directly from get_more_blocks in direct-io.c.
496 *
497 * called like this: dio->get_blocks(dio->inode, fs_startblk,
498 * fs_count, map_bh, dio->rw == WRITE);
499 *
500 * Note that we never bother to allocate blocks here, and thus ignore the
501 * create argument.
502 */
503 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
504 struct buffer_head *bh_result, int create)
505 {
506 int ret;
507 u64 p_blkno, inode_blocks, contig_blocks;
508 unsigned int ext_flags;
509 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
510 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
511
512 /* This function won't even be called if the request isn't all
513 * nicely aligned and of the right size, so there's no need
514 * for us to check any of that. */
515
516 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
517
518 /* This figures out the size of the next contiguous block, and
519 * our logical offset */
520 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
521 &contig_blocks, &ext_flags);
522 if (ret) {
523 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
524 (unsigned long long)iblock);
525 ret = -EIO;
526 goto bail;
527 }
528
529 /* We should already CoW the refcounted extent in case of create. */
530 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
531
532 /*
533 * get_more_blocks() expects us to describe a hole by clearing
534 * the mapped bit on bh_result().
535 *
536 * Consider an unwritten extent as a hole.
537 */
538 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
539 map_bh(bh_result, inode->i_sb, p_blkno);
540 else
541 clear_buffer_mapped(bh_result);
542
543 /* make sure we don't map more than max_blocks blocks here as
544 that's all the kernel will handle at this point. */
545 if (max_blocks < contig_blocks)
546 contig_blocks = max_blocks;
547 bh_result->b_size = contig_blocks << blocksize_bits;
548 bail:
549 return ret;
550 }
551
552 /*
553 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
554 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
555 * to protect io on one node from truncation on another.
556 */
557 static void ocfs2_dio_end_io(struct kiocb *iocb,
558 loff_t offset,
559 ssize_t bytes,
560 void *private,
561 int ret,
562 bool is_async)
563 {
564 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
565 int level;
566
567 /* this io's submitter should not have unlocked this before we could */
568 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
569
570 if (ocfs2_iocb_is_sem_locked(iocb))
571 ocfs2_iocb_clear_sem_locked(iocb);
572
573 ocfs2_iocb_clear_rw_locked(iocb);
574
575 level = ocfs2_iocb_rw_locked_level(iocb);
576 ocfs2_rw_unlock(inode, level);
577
578 if (is_async)
579 aio_complete(iocb, ret, 0);
580 }
581
582 /*
583 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
584 * from ext3. PageChecked() bits have been removed as OCFS2 does not
585 * do journalled data.
586 */
587 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
588 {
589 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
590
591 jbd2_journal_invalidatepage(journal, page, offset);
592 }
593
594 static int ocfs2_releasepage(struct page *page, gfp_t wait)
595 {
596 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
597
598 if (!page_has_buffers(page))
599 return 0;
600 return jbd2_journal_try_to_free_buffers(journal, page, wait);
601 }
602
603 static ssize_t ocfs2_direct_IO(int rw,
604 struct kiocb *iocb,
605 const struct iovec *iov,
606 loff_t offset,
607 unsigned long nr_segs)
608 {
609 struct file *file = iocb->ki_filp;
610 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
611
612 /*
613 * Fallback to buffered I/O if we see an inode without
614 * extents.
615 */
616 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
617 return 0;
618
619 /* Fallback to buffered I/O if we are appending. */
620 if (i_size_read(inode) <= offset)
621 return 0;
622
623 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
624 iov, offset, nr_segs,
625 ocfs2_direct_IO_get_blocks,
626 ocfs2_dio_end_io, NULL, 0);
627 }
628
629 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
630 u32 cpos,
631 unsigned int *start,
632 unsigned int *end)
633 {
634 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
635
636 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
637 unsigned int cpp;
638
639 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
640
641 cluster_start = cpos % cpp;
642 cluster_start = cluster_start << osb->s_clustersize_bits;
643
644 cluster_end = cluster_start + osb->s_clustersize;
645 }
646
647 BUG_ON(cluster_start > PAGE_SIZE);
648 BUG_ON(cluster_end > PAGE_SIZE);
649
650 if (start)
651 *start = cluster_start;
652 if (end)
653 *end = cluster_end;
654 }
655
656 /*
657 * 'from' and 'to' are the region in the page to avoid zeroing.
658 *
659 * If pagesize > clustersize, this function will avoid zeroing outside
660 * of the cluster boundary.
661 *
662 * from == to == 0 is code for "zero the entire cluster region"
663 */
664 static void ocfs2_clear_page_regions(struct page *page,
665 struct ocfs2_super *osb, u32 cpos,
666 unsigned from, unsigned to)
667 {
668 void *kaddr;
669 unsigned int cluster_start, cluster_end;
670
671 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
672
673 kaddr = kmap_atomic(page, KM_USER0);
674
675 if (from || to) {
676 if (from > cluster_start)
677 memset(kaddr + cluster_start, 0, from - cluster_start);
678 if (to < cluster_end)
679 memset(kaddr + to, 0, cluster_end - to);
680 } else {
681 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
682 }
683
684 kunmap_atomic(kaddr, KM_USER0);
685 }
686
687 /*
688 * Nonsparse file systems fully allocate before we get to the write
689 * code. This prevents ocfs2_write() from tagging the write as an
690 * allocating one, which means ocfs2_map_page_blocks() might try to
691 * read-in the blocks at the tail of our file. Avoid reading them by
692 * testing i_size against each block offset.
693 */
694 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
695 unsigned int block_start)
696 {
697 u64 offset = page_offset(page) + block_start;
698
699 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
700 return 1;
701
702 if (i_size_read(inode) > offset)
703 return 1;
704
705 return 0;
706 }
707
708 /*
709 * Some of this taken from __block_write_begin(). We already have our
710 * mapping by now though, and the entire write will be allocating or
711 * it won't, so not much need to use BH_New.
712 *
713 * This will also skip zeroing, which is handled externally.
714 */
715 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
716 struct inode *inode, unsigned int from,
717 unsigned int to, int new)
718 {
719 int ret = 0;
720 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
721 unsigned int block_end, block_start;
722 unsigned int bsize = 1 << inode->i_blkbits;
723
724 if (!page_has_buffers(page))
725 create_empty_buffers(page, bsize, 0);
726
727 head = page_buffers(page);
728 for (bh = head, block_start = 0; bh != head || !block_start;
729 bh = bh->b_this_page, block_start += bsize) {
730 block_end = block_start + bsize;
731
732 clear_buffer_new(bh);
733
734 /*
735 * Ignore blocks outside of our i/o range -
736 * they may belong to unallocated clusters.
737 */
738 if (block_start >= to || block_end <= from) {
739 if (PageUptodate(page))
740 set_buffer_uptodate(bh);
741 continue;
742 }
743
744 /*
745 * For an allocating write with cluster size >= page
746 * size, we always write the entire page.
747 */
748 if (new)
749 set_buffer_new(bh);
750
751 if (!buffer_mapped(bh)) {
752 map_bh(bh, inode->i_sb, *p_blkno);
753 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
754 }
755
756 if (PageUptodate(page)) {
757 if (!buffer_uptodate(bh))
758 set_buffer_uptodate(bh);
759 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
760 !buffer_new(bh) &&
761 ocfs2_should_read_blk(inode, page, block_start) &&
762 (block_start < from || block_end > to)) {
763 ll_rw_block(READ, 1, &bh);
764 *wait_bh++=bh;
765 }
766
767 *p_blkno = *p_blkno + 1;
768 }
769
770 /*
771 * If we issued read requests - let them complete.
772 */
773 while(wait_bh > wait) {
774 wait_on_buffer(*--wait_bh);
775 if (!buffer_uptodate(*wait_bh))
776 ret = -EIO;
777 }
778
779 if (ret == 0 || !new)
780 return ret;
781
782 /*
783 * If we get -EIO above, zero out any newly allocated blocks
784 * to avoid exposing stale data.
785 */
786 bh = head;
787 block_start = 0;
788 do {
789 block_end = block_start + bsize;
790 if (block_end <= from)
791 goto next_bh;
792 if (block_start >= to)
793 break;
794
795 zero_user(page, block_start, bh->b_size);
796 set_buffer_uptodate(bh);
797 mark_buffer_dirty(bh);
798
799 next_bh:
800 block_start = block_end;
801 bh = bh->b_this_page;
802 } while (bh != head);
803
804 return ret;
805 }
806
807 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
808 #define OCFS2_MAX_CTXT_PAGES 1
809 #else
810 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
811 #endif
812
813 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
814
815 /*
816 * Describe the state of a single cluster to be written to.
817 */
818 struct ocfs2_write_cluster_desc {
819 u32 c_cpos;
820 u32 c_phys;
821 /*
822 * Give this a unique field because c_phys eventually gets
823 * filled.
824 */
825 unsigned c_new;
826 unsigned c_unwritten;
827 unsigned c_needs_zero;
828 };
829
830 struct ocfs2_write_ctxt {
831 /* Logical cluster position / len of write */
832 u32 w_cpos;
833 u32 w_clen;
834
835 /* First cluster allocated in a nonsparse extend */
836 u32 w_first_new_cpos;
837
838 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
839
840 /*
841 * This is true if page_size > cluster_size.
842 *
843 * It triggers a set of special cases during write which might
844 * have to deal with allocating writes to partial pages.
845 */
846 unsigned int w_large_pages;
847
848 /*
849 * Pages involved in this write.
850 *
851 * w_target_page is the page being written to by the user.
852 *
853 * w_pages is an array of pages which always contains
854 * w_target_page, and in the case of an allocating write with
855 * page_size < cluster size, it will contain zero'd and mapped
856 * pages adjacent to w_target_page which need to be written
857 * out in so that future reads from that region will get
858 * zero's.
859 */
860 unsigned int w_num_pages;
861 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
862 struct page *w_target_page;
863
864 /*
865 * ocfs2_write_end() uses this to know what the real range to
866 * write in the target should be.
867 */
868 unsigned int w_target_from;
869 unsigned int w_target_to;
870
871 /*
872 * We could use journal_current_handle() but this is cleaner,
873 * IMHO -Mark
874 */
875 handle_t *w_handle;
876
877 struct buffer_head *w_di_bh;
878
879 struct ocfs2_cached_dealloc_ctxt w_dealloc;
880 };
881
882 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
883 {
884 int i;
885
886 for(i = 0; i < num_pages; i++) {
887 if (pages[i]) {
888 unlock_page(pages[i]);
889 mark_page_accessed(pages[i]);
890 page_cache_release(pages[i]);
891 }
892 }
893 }
894
895 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
896 {
897 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
898
899 brelse(wc->w_di_bh);
900 kfree(wc);
901 }
902
903 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
904 struct ocfs2_super *osb, loff_t pos,
905 unsigned len, struct buffer_head *di_bh)
906 {
907 u32 cend;
908 struct ocfs2_write_ctxt *wc;
909
910 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
911 if (!wc)
912 return -ENOMEM;
913
914 wc->w_cpos = pos >> osb->s_clustersize_bits;
915 wc->w_first_new_cpos = UINT_MAX;
916 cend = (pos + len - 1) >> osb->s_clustersize_bits;
917 wc->w_clen = cend - wc->w_cpos + 1;
918 get_bh(di_bh);
919 wc->w_di_bh = di_bh;
920
921 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
922 wc->w_large_pages = 1;
923 else
924 wc->w_large_pages = 0;
925
926 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
927
928 *wcp = wc;
929
930 return 0;
931 }
932
933 /*
934 * If a page has any new buffers, zero them out here, and mark them uptodate
935 * and dirty so they'll be written out (in order to prevent uninitialised
936 * block data from leaking). And clear the new bit.
937 */
938 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
939 {
940 unsigned int block_start, block_end;
941 struct buffer_head *head, *bh;
942
943 BUG_ON(!PageLocked(page));
944 if (!page_has_buffers(page))
945 return;
946
947 bh = head = page_buffers(page);
948 block_start = 0;
949 do {
950 block_end = block_start + bh->b_size;
951
952 if (buffer_new(bh)) {
953 if (block_end > from && block_start < to) {
954 if (!PageUptodate(page)) {
955 unsigned start, end;
956
957 start = max(from, block_start);
958 end = min(to, block_end);
959
960 zero_user_segment(page, start, end);
961 set_buffer_uptodate(bh);
962 }
963
964 clear_buffer_new(bh);
965 mark_buffer_dirty(bh);
966 }
967 }
968
969 block_start = block_end;
970 bh = bh->b_this_page;
971 } while (bh != head);
972 }
973
974 /*
975 * Only called when we have a failure during allocating write to write
976 * zero's to the newly allocated region.
977 */
978 static void ocfs2_write_failure(struct inode *inode,
979 struct ocfs2_write_ctxt *wc,
980 loff_t user_pos, unsigned user_len)
981 {
982 int i;
983 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
984 to = user_pos + user_len;
985 struct page *tmppage;
986
987 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
988
989 for(i = 0; i < wc->w_num_pages; i++) {
990 tmppage = wc->w_pages[i];
991
992 if (page_has_buffers(tmppage)) {
993 if (ocfs2_should_order_data(inode))
994 ocfs2_jbd2_file_inode(wc->w_handle, inode);
995
996 block_commit_write(tmppage, from, to);
997 }
998 }
999 }
1000
1001 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1002 struct ocfs2_write_ctxt *wc,
1003 struct page *page, u32 cpos,
1004 loff_t user_pos, unsigned user_len,
1005 int new)
1006 {
1007 int ret;
1008 unsigned int map_from = 0, map_to = 0;
1009 unsigned int cluster_start, cluster_end;
1010 unsigned int user_data_from = 0, user_data_to = 0;
1011
1012 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1013 &cluster_start, &cluster_end);
1014
1015 /* treat the write as new if the a hole/lseek spanned across
1016 * the page boundary.
1017 */
1018 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1019 (page_offset(page) <= user_pos));
1020
1021 if (page == wc->w_target_page) {
1022 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1023 map_to = map_from + user_len;
1024
1025 if (new)
1026 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1027 cluster_start, cluster_end,
1028 new);
1029 else
1030 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1031 map_from, map_to, new);
1032 if (ret) {
1033 mlog_errno(ret);
1034 goto out;
1035 }
1036
1037 user_data_from = map_from;
1038 user_data_to = map_to;
1039 if (new) {
1040 map_from = cluster_start;
1041 map_to = cluster_end;
1042 }
1043 } else {
1044 /*
1045 * If we haven't allocated the new page yet, we
1046 * shouldn't be writing it out without copying user
1047 * data. This is likely a math error from the caller.
1048 */
1049 BUG_ON(!new);
1050
1051 map_from = cluster_start;
1052 map_to = cluster_end;
1053
1054 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1055 cluster_start, cluster_end, new);
1056 if (ret) {
1057 mlog_errno(ret);
1058 goto out;
1059 }
1060 }
1061
1062 /*
1063 * Parts of newly allocated pages need to be zero'd.
1064 *
1065 * Above, we have also rewritten 'to' and 'from' - as far as
1066 * the rest of the function is concerned, the entire cluster
1067 * range inside of a page needs to be written.
1068 *
1069 * We can skip this if the page is up to date - it's already
1070 * been zero'd from being read in as a hole.
1071 */
1072 if (new && !PageUptodate(page))
1073 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1074 cpos, user_data_from, user_data_to);
1075
1076 flush_dcache_page(page);
1077
1078 out:
1079 return ret;
1080 }
1081
1082 /*
1083 * This function will only grab one clusters worth of pages.
1084 */
1085 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1086 struct ocfs2_write_ctxt *wc,
1087 u32 cpos, loff_t user_pos,
1088 unsigned user_len, int new,
1089 struct page *mmap_page)
1090 {
1091 int ret = 0, i;
1092 unsigned long start, target_index, end_index, index;
1093 struct inode *inode = mapping->host;
1094 loff_t last_byte;
1095
1096 target_index = user_pos >> PAGE_CACHE_SHIFT;
1097
1098 /*
1099 * Figure out how many pages we'll be manipulating here. For
1100 * non allocating write, we just change the one
1101 * page. Otherwise, we'll need a whole clusters worth. If we're
1102 * writing past i_size, we only need enough pages to cover the
1103 * last page of the write.
1104 */
1105 if (new) {
1106 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1107 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1108 /*
1109 * We need the index *past* the last page we could possibly
1110 * touch. This is the page past the end of the write or
1111 * i_size, whichever is greater.
1112 */
1113 last_byte = max(user_pos + user_len, i_size_read(inode));
1114 BUG_ON(last_byte < 1);
1115 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1116 if ((start + wc->w_num_pages) > end_index)
1117 wc->w_num_pages = end_index - start;
1118 } else {
1119 wc->w_num_pages = 1;
1120 start = target_index;
1121 }
1122
1123 for(i = 0; i < wc->w_num_pages; i++) {
1124 index = start + i;
1125
1126 if (index == target_index && mmap_page) {
1127 /*
1128 * ocfs2_pagemkwrite() is a little different
1129 * and wants us to directly use the page
1130 * passed in.
1131 */
1132 lock_page(mmap_page);
1133
1134 if (mmap_page->mapping != mapping) {
1135 unlock_page(mmap_page);
1136 /*
1137 * Sanity check - the locking in
1138 * ocfs2_pagemkwrite() should ensure
1139 * that this code doesn't trigger.
1140 */
1141 ret = -EINVAL;
1142 mlog_errno(ret);
1143 goto out;
1144 }
1145
1146 page_cache_get(mmap_page);
1147 wc->w_pages[i] = mmap_page;
1148 } else {
1149 wc->w_pages[i] = find_or_create_page(mapping, index,
1150 GFP_NOFS);
1151 if (!wc->w_pages[i]) {
1152 ret = -ENOMEM;
1153 mlog_errno(ret);
1154 goto out;
1155 }
1156 }
1157
1158 if (index == target_index)
1159 wc->w_target_page = wc->w_pages[i];
1160 }
1161 out:
1162 return ret;
1163 }
1164
1165 /*
1166 * Prepare a single cluster for write one cluster into the file.
1167 */
1168 static int ocfs2_write_cluster(struct address_space *mapping,
1169 u32 phys, unsigned int unwritten,
1170 unsigned int should_zero,
1171 struct ocfs2_alloc_context *data_ac,
1172 struct ocfs2_alloc_context *meta_ac,
1173 struct ocfs2_write_ctxt *wc, u32 cpos,
1174 loff_t user_pos, unsigned user_len)
1175 {
1176 int ret, i, new;
1177 u64 v_blkno, p_blkno;
1178 struct inode *inode = mapping->host;
1179 struct ocfs2_extent_tree et;
1180
1181 new = phys == 0 ? 1 : 0;
1182 if (new) {
1183 u32 tmp_pos;
1184
1185 /*
1186 * This is safe to call with the page locks - it won't take
1187 * any additional semaphores or cluster locks.
1188 */
1189 tmp_pos = cpos;
1190 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1191 &tmp_pos, 1, 0, wc->w_di_bh,
1192 wc->w_handle, data_ac,
1193 meta_ac, NULL);
1194 /*
1195 * This shouldn't happen because we must have already
1196 * calculated the correct meta data allocation required. The
1197 * internal tree allocation code should know how to increase
1198 * transaction credits itself.
1199 *
1200 * If need be, we could handle -EAGAIN for a
1201 * RESTART_TRANS here.
1202 */
1203 mlog_bug_on_msg(ret == -EAGAIN,
1204 "Inode %llu: EAGAIN return during allocation.\n",
1205 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1206 if (ret < 0) {
1207 mlog_errno(ret);
1208 goto out;
1209 }
1210 } else if (unwritten) {
1211 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1212 wc->w_di_bh);
1213 ret = ocfs2_mark_extent_written(inode, &et,
1214 wc->w_handle, cpos, 1, phys,
1215 meta_ac, &wc->w_dealloc);
1216 if (ret < 0) {
1217 mlog_errno(ret);
1218 goto out;
1219 }
1220 }
1221
1222 if (should_zero)
1223 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1224 else
1225 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1226
1227 /*
1228 * The only reason this should fail is due to an inability to
1229 * find the extent added.
1230 */
1231 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1232 NULL);
1233 if (ret < 0) {
1234 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1235 "at logical block %llu",
1236 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1237 (unsigned long long)v_blkno);
1238 goto out;
1239 }
1240
1241 BUG_ON(p_blkno == 0);
1242
1243 for(i = 0; i < wc->w_num_pages; i++) {
1244 int tmpret;
1245
1246 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1247 wc->w_pages[i], cpos,
1248 user_pos, user_len,
1249 should_zero);
1250 if (tmpret) {
1251 mlog_errno(tmpret);
1252 if (ret == 0)
1253 ret = tmpret;
1254 }
1255 }
1256
1257 /*
1258 * We only have cleanup to do in case of allocating write.
1259 */
1260 if (ret && new)
1261 ocfs2_write_failure(inode, wc, user_pos, user_len);
1262
1263 out:
1264
1265 return ret;
1266 }
1267
1268 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1269 struct ocfs2_alloc_context *data_ac,
1270 struct ocfs2_alloc_context *meta_ac,
1271 struct ocfs2_write_ctxt *wc,
1272 loff_t pos, unsigned len)
1273 {
1274 int ret, i;
1275 loff_t cluster_off;
1276 unsigned int local_len = len;
1277 struct ocfs2_write_cluster_desc *desc;
1278 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1279
1280 for (i = 0; i < wc->w_clen; i++) {
1281 desc = &wc->w_desc[i];
1282
1283 /*
1284 * We have to make sure that the total write passed in
1285 * doesn't extend past a single cluster.
1286 */
1287 local_len = len;
1288 cluster_off = pos & (osb->s_clustersize - 1);
1289 if ((cluster_off + local_len) > osb->s_clustersize)
1290 local_len = osb->s_clustersize - cluster_off;
1291
1292 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1293 desc->c_unwritten,
1294 desc->c_needs_zero,
1295 data_ac, meta_ac,
1296 wc, desc->c_cpos, pos, local_len);
1297 if (ret) {
1298 mlog_errno(ret);
1299 goto out;
1300 }
1301
1302 len -= local_len;
1303 pos += local_len;
1304 }
1305
1306 ret = 0;
1307 out:
1308 return ret;
1309 }
1310
1311 /*
1312 * ocfs2_write_end() wants to know which parts of the target page it
1313 * should complete the write on. It's easiest to compute them ahead of
1314 * time when a more complete view of the write is available.
1315 */
1316 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1317 struct ocfs2_write_ctxt *wc,
1318 loff_t pos, unsigned len, int alloc)
1319 {
1320 struct ocfs2_write_cluster_desc *desc;
1321
1322 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1323 wc->w_target_to = wc->w_target_from + len;
1324
1325 if (alloc == 0)
1326 return;
1327
1328 /*
1329 * Allocating write - we may have different boundaries based
1330 * on page size and cluster size.
1331 *
1332 * NOTE: We can no longer compute one value from the other as
1333 * the actual write length and user provided length may be
1334 * different.
1335 */
1336
1337 if (wc->w_large_pages) {
1338 /*
1339 * We only care about the 1st and last cluster within
1340 * our range and whether they should be zero'd or not. Either
1341 * value may be extended out to the start/end of a
1342 * newly allocated cluster.
1343 */
1344 desc = &wc->w_desc[0];
1345 if (desc->c_needs_zero)
1346 ocfs2_figure_cluster_boundaries(osb,
1347 desc->c_cpos,
1348 &wc->w_target_from,
1349 NULL);
1350
1351 desc = &wc->w_desc[wc->w_clen - 1];
1352 if (desc->c_needs_zero)
1353 ocfs2_figure_cluster_boundaries(osb,
1354 desc->c_cpos,
1355 NULL,
1356 &wc->w_target_to);
1357 } else {
1358 wc->w_target_from = 0;
1359 wc->w_target_to = PAGE_CACHE_SIZE;
1360 }
1361 }
1362
1363 /*
1364 * Populate each single-cluster write descriptor in the write context
1365 * with information about the i/o to be done.
1366 *
1367 * Returns the number of clusters that will have to be allocated, as
1368 * well as a worst case estimate of the number of extent records that
1369 * would have to be created during a write to an unwritten region.
1370 */
1371 static int ocfs2_populate_write_desc(struct inode *inode,
1372 struct ocfs2_write_ctxt *wc,
1373 unsigned int *clusters_to_alloc,
1374 unsigned int *extents_to_split)
1375 {
1376 int ret;
1377 struct ocfs2_write_cluster_desc *desc;
1378 unsigned int num_clusters = 0;
1379 unsigned int ext_flags = 0;
1380 u32 phys = 0;
1381 int i;
1382
1383 *clusters_to_alloc = 0;
1384 *extents_to_split = 0;
1385
1386 for (i = 0; i < wc->w_clen; i++) {
1387 desc = &wc->w_desc[i];
1388 desc->c_cpos = wc->w_cpos + i;
1389
1390 if (num_clusters == 0) {
1391 /*
1392 * Need to look up the next extent record.
1393 */
1394 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1395 &num_clusters, &ext_flags);
1396 if (ret) {
1397 mlog_errno(ret);
1398 goto out;
1399 }
1400
1401 /* We should already CoW the refcountd extent. */
1402 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1403
1404 /*
1405 * Assume worst case - that we're writing in
1406 * the middle of the extent.
1407 *
1408 * We can assume that the write proceeds from
1409 * left to right, in which case the extent
1410 * insert code is smart enough to coalesce the
1411 * next splits into the previous records created.
1412 */
1413 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1414 *extents_to_split = *extents_to_split + 2;
1415 } else if (phys) {
1416 /*
1417 * Only increment phys if it doesn't describe
1418 * a hole.
1419 */
1420 phys++;
1421 }
1422
1423 /*
1424 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1425 * file that got extended. w_first_new_cpos tells us
1426 * where the newly allocated clusters are so we can
1427 * zero them.
1428 */
1429 if (desc->c_cpos >= wc->w_first_new_cpos) {
1430 BUG_ON(phys == 0);
1431 desc->c_needs_zero = 1;
1432 }
1433
1434 desc->c_phys = phys;
1435 if (phys == 0) {
1436 desc->c_new = 1;
1437 desc->c_needs_zero = 1;
1438 *clusters_to_alloc = *clusters_to_alloc + 1;
1439 }
1440
1441 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1442 desc->c_unwritten = 1;
1443 desc->c_needs_zero = 1;
1444 }
1445
1446 num_clusters--;
1447 }
1448
1449 ret = 0;
1450 out:
1451 return ret;
1452 }
1453
1454 static int ocfs2_write_begin_inline(struct address_space *mapping,
1455 struct inode *inode,
1456 struct ocfs2_write_ctxt *wc)
1457 {
1458 int ret;
1459 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1460 struct page *page;
1461 handle_t *handle;
1462 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1463
1464 page = find_or_create_page(mapping, 0, GFP_NOFS);
1465 if (!page) {
1466 ret = -ENOMEM;
1467 mlog_errno(ret);
1468 goto out;
1469 }
1470 /*
1471 * If we don't set w_num_pages then this page won't get unlocked
1472 * and freed on cleanup of the write context.
1473 */
1474 wc->w_pages[0] = wc->w_target_page = page;
1475 wc->w_num_pages = 1;
1476
1477 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1478 if (IS_ERR(handle)) {
1479 ret = PTR_ERR(handle);
1480 mlog_errno(ret);
1481 goto out;
1482 }
1483
1484 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1485 OCFS2_JOURNAL_ACCESS_WRITE);
1486 if (ret) {
1487 ocfs2_commit_trans(osb, handle);
1488
1489 mlog_errno(ret);
1490 goto out;
1491 }
1492
1493 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1494 ocfs2_set_inode_data_inline(inode, di);
1495
1496 if (!PageUptodate(page)) {
1497 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1498 if (ret) {
1499 ocfs2_commit_trans(osb, handle);
1500
1501 goto out;
1502 }
1503 }
1504
1505 wc->w_handle = handle;
1506 out:
1507 return ret;
1508 }
1509
1510 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1511 {
1512 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1513
1514 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1515 return 1;
1516 return 0;
1517 }
1518
1519 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1520 struct inode *inode, loff_t pos,
1521 unsigned len, struct page *mmap_page,
1522 struct ocfs2_write_ctxt *wc)
1523 {
1524 int ret, written = 0;
1525 loff_t end = pos + len;
1526 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1527 struct ocfs2_dinode *di = NULL;
1528
1529 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1530 len, (unsigned long long)pos,
1531 oi->ip_dyn_features);
1532
1533 /*
1534 * Handle inodes which already have inline data 1st.
1535 */
1536 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1537 if (mmap_page == NULL &&
1538 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1539 goto do_inline_write;
1540
1541 /*
1542 * The write won't fit - we have to give this inode an
1543 * inline extent list now.
1544 */
1545 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1546 if (ret)
1547 mlog_errno(ret);
1548 goto out;
1549 }
1550
1551 /*
1552 * Check whether the inode can accept inline data.
1553 */
1554 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1555 return 0;
1556
1557 /*
1558 * Check whether the write can fit.
1559 */
1560 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1561 if (mmap_page ||
1562 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1563 return 0;
1564
1565 do_inline_write:
1566 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1567 if (ret) {
1568 mlog_errno(ret);
1569 goto out;
1570 }
1571
1572 /*
1573 * This signals to the caller that the data can be written
1574 * inline.
1575 */
1576 written = 1;
1577 out:
1578 return written ? written : ret;
1579 }
1580
1581 /*
1582 * This function only does anything for file systems which can't
1583 * handle sparse files.
1584 *
1585 * What we want to do here is fill in any hole between the current end
1586 * of allocation and the end of our write. That way the rest of the
1587 * write path can treat it as an non-allocating write, which has no
1588 * special case code for sparse/nonsparse files.
1589 */
1590 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1591 struct buffer_head *di_bh,
1592 loff_t pos, unsigned len,
1593 struct ocfs2_write_ctxt *wc)
1594 {
1595 int ret;
1596 loff_t newsize = pos + len;
1597
1598 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1599
1600 if (newsize <= i_size_read(inode))
1601 return 0;
1602
1603 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1604 if (ret)
1605 mlog_errno(ret);
1606
1607 wc->w_first_new_cpos =
1608 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1609
1610 return ret;
1611 }
1612
1613 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1614 loff_t pos)
1615 {
1616 int ret = 0;
1617
1618 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1619 if (pos > i_size_read(inode))
1620 ret = ocfs2_zero_extend(inode, di_bh, pos);
1621
1622 return ret;
1623 }
1624
1625 /*
1626 * Try to flush truncate logs if we can free enough clusters from it.
1627 * As for return value, "< 0" means error, "0" no space and "1" means
1628 * we have freed enough spaces and let the caller try to allocate again.
1629 */
1630 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1631 unsigned int needed)
1632 {
1633 tid_t target;
1634 int ret = 0;
1635 unsigned int truncated_clusters;
1636
1637 mutex_lock(&osb->osb_tl_inode->i_mutex);
1638 truncated_clusters = osb->truncated_clusters;
1639 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1640
1641 /*
1642 * Check whether we can succeed in allocating if we free
1643 * the truncate log.
1644 */
1645 if (truncated_clusters < needed)
1646 goto out;
1647
1648 ret = ocfs2_flush_truncate_log(osb);
1649 if (ret) {
1650 mlog_errno(ret);
1651 goto out;
1652 }
1653
1654 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1655 jbd2_log_wait_commit(osb->journal->j_journal, target);
1656 ret = 1;
1657 }
1658 out:
1659 return ret;
1660 }
1661
1662 int ocfs2_write_begin_nolock(struct file *filp,
1663 struct address_space *mapping,
1664 loff_t pos, unsigned len, unsigned flags,
1665 struct page **pagep, void **fsdata,
1666 struct buffer_head *di_bh, struct page *mmap_page)
1667 {
1668 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1669 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1670 struct ocfs2_write_ctxt *wc;
1671 struct inode *inode = mapping->host;
1672 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1673 struct ocfs2_dinode *di;
1674 struct ocfs2_alloc_context *data_ac = NULL;
1675 struct ocfs2_alloc_context *meta_ac = NULL;
1676 handle_t *handle;
1677 struct ocfs2_extent_tree et;
1678 int try_free = 1, ret1;
1679
1680 try_again:
1681 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1682 if (ret) {
1683 mlog_errno(ret);
1684 return ret;
1685 }
1686
1687 if (ocfs2_supports_inline_data(osb)) {
1688 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1689 mmap_page, wc);
1690 if (ret == 1) {
1691 ret = 0;
1692 goto success;
1693 }
1694 if (ret < 0) {
1695 mlog_errno(ret);
1696 goto out;
1697 }
1698 }
1699
1700 if (ocfs2_sparse_alloc(osb))
1701 ret = ocfs2_zero_tail(inode, di_bh, pos);
1702 else
1703 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1704 wc);
1705 if (ret) {
1706 mlog_errno(ret);
1707 goto out;
1708 }
1709
1710 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1711 if (ret < 0) {
1712 mlog_errno(ret);
1713 goto out;
1714 } else if (ret == 1) {
1715 clusters_need = wc->w_clen;
1716 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1717 wc->w_cpos, wc->w_clen, UINT_MAX);
1718 if (ret) {
1719 mlog_errno(ret);
1720 goto out;
1721 }
1722 }
1723
1724 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1725 &extents_to_split);
1726 if (ret) {
1727 mlog_errno(ret);
1728 goto out;
1729 }
1730 clusters_need += clusters_to_alloc;
1731
1732 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1733
1734 trace_ocfs2_write_begin_nolock(
1735 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1736 (long long)i_size_read(inode),
1737 le32_to_cpu(di->i_clusters),
1738 pos, len, flags, mmap_page,
1739 clusters_to_alloc, extents_to_split);
1740
1741 /*
1742 * We set w_target_from, w_target_to here so that
1743 * ocfs2_write_end() knows which range in the target page to
1744 * write out. An allocation requires that we write the entire
1745 * cluster range.
1746 */
1747 if (clusters_to_alloc || extents_to_split) {
1748 /*
1749 * XXX: We are stretching the limits of
1750 * ocfs2_lock_allocators(). It greatly over-estimates
1751 * the work to be done.
1752 */
1753 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1754 wc->w_di_bh);
1755 ret = ocfs2_lock_allocators(inode, &et,
1756 clusters_to_alloc, extents_to_split,
1757 &data_ac, &meta_ac);
1758 if (ret) {
1759 mlog_errno(ret);
1760 goto out;
1761 }
1762
1763 if (data_ac)
1764 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1765
1766 credits = ocfs2_calc_extend_credits(inode->i_sb,
1767 &di->id2.i_list,
1768 clusters_to_alloc);
1769
1770 }
1771
1772 /*
1773 * We have to zero sparse allocated clusters, unwritten extent clusters,
1774 * and non-sparse clusters we just extended. For non-sparse writes,
1775 * we know zeros will only be needed in the first and/or last cluster.
1776 */
1777 if (clusters_to_alloc || extents_to_split ||
1778 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1779 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1780 cluster_of_pages = 1;
1781 else
1782 cluster_of_pages = 0;
1783
1784 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1785
1786 handle = ocfs2_start_trans(osb, credits);
1787 if (IS_ERR(handle)) {
1788 ret = PTR_ERR(handle);
1789 mlog_errno(ret);
1790 goto out;
1791 }
1792
1793 wc->w_handle = handle;
1794
1795 if (clusters_to_alloc) {
1796 ret = dquot_alloc_space_nodirty(inode,
1797 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1798 if (ret)
1799 goto out_commit;
1800 }
1801 /*
1802 * We don't want this to fail in ocfs2_write_end(), so do it
1803 * here.
1804 */
1805 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1806 OCFS2_JOURNAL_ACCESS_WRITE);
1807 if (ret) {
1808 mlog_errno(ret);
1809 goto out_quota;
1810 }
1811
1812 /*
1813 * Fill our page array first. That way we've grabbed enough so
1814 * that we can zero and flush if we error after adding the
1815 * extent.
1816 */
1817 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1818 cluster_of_pages, mmap_page);
1819 if (ret) {
1820 mlog_errno(ret);
1821 goto out_quota;
1822 }
1823
1824 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1825 len);
1826 if (ret) {
1827 mlog_errno(ret);
1828 goto out_quota;
1829 }
1830
1831 if (data_ac)
1832 ocfs2_free_alloc_context(data_ac);
1833 if (meta_ac)
1834 ocfs2_free_alloc_context(meta_ac);
1835
1836 success:
1837 *pagep = wc->w_target_page;
1838 *fsdata = wc;
1839 return 0;
1840 out_quota:
1841 if (clusters_to_alloc)
1842 dquot_free_space(inode,
1843 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1844 out_commit:
1845 ocfs2_commit_trans(osb, handle);
1846
1847 out:
1848 ocfs2_free_write_ctxt(wc);
1849
1850 if (data_ac)
1851 ocfs2_free_alloc_context(data_ac);
1852 if (meta_ac)
1853 ocfs2_free_alloc_context(meta_ac);
1854
1855 if (ret == -ENOSPC && try_free) {
1856 /*
1857 * Try to free some truncate log so that we can have enough
1858 * clusters to allocate.
1859 */
1860 try_free = 0;
1861
1862 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1863 if (ret1 == 1)
1864 goto try_again;
1865
1866 if (ret1 < 0)
1867 mlog_errno(ret1);
1868 }
1869
1870 return ret;
1871 }
1872
1873 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1874 loff_t pos, unsigned len, unsigned flags,
1875 struct page **pagep, void **fsdata)
1876 {
1877 int ret;
1878 struct buffer_head *di_bh = NULL;
1879 struct inode *inode = mapping->host;
1880
1881 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1882 if (ret) {
1883 mlog_errno(ret);
1884 return ret;
1885 }
1886
1887 /*
1888 * Take alloc sem here to prevent concurrent lookups. That way
1889 * the mapping, zeroing and tree manipulation within
1890 * ocfs2_write() will be safe against ->readpage(). This
1891 * should also serve to lock out allocation from a shared
1892 * writeable region.
1893 */
1894 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1895
1896 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1897 fsdata, di_bh, NULL);
1898 if (ret) {
1899 mlog_errno(ret);
1900 goto out_fail;
1901 }
1902
1903 brelse(di_bh);
1904
1905 return 0;
1906
1907 out_fail:
1908 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1909
1910 brelse(di_bh);
1911 ocfs2_inode_unlock(inode, 1);
1912
1913 return ret;
1914 }
1915
1916 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1917 unsigned len, unsigned *copied,
1918 struct ocfs2_dinode *di,
1919 struct ocfs2_write_ctxt *wc)
1920 {
1921 void *kaddr;
1922
1923 if (unlikely(*copied < len)) {
1924 if (!PageUptodate(wc->w_target_page)) {
1925 *copied = 0;
1926 return;
1927 }
1928 }
1929
1930 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1931 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1932 kunmap_atomic(kaddr, KM_USER0);
1933
1934 trace_ocfs2_write_end_inline(
1935 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1936 (unsigned long long)pos, *copied,
1937 le16_to_cpu(di->id2.i_data.id_count),
1938 le16_to_cpu(di->i_dyn_features));
1939 }
1940
1941 int ocfs2_write_end_nolock(struct address_space *mapping,
1942 loff_t pos, unsigned len, unsigned copied,
1943 struct page *page, void *fsdata)
1944 {
1945 int i;
1946 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1947 struct inode *inode = mapping->host;
1948 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1949 struct ocfs2_write_ctxt *wc = fsdata;
1950 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1951 handle_t *handle = wc->w_handle;
1952 struct page *tmppage;
1953
1954 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1955 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1956 goto out_write_size;
1957 }
1958
1959 if (unlikely(copied < len)) {
1960 if (!PageUptodate(wc->w_target_page))
1961 copied = 0;
1962
1963 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1964 start+len);
1965 }
1966 flush_dcache_page(wc->w_target_page);
1967
1968 for(i = 0; i < wc->w_num_pages; i++) {
1969 tmppage = wc->w_pages[i];
1970
1971 if (tmppage == wc->w_target_page) {
1972 from = wc->w_target_from;
1973 to = wc->w_target_to;
1974
1975 BUG_ON(from > PAGE_CACHE_SIZE ||
1976 to > PAGE_CACHE_SIZE ||
1977 to < from);
1978 } else {
1979 /*
1980 * Pages adjacent to the target (if any) imply
1981 * a hole-filling write in which case we want
1982 * to flush their entire range.
1983 */
1984 from = 0;
1985 to = PAGE_CACHE_SIZE;
1986 }
1987
1988 if (page_has_buffers(tmppage)) {
1989 if (ocfs2_should_order_data(inode))
1990 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1991 block_commit_write(tmppage, from, to);
1992 }
1993 }
1994
1995 out_write_size:
1996 pos += copied;
1997 if (pos > inode->i_size) {
1998 i_size_write(inode, pos);
1999 mark_inode_dirty(inode);
2000 }
2001 inode->i_blocks = ocfs2_inode_sector_count(inode);
2002 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2003 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2004 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2005 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2006 ocfs2_journal_dirty(handle, wc->w_di_bh);
2007
2008 ocfs2_commit_trans(osb, handle);
2009
2010 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2011
2012 ocfs2_free_write_ctxt(wc);
2013
2014 return copied;
2015 }
2016
2017 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2018 loff_t pos, unsigned len, unsigned copied,
2019 struct page *page, void *fsdata)
2020 {
2021 int ret;
2022 struct inode *inode = mapping->host;
2023
2024 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2025
2026 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2027 ocfs2_inode_unlock(inode, 1);
2028
2029 return ret;
2030 }
2031
2032 const struct address_space_operations ocfs2_aops = {
2033 .readpage = ocfs2_readpage,
2034 .readpages = ocfs2_readpages,
2035 .writepage = ocfs2_writepage,
2036 .write_begin = ocfs2_write_begin,
2037 .write_end = ocfs2_write_end,
2038 .bmap = ocfs2_bmap,
2039 .direct_IO = ocfs2_direct_IO,
2040 .invalidatepage = ocfs2_invalidatepage,
2041 .releasepage = ocfs2_releasepage,
2042 .migratepage = buffer_migrate_page,
2043 .is_partially_uptodate = block_is_partially_uptodate,
2044 .error_remove_page = generic_error_remove_page,
2045 };
This page took 0.076399 seconds and 5 git commands to generate.