Merge branch '83xx' into for_paulus
[deliverable/linux.git] / fs / ocfs2 / cluster / heartbeat.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2004, 2005 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/jiffies.h>
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/bio.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/file.h>
31 #include <linux/kthread.h>
32 #include <linux/configfs.h>
33 #include <linux/random.h>
34 #include <linux/crc32.h>
35 #include <linux/time.h>
36
37 #include "heartbeat.h"
38 #include "tcp.h"
39 #include "nodemanager.h"
40 #include "quorum.h"
41
42 #include "masklog.h"
43
44
45 /*
46 * The first heartbeat pass had one global thread that would serialize all hb
47 * callback calls. This global serializing sem should only be removed once
48 * we've made sure that all callees can deal with being called concurrently
49 * from multiple hb region threads.
50 */
51 static DECLARE_RWSEM(o2hb_callback_sem);
52
53 /*
54 * multiple hb threads are watching multiple regions. A node is live
55 * whenever any of the threads sees activity from the node in its region.
56 */
57 static DEFINE_SPINLOCK(o2hb_live_lock);
58 static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
59 static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
60 static LIST_HEAD(o2hb_node_events);
61 static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
62
63 static LIST_HEAD(o2hb_all_regions);
64
65 static struct o2hb_callback {
66 struct list_head list;
67 } o2hb_callbacks[O2HB_NUM_CB];
68
69 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
70
71 #define O2HB_DEFAULT_BLOCK_BITS 9
72
73 unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
74
75 /* Only sets a new threshold if there are no active regions.
76 *
77 * No locking or otherwise interesting code is required for reading
78 * o2hb_dead_threshold as it can't change once regions are active and
79 * it's not interesting to anyone until then anyway. */
80 static void o2hb_dead_threshold_set(unsigned int threshold)
81 {
82 if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
83 spin_lock(&o2hb_live_lock);
84 if (list_empty(&o2hb_all_regions))
85 o2hb_dead_threshold = threshold;
86 spin_unlock(&o2hb_live_lock);
87 }
88 }
89
90 struct o2hb_node_event {
91 struct list_head hn_item;
92 enum o2hb_callback_type hn_event_type;
93 struct o2nm_node *hn_node;
94 int hn_node_num;
95 };
96
97 struct o2hb_disk_slot {
98 struct o2hb_disk_heartbeat_block *ds_raw_block;
99 u8 ds_node_num;
100 u64 ds_last_time;
101 u64 ds_last_generation;
102 u16 ds_equal_samples;
103 u16 ds_changed_samples;
104 struct list_head ds_live_item;
105 };
106
107 /* each thread owns a region.. when we're asked to tear down the region
108 * we ask the thread to stop, who cleans up the region */
109 struct o2hb_region {
110 struct config_item hr_item;
111
112 struct list_head hr_all_item;
113 unsigned hr_unclean_stop:1;
114
115 /* protected by the hr_callback_sem */
116 struct task_struct *hr_task;
117
118 unsigned int hr_blocks;
119 unsigned long long hr_start_block;
120
121 unsigned int hr_block_bits;
122 unsigned int hr_block_bytes;
123
124 unsigned int hr_slots_per_page;
125 unsigned int hr_num_pages;
126
127 struct page **hr_slot_data;
128 struct block_device *hr_bdev;
129 struct o2hb_disk_slot *hr_slots;
130
131 /* let the person setting up hb wait for it to return until it
132 * has reached a 'steady' state. This will be fixed when we have
133 * a more complete api that doesn't lead to this sort of fragility. */
134 atomic_t hr_steady_iterations;
135
136 char hr_dev_name[BDEVNAME_SIZE];
137
138 unsigned int hr_timeout_ms;
139
140 /* randomized as the region goes up and down so that a node
141 * recognizes a node going up and down in one iteration */
142 u64 hr_generation;
143
144 struct work_struct hr_write_timeout_work;
145 unsigned long hr_last_timeout_start;
146
147 /* Used during o2hb_check_slot to hold a copy of the block
148 * being checked because we temporarily have to zero out the
149 * crc field. */
150 struct o2hb_disk_heartbeat_block *hr_tmp_block;
151 };
152
153 struct o2hb_bio_wait_ctxt {
154 atomic_t wc_num_reqs;
155 struct completion wc_io_complete;
156 int wc_error;
157 };
158
159 static void o2hb_write_timeout(void *arg)
160 {
161 struct o2hb_region *reg = arg;
162
163 mlog(ML_ERROR, "Heartbeat write timeout to device %s after %u "
164 "milliseconds\n", reg->hr_dev_name,
165 jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
166 o2quo_disk_timeout();
167 }
168
169 static void o2hb_arm_write_timeout(struct o2hb_region *reg)
170 {
171 mlog(0, "Queue write timeout for %u ms\n", O2HB_MAX_WRITE_TIMEOUT_MS);
172
173 cancel_delayed_work(&reg->hr_write_timeout_work);
174 reg->hr_last_timeout_start = jiffies;
175 schedule_delayed_work(&reg->hr_write_timeout_work,
176 msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
177 }
178
179 static void o2hb_disarm_write_timeout(struct o2hb_region *reg)
180 {
181 cancel_delayed_work(&reg->hr_write_timeout_work);
182 flush_scheduled_work();
183 }
184
185 static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc,
186 unsigned int num_ios)
187 {
188 atomic_set(&wc->wc_num_reqs, num_ios);
189 init_completion(&wc->wc_io_complete);
190 wc->wc_error = 0;
191 }
192
193 /* Used in error paths too */
194 static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
195 unsigned int num)
196 {
197 /* sadly atomic_sub_and_test() isn't available on all platforms. The
198 * good news is that the fast path only completes one at a time */
199 while(num--) {
200 if (atomic_dec_and_test(&wc->wc_num_reqs)) {
201 BUG_ON(num > 0);
202 complete(&wc->wc_io_complete);
203 }
204 }
205 }
206
207 static void o2hb_wait_on_io(struct o2hb_region *reg,
208 struct o2hb_bio_wait_ctxt *wc)
209 {
210 struct address_space *mapping = reg->hr_bdev->bd_inode->i_mapping;
211
212 blk_run_address_space(mapping);
213
214 wait_for_completion(&wc->wc_io_complete);
215 }
216
217 static int o2hb_bio_end_io(struct bio *bio,
218 unsigned int bytes_done,
219 int error)
220 {
221 struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
222
223 if (error) {
224 mlog(ML_ERROR, "IO Error %d\n", error);
225 wc->wc_error = error;
226 }
227
228 if (bio->bi_size)
229 return 1;
230
231 o2hb_bio_wait_dec(wc, 1);
232 return 0;
233 }
234
235 /* Setup a Bio to cover I/O against num_slots slots starting at
236 * start_slot. */
237 static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
238 struct o2hb_bio_wait_ctxt *wc,
239 unsigned int start_slot,
240 unsigned int num_slots)
241 {
242 int i, nr_vecs, len, first_page, last_page;
243 unsigned int vec_len, vec_start;
244 unsigned int bits = reg->hr_block_bits;
245 unsigned int spp = reg->hr_slots_per_page;
246 struct bio *bio;
247 struct page *page;
248
249 nr_vecs = (num_slots + spp - 1) / spp;
250
251 /* Testing has shown this allocation to take long enough under
252 * GFP_KERNEL that the local node can get fenced. It would be
253 * nicest if we could pre-allocate these bios and avoid this
254 * all together. */
255 bio = bio_alloc(GFP_ATOMIC, nr_vecs);
256 if (!bio) {
257 mlog(ML_ERROR, "Could not alloc slots BIO!\n");
258 bio = ERR_PTR(-ENOMEM);
259 goto bail;
260 }
261
262 /* Must put everything in 512 byte sectors for the bio... */
263 bio->bi_sector = (reg->hr_start_block + start_slot) << (bits - 9);
264 bio->bi_bdev = reg->hr_bdev;
265 bio->bi_private = wc;
266 bio->bi_end_io = o2hb_bio_end_io;
267
268 first_page = start_slot / spp;
269 last_page = first_page + nr_vecs;
270 vec_start = (start_slot << bits) % PAGE_CACHE_SIZE;
271 for(i = first_page; i < last_page; i++) {
272 page = reg->hr_slot_data[i];
273
274 vec_len = PAGE_CACHE_SIZE;
275 /* last page might be short */
276 if (((i + 1) * spp) > (start_slot + num_slots))
277 vec_len = ((num_slots + start_slot) % spp) << bits;
278 vec_len -= vec_start;
279
280 mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
281 i, vec_len, vec_start);
282
283 len = bio_add_page(bio, page, vec_len, vec_start);
284 if (len != vec_len) {
285 bio_put(bio);
286 bio = ERR_PTR(-EIO);
287
288 mlog(ML_ERROR, "Error adding page to bio i = %d, "
289 "vec_len = %u, len = %d\n, start = %u\n",
290 i, vec_len, len, vec_start);
291 goto bail;
292 }
293
294 vec_start = 0;
295 }
296
297 bail:
298 return bio;
299 }
300
301 /*
302 * Compute the maximum number of sectors the bdev can handle in one bio,
303 * as a power of two.
304 *
305 * Stolen from oracleasm, thanks Joel!
306 */
307 static int compute_max_sectors(struct block_device *bdev)
308 {
309 int max_pages, max_sectors, pow_two_sectors;
310
311 struct request_queue *q;
312
313 q = bdev_get_queue(bdev);
314 max_pages = q->max_sectors >> (PAGE_SHIFT - 9);
315 if (max_pages > BIO_MAX_PAGES)
316 max_pages = BIO_MAX_PAGES;
317 if (max_pages > q->max_phys_segments)
318 max_pages = q->max_phys_segments;
319 if (max_pages > q->max_hw_segments)
320 max_pages = q->max_hw_segments;
321 max_pages--; /* Handle I/Os that straddle a page */
322
323 max_sectors = max_pages << (PAGE_SHIFT - 9);
324
325 /* Why is fls() 1-based???? */
326 pow_two_sectors = 1 << (fls(max_sectors) - 1);
327
328 return pow_two_sectors;
329 }
330
331 static inline void o2hb_compute_request_limits(struct o2hb_region *reg,
332 unsigned int num_slots,
333 unsigned int *num_bios,
334 unsigned int *slots_per_bio)
335 {
336 unsigned int max_sectors, io_sectors;
337
338 max_sectors = compute_max_sectors(reg->hr_bdev);
339
340 io_sectors = num_slots << (reg->hr_block_bits - 9);
341
342 *num_bios = (io_sectors + max_sectors - 1) / max_sectors;
343 *slots_per_bio = max_sectors >> (reg->hr_block_bits - 9);
344
345 mlog(ML_HB_BIO, "My io size is %u sectors for %u slots. This "
346 "device can handle %u sectors of I/O\n", io_sectors, num_slots,
347 max_sectors);
348 mlog(ML_HB_BIO, "Will need %u bios holding %u slots each\n",
349 *num_bios, *slots_per_bio);
350 }
351
352 static int o2hb_read_slots(struct o2hb_region *reg,
353 unsigned int max_slots)
354 {
355 unsigned int num_bios, slots_per_bio, start_slot, num_slots;
356 int i, status;
357 struct o2hb_bio_wait_ctxt wc;
358 struct bio **bios;
359 struct bio *bio;
360
361 o2hb_compute_request_limits(reg, max_slots, &num_bios, &slots_per_bio);
362
363 bios = kcalloc(num_bios, sizeof(struct bio *), GFP_KERNEL);
364 if (!bios) {
365 status = -ENOMEM;
366 mlog_errno(status);
367 return status;
368 }
369
370 o2hb_bio_wait_init(&wc, num_bios);
371
372 num_slots = slots_per_bio;
373 for(i = 0; i < num_bios; i++) {
374 start_slot = i * slots_per_bio;
375
376 /* adjust num_slots at last bio */
377 if (max_slots < (start_slot + num_slots))
378 num_slots = max_slots - start_slot;
379
380 bio = o2hb_setup_one_bio(reg, &wc, start_slot, num_slots);
381 if (IS_ERR(bio)) {
382 o2hb_bio_wait_dec(&wc, num_bios - i);
383
384 status = PTR_ERR(bio);
385 mlog_errno(status);
386 goto bail_and_wait;
387 }
388 bios[i] = bio;
389
390 submit_bio(READ, bio);
391 }
392
393 status = 0;
394
395 bail_and_wait:
396 o2hb_wait_on_io(reg, &wc);
397 if (wc.wc_error && !status)
398 status = wc.wc_error;
399
400 if (bios) {
401 for(i = 0; i < num_bios; i++)
402 if (bios[i])
403 bio_put(bios[i]);
404 kfree(bios);
405 }
406
407 return status;
408 }
409
410 static int o2hb_issue_node_write(struct o2hb_region *reg,
411 struct bio **write_bio,
412 struct o2hb_bio_wait_ctxt *write_wc)
413 {
414 int status;
415 unsigned int slot;
416 struct bio *bio;
417
418 o2hb_bio_wait_init(write_wc, 1);
419
420 slot = o2nm_this_node();
421
422 bio = o2hb_setup_one_bio(reg, write_wc, slot, 1);
423 if (IS_ERR(bio)) {
424 status = PTR_ERR(bio);
425 mlog_errno(status);
426 goto bail;
427 }
428
429 submit_bio(WRITE, bio);
430
431 *write_bio = bio;
432 status = 0;
433 bail:
434 return status;
435 }
436
437 static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
438 struct o2hb_disk_heartbeat_block *hb_block)
439 {
440 __le32 old_cksum;
441 u32 ret;
442
443 /* We want to compute the block crc with a 0 value in the
444 * hb_cksum field. Save it off here and replace after the
445 * crc. */
446 old_cksum = hb_block->hb_cksum;
447 hb_block->hb_cksum = 0;
448
449 ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
450
451 hb_block->hb_cksum = old_cksum;
452
453 return ret;
454 }
455
456 static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
457 {
458 mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
459 "cksum = 0x%x, generation 0x%llx\n",
460 (long long)le64_to_cpu(hb_block->hb_seq),
461 hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
462 (long long)le64_to_cpu(hb_block->hb_generation));
463 }
464
465 static int o2hb_verify_crc(struct o2hb_region *reg,
466 struct o2hb_disk_heartbeat_block *hb_block)
467 {
468 u32 read, computed;
469
470 read = le32_to_cpu(hb_block->hb_cksum);
471 computed = o2hb_compute_block_crc_le(reg, hb_block);
472
473 return read == computed;
474 }
475
476 /* We want to make sure that nobody is heartbeating on top of us --
477 * this will help detect an invalid configuration. */
478 static int o2hb_check_last_timestamp(struct o2hb_region *reg)
479 {
480 int node_num, ret;
481 struct o2hb_disk_slot *slot;
482 struct o2hb_disk_heartbeat_block *hb_block;
483
484 node_num = o2nm_this_node();
485
486 ret = 1;
487 slot = &reg->hr_slots[node_num];
488 /* Don't check on our 1st timestamp */
489 if (slot->ds_last_time) {
490 hb_block = slot->ds_raw_block;
491
492 if (le64_to_cpu(hb_block->hb_seq) != slot->ds_last_time)
493 ret = 0;
494 }
495
496 return ret;
497 }
498
499 static inline void o2hb_prepare_block(struct o2hb_region *reg,
500 u64 generation)
501 {
502 int node_num;
503 u64 cputime;
504 struct o2hb_disk_slot *slot;
505 struct o2hb_disk_heartbeat_block *hb_block;
506
507 node_num = o2nm_this_node();
508 slot = &reg->hr_slots[node_num];
509
510 hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
511 memset(hb_block, 0, reg->hr_block_bytes);
512 /* TODO: time stuff */
513 cputime = CURRENT_TIME.tv_sec;
514 if (!cputime)
515 cputime = 1;
516
517 hb_block->hb_seq = cpu_to_le64(cputime);
518 hb_block->hb_node = node_num;
519 hb_block->hb_generation = cpu_to_le64(generation);
520 hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
521
522 /* This step must always happen last! */
523 hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
524 hb_block));
525
526 mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
527 (long long)cpu_to_le64(generation),
528 le32_to_cpu(hb_block->hb_cksum));
529 }
530
531 static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
532 struct o2nm_node *node,
533 int idx)
534 {
535 struct list_head *iter;
536 struct o2hb_callback_func *f;
537
538 list_for_each(iter, &hbcall->list) {
539 f = list_entry(iter, struct o2hb_callback_func, hc_item);
540 mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
541 (f->hc_func)(node, idx, f->hc_data);
542 }
543 }
544
545 /* Will run the list in order until we process the passed event */
546 static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
547 {
548 int empty;
549 struct o2hb_callback *hbcall;
550 struct o2hb_node_event *event;
551
552 spin_lock(&o2hb_live_lock);
553 empty = list_empty(&queued_event->hn_item);
554 spin_unlock(&o2hb_live_lock);
555 if (empty)
556 return;
557
558 /* Holding callback sem assures we don't alter the callback
559 * lists when doing this, and serializes ourselves with other
560 * processes wanting callbacks. */
561 down_write(&o2hb_callback_sem);
562
563 spin_lock(&o2hb_live_lock);
564 while (!list_empty(&o2hb_node_events)
565 && !list_empty(&queued_event->hn_item)) {
566 event = list_entry(o2hb_node_events.next,
567 struct o2hb_node_event,
568 hn_item);
569 list_del_init(&event->hn_item);
570 spin_unlock(&o2hb_live_lock);
571
572 mlog(ML_HEARTBEAT, "Node %s event for %d\n",
573 event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
574 event->hn_node_num);
575
576 hbcall = hbcall_from_type(event->hn_event_type);
577
578 /* We should *never* have gotten on to the list with a
579 * bad type... This isn't something that we should try
580 * to recover from. */
581 BUG_ON(IS_ERR(hbcall));
582
583 o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
584
585 spin_lock(&o2hb_live_lock);
586 }
587 spin_unlock(&o2hb_live_lock);
588
589 up_write(&o2hb_callback_sem);
590 }
591
592 static void o2hb_queue_node_event(struct o2hb_node_event *event,
593 enum o2hb_callback_type type,
594 struct o2nm_node *node,
595 int node_num)
596 {
597 assert_spin_locked(&o2hb_live_lock);
598
599 event->hn_event_type = type;
600 event->hn_node = node;
601 event->hn_node_num = node_num;
602
603 mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
604 type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
605
606 list_add_tail(&event->hn_item, &o2hb_node_events);
607 }
608
609 static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
610 {
611 struct o2hb_node_event event =
612 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
613 struct o2nm_node *node;
614
615 node = o2nm_get_node_by_num(slot->ds_node_num);
616 if (!node)
617 return;
618
619 spin_lock(&o2hb_live_lock);
620 if (!list_empty(&slot->ds_live_item)) {
621 mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
622 slot->ds_node_num);
623
624 list_del_init(&slot->ds_live_item);
625
626 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
627 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
628
629 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
630 slot->ds_node_num);
631 }
632 }
633 spin_unlock(&o2hb_live_lock);
634
635 o2hb_run_event_list(&event);
636
637 o2nm_node_put(node);
638 }
639
640 static int o2hb_check_slot(struct o2hb_region *reg,
641 struct o2hb_disk_slot *slot)
642 {
643 int changed = 0, gen_changed = 0;
644 struct o2hb_node_event event =
645 { .hn_item = LIST_HEAD_INIT(event.hn_item), };
646 struct o2nm_node *node;
647 struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
648 u64 cputime;
649 unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
650 unsigned int slot_dead_ms;
651
652 memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
653
654 /* Is this correct? Do we assume that the node doesn't exist
655 * if we're not configured for him? */
656 node = o2nm_get_node_by_num(slot->ds_node_num);
657 if (!node)
658 return 0;
659
660 if (!o2hb_verify_crc(reg, hb_block)) {
661 /* all paths from here will drop o2hb_live_lock for
662 * us. */
663 spin_lock(&o2hb_live_lock);
664
665 /* Don't print an error on the console in this case -
666 * a freshly formatted heartbeat area will not have a
667 * crc set on it. */
668 if (list_empty(&slot->ds_live_item))
669 goto out;
670
671 /* The node is live but pushed out a bad crc. We
672 * consider it a transient miss but don't populate any
673 * other values as they may be junk. */
674 mlog(ML_ERROR, "Node %d has written a bad crc to %s\n",
675 slot->ds_node_num, reg->hr_dev_name);
676 o2hb_dump_slot(hb_block);
677
678 slot->ds_equal_samples++;
679 goto fire_callbacks;
680 }
681
682 /* we don't care if these wrap.. the state transitions below
683 * clear at the right places */
684 cputime = le64_to_cpu(hb_block->hb_seq);
685 if (slot->ds_last_time != cputime)
686 slot->ds_changed_samples++;
687 else
688 slot->ds_equal_samples++;
689 slot->ds_last_time = cputime;
690
691 /* The node changed heartbeat generations. We assume this to
692 * mean it dropped off but came back before we timed out. We
693 * want to consider it down for the time being but don't want
694 * to lose any changed_samples state we might build up to
695 * considering it live again. */
696 if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
697 gen_changed = 1;
698 slot->ds_equal_samples = 0;
699 mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
700 "to 0x%llx)\n", slot->ds_node_num,
701 (long long)slot->ds_last_generation,
702 (long long)le64_to_cpu(hb_block->hb_generation));
703 }
704
705 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
706
707 mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
708 "seq %llu last %llu changed %u equal %u\n",
709 slot->ds_node_num, (long long)slot->ds_last_generation,
710 le32_to_cpu(hb_block->hb_cksum),
711 (unsigned long long)le64_to_cpu(hb_block->hb_seq),
712 (unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
713 slot->ds_equal_samples);
714
715 spin_lock(&o2hb_live_lock);
716
717 fire_callbacks:
718 /* dead nodes only come to life after some number of
719 * changes at any time during their dead time */
720 if (list_empty(&slot->ds_live_item) &&
721 slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
722 mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
723 slot->ds_node_num, (long long)slot->ds_last_generation);
724
725 /* first on the list generates a callback */
726 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
727 set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
728
729 o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
730 slot->ds_node_num);
731
732 changed = 1;
733 }
734
735 list_add_tail(&slot->ds_live_item,
736 &o2hb_live_slots[slot->ds_node_num]);
737
738 slot->ds_equal_samples = 0;
739
740 /* We want to be sure that all nodes agree on the
741 * number of milliseconds before a node will be
742 * considered dead. The self-fencing timeout is
743 * computed from this value, and a discrepancy might
744 * result in heartbeat calling a node dead when it
745 * hasn't self-fenced yet. */
746 slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
747 if (slot_dead_ms && slot_dead_ms != dead_ms) {
748 /* TODO: Perhaps we can fail the region here. */
749 mlog(ML_ERROR, "Node %d on device %s has a dead count "
750 "of %u ms, but our count is %u ms.\n"
751 "Please double check your configuration values "
752 "for 'O2CB_HEARTBEAT_THRESHOLD'\n",
753 slot->ds_node_num, reg->hr_dev_name, slot_dead_ms,
754 dead_ms);
755 }
756 goto out;
757 }
758
759 /* if the list is dead, we're done.. */
760 if (list_empty(&slot->ds_live_item))
761 goto out;
762
763 /* live nodes only go dead after enough consequtive missed
764 * samples.. reset the missed counter whenever we see
765 * activity */
766 if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
767 mlog(ML_HEARTBEAT, "Node %d left my region\n",
768 slot->ds_node_num);
769
770 /* last off the live_slot generates a callback */
771 list_del_init(&slot->ds_live_item);
772 if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
773 clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
774
775 o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
776 slot->ds_node_num);
777
778 changed = 1;
779 }
780
781 /* We don't clear this because the node is still
782 * actually writing new blocks. */
783 if (!gen_changed)
784 slot->ds_changed_samples = 0;
785 goto out;
786 }
787 if (slot->ds_changed_samples) {
788 slot->ds_changed_samples = 0;
789 slot->ds_equal_samples = 0;
790 }
791 out:
792 spin_unlock(&o2hb_live_lock);
793
794 o2hb_run_event_list(&event);
795
796 o2nm_node_put(node);
797 return changed;
798 }
799
800 /* This could be faster if we just implmented a find_last_bit, but I
801 * don't think the circumstances warrant it. */
802 static int o2hb_highest_node(unsigned long *nodes,
803 int numbits)
804 {
805 int highest, node;
806
807 highest = numbits;
808 node = -1;
809 while ((node = find_next_bit(nodes, numbits, node + 1)) != -1) {
810 if (node >= numbits)
811 break;
812
813 highest = node;
814 }
815
816 return highest;
817 }
818
819 static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
820 {
821 int i, ret, highest_node, change = 0;
822 unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
823 struct bio *write_bio;
824 struct o2hb_bio_wait_ctxt write_wc;
825
826 ret = o2nm_configured_node_map(configured_nodes,
827 sizeof(configured_nodes));
828 if (ret) {
829 mlog_errno(ret);
830 return ret;
831 }
832
833 highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
834 if (highest_node >= O2NM_MAX_NODES) {
835 mlog(ML_NOTICE, "ocfs2_heartbeat: no configured nodes found!\n");
836 return -EINVAL;
837 }
838
839 /* No sense in reading the slots of nodes that don't exist
840 * yet. Of course, if the node definitions have holes in them
841 * then we're reading an empty slot anyway... Consider this
842 * best-effort. */
843 ret = o2hb_read_slots(reg, highest_node + 1);
844 if (ret < 0) {
845 mlog_errno(ret);
846 return ret;
847 }
848
849 /* With an up to date view of the slots, we can check that no
850 * other node has been improperly configured to heartbeat in
851 * our slot. */
852 if (!o2hb_check_last_timestamp(reg))
853 mlog(ML_ERROR, "Device \"%s\": another node is heartbeating "
854 "in our slot!\n", reg->hr_dev_name);
855
856 /* fill in the proper info for our next heartbeat */
857 o2hb_prepare_block(reg, reg->hr_generation);
858
859 /* And fire off the write. Note that we don't wait on this I/O
860 * until later. */
861 ret = o2hb_issue_node_write(reg, &write_bio, &write_wc);
862 if (ret < 0) {
863 mlog_errno(ret);
864 return ret;
865 }
866
867 i = -1;
868 while((i = find_next_bit(configured_nodes, O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
869
870 change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
871 }
872
873 /*
874 * We have to be sure we've advertised ourselves on disk
875 * before we can go to steady state. This ensures that
876 * people we find in our steady state have seen us.
877 */
878 o2hb_wait_on_io(reg, &write_wc);
879 bio_put(write_bio);
880 if (write_wc.wc_error) {
881 /* Do not re-arm the write timeout on I/O error - we
882 * can't be sure that the new block ever made it to
883 * disk */
884 mlog(ML_ERROR, "Write error %d on device \"%s\"\n",
885 write_wc.wc_error, reg->hr_dev_name);
886 return write_wc.wc_error;
887 }
888
889 o2hb_arm_write_timeout(reg);
890
891 /* let the person who launched us know when things are steady */
892 if (!change && (atomic_read(&reg->hr_steady_iterations) != 0)) {
893 if (atomic_dec_and_test(&reg->hr_steady_iterations))
894 wake_up(&o2hb_steady_queue);
895 }
896
897 return 0;
898 }
899
900 /* Subtract b from a, storing the result in a. a *must* have a larger
901 * value than b. */
902 static void o2hb_tv_subtract(struct timeval *a,
903 struct timeval *b)
904 {
905 /* just return 0 when a is after b */
906 if (a->tv_sec < b->tv_sec ||
907 (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec)) {
908 a->tv_sec = 0;
909 a->tv_usec = 0;
910 return;
911 }
912
913 a->tv_sec -= b->tv_sec;
914 a->tv_usec -= b->tv_usec;
915 while ( a->tv_usec < 0 ) {
916 a->tv_sec--;
917 a->tv_usec += 1000000;
918 }
919 }
920
921 static unsigned int o2hb_elapsed_msecs(struct timeval *start,
922 struct timeval *end)
923 {
924 struct timeval res = *end;
925
926 o2hb_tv_subtract(&res, start);
927
928 return res.tv_sec * 1000 + res.tv_usec / 1000;
929 }
930
931 /*
932 * we ride the region ref that the region dir holds. before the region
933 * dir is removed and drops it ref it will wait to tear down this
934 * thread.
935 */
936 static int o2hb_thread(void *data)
937 {
938 int i, ret;
939 struct o2hb_region *reg = data;
940 struct bio *write_bio;
941 struct o2hb_bio_wait_ctxt write_wc;
942 struct timeval before_hb, after_hb;
943 unsigned int elapsed_msec;
944
945 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
946
947 set_user_nice(current, -20);
948
949 while (!kthread_should_stop() && !reg->hr_unclean_stop) {
950 /* We track the time spent inside
951 * o2hb_do_disk_heartbeat so that we avoid more then
952 * hr_timeout_ms between disk writes. On busy systems
953 * this should result in a heartbeat which is less
954 * likely to time itself out. */
955 do_gettimeofday(&before_hb);
956
957 i = 0;
958 do {
959 ret = o2hb_do_disk_heartbeat(reg);
960 } while (ret && ++i < 2);
961
962 do_gettimeofday(&after_hb);
963 elapsed_msec = o2hb_elapsed_msecs(&before_hb, &after_hb);
964
965 mlog(0, "start = %lu.%lu, end = %lu.%lu, msec = %u\n",
966 before_hb.tv_sec, (unsigned long) before_hb.tv_usec,
967 after_hb.tv_sec, (unsigned long) after_hb.tv_usec,
968 elapsed_msec);
969
970 if (elapsed_msec < reg->hr_timeout_ms) {
971 /* the kthread api has blocked signals for us so no
972 * need to record the return value. */
973 msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
974 }
975 }
976
977 o2hb_disarm_write_timeout(reg);
978
979 /* unclean stop is only used in very bad situation */
980 for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
981 o2hb_shutdown_slot(&reg->hr_slots[i]);
982
983 /* Explicit down notification - avoid forcing the other nodes
984 * to timeout on this region when we could just as easily
985 * write a clear generation - thus indicating to them that
986 * this node has left this region.
987 *
988 * XXX: Should we skip this on unclean_stop? */
989 o2hb_prepare_block(reg, 0);
990 ret = o2hb_issue_node_write(reg, &write_bio, &write_wc);
991 if (ret == 0) {
992 o2hb_wait_on_io(reg, &write_wc);
993 bio_put(write_bio);
994 } else {
995 mlog_errno(ret);
996 }
997
998 mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread exiting\n");
999
1000 return 0;
1001 }
1002
1003 void o2hb_init(void)
1004 {
1005 int i;
1006
1007 for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
1008 INIT_LIST_HEAD(&o2hb_callbacks[i].list);
1009
1010 for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
1011 INIT_LIST_HEAD(&o2hb_live_slots[i]);
1012
1013 INIT_LIST_HEAD(&o2hb_node_events);
1014
1015 memset(o2hb_live_node_bitmap, 0, sizeof(o2hb_live_node_bitmap));
1016 }
1017
1018 /* if we're already in a callback then we're already serialized by the sem */
1019 static void o2hb_fill_node_map_from_callback(unsigned long *map,
1020 unsigned bytes)
1021 {
1022 BUG_ON(bytes < (BITS_TO_LONGS(O2NM_MAX_NODES) * sizeof(unsigned long)));
1023
1024 memcpy(map, &o2hb_live_node_bitmap, bytes);
1025 }
1026
1027 /*
1028 * get a map of all nodes that are heartbeating in any regions
1029 */
1030 void o2hb_fill_node_map(unsigned long *map, unsigned bytes)
1031 {
1032 /* callers want to serialize this map and callbacks so that they
1033 * can trust that they don't miss nodes coming to the party */
1034 down_read(&o2hb_callback_sem);
1035 spin_lock(&o2hb_live_lock);
1036 o2hb_fill_node_map_from_callback(map, bytes);
1037 spin_unlock(&o2hb_live_lock);
1038 up_read(&o2hb_callback_sem);
1039 }
1040 EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
1041
1042 /*
1043 * heartbeat configfs bits. The heartbeat set is a default set under
1044 * the cluster set in nodemanager.c.
1045 */
1046
1047 static struct o2hb_region *to_o2hb_region(struct config_item *item)
1048 {
1049 return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
1050 }
1051
1052 /* drop_item only drops its ref after killing the thread, nothing should
1053 * be using the region anymore. this has to clean up any state that
1054 * attributes might have built up. */
1055 static void o2hb_region_release(struct config_item *item)
1056 {
1057 int i;
1058 struct page *page;
1059 struct o2hb_region *reg = to_o2hb_region(item);
1060
1061 if (reg->hr_tmp_block)
1062 kfree(reg->hr_tmp_block);
1063
1064 if (reg->hr_slot_data) {
1065 for (i = 0; i < reg->hr_num_pages; i++) {
1066 page = reg->hr_slot_data[i];
1067 if (page)
1068 __free_page(page);
1069 }
1070 kfree(reg->hr_slot_data);
1071 }
1072
1073 if (reg->hr_bdev)
1074 blkdev_put(reg->hr_bdev);
1075
1076 if (reg->hr_slots)
1077 kfree(reg->hr_slots);
1078
1079 spin_lock(&o2hb_live_lock);
1080 list_del(&reg->hr_all_item);
1081 spin_unlock(&o2hb_live_lock);
1082
1083 kfree(reg);
1084 }
1085
1086 static int o2hb_read_block_input(struct o2hb_region *reg,
1087 const char *page,
1088 size_t count,
1089 unsigned long *ret_bytes,
1090 unsigned int *ret_bits)
1091 {
1092 unsigned long bytes;
1093 char *p = (char *)page;
1094
1095 bytes = simple_strtoul(p, &p, 0);
1096 if (!p || (*p && (*p != '\n')))
1097 return -EINVAL;
1098
1099 /* Heartbeat and fs min / max block sizes are the same. */
1100 if (bytes > 4096 || bytes < 512)
1101 return -ERANGE;
1102 if (hweight16(bytes) != 1)
1103 return -EINVAL;
1104
1105 if (ret_bytes)
1106 *ret_bytes = bytes;
1107 if (ret_bits)
1108 *ret_bits = ffs(bytes) - 1;
1109
1110 return 0;
1111 }
1112
1113 static ssize_t o2hb_region_block_bytes_read(struct o2hb_region *reg,
1114 char *page)
1115 {
1116 return sprintf(page, "%u\n", reg->hr_block_bytes);
1117 }
1118
1119 static ssize_t o2hb_region_block_bytes_write(struct o2hb_region *reg,
1120 const char *page,
1121 size_t count)
1122 {
1123 int status;
1124 unsigned long block_bytes;
1125 unsigned int block_bits;
1126
1127 if (reg->hr_bdev)
1128 return -EINVAL;
1129
1130 status = o2hb_read_block_input(reg, page, count,
1131 &block_bytes, &block_bits);
1132 if (status)
1133 return status;
1134
1135 reg->hr_block_bytes = (unsigned int)block_bytes;
1136 reg->hr_block_bits = block_bits;
1137
1138 return count;
1139 }
1140
1141 static ssize_t o2hb_region_start_block_read(struct o2hb_region *reg,
1142 char *page)
1143 {
1144 return sprintf(page, "%llu\n", reg->hr_start_block);
1145 }
1146
1147 static ssize_t o2hb_region_start_block_write(struct o2hb_region *reg,
1148 const char *page,
1149 size_t count)
1150 {
1151 unsigned long long tmp;
1152 char *p = (char *)page;
1153
1154 if (reg->hr_bdev)
1155 return -EINVAL;
1156
1157 tmp = simple_strtoull(p, &p, 0);
1158 if (!p || (*p && (*p != '\n')))
1159 return -EINVAL;
1160
1161 reg->hr_start_block = tmp;
1162
1163 return count;
1164 }
1165
1166 static ssize_t o2hb_region_blocks_read(struct o2hb_region *reg,
1167 char *page)
1168 {
1169 return sprintf(page, "%d\n", reg->hr_blocks);
1170 }
1171
1172 static ssize_t o2hb_region_blocks_write(struct o2hb_region *reg,
1173 const char *page,
1174 size_t count)
1175 {
1176 unsigned long tmp;
1177 char *p = (char *)page;
1178
1179 if (reg->hr_bdev)
1180 return -EINVAL;
1181
1182 tmp = simple_strtoul(p, &p, 0);
1183 if (!p || (*p && (*p != '\n')))
1184 return -EINVAL;
1185
1186 if (tmp > O2NM_MAX_NODES || tmp == 0)
1187 return -ERANGE;
1188
1189 reg->hr_blocks = (unsigned int)tmp;
1190
1191 return count;
1192 }
1193
1194 static ssize_t o2hb_region_dev_read(struct o2hb_region *reg,
1195 char *page)
1196 {
1197 unsigned int ret = 0;
1198
1199 if (reg->hr_bdev)
1200 ret = sprintf(page, "%s\n", reg->hr_dev_name);
1201
1202 return ret;
1203 }
1204
1205 static void o2hb_init_region_params(struct o2hb_region *reg)
1206 {
1207 reg->hr_slots_per_page = PAGE_CACHE_SIZE >> reg->hr_block_bits;
1208 reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
1209
1210 mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
1211 reg->hr_start_block, reg->hr_blocks);
1212 mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
1213 reg->hr_block_bytes, reg->hr_block_bits);
1214 mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
1215 mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
1216 }
1217
1218 static int o2hb_map_slot_data(struct o2hb_region *reg)
1219 {
1220 int i, j;
1221 unsigned int last_slot;
1222 unsigned int spp = reg->hr_slots_per_page;
1223 struct page *page;
1224 char *raw;
1225 struct o2hb_disk_slot *slot;
1226
1227 reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
1228 if (reg->hr_tmp_block == NULL) {
1229 mlog_errno(-ENOMEM);
1230 return -ENOMEM;
1231 }
1232
1233 reg->hr_slots = kcalloc(reg->hr_blocks,
1234 sizeof(struct o2hb_disk_slot), GFP_KERNEL);
1235 if (reg->hr_slots == NULL) {
1236 mlog_errno(-ENOMEM);
1237 return -ENOMEM;
1238 }
1239
1240 for(i = 0; i < reg->hr_blocks; i++) {
1241 slot = &reg->hr_slots[i];
1242 slot->ds_node_num = i;
1243 INIT_LIST_HEAD(&slot->ds_live_item);
1244 slot->ds_raw_block = NULL;
1245 }
1246
1247 reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
1248 mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
1249 "at %u blocks per page\n",
1250 reg->hr_num_pages, reg->hr_blocks, spp);
1251
1252 reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
1253 GFP_KERNEL);
1254 if (!reg->hr_slot_data) {
1255 mlog_errno(-ENOMEM);
1256 return -ENOMEM;
1257 }
1258
1259 for(i = 0; i < reg->hr_num_pages; i++) {
1260 page = alloc_page(GFP_KERNEL);
1261 if (!page) {
1262 mlog_errno(-ENOMEM);
1263 return -ENOMEM;
1264 }
1265
1266 reg->hr_slot_data[i] = page;
1267
1268 last_slot = i * spp;
1269 raw = page_address(page);
1270 for (j = 0;
1271 (j < spp) && ((j + last_slot) < reg->hr_blocks);
1272 j++) {
1273 BUG_ON((j + last_slot) >= reg->hr_blocks);
1274
1275 slot = &reg->hr_slots[j + last_slot];
1276 slot->ds_raw_block =
1277 (struct o2hb_disk_heartbeat_block *) raw;
1278
1279 raw += reg->hr_block_bytes;
1280 }
1281 }
1282
1283 return 0;
1284 }
1285
1286 /* Read in all the slots available and populate the tracking
1287 * structures so that we can start with a baseline idea of what's
1288 * there. */
1289 static int o2hb_populate_slot_data(struct o2hb_region *reg)
1290 {
1291 int ret, i;
1292 struct o2hb_disk_slot *slot;
1293 struct o2hb_disk_heartbeat_block *hb_block;
1294
1295 mlog_entry_void();
1296
1297 ret = o2hb_read_slots(reg, reg->hr_blocks);
1298 if (ret) {
1299 mlog_errno(ret);
1300 goto out;
1301 }
1302
1303 /* We only want to get an idea of the values initially in each
1304 * slot, so we do no verification - o2hb_check_slot will
1305 * actually determine if each configured slot is valid and
1306 * whether any values have changed. */
1307 for(i = 0; i < reg->hr_blocks; i++) {
1308 slot = &reg->hr_slots[i];
1309 hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
1310
1311 /* Only fill the values that o2hb_check_slot uses to
1312 * determine changing slots */
1313 slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
1314 slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
1315 }
1316
1317 out:
1318 mlog_exit(ret);
1319 return ret;
1320 }
1321
1322 /* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
1323 static ssize_t o2hb_region_dev_write(struct o2hb_region *reg,
1324 const char *page,
1325 size_t count)
1326 {
1327 long fd;
1328 int sectsize;
1329 char *p = (char *)page;
1330 struct file *filp = NULL;
1331 struct inode *inode = NULL;
1332 ssize_t ret = -EINVAL;
1333
1334 if (reg->hr_bdev)
1335 goto out;
1336
1337 /* We can't heartbeat without having had our node number
1338 * configured yet. */
1339 if (o2nm_this_node() == O2NM_MAX_NODES)
1340 goto out;
1341
1342 fd = simple_strtol(p, &p, 0);
1343 if (!p || (*p && (*p != '\n')))
1344 goto out;
1345
1346 if (fd < 0 || fd >= INT_MAX)
1347 goto out;
1348
1349 filp = fget(fd);
1350 if (filp == NULL)
1351 goto out;
1352
1353 if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
1354 reg->hr_block_bytes == 0)
1355 goto out;
1356
1357 inode = igrab(filp->f_mapping->host);
1358 if (inode == NULL)
1359 goto out;
1360
1361 if (!S_ISBLK(inode->i_mode))
1362 goto out;
1363
1364 reg->hr_bdev = I_BDEV(filp->f_mapping->host);
1365 ret = blkdev_get(reg->hr_bdev, FMODE_WRITE | FMODE_READ, 0);
1366 if (ret) {
1367 reg->hr_bdev = NULL;
1368 goto out;
1369 }
1370 inode = NULL;
1371
1372 bdevname(reg->hr_bdev, reg->hr_dev_name);
1373
1374 sectsize = bdev_hardsect_size(reg->hr_bdev);
1375 if (sectsize != reg->hr_block_bytes) {
1376 mlog(ML_ERROR,
1377 "blocksize %u incorrect for device, expected %d",
1378 reg->hr_block_bytes, sectsize);
1379 ret = -EINVAL;
1380 goto out;
1381 }
1382
1383 o2hb_init_region_params(reg);
1384
1385 /* Generation of zero is invalid */
1386 do {
1387 get_random_bytes(&reg->hr_generation,
1388 sizeof(reg->hr_generation));
1389 } while (reg->hr_generation == 0);
1390
1391 ret = o2hb_map_slot_data(reg);
1392 if (ret) {
1393 mlog_errno(ret);
1394 goto out;
1395 }
1396
1397 ret = o2hb_populate_slot_data(reg);
1398 if (ret) {
1399 mlog_errno(ret);
1400 goto out;
1401 }
1402
1403 INIT_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout, reg);
1404
1405 /*
1406 * A node is considered live after it has beat LIVE_THRESHOLD
1407 * times. We're not steady until we've given them a chance
1408 * _after_ our first read.
1409 */
1410 atomic_set(&reg->hr_steady_iterations, O2HB_LIVE_THRESHOLD + 1);
1411
1412 reg->hr_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
1413 reg->hr_item.ci_name);
1414 if (IS_ERR(reg->hr_task)) {
1415 ret = PTR_ERR(reg->hr_task);
1416 mlog_errno(ret);
1417 reg->hr_task = NULL;
1418 goto out;
1419 }
1420
1421 ret = wait_event_interruptible(o2hb_steady_queue,
1422 atomic_read(&reg->hr_steady_iterations) == 0);
1423 if (ret) {
1424 kthread_stop(reg->hr_task);
1425 reg->hr_task = NULL;
1426 goto out;
1427 }
1428
1429 ret = count;
1430 out:
1431 if (filp)
1432 fput(filp);
1433 if (inode)
1434 iput(inode);
1435 if (ret < 0) {
1436 if (reg->hr_bdev) {
1437 blkdev_put(reg->hr_bdev);
1438 reg->hr_bdev = NULL;
1439 }
1440 }
1441 return ret;
1442 }
1443
1444 struct o2hb_region_attribute {
1445 struct configfs_attribute attr;
1446 ssize_t (*show)(struct o2hb_region *, char *);
1447 ssize_t (*store)(struct o2hb_region *, const char *, size_t);
1448 };
1449
1450 static struct o2hb_region_attribute o2hb_region_attr_block_bytes = {
1451 .attr = { .ca_owner = THIS_MODULE,
1452 .ca_name = "block_bytes",
1453 .ca_mode = S_IRUGO | S_IWUSR },
1454 .show = o2hb_region_block_bytes_read,
1455 .store = o2hb_region_block_bytes_write,
1456 };
1457
1458 static struct o2hb_region_attribute o2hb_region_attr_start_block = {
1459 .attr = { .ca_owner = THIS_MODULE,
1460 .ca_name = "start_block",
1461 .ca_mode = S_IRUGO | S_IWUSR },
1462 .show = o2hb_region_start_block_read,
1463 .store = o2hb_region_start_block_write,
1464 };
1465
1466 static struct o2hb_region_attribute o2hb_region_attr_blocks = {
1467 .attr = { .ca_owner = THIS_MODULE,
1468 .ca_name = "blocks",
1469 .ca_mode = S_IRUGO | S_IWUSR },
1470 .show = o2hb_region_blocks_read,
1471 .store = o2hb_region_blocks_write,
1472 };
1473
1474 static struct o2hb_region_attribute o2hb_region_attr_dev = {
1475 .attr = { .ca_owner = THIS_MODULE,
1476 .ca_name = "dev",
1477 .ca_mode = S_IRUGO | S_IWUSR },
1478 .show = o2hb_region_dev_read,
1479 .store = o2hb_region_dev_write,
1480 };
1481
1482 static struct configfs_attribute *o2hb_region_attrs[] = {
1483 &o2hb_region_attr_block_bytes.attr,
1484 &o2hb_region_attr_start_block.attr,
1485 &o2hb_region_attr_blocks.attr,
1486 &o2hb_region_attr_dev.attr,
1487 NULL,
1488 };
1489
1490 static ssize_t o2hb_region_show(struct config_item *item,
1491 struct configfs_attribute *attr,
1492 char *page)
1493 {
1494 struct o2hb_region *reg = to_o2hb_region(item);
1495 struct o2hb_region_attribute *o2hb_region_attr =
1496 container_of(attr, struct o2hb_region_attribute, attr);
1497 ssize_t ret = 0;
1498
1499 if (o2hb_region_attr->show)
1500 ret = o2hb_region_attr->show(reg, page);
1501 return ret;
1502 }
1503
1504 static ssize_t o2hb_region_store(struct config_item *item,
1505 struct configfs_attribute *attr,
1506 const char *page, size_t count)
1507 {
1508 struct o2hb_region *reg = to_o2hb_region(item);
1509 struct o2hb_region_attribute *o2hb_region_attr =
1510 container_of(attr, struct o2hb_region_attribute, attr);
1511 ssize_t ret = -EINVAL;
1512
1513 if (o2hb_region_attr->store)
1514 ret = o2hb_region_attr->store(reg, page, count);
1515 return ret;
1516 }
1517
1518 static struct configfs_item_operations o2hb_region_item_ops = {
1519 .release = o2hb_region_release,
1520 .show_attribute = o2hb_region_show,
1521 .store_attribute = o2hb_region_store,
1522 };
1523
1524 static struct config_item_type o2hb_region_type = {
1525 .ct_item_ops = &o2hb_region_item_ops,
1526 .ct_attrs = o2hb_region_attrs,
1527 .ct_owner = THIS_MODULE,
1528 };
1529
1530 /* heartbeat set */
1531
1532 struct o2hb_heartbeat_group {
1533 struct config_group hs_group;
1534 /* some stuff? */
1535 };
1536
1537 static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
1538 {
1539 return group ?
1540 container_of(group, struct o2hb_heartbeat_group, hs_group)
1541 : NULL;
1542 }
1543
1544 static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
1545 const char *name)
1546 {
1547 struct o2hb_region *reg = NULL;
1548 struct config_item *ret = NULL;
1549
1550 reg = kcalloc(1, sizeof(struct o2hb_region), GFP_KERNEL);
1551 if (reg == NULL)
1552 goto out; /* ENOMEM */
1553
1554 config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
1555
1556 ret = &reg->hr_item;
1557
1558 spin_lock(&o2hb_live_lock);
1559 list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
1560 spin_unlock(&o2hb_live_lock);
1561 out:
1562 if (ret == NULL)
1563 kfree(reg);
1564
1565 return ret;
1566 }
1567
1568 static void o2hb_heartbeat_group_drop_item(struct config_group *group,
1569 struct config_item *item)
1570 {
1571 struct o2hb_region *reg = to_o2hb_region(item);
1572
1573 /* stop the thread when the user removes the region dir */
1574 if (reg->hr_task) {
1575 kthread_stop(reg->hr_task);
1576 reg->hr_task = NULL;
1577 }
1578
1579 config_item_put(item);
1580 }
1581
1582 struct o2hb_heartbeat_group_attribute {
1583 struct configfs_attribute attr;
1584 ssize_t (*show)(struct o2hb_heartbeat_group *, char *);
1585 ssize_t (*store)(struct o2hb_heartbeat_group *, const char *, size_t);
1586 };
1587
1588 static ssize_t o2hb_heartbeat_group_show(struct config_item *item,
1589 struct configfs_attribute *attr,
1590 char *page)
1591 {
1592 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1593 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1594 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1595 ssize_t ret = 0;
1596
1597 if (o2hb_heartbeat_group_attr->show)
1598 ret = o2hb_heartbeat_group_attr->show(reg, page);
1599 return ret;
1600 }
1601
1602 static ssize_t o2hb_heartbeat_group_store(struct config_item *item,
1603 struct configfs_attribute *attr,
1604 const char *page, size_t count)
1605 {
1606 struct o2hb_heartbeat_group *reg = to_o2hb_heartbeat_group(to_config_group(item));
1607 struct o2hb_heartbeat_group_attribute *o2hb_heartbeat_group_attr =
1608 container_of(attr, struct o2hb_heartbeat_group_attribute, attr);
1609 ssize_t ret = -EINVAL;
1610
1611 if (o2hb_heartbeat_group_attr->store)
1612 ret = o2hb_heartbeat_group_attr->store(reg, page, count);
1613 return ret;
1614 }
1615
1616 static ssize_t o2hb_heartbeat_group_threshold_show(struct o2hb_heartbeat_group *group,
1617 char *page)
1618 {
1619 return sprintf(page, "%u\n", o2hb_dead_threshold);
1620 }
1621
1622 static ssize_t o2hb_heartbeat_group_threshold_store(struct o2hb_heartbeat_group *group,
1623 const char *page,
1624 size_t count)
1625 {
1626 unsigned long tmp;
1627 char *p = (char *)page;
1628
1629 tmp = simple_strtoul(p, &p, 10);
1630 if (!p || (*p && (*p != '\n')))
1631 return -EINVAL;
1632
1633 /* this will validate ranges for us. */
1634 o2hb_dead_threshold_set((unsigned int) tmp);
1635
1636 return count;
1637 }
1638
1639 static struct o2hb_heartbeat_group_attribute o2hb_heartbeat_group_attr_threshold = {
1640 .attr = { .ca_owner = THIS_MODULE,
1641 .ca_name = "dead_threshold",
1642 .ca_mode = S_IRUGO | S_IWUSR },
1643 .show = o2hb_heartbeat_group_threshold_show,
1644 .store = o2hb_heartbeat_group_threshold_store,
1645 };
1646
1647 static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
1648 &o2hb_heartbeat_group_attr_threshold.attr,
1649 NULL,
1650 };
1651
1652 static struct configfs_item_operations o2hb_hearbeat_group_item_ops = {
1653 .show_attribute = o2hb_heartbeat_group_show,
1654 .store_attribute = o2hb_heartbeat_group_store,
1655 };
1656
1657 static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
1658 .make_item = o2hb_heartbeat_group_make_item,
1659 .drop_item = o2hb_heartbeat_group_drop_item,
1660 };
1661
1662 static struct config_item_type o2hb_heartbeat_group_type = {
1663 .ct_group_ops = &o2hb_heartbeat_group_group_ops,
1664 .ct_item_ops = &o2hb_hearbeat_group_item_ops,
1665 .ct_attrs = o2hb_heartbeat_group_attrs,
1666 .ct_owner = THIS_MODULE,
1667 };
1668
1669 /* this is just here to avoid touching group in heartbeat.h which the
1670 * entire damn world #includes */
1671 struct config_group *o2hb_alloc_hb_set(void)
1672 {
1673 struct o2hb_heartbeat_group *hs = NULL;
1674 struct config_group *ret = NULL;
1675
1676 hs = kcalloc(1, sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
1677 if (hs == NULL)
1678 goto out;
1679
1680 config_group_init_type_name(&hs->hs_group, "heartbeat",
1681 &o2hb_heartbeat_group_type);
1682
1683 ret = &hs->hs_group;
1684 out:
1685 if (ret == NULL)
1686 kfree(hs);
1687 return ret;
1688 }
1689
1690 void o2hb_free_hb_set(struct config_group *group)
1691 {
1692 struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
1693 kfree(hs);
1694 }
1695
1696 /* hb callback registration and issueing */
1697
1698 static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
1699 {
1700 if (type == O2HB_NUM_CB)
1701 return ERR_PTR(-EINVAL);
1702
1703 return &o2hb_callbacks[type];
1704 }
1705
1706 void o2hb_setup_callback(struct o2hb_callback_func *hc,
1707 enum o2hb_callback_type type,
1708 o2hb_cb_func *func,
1709 void *data,
1710 int priority)
1711 {
1712 INIT_LIST_HEAD(&hc->hc_item);
1713 hc->hc_func = func;
1714 hc->hc_data = data;
1715 hc->hc_priority = priority;
1716 hc->hc_type = type;
1717 hc->hc_magic = O2HB_CB_MAGIC;
1718 }
1719 EXPORT_SYMBOL_GPL(o2hb_setup_callback);
1720
1721 int o2hb_register_callback(struct o2hb_callback_func *hc)
1722 {
1723 struct o2hb_callback_func *tmp;
1724 struct list_head *iter;
1725 struct o2hb_callback *hbcall;
1726 int ret;
1727
1728 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1729 BUG_ON(!list_empty(&hc->hc_item));
1730
1731 hbcall = hbcall_from_type(hc->hc_type);
1732 if (IS_ERR(hbcall)) {
1733 ret = PTR_ERR(hbcall);
1734 goto out;
1735 }
1736
1737 down_write(&o2hb_callback_sem);
1738
1739 list_for_each(iter, &hbcall->list) {
1740 tmp = list_entry(iter, struct o2hb_callback_func, hc_item);
1741 if (hc->hc_priority < tmp->hc_priority) {
1742 list_add_tail(&hc->hc_item, iter);
1743 break;
1744 }
1745 }
1746 if (list_empty(&hc->hc_item))
1747 list_add_tail(&hc->hc_item, &hbcall->list);
1748
1749 up_write(&o2hb_callback_sem);
1750 ret = 0;
1751 out:
1752 mlog(ML_HEARTBEAT, "returning %d on behalf of %p for funcs %p\n",
1753 ret, __builtin_return_address(0), hc);
1754 return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(o2hb_register_callback);
1757
1758 int o2hb_unregister_callback(struct o2hb_callback_func *hc)
1759 {
1760 BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
1761
1762 mlog(ML_HEARTBEAT, "on behalf of %p for funcs %p\n",
1763 __builtin_return_address(0), hc);
1764
1765 if (list_empty(&hc->hc_item))
1766 return 0;
1767
1768 down_write(&o2hb_callback_sem);
1769
1770 list_del_init(&hc->hc_item);
1771
1772 up_write(&o2hb_callback_sem);
1773
1774 return 0;
1775 }
1776 EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
1777
1778 int o2hb_check_node_heartbeating(u8 node_num)
1779 {
1780 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1781
1782 o2hb_fill_node_map(testing_map, sizeof(testing_map));
1783 if (!test_bit(node_num, testing_map)) {
1784 mlog(ML_HEARTBEAT,
1785 "node (%u) does not have heartbeating enabled.\n",
1786 node_num);
1787 return 0;
1788 }
1789
1790 return 1;
1791 }
1792 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating);
1793
1794 int o2hb_check_node_heartbeating_from_callback(u8 node_num)
1795 {
1796 unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
1797
1798 o2hb_fill_node_map_from_callback(testing_map, sizeof(testing_map));
1799 if (!test_bit(node_num, testing_map)) {
1800 mlog(ML_HEARTBEAT,
1801 "node (%u) does not have heartbeating enabled.\n",
1802 node_num);
1803 return 0;
1804 }
1805
1806 return 1;
1807 }
1808 EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
1809
1810 /* Makes sure our local node is configured with a node number, and is
1811 * heartbeating. */
1812 int o2hb_check_local_node_heartbeating(void)
1813 {
1814 u8 node_num;
1815
1816 /* if this node was set then we have networking */
1817 node_num = o2nm_this_node();
1818 if (node_num == O2NM_MAX_NODES) {
1819 mlog(ML_HEARTBEAT, "this node has not been configured.\n");
1820 return 0;
1821 }
1822
1823 return o2hb_check_node_heartbeating(node_num);
1824 }
1825 EXPORT_SYMBOL_GPL(o2hb_check_local_node_heartbeating);
1826
1827 /*
1828 * this is just a hack until we get the plumbing which flips file systems
1829 * read only and drops the hb ref instead of killing the node dead.
1830 */
1831 void o2hb_stop_all_regions(void)
1832 {
1833 struct o2hb_region *reg;
1834
1835 mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
1836
1837 spin_lock(&o2hb_live_lock);
1838
1839 list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
1840 reg->hr_unclean_stop = 1;
1841
1842 spin_unlock(&o2hb_live_lock);
1843 }
1844 EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);
This page took 0.066593 seconds and 6 git commands to generate.