Merge branch 'pci/resource' into next
[deliverable/linux.git] / fs / ocfs2 / file.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40
41 #include <cluster/masklog.h>
42
43 #include "ocfs2.h"
44
45 #include "alloc.h"
46 #include "aops.h"
47 #include "dir.h"
48 #include "dlmglue.h"
49 #include "extent_map.h"
50 #include "file.h"
51 #include "sysfile.h"
52 #include "inode.h"
53 #include "ioctl.h"
54 #include "journal.h"
55 #include "locks.h"
56 #include "mmap.h"
57 #include "suballoc.h"
58 #include "super.h"
59 #include "xattr.h"
60 #include "acl.h"
61 #include "quota.h"
62 #include "refcounttree.h"
63 #include "ocfs2_trace.h"
64
65 #include "buffer_head_io.h"
66
67 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68 {
69 struct ocfs2_file_private *fp;
70
71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 if (!fp)
73 return -ENOMEM;
74
75 fp->fp_file = file;
76 mutex_init(&fp->fp_mutex);
77 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 file->private_data = fp;
79
80 return 0;
81 }
82
83 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84 {
85 struct ocfs2_file_private *fp = file->private_data;
86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87
88 if (fp) {
89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 ocfs2_lock_res_free(&fp->fp_flock);
91 kfree(fp);
92 file->private_data = NULL;
93 }
94 }
95
96 static int ocfs2_file_open(struct inode *inode, struct file *file)
97 {
98 int status;
99 int mode = file->f_flags;
100 struct ocfs2_inode_info *oi = OCFS2_I(inode);
101
102 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 file->f_path.dentry->d_name.len,
105 file->f_path.dentry->d_name.name, mode);
106
107 if (file->f_mode & FMODE_WRITE)
108 dquot_initialize(inode);
109
110 spin_lock(&oi->ip_lock);
111
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 spin_unlock(&oi->ip_lock);
117
118 status = -ENOENT;
119 goto leave;
120 }
121
122 if (mode & O_DIRECT)
123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124
125 oi->ip_open_count++;
126 spin_unlock(&oi->ip_lock);
127
128 status = ocfs2_init_file_private(inode, file);
129 if (status) {
130 /*
131 * We want to set open count back if we're failing the
132 * open.
133 */
134 spin_lock(&oi->ip_lock);
135 oi->ip_open_count--;
136 spin_unlock(&oi->ip_lock);
137 }
138
139 leave:
140 return status;
141 }
142
143 static int ocfs2_file_release(struct inode *inode, struct file *file)
144 {
145 struct ocfs2_inode_info *oi = OCFS2_I(inode);
146
147 spin_lock(&oi->ip_lock);
148 if (!--oi->ip_open_count)
149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150
151 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 oi->ip_blkno,
153 file->f_path.dentry->d_name.len,
154 file->f_path.dentry->d_name.name,
155 oi->ip_open_count);
156 spin_unlock(&oi->ip_lock);
157
158 ocfs2_free_file_private(inode, file);
159
160 return 0;
161 }
162
163 static int ocfs2_dir_open(struct inode *inode, struct file *file)
164 {
165 return ocfs2_init_file_private(inode, file);
166 }
167
168 static int ocfs2_dir_release(struct inode *inode, struct file *file)
169 {
170 ocfs2_free_file_private(inode, file);
171 return 0;
172 }
173
174 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 int datasync)
176 {
177 int err = 0;
178 journal_t *journal;
179 struct inode *inode = file->f_mapping->host;
180 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181
182 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183 OCFS2_I(inode)->ip_blkno,
184 file->f_path.dentry->d_name.len,
185 file->f_path.dentry->d_name.name,
186 (unsigned long long)datasync);
187
188 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
189 if (err)
190 return err;
191
192 /*
193 * Probably don't need the i_mutex at all in here, just putting it here
194 * to be consistent with how fsync used to be called, someone more
195 * familiar with the fs could possibly remove it.
196 */
197 mutex_lock(&inode->i_mutex);
198 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
199 /*
200 * We still have to flush drive's caches to get data to the
201 * platter
202 */
203 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
204 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
205 goto bail;
206 }
207
208 journal = osb->journal->j_journal;
209 err = jbd2_journal_force_commit(journal);
210
211 bail:
212 if (err)
213 mlog_errno(err);
214 mutex_unlock(&inode->i_mutex);
215
216 return (err < 0) ? -EIO : 0;
217 }
218
219 int ocfs2_should_update_atime(struct inode *inode,
220 struct vfsmount *vfsmnt)
221 {
222 struct timespec now;
223 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
224
225 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
226 return 0;
227
228 if ((inode->i_flags & S_NOATIME) ||
229 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
230 return 0;
231
232 /*
233 * We can be called with no vfsmnt structure - NFSD will
234 * sometimes do this.
235 *
236 * Note that our action here is different than touch_atime() -
237 * if we can't tell whether this is a noatime mount, then we
238 * don't know whether to trust the value of s_atime_quantum.
239 */
240 if (vfsmnt == NULL)
241 return 0;
242
243 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
244 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
245 return 0;
246
247 if (vfsmnt->mnt_flags & MNT_RELATIME) {
248 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
249 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
250 return 1;
251
252 return 0;
253 }
254
255 now = CURRENT_TIME;
256 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
257 return 0;
258 else
259 return 1;
260 }
261
262 int ocfs2_update_inode_atime(struct inode *inode,
263 struct buffer_head *bh)
264 {
265 int ret;
266 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
267 handle_t *handle;
268 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
269
270 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
271 if (IS_ERR(handle)) {
272 ret = PTR_ERR(handle);
273 mlog_errno(ret);
274 goto out;
275 }
276
277 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
278 OCFS2_JOURNAL_ACCESS_WRITE);
279 if (ret) {
280 mlog_errno(ret);
281 goto out_commit;
282 }
283
284 /*
285 * Don't use ocfs2_mark_inode_dirty() here as we don't always
286 * have i_mutex to guard against concurrent changes to other
287 * inode fields.
288 */
289 inode->i_atime = CURRENT_TIME;
290 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
291 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
292 ocfs2_journal_dirty(handle, bh);
293
294 out_commit:
295 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
296 out:
297 return ret;
298 }
299
300 static int ocfs2_set_inode_size(handle_t *handle,
301 struct inode *inode,
302 struct buffer_head *fe_bh,
303 u64 new_i_size)
304 {
305 int status;
306
307 i_size_write(inode, new_i_size);
308 inode->i_blocks = ocfs2_inode_sector_count(inode);
309 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
310
311 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
312 if (status < 0) {
313 mlog_errno(status);
314 goto bail;
315 }
316
317 bail:
318 return status;
319 }
320
321 int ocfs2_simple_size_update(struct inode *inode,
322 struct buffer_head *di_bh,
323 u64 new_i_size)
324 {
325 int ret;
326 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
327 handle_t *handle = NULL;
328
329 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
330 if (IS_ERR(handle)) {
331 ret = PTR_ERR(handle);
332 mlog_errno(ret);
333 goto out;
334 }
335
336 ret = ocfs2_set_inode_size(handle, inode, di_bh,
337 new_i_size);
338 if (ret < 0)
339 mlog_errno(ret);
340
341 ocfs2_commit_trans(osb, handle);
342 out:
343 return ret;
344 }
345
346 static int ocfs2_cow_file_pos(struct inode *inode,
347 struct buffer_head *fe_bh,
348 u64 offset)
349 {
350 int status;
351 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
352 unsigned int num_clusters = 0;
353 unsigned int ext_flags = 0;
354
355 /*
356 * If the new offset is aligned to the range of the cluster, there is
357 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
358 * CoW either.
359 */
360 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
361 return 0;
362
363 status = ocfs2_get_clusters(inode, cpos, &phys,
364 &num_clusters, &ext_flags);
365 if (status) {
366 mlog_errno(status);
367 goto out;
368 }
369
370 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
371 goto out;
372
373 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
374
375 out:
376 return status;
377 }
378
379 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
380 struct inode *inode,
381 struct buffer_head *fe_bh,
382 u64 new_i_size)
383 {
384 int status;
385 handle_t *handle;
386 struct ocfs2_dinode *di;
387 u64 cluster_bytes;
388
389 /*
390 * We need to CoW the cluster contains the offset if it is reflinked
391 * since we will call ocfs2_zero_range_for_truncate later which will
392 * write "0" from offset to the end of the cluster.
393 */
394 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
395 if (status) {
396 mlog_errno(status);
397 return status;
398 }
399
400 /* TODO: This needs to actually orphan the inode in this
401 * transaction. */
402
403 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
404 if (IS_ERR(handle)) {
405 status = PTR_ERR(handle);
406 mlog_errno(status);
407 goto out;
408 }
409
410 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
411 OCFS2_JOURNAL_ACCESS_WRITE);
412 if (status < 0) {
413 mlog_errno(status);
414 goto out_commit;
415 }
416
417 /*
418 * Do this before setting i_size.
419 */
420 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
421 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
422 cluster_bytes);
423 if (status) {
424 mlog_errno(status);
425 goto out_commit;
426 }
427
428 i_size_write(inode, new_i_size);
429 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
430
431 di = (struct ocfs2_dinode *) fe_bh->b_data;
432 di->i_size = cpu_to_le64(new_i_size);
433 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
434 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
435
436 ocfs2_journal_dirty(handle, fe_bh);
437
438 out_commit:
439 ocfs2_commit_trans(osb, handle);
440 out:
441 return status;
442 }
443
444 static int ocfs2_truncate_file(struct inode *inode,
445 struct buffer_head *di_bh,
446 u64 new_i_size)
447 {
448 int status = 0;
449 struct ocfs2_dinode *fe = NULL;
450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451
452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 * already validated it */
454 fe = (struct ocfs2_dinode *) di_bh->b_data;
455
456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457 (unsigned long long)le64_to_cpu(fe->i_size),
458 (unsigned long long)new_i_size);
459
460 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461 "Inode %llu, inode i_size = %lld != di "
462 "i_size = %llu, i_flags = 0x%x\n",
463 (unsigned long long)OCFS2_I(inode)->ip_blkno,
464 i_size_read(inode),
465 (unsigned long long)le64_to_cpu(fe->i_size),
466 le32_to_cpu(fe->i_flags));
467
468 if (new_i_size > le64_to_cpu(fe->i_size)) {
469 trace_ocfs2_truncate_file_error(
470 (unsigned long long)le64_to_cpu(fe->i_size),
471 (unsigned long long)new_i_size);
472 status = -EINVAL;
473 mlog_errno(status);
474 goto bail;
475 }
476
477 /* lets handle the simple truncate cases before doing any more
478 * cluster locking. */
479 if (new_i_size == le64_to_cpu(fe->i_size))
480 goto bail;
481
482 down_write(&OCFS2_I(inode)->ip_alloc_sem);
483
484 ocfs2_resv_discard(&osb->osb_la_resmap,
485 &OCFS2_I(inode)->ip_la_data_resv);
486
487 /*
488 * The inode lock forced other nodes to sync and drop their
489 * pages, which (correctly) happens even if we have a truncate
490 * without allocation change - ocfs2 cluster sizes can be much
491 * greater than page size, so we have to truncate them
492 * anyway.
493 */
494 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
495 truncate_inode_pages(inode->i_mapping, new_i_size);
496
497 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
498 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 i_size_read(inode), 1);
500 if (status)
501 mlog_errno(status);
502
503 goto bail_unlock_sem;
504 }
505
506 /* alright, we're going to need to do a full blown alloc size
507 * change. Orphan the inode so that recovery can complete the
508 * truncate if necessary. This does the task of marking
509 * i_size. */
510 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511 if (status < 0) {
512 mlog_errno(status);
513 goto bail_unlock_sem;
514 }
515
516 status = ocfs2_commit_truncate(osb, inode, di_bh);
517 if (status < 0) {
518 mlog_errno(status);
519 goto bail_unlock_sem;
520 }
521
522 /* TODO: orphan dir cleanup here. */
523 bail_unlock_sem:
524 up_write(&OCFS2_I(inode)->ip_alloc_sem);
525
526 bail:
527 if (!status && OCFS2_I(inode)->ip_clusters == 0)
528 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
529
530 return status;
531 }
532
533 /*
534 * extend file allocation only here.
535 * we'll update all the disk stuff, and oip->alloc_size
536 *
537 * expect stuff to be locked, a transaction started and enough data /
538 * metadata reservations in the contexts.
539 *
540 * Will return -EAGAIN, and a reason if a restart is needed.
541 * If passed in, *reason will always be set, even in error.
542 */
543 int ocfs2_add_inode_data(struct ocfs2_super *osb,
544 struct inode *inode,
545 u32 *logical_offset,
546 u32 clusters_to_add,
547 int mark_unwritten,
548 struct buffer_head *fe_bh,
549 handle_t *handle,
550 struct ocfs2_alloc_context *data_ac,
551 struct ocfs2_alloc_context *meta_ac,
552 enum ocfs2_alloc_restarted *reason_ret)
553 {
554 int ret;
555 struct ocfs2_extent_tree et;
556
557 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
558 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
559 clusters_to_add, mark_unwritten,
560 data_ac, meta_ac, reason_ret);
561
562 return ret;
563 }
564
565 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
566 u32 clusters_to_add, int mark_unwritten)
567 {
568 int status = 0;
569 int restart_func = 0;
570 int credits;
571 u32 prev_clusters;
572 struct buffer_head *bh = NULL;
573 struct ocfs2_dinode *fe = NULL;
574 handle_t *handle = NULL;
575 struct ocfs2_alloc_context *data_ac = NULL;
576 struct ocfs2_alloc_context *meta_ac = NULL;
577 enum ocfs2_alloc_restarted why;
578 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
579 struct ocfs2_extent_tree et;
580 int did_quota = 0;
581
582 /*
583 * Unwritten extent only exists for file systems which
584 * support holes.
585 */
586 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
587
588 status = ocfs2_read_inode_block(inode, &bh);
589 if (status < 0) {
590 mlog_errno(status);
591 goto leave;
592 }
593 fe = (struct ocfs2_dinode *) bh->b_data;
594
595 restart_all:
596 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
597
598 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
599 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
600 &data_ac, &meta_ac);
601 if (status) {
602 mlog_errno(status);
603 goto leave;
604 }
605
606 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
607 handle = ocfs2_start_trans(osb, credits);
608 if (IS_ERR(handle)) {
609 status = PTR_ERR(handle);
610 handle = NULL;
611 mlog_errno(status);
612 goto leave;
613 }
614
615 restarted_transaction:
616 trace_ocfs2_extend_allocation(
617 (unsigned long long)OCFS2_I(inode)->ip_blkno,
618 (unsigned long long)i_size_read(inode),
619 le32_to_cpu(fe->i_clusters), clusters_to_add,
620 why, restart_func);
621
622 status = dquot_alloc_space_nodirty(inode,
623 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
624 if (status)
625 goto leave;
626 did_quota = 1;
627
628 /* reserve a write to the file entry early on - that we if we
629 * run out of credits in the allocation path, we can still
630 * update i_size. */
631 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
632 OCFS2_JOURNAL_ACCESS_WRITE);
633 if (status < 0) {
634 mlog_errno(status);
635 goto leave;
636 }
637
638 prev_clusters = OCFS2_I(inode)->ip_clusters;
639
640 status = ocfs2_add_inode_data(osb,
641 inode,
642 &logical_start,
643 clusters_to_add,
644 mark_unwritten,
645 bh,
646 handle,
647 data_ac,
648 meta_ac,
649 &why);
650 if ((status < 0) && (status != -EAGAIN)) {
651 if (status != -ENOSPC)
652 mlog_errno(status);
653 goto leave;
654 }
655
656 ocfs2_journal_dirty(handle, bh);
657
658 spin_lock(&OCFS2_I(inode)->ip_lock);
659 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
660 spin_unlock(&OCFS2_I(inode)->ip_lock);
661 /* Release unused quota reservation */
662 dquot_free_space(inode,
663 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
664 did_quota = 0;
665
666 if (why != RESTART_NONE && clusters_to_add) {
667 if (why == RESTART_META) {
668 restart_func = 1;
669 status = 0;
670 } else {
671 BUG_ON(why != RESTART_TRANS);
672
673 status = ocfs2_allocate_extend_trans(handle, 1);
674 if (status < 0) {
675 /* handle still has to be committed at
676 * this point. */
677 status = -ENOMEM;
678 mlog_errno(status);
679 goto leave;
680 }
681 goto restarted_transaction;
682 }
683 }
684
685 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
686 le32_to_cpu(fe->i_clusters),
687 (unsigned long long)le64_to_cpu(fe->i_size),
688 OCFS2_I(inode)->ip_clusters,
689 (unsigned long long)i_size_read(inode));
690
691 leave:
692 if (status < 0 && did_quota)
693 dquot_free_space(inode,
694 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
695 if (handle) {
696 ocfs2_commit_trans(osb, handle);
697 handle = NULL;
698 }
699 if (data_ac) {
700 ocfs2_free_alloc_context(data_ac);
701 data_ac = NULL;
702 }
703 if (meta_ac) {
704 ocfs2_free_alloc_context(meta_ac);
705 meta_ac = NULL;
706 }
707 if ((!status) && restart_func) {
708 restart_func = 0;
709 goto restart_all;
710 }
711 brelse(bh);
712 bh = NULL;
713
714 return status;
715 }
716
717 /*
718 * While a write will already be ordering the data, a truncate will not.
719 * Thus, we need to explicitly order the zeroed pages.
720 */
721 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
722 {
723 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
724 handle_t *handle = NULL;
725 int ret = 0;
726
727 if (!ocfs2_should_order_data(inode))
728 goto out;
729
730 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
731 if (IS_ERR(handle)) {
732 ret = -ENOMEM;
733 mlog_errno(ret);
734 goto out;
735 }
736
737 ret = ocfs2_jbd2_file_inode(handle, inode);
738 if (ret < 0)
739 mlog_errno(ret);
740
741 out:
742 if (ret) {
743 if (!IS_ERR(handle))
744 ocfs2_commit_trans(osb, handle);
745 handle = ERR_PTR(ret);
746 }
747 return handle;
748 }
749
750 /* Some parts of this taken from generic_cont_expand, which turned out
751 * to be too fragile to do exactly what we need without us having to
752 * worry about recursive locking in ->write_begin() and ->write_end(). */
753 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
754 u64 abs_to)
755 {
756 struct address_space *mapping = inode->i_mapping;
757 struct page *page;
758 unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
759 handle_t *handle = NULL;
760 int ret = 0;
761 unsigned zero_from, zero_to, block_start, block_end;
762
763 BUG_ON(abs_from >= abs_to);
764 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
765 BUG_ON(abs_from & (inode->i_blkbits - 1));
766
767 page = find_or_create_page(mapping, index, GFP_NOFS);
768 if (!page) {
769 ret = -ENOMEM;
770 mlog_errno(ret);
771 goto out;
772 }
773
774 /* Get the offsets within the page that we want to zero */
775 zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
776 zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
777 if (!zero_to)
778 zero_to = PAGE_CACHE_SIZE;
779
780 trace_ocfs2_write_zero_page(
781 (unsigned long long)OCFS2_I(inode)->ip_blkno,
782 (unsigned long long)abs_from,
783 (unsigned long long)abs_to,
784 index, zero_from, zero_to);
785
786 /* We know that zero_from is block aligned */
787 for (block_start = zero_from; block_start < zero_to;
788 block_start = block_end) {
789 block_end = block_start + (1 << inode->i_blkbits);
790
791 /*
792 * block_start is block-aligned. Bump it by one to force
793 * __block_write_begin and block_commit_write to zero the
794 * whole block.
795 */
796 ret = __block_write_begin(page, block_start + 1, 0,
797 ocfs2_get_block);
798 if (ret < 0) {
799 mlog_errno(ret);
800 goto out_unlock;
801 }
802
803 if (!handle) {
804 handle = ocfs2_zero_start_ordered_transaction(inode);
805 if (IS_ERR(handle)) {
806 ret = PTR_ERR(handle);
807 handle = NULL;
808 break;
809 }
810 }
811
812 /* must not update i_size! */
813 ret = block_commit_write(page, block_start + 1,
814 block_start + 1);
815 if (ret < 0)
816 mlog_errno(ret);
817 else
818 ret = 0;
819 }
820
821 if (handle)
822 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
823
824 out_unlock:
825 unlock_page(page);
826 page_cache_release(page);
827 out:
828 return ret;
829 }
830
831 /*
832 * Find the next range to zero. We do this in terms of bytes because
833 * that's what ocfs2_zero_extend() wants, and it is dealing with the
834 * pagecache. We may return multiple extents.
835 *
836 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
837 * needs to be zeroed. range_start and range_end return the next zeroing
838 * range. A subsequent call should pass the previous range_end as its
839 * zero_start. If range_end is 0, there's nothing to do.
840 *
841 * Unwritten extents are skipped over. Refcounted extents are CoWd.
842 */
843 static int ocfs2_zero_extend_get_range(struct inode *inode,
844 struct buffer_head *di_bh,
845 u64 zero_start, u64 zero_end,
846 u64 *range_start, u64 *range_end)
847 {
848 int rc = 0, needs_cow = 0;
849 u32 p_cpos, zero_clusters = 0;
850 u32 zero_cpos =
851 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
852 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
853 unsigned int num_clusters = 0;
854 unsigned int ext_flags = 0;
855
856 while (zero_cpos < last_cpos) {
857 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
858 &num_clusters, &ext_flags);
859 if (rc) {
860 mlog_errno(rc);
861 goto out;
862 }
863
864 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
865 zero_clusters = num_clusters;
866 if (ext_flags & OCFS2_EXT_REFCOUNTED)
867 needs_cow = 1;
868 break;
869 }
870
871 zero_cpos += num_clusters;
872 }
873 if (!zero_clusters) {
874 *range_end = 0;
875 goto out;
876 }
877
878 while ((zero_cpos + zero_clusters) < last_cpos) {
879 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
880 &p_cpos, &num_clusters,
881 &ext_flags);
882 if (rc) {
883 mlog_errno(rc);
884 goto out;
885 }
886
887 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
888 break;
889 if (ext_flags & OCFS2_EXT_REFCOUNTED)
890 needs_cow = 1;
891 zero_clusters += num_clusters;
892 }
893 if ((zero_cpos + zero_clusters) > last_cpos)
894 zero_clusters = last_cpos - zero_cpos;
895
896 if (needs_cow) {
897 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
898 zero_clusters, UINT_MAX);
899 if (rc) {
900 mlog_errno(rc);
901 goto out;
902 }
903 }
904
905 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
906 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
907 zero_cpos + zero_clusters);
908
909 out:
910 return rc;
911 }
912
913 /*
914 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
915 * has made sure that the entire range needs zeroing.
916 */
917 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
918 u64 range_end)
919 {
920 int rc = 0;
921 u64 next_pos;
922 u64 zero_pos = range_start;
923
924 trace_ocfs2_zero_extend_range(
925 (unsigned long long)OCFS2_I(inode)->ip_blkno,
926 (unsigned long long)range_start,
927 (unsigned long long)range_end);
928 BUG_ON(range_start >= range_end);
929
930 while (zero_pos < range_end) {
931 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
932 if (next_pos > range_end)
933 next_pos = range_end;
934 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
935 if (rc < 0) {
936 mlog_errno(rc);
937 break;
938 }
939 zero_pos = next_pos;
940
941 /*
942 * Very large extends have the potential to lock up
943 * the cpu for extended periods of time.
944 */
945 cond_resched();
946 }
947
948 return rc;
949 }
950
951 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
952 loff_t zero_to_size)
953 {
954 int ret = 0;
955 u64 zero_start, range_start = 0, range_end = 0;
956 struct super_block *sb = inode->i_sb;
957
958 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
959 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
960 (unsigned long long)zero_start,
961 (unsigned long long)i_size_read(inode));
962 while (zero_start < zero_to_size) {
963 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
964 zero_to_size,
965 &range_start,
966 &range_end);
967 if (ret) {
968 mlog_errno(ret);
969 break;
970 }
971 if (!range_end)
972 break;
973 /* Trim the ends */
974 if (range_start < zero_start)
975 range_start = zero_start;
976 if (range_end > zero_to_size)
977 range_end = zero_to_size;
978
979 ret = ocfs2_zero_extend_range(inode, range_start,
980 range_end);
981 if (ret) {
982 mlog_errno(ret);
983 break;
984 }
985 zero_start = range_end;
986 }
987
988 return ret;
989 }
990
991 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
992 u64 new_i_size, u64 zero_to)
993 {
994 int ret;
995 u32 clusters_to_add;
996 struct ocfs2_inode_info *oi = OCFS2_I(inode);
997
998 /*
999 * Only quota files call this without a bh, and they can't be
1000 * refcounted.
1001 */
1002 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1003 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1004
1005 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1006 if (clusters_to_add < oi->ip_clusters)
1007 clusters_to_add = 0;
1008 else
1009 clusters_to_add -= oi->ip_clusters;
1010
1011 if (clusters_to_add) {
1012 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1013 clusters_to_add, 0);
1014 if (ret) {
1015 mlog_errno(ret);
1016 goto out;
1017 }
1018 }
1019
1020 /*
1021 * Call this even if we don't add any clusters to the tree. We
1022 * still need to zero the area between the old i_size and the
1023 * new i_size.
1024 */
1025 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1026 if (ret < 0)
1027 mlog_errno(ret);
1028
1029 out:
1030 return ret;
1031 }
1032
1033 static int ocfs2_extend_file(struct inode *inode,
1034 struct buffer_head *di_bh,
1035 u64 new_i_size)
1036 {
1037 int ret = 0;
1038 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1039
1040 BUG_ON(!di_bh);
1041
1042 /* setattr sometimes calls us like this. */
1043 if (new_i_size == 0)
1044 goto out;
1045
1046 if (i_size_read(inode) == new_i_size)
1047 goto out;
1048 BUG_ON(new_i_size < i_size_read(inode));
1049
1050 /*
1051 * The alloc sem blocks people in read/write from reading our
1052 * allocation until we're done changing it. We depend on
1053 * i_mutex to block other extend/truncate calls while we're
1054 * here. We even have to hold it for sparse files because there
1055 * might be some tail zeroing.
1056 */
1057 down_write(&oi->ip_alloc_sem);
1058
1059 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1060 /*
1061 * We can optimize small extends by keeping the inodes
1062 * inline data.
1063 */
1064 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1065 up_write(&oi->ip_alloc_sem);
1066 goto out_update_size;
1067 }
1068
1069 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1070 if (ret) {
1071 up_write(&oi->ip_alloc_sem);
1072 mlog_errno(ret);
1073 goto out;
1074 }
1075 }
1076
1077 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1078 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1079 else
1080 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1081 new_i_size);
1082
1083 up_write(&oi->ip_alloc_sem);
1084
1085 if (ret < 0) {
1086 mlog_errno(ret);
1087 goto out;
1088 }
1089
1090 out_update_size:
1091 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1092 if (ret < 0)
1093 mlog_errno(ret);
1094
1095 out:
1096 return ret;
1097 }
1098
1099 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1100 {
1101 int status = 0, size_change;
1102 struct inode *inode = dentry->d_inode;
1103 struct super_block *sb = inode->i_sb;
1104 struct ocfs2_super *osb = OCFS2_SB(sb);
1105 struct buffer_head *bh = NULL;
1106 handle_t *handle = NULL;
1107 struct dquot *transfer_to[MAXQUOTAS] = { };
1108 int qtype;
1109
1110 trace_ocfs2_setattr(inode, dentry,
1111 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1112 dentry->d_name.len, dentry->d_name.name,
1113 attr->ia_valid, attr->ia_mode,
1114 from_kuid(&init_user_ns, attr->ia_uid),
1115 from_kgid(&init_user_ns, attr->ia_gid));
1116
1117 /* ensuring we don't even attempt to truncate a symlink */
1118 if (S_ISLNK(inode->i_mode))
1119 attr->ia_valid &= ~ATTR_SIZE;
1120
1121 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1122 | ATTR_GID | ATTR_UID | ATTR_MODE)
1123 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1124 return 0;
1125
1126 status = inode_change_ok(inode, attr);
1127 if (status)
1128 return status;
1129
1130 if (is_quota_modification(inode, attr))
1131 dquot_initialize(inode);
1132 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1133 if (size_change) {
1134 status = ocfs2_rw_lock(inode, 1);
1135 if (status < 0) {
1136 mlog_errno(status);
1137 goto bail;
1138 }
1139 }
1140
1141 status = ocfs2_inode_lock(inode, &bh, 1);
1142 if (status < 0) {
1143 if (status != -ENOENT)
1144 mlog_errno(status);
1145 goto bail_unlock_rw;
1146 }
1147
1148 if (size_change && attr->ia_size != i_size_read(inode)) {
1149 status = inode_newsize_ok(inode, attr->ia_size);
1150 if (status)
1151 goto bail_unlock;
1152
1153 inode_dio_wait(inode);
1154
1155 if (i_size_read(inode) > attr->ia_size) {
1156 if (ocfs2_should_order_data(inode)) {
1157 status = ocfs2_begin_ordered_truncate(inode,
1158 attr->ia_size);
1159 if (status)
1160 goto bail_unlock;
1161 }
1162 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1163 } else
1164 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1165 if (status < 0) {
1166 if (status != -ENOSPC)
1167 mlog_errno(status);
1168 status = -ENOSPC;
1169 goto bail_unlock;
1170 }
1171 }
1172
1173 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1174 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1175 /*
1176 * Gather pointers to quota structures so that allocation /
1177 * freeing of quota structures happens here and not inside
1178 * dquot_transfer() where we have problems with lock ordering
1179 */
1180 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1181 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1182 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1183 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1184 if (!transfer_to[USRQUOTA]) {
1185 status = -ESRCH;
1186 goto bail_unlock;
1187 }
1188 }
1189 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1190 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1191 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1192 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1193 if (!transfer_to[GRPQUOTA]) {
1194 status = -ESRCH;
1195 goto bail_unlock;
1196 }
1197 }
1198 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1199 2 * ocfs2_quota_trans_credits(sb));
1200 if (IS_ERR(handle)) {
1201 status = PTR_ERR(handle);
1202 mlog_errno(status);
1203 goto bail_unlock;
1204 }
1205 status = __dquot_transfer(inode, transfer_to);
1206 if (status < 0)
1207 goto bail_commit;
1208 } else {
1209 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1210 if (IS_ERR(handle)) {
1211 status = PTR_ERR(handle);
1212 mlog_errno(status);
1213 goto bail_unlock;
1214 }
1215 }
1216
1217 setattr_copy(inode, attr);
1218 mark_inode_dirty(inode);
1219
1220 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1221 if (status < 0)
1222 mlog_errno(status);
1223
1224 bail_commit:
1225 ocfs2_commit_trans(osb, handle);
1226 bail_unlock:
1227 ocfs2_inode_unlock(inode, 1);
1228 bail_unlock_rw:
1229 if (size_change)
1230 ocfs2_rw_unlock(inode, 1);
1231 bail:
1232 brelse(bh);
1233
1234 /* Release quota pointers in case we acquired them */
1235 for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1236 dqput(transfer_to[qtype]);
1237
1238 if (!status && attr->ia_valid & ATTR_MODE) {
1239 status = posix_acl_chmod(inode, inode->i_mode);
1240 if (status < 0)
1241 mlog_errno(status);
1242 }
1243
1244 return status;
1245 }
1246
1247 int ocfs2_getattr(struct vfsmount *mnt,
1248 struct dentry *dentry,
1249 struct kstat *stat)
1250 {
1251 struct inode *inode = dentry->d_inode;
1252 struct super_block *sb = dentry->d_inode->i_sb;
1253 struct ocfs2_super *osb = sb->s_fs_info;
1254 int err;
1255
1256 err = ocfs2_inode_revalidate(dentry);
1257 if (err) {
1258 if (err != -ENOENT)
1259 mlog_errno(err);
1260 goto bail;
1261 }
1262
1263 generic_fillattr(inode, stat);
1264
1265 /* We set the blksize from the cluster size for performance */
1266 stat->blksize = osb->s_clustersize;
1267
1268 bail:
1269 return err;
1270 }
1271
1272 int ocfs2_permission(struct inode *inode, int mask)
1273 {
1274 int ret;
1275
1276 if (mask & MAY_NOT_BLOCK)
1277 return -ECHILD;
1278
1279 ret = ocfs2_inode_lock(inode, NULL, 0);
1280 if (ret) {
1281 if (ret != -ENOENT)
1282 mlog_errno(ret);
1283 goto out;
1284 }
1285
1286 ret = generic_permission(inode, mask);
1287
1288 ocfs2_inode_unlock(inode, 0);
1289 out:
1290 return ret;
1291 }
1292
1293 static int __ocfs2_write_remove_suid(struct inode *inode,
1294 struct buffer_head *bh)
1295 {
1296 int ret;
1297 handle_t *handle;
1298 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1299 struct ocfs2_dinode *di;
1300
1301 trace_ocfs2_write_remove_suid(
1302 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1303 inode->i_mode);
1304
1305 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1306 if (IS_ERR(handle)) {
1307 ret = PTR_ERR(handle);
1308 mlog_errno(ret);
1309 goto out;
1310 }
1311
1312 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1313 OCFS2_JOURNAL_ACCESS_WRITE);
1314 if (ret < 0) {
1315 mlog_errno(ret);
1316 goto out_trans;
1317 }
1318
1319 inode->i_mode &= ~S_ISUID;
1320 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1321 inode->i_mode &= ~S_ISGID;
1322
1323 di = (struct ocfs2_dinode *) bh->b_data;
1324 di->i_mode = cpu_to_le16(inode->i_mode);
1325
1326 ocfs2_journal_dirty(handle, bh);
1327
1328 out_trans:
1329 ocfs2_commit_trans(osb, handle);
1330 out:
1331 return ret;
1332 }
1333
1334 /*
1335 * Will look for holes and unwritten extents in the range starting at
1336 * pos for count bytes (inclusive).
1337 */
1338 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1339 size_t count)
1340 {
1341 int ret = 0;
1342 unsigned int extent_flags;
1343 u32 cpos, clusters, extent_len, phys_cpos;
1344 struct super_block *sb = inode->i_sb;
1345
1346 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1347 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1348
1349 while (clusters) {
1350 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1351 &extent_flags);
1352 if (ret < 0) {
1353 mlog_errno(ret);
1354 goto out;
1355 }
1356
1357 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1358 ret = 1;
1359 break;
1360 }
1361
1362 if (extent_len > clusters)
1363 extent_len = clusters;
1364
1365 clusters -= extent_len;
1366 cpos += extent_len;
1367 }
1368 out:
1369 return ret;
1370 }
1371
1372 static int ocfs2_write_remove_suid(struct inode *inode)
1373 {
1374 int ret;
1375 struct buffer_head *bh = NULL;
1376
1377 ret = ocfs2_read_inode_block(inode, &bh);
1378 if (ret < 0) {
1379 mlog_errno(ret);
1380 goto out;
1381 }
1382
1383 ret = __ocfs2_write_remove_suid(inode, bh);
1384 out:
1385 brelse(bh);
1386 return ret;
1387 }
1388
1389 /*
1390 * Allocate enough extents to cover the region starting at byte offset
1391 * start for len bytes. Existing extents are skipped, any extents
1392 * added are marked as "unwritten".
1393 */
1394 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1395 u64 start, u64 len)
1396 {
1397 int ret;
1398 u32 cpos, phys_cpos, clusters, alloc_size;
1399 u64 end = start + len;
1400 struct buffer_head *di_bh = NULL;
1401
1402 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1403 ret = ocfs2_read_inode_block(inode, &di_bh);
1404 if (ret) {
1405 mlog_errno(ret);
1406 goto out;
1407 }
1408
1409 /*
1410 * Nothing to do if the requested reservation range
1411 * fits within the inode.
1412 */
1413 if (ocfs2_size_fits_inline_data(di_bh, end))
1414 goto out;
1415
1416 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1417 if (ret) {
1418 mlog_errno(ret);
1419 goto out;
1420 }
1421 }
1422
1423 /*
1424 * We consider both start and len to be inclusive.
1425 */
1426 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1427 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1428 clusters -= cpos;
1429
1430 while (clusters) {
1431 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1432 &alloc_size, NULL);
1433 if (ret) {
1434 mlog_errno(ret);
1435 goto out;
1436 }
1437
1438 /*
1439 * Hole or existing extent len can be arbitrary, so
1440 * cap it to our own allocation request.
1441 */
1442 if (alloc_size > clusters)
1443 alloc_size = clusters;
1444
1445 if (phys_cpos) {
1446 /*
1447 * We already have an allocation at this
1448 * region so we can safely skip it.
1449 */
1450 goto next;
1451 }
1452
1453 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1454 if (ret) {
1455 if (ret != -ENOSPC)
1456 mlog_errno(ret);
1457 goto out;
1458 }
1459
1460 next:
1461 cpos += alloc_size;
1462 clusters -= alloc_size;
1463 }
1464
1465 ret = 0;
1466 out:
1467
1468 brelse(di_bh);
1469 return ret;
1470 }
1471
1472 /*
1473 * Truncate a byte range, avoiding pages within partial clusters. This
1474 * preserves those pages for the zeroing code to write to.
1475 */
1476 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1477 u64 byte_len)
1478 {
1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 loff_t start, end;
1481 struct address_space *mapping = inode->i_mapping;
1482
1483 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1484 end = byte_start + byte_len;
1485 end = end & ~(osb->s_clustersize - 1);
1486
1487 if (start < end) {
1488 unmap_mapping_range(mapping, start, end - start, 0);
1489 truncate_inode_pages_range(mapping, start, end - 1);
1490 }
1491 }
1492
1493 static int ocfs2_zero_partial_clusters(struct inode *inode,
1494 u64 start, u64 len)
1495 {
1496 int ret = 0;
1497 u64 tmpend, end = start + len;
1498 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1499 unsigned int csize = osb->s_clustersize;
1500 handle_t *handle;
1501
1502 /*
1503 * The "start" and "end" values are NOT necessarily part of
1504 * the range whose allocation is being deleted. Rather, this
1505 * is what the user passed in with the request. We must zero
1506 * partial clusters here. There's no need to worry about
1507 * physical allocation - the zeroing code knows to skip holes.
1508 */
1509 trace_ocfs2_zero_partial_clusters(
1510 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1511 (unsigned long long)start, (unsigned long long)end);
1512
1513 /*
1514 * If both edges are on a cluster boundary then there's no
1515 * zeroing required as the region is part of the allocation to
1516 * be truncated.
1517 */
1518 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1519 goto out;
1520
1521 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1522 if (IS_ERR(handle)) {
1523 ret = PTR_ERR(handle);
1524 mlog_errno(ret);
1525 goto out;
1526 }
1527
1528 /*
1529 * We want to get the byte offset of the end of the 1st cluster.
1530 */
1531 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1532 if (tmpend > end)
1533 tmpend = end;
1534
1535 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1536 (unsigned long long)tmpend);
1537
1538 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1539 if (ret)
1540 mlog_errno(ret);
1541
1542 if (tmpend < end) {
1543 /*
1544 * This may make start and end equal, but the zeroing
1545 * code will skip any work in that case so there's no
1546 * need to catch it up here.
1547 */
1548 start = end & ~(osb->s_clustersize - 1);
1549
1550 trace_ocfs2_zero_partial_clusters_range2(
1551 (unsigned long long)start, (unsigned long long)end);
1552
1553 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1554 if (ret)
1555 mlog_errno(ret);
1556 }
1557
1558 ocfs2_commit_trans(osb, handle);
1559 out:
1560 return ret;
1561 }
1562
1563 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1564 {
1565 int i;
1566 struct ocfs2_extent_rec *rec = NULL;
1567
1568 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1569
1570 rec = &el->l_recs[i];
1571
1572 if (le32_to_cpu(rec->e_cpos) < pos)
1573 break;
1574 }
1575
1576 return i;
1577 }
1578
1579 /*
1580 * Helper to calculate the punching pos and length in one run, we handle the
1581 * following three cases in order:
1582 *
1583 * - remove the entire record
1584 * - remove a partial record
1585 * - no record needs to be removed (hole-punching completed)
1586 */
1587 static void ocfs2_calc_trunc_pos(struct inode *inode,
1588 struct ocfs2_extent_list *el,
1589 struct ocfs2_extent_rec *rec,
1590 u32 trunc_start, u32 *trunc_cpos,
1591 u32 *trunc_len, u32 *trunc_end,
1592 u64 *blkno, int *done)
1593 {
1594 int ret = 0;
1595 u32 coff, range;
1596
1597 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1598
1599 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1600 /*
1601 * remove an entire extent record.
1602 */
1603 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1604 /*
1605 * Skip holes if any.
1606 */
1607 if (range < *trunc_end)
1608 *trunc_end = range;
1609 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1610 *blkno = le64_to_cpu(rec->e_blkno);
1611 *trunc_end = le32_to_cpu(rec->e_cpos);
1612 } else if (range > trunc_start) {
1613 /*
1614 * remove a partial extent record, which means we're
1615 * removing the last extent record.
1616 */
1617 *trunc_cpos = trunc_start;
1618 /*
1619 * skip hole if any.
1620 */
1621 if (range < *trunc_end)
1622 *trunc_end = range;
1623 *trunc_len = *trunc_end - trunc_start;
1624 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1625 *blkno = le64_to_cpu(rec->e_blkno) +
1626 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1627 *trunc_end = trunc_start;
1628 } else {
1629 /*
1630 * It may have two following possibilities:
1631 *
1632 * - last record has been removed
1633 * - trunc_start was within a hole
1634 *
1635 * both two cases mean the completion of hole punching.
1636 */
1637 ret = 1;
1638 }
1639
1640 *done = ret;
1641 }
1642
1643 static int ocfs2_remove_inode_range(struct inode *inode,
1644 struct buffer_head *di_bh, u64 byte_start,
1645 u64 byte_len)
1646 {
1647 int ret = 0, flags = 0, done = 0, i;
1648 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1649 u32 cluster_in_el;
1650 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1651 struct ocfs2_cached_dealloc_ctxt dealloc;
1652 struct address_space *mapping = inode->i_mapping;
1653 struct ocfs2_extent_tree et;
1654 struct ocfs2_path *path = NULL;
1655 struct ocfs2_extent_list *el = NULL;
1656 struct ocfs2_extent_rec *rec = NULL;
1657 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1658 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1659
1660 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1661 ocfs2_init_dealloc_ctxt(&dealloc);
1662
1663 trace_ocfs2_remove_inode_range(
1664 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1665 (unsigned long long)byte_start,
1666 (unsigned long long)byte_len);
1667
1668 if (byte_len == 0)
1669 return 0;
1670
1671 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1672 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1673 byte_start + byte_len, 0);
1674 if (ret) {
1675 mlog_errno(ret);
1676 goto out;
1677 }
1678 /*
1679 * There's no need to get fancy with the page cache
1680 * truncate of an inline-data inode. We're talking
1681 * about less than a page here, which will be cached
1682 * in the dinode buffer anyway.
1683 */
1684 unmap_mapping_range(mapping, 0, 0, 0);
1685 truncate_inode_pages(mapping, 0);
1686 goto out;
1687 }
1688
1689 /*
1690 * For reflinks, we may need to CoW 2 clusters which might be
1691 * partially zero'd later, if hole's start and end offset were
1692 * within one cluster(means is not exactly aligned to clustersize).
1693 */
1694
1695 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1696
1697 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1698 if (ret) {
1699 mlog_errno(ret);
1700 goto out;
1701 }
1702
1703 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1704 if (ret) {
1705 mlog_errno(ret);
1706 goto out;
1707 }
1708 }
1709
1710 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1711 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1712 cluster_in_el = trunc_end;
1713
1714 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1715 if (ret) {
1716 mlog_errno(ret);
1717 goto out;
1718 }
1719
1720 path = ocfs2_new_path_from_et(&et);
1721 if (!path) {
1722 ret = -ENOMEM;
1723 mlog_errno(ret);
1724 goto out;
1725 }
1726
1727 while (trunc_end > trunc_start) {
1728
1729 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1730 cluster_in_el);
1731 if (ret) {
1732 mlog_errno(ret);
1733 goto out;
1734 }
1735
1736 el = path_leaf_el(path);
1737
1738 i = ocfs2_find_rec(el, trunc_end);
1739 /*
1740 * Need to go to previous extent block.
1741 */
1742 if (i < 0) {
1743 if (path->p_tree_depth == 0)
1744 break;
1745
1746 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1747 path,
1748 &cluster_in_el);
1749 if (ret) {
1750 mlog_errno(ret);
1751 goto out;
1752 }
1753
1754 /*
1755 * We've reached the leftmost extent block,
1756 * it's safe to leave.
1757 */
1758 if (cluster_in_el == 0)
1759 break;
1760
1761 /*
1762 * The 'pos' searched for previous extent block is
1763 * always one cluster less than actual trunc_end.
1764 */
1765 trunc_end = cluster_in_el + 1;
1766
1767 ocfs2_reinit_path(path, 1);
1768
1769 continue;
1770
1771 } else
1772 rec = &el->l_recs[i];
1773
1774 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1775 &trunc_len, &trunc_end, &blkno, &done);
1776 if (done)
1777 break;
1778
1779 flags = rec->e_flags;
1780 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1781
1782 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1783 phys_cpos, trunc_len, flags,
1784 &dealloc, refcount_loc);
1785 if (ret < 0) {
1786 mlog_errno(ret);
1787 goto out;
1788 }
1789
1790 cluster_in_el = trunc_end;
1791
1792 ocfs2_reinit_path(path, 1);
1793 }
1794
1795 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1796
1797 out:
1798 ocfs2_free_path(path);
1799 ocfs2_schedule_truncate_log_flush(osb, 1);
1800 ocfs2_run_deallocs(osb, &dealloc);
1801
1802 return ret;
1803 }
1804
1805 /*
1806 * Parts of this function taken from xfs_change_file_space()
1807 */
1808 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1809 loff_t f_pos, unsigned int cmd,
1810 struct ocfs2_space_resv *sr,
1811 int change_size)
1812 {
1813 int ret;
1814 s64 llen;
1815 loff_t size;
1816 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1817 struct buffer_head *di_bh = NULL;
1818 handle_t *handle;
1819 unsigned long long max_off = inode->i_sb->s_maxbytes;
1820
1821 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1822 return -EROFS;
1823
1824 mutex_lock(&inode->i_mutex);
1825
1826 /*
1827 * This prevents concurrent writes on other nodes
1828 */
1829 ret = ocfs2_rw_lock(inode, 1);
1830 if (ret) {
1831 mlog_errno(ret);
1832 goto out;
1833 }
1834
1835 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1836 if (ret) {
1837 mlog_errno(ret);
1838 goto out_rw_unlock;
1839 }
1840
1841 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1842 ret = -EPERM;
1843 goto out_inode_unlock;
1844 }
1845
1846 switch (sr->l_whence) {
1847 case 0: /*SEEK_SET*/
1848 break;
1849 case 1: /*SEEK_CUR*/
1850 sr->l_start += f_pos;
1851 break;
1852 case 2: /*SEEK_END*/
1853 sr->l_start += i_size_read(inode);
1854 break;
1855 default:
1856 ret = -EINVAL;
1857 goto out_inode_unlock;
1858 }
1859 sr->l_whence = 0;
1860
1861 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1862
1863 if (sr->l_start < 0
1864 || sr->l_start > max_off
1865 || (sr->l_start + llen) < 0
1866 || (sr->l_start + llen) > max_off) {
1867 ret = -EINVAL;
1868 goto out_inode_unlock;
1869 }
1870 size = sr->l_start + sr->l_len;
1871
1872 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1873 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1874 if (sr->l_len <= 0) {
1875 ret = -EINVAL;
1876 goto out_inode_unlock;
1877 }
1878 }
1879
1880 if (file && should_remove_suid(file->f_path.dentry)) {
1881 ret = __ocfs2_write_remove_suid(inode, di_bh);
1882 if (ret) {
1883 mlog_errno(ret);
1884 goto out_inode_unlock;
1885 }
1886 }
1887
1888 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1889 switch (cmd) {
1890 case OCFS2_IOC_RESVSP:
1891 case OCFS2_IOC_RESVSP64:
1892 /*
1893 * This takes unsigned offsets, but the signed ones we
1894 * pass have been checked against overflow above.
1895 */
1896 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1897 sr->l_len);
1898 break;
1899 case OCFS2_IOC_UNRESVSP:
1900 case OCFS2_IOC_UNRESVSP64:
1901 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1902 sr->l_len);
1903 break;
1904 default:
1905 ret = -EINVAL;
1906 }
1907 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1908 if (ret) {
1909 mlog_errno(ret);
1910 goto out_inode_unlock;
1911 }
1912
1913 /*
1914 * We update c/mtime for these changes
1915 */
1916 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1917 if (IS_ERR(handle)) {
1918 ret = PTR_ERR(handle);
1919 mlog_errno(ret);
1920 goto out_inode_unlock;
1921 }
1922
1923 if (change_size && i_size_read(inode) < size)
1924 i_size_write(inode, size);
1925
1926 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1927 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1928 if (ret < 0)
1929 mlog_errno(ret);
1930
1931 if (file && (file->f_flags & O_SYNC))
1932 handle->h_sync = 1;
1933
1934 ocfs2_commit_trans(osb, handle);
1935
1936 out_inode_unlock:
1937 brelse(di_bh);
1938 ocfs2_inode_unlock(inode, 1);
1939 out_rw_unlock:
1940 ocfs2_rw_unlock(inode, 1);
1941
1942 out:
1943 mutex_unlock(&inode->i_mutex);
1944 return ret;
1945 }
1946
1947 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1948 struct ocfs2_space_resv *sr)
1949 {
1950 struct inode *inode = file_inode(file);
1951 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1952 int ret;
1953
1954 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1955 !ocfs2_writes_unwritten_extents(osb))
1956 return -ENOTTY;
1957 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1958 !ocfs2_sparse_alloc(osb))
1959 return -ENOTTY;
1960
1961 if (!S_ISREG(inode->i_mode))
1962 return -EINVAL;
1963
1964 if (!(file->f_mode & FMODE_WRITE))
1965 return -EBADF;
1966
1967 ret = mnt_want_write_file(file);
1968 if (ret)
1969 return ret;
1970 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1971 mnt_drop_write_file(file);
1972 return ret;
1973 }
1974
1975 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1976 loff_t len)
1977 {
1978 struct inode *inode = file_inode(file);
1979 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1980 struct ocfs2_space_resv sr;
1981 int change_size = 1;
1982 int cmd = OCFS2_IOC_RESVSP64;
1983
1984 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1985 return -EOPNOTSUPP;
1986 if (!ocfs2_writes_unwritten_extents(osb))
1987 return -EOPNOTSUPP;
1988
1989 if (mode & FALLOC_FL_KEEP_SIZE)
1990 change_size = 0;
1991
1992 if (mode & FALLOC_FL_PUNCH_HOLE)
1993 cmd = OCFS2_IOC_UNRESVSP64;
1994
1995 sr.l_whence = 0;
1996 sr.l_start = (s64)offset;
1997 sr.l_len = (s64)len;
1998
1999 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2000 change_size);
2001 }
2002
2003 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2004 size_t count)
2005 {
2006 int ret = 0;
2007 unsigned int extent_flags;
2008 u32 cpos, clusters, extent_len, phys_cpos;
2009 struct super_block *sb = inode->i_sb;
2010
2011 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2012 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2013 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2014 return 0;
2015
2016 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2017 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2018
2019 while (clusters) {
2020 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2021 &extent_flags);
2022 if (ret < 0) {
2023 mlog_errno(ret);
2024 goto out;
2025 }
2026
2027 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2028 ret = 1;
2029 break;
2030 }
2031
2032 if (extent_len > clusters)
2033 extent_len = clusters;
2034
2035 clusters -= extent_len;
2036 cpos += extent_len;
2037 }
2038 out:
2039 return ret;
2040 }
2041
2042 static void ocfs2_aiodio_wait(struct inode *inode)
2043 {
2044 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
2045
2046 wait_event(*wq, (atomic_read(&OCFS2_I(inode)->ip_unaligned_aio) == 0));
2047 }
2048
2049 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2050 {
2051 int blockmask = inode->i_sb->s_blocksize - 1;
2052 loff_t final_size = pos + count;
2053
2054 if ((pos & blockmask) || (final_size & blockmask))
2055 return 1;
2056 return 0;
2057 }
2058
2059 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2060 struct file *file,
2061 loff_t pos, size_t count,
2062 int *meta_level)
2063 {
2064 int ret;
2065 struct buffer_head *di_bh = NULL;
2066 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2067 u32 clusters =
2068 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2069
2070 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2071 if (ret) {
2072 mlog_errno(ret);
2073 goto out;
2074 }
2075
2076 *meta_level = 1;
2077
2078 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2079 if (ret)
2080 mlog_errno(ret);
2081 out:
2082 brelse(di_bh);
2083 return ret;
2084 }
2085
2086 static int ocfs2_prepare_inode_for_write(struct file *file,
2087 loff_t *ppos,
2088 size_t count,
2089 int appending,
2090 int *direct_io,
2091 int *has_refcount)
2092 {
2093 int ret = 0, meta_level = 0;
2094 struct dentry *dentry = file->f_path.dentry;
2095 struct inode *inode = dentry->d_inode;
2096 loff_t saved_pos = 0, end;
2097
2098 /*
2099 * We start with a read level meta lock and only jump to an ex
2100 * if we need to make modifications here.
2101 */
2102 for(;;) {
2103 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2104 if (ret < 0) {
2105 meta_level = -1;
2106 mlog_errno(ret);
2107 goto out;
2108 }
2109
2110 /* Clear suid / sgid if necessary. We do this here
2111 * instead of later in the write path because
2112 * remove_suid() calls ->setattr without any hint that
2113 * we may have already done our cluster locking. Since
2114 * ocfs2_setattr() *must* take cluster locks to
2115 * proceed, this will lead us to recursively lock the
2116 * inode. There's also the dinode i_size state which
2117 * can be lost via setattr during extending writes (we
2118 * set inode->i_size at the end of a write. */
2119 if (should_remove_suid(dentry)) {
2120 if (meta_level == 0) {
2121 ocfs2_inode_unlock(inode, meta_level);
2122 meta_level = 1;
2123 continue;
2124 }
2125
2126 ret = ocfs2_write_remove_suid(inode);
2127 if (ret < 0) {
2128 mlog_errno(ret);
2129 goto out_unlock;
2130 }
2131 }
2132
2133 /* work on a copy of ppos until we're sure that we won't have
2134 * to recalculate it due to relocking. */
2135 if (appending)
2136 saved_pos = i_size_read(inode);
2137 else
2138 saved_pos = *ppos;
2139
2140 end = saved_pos + count;
2141
2142 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2143 if (ret == 1) {
2144 ocfs2_inode_unlock(inode, meta_level);
2145 meta_level = -1;
2146
2147 ret = ocfs2_prepare_inode_for_refcount(inode,
2148 file,
2149 saved_pos,
2150 count,
2151 &meta_level);
2152 if (has_refcount)
2153 *has_refcount = 1;
2154 if (direct_io)
2155 *direct_io = 0;
2156 }
2157
2158 if (ret < 0) {
2159 mlog_errno(ret);
2160 goto out_unlock;
2161 }
2162
2163 /*
2164 * Skip the O_DIRECT checks if we don't need
2165 * them.
2166 */
2167 if (!direct_io || !(*direct_io))
2168 break;
2169
2170 /*
2171 * There's no sane way to do direct writes to an inode
2172 * with inline data.
2173 */
2174 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2175 *direct_io = 0;
2176 break;
2177 }
2178
2179 /*
2180 * Allowing concurrent direct writes means
2181 * i_size changes wouldn't be synchronized, so
2182 * one node could wind up truncating another
2183 * nodes writes.
2184 */
2185 if (end > i_size_read(inode)) {
2186 *direct_io = 0;
2187 break;
2188 }
2189
2190 /*
2191 * We don't fill holes during direct io, so
2192 * check for them here. If any are found, the
2193 * caller will have to retake some cluster
2194 * locks and initiate the io as buffered.
2195 */
2196 ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2197 if (ret == 1) {
2198 *direct_io = 0;
2199 ret = 0;
2200 } else if (ret < 0)
2201 mlog_errno(ret);
2202 break;
2203 }
2204
2205 if (appending)
2206 *ppos = saved_pos;
2207
2208 out_unlock:
2209 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2210 saved_pos, appending, count,
2211 direct_io, has_refcount);
2212
2213 if (meta_level >= 0)
2214 ocfs2_inode_unlock(inode, meta_level);
2215
2216 out:
2217 return ret;
2218 }
2219
2220 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2221 const struct iovec *iov,
2222 unsigned long nr_segs,
2223 loff_t pos)
2224 {
2225 int ret, direct_io, appending, rw_level, have_alloc_sem = 0;
2226 int can_do_direct, has_refcount = 0;
2227 ssize_t written = 0;
2228 size_t ocount; /* original count */
2229 size_t count; /* after file limit checks */
2230 loff_t old_size, *ppos = &iocb->ki_pos;
2231 u32 old_clusters;
2232 struct file *file = iocb->ki_filp;
2233 struct inode *inode = file_inode(file);
2234 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2235 int full_coherency = !(osb->s_mount_opt &
2236 OCFS2_MOUNT_COHERENCY_BUFFERED);
2237 int unaligned_dio = 0;
2238
2239 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2240 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2241 file->f_path.dentry->d_name.len,
2242 file->f_path.dentry->d_name.name,
2243 (unsigned int)nr_segs);
2244
2245 if (iocb->ki_nbytes == 0)
2246 return 0;
2247
2248 appending = file->f_flags & O_APPEND ? 1 : 0;
2249 direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2250
2251 mutex_lock(&inode->i_mutex);
2252
2253 ocfs2_iocb_clear_sem_locked(iocb);
2254
2255 relock:
2256 /* to match setattr's i_mutex -> rw_lock ordering */
2257 if (direct_io) {
2258 have_alloc_sem = 1;
2259 /* communicate with ocfs2_dio_end_io */
2260 ocfs2_iocb_set_sem_locked(iocb);
2261 }
2262
2263 /*
2264 * Concurrent O_DIRECT writes are allowed with
2265 * mount_option "coherency=buffered".
2266 */
2267 rw_level = (!direct_io || full_coherency);
2268
2269 ret = ocfs2_rw_lock(inode, rw_level);
2270 if (ret < 0) {
2271 mlog_errno(ret);
2272 goto out_sems;
2273 }
2274
2275 /*
2276 * O_DIRECT writes with "coherency=full" need to take EX cluster
2277 * inode_lock to guarantee coherency.
2278 */
2279 if (direct_io && full_coherency) {
2280 /*
2281 * We need to take and drop the inode lock to force
2282 * other nodes to drop their caches. Buffered I/O
2283 * already does this in write_begin().
2284 */
2285 ret = ocfs2_inode_lock(inode, NULL, 1);
2286 if (ret < 0) {
2287 mlog_errno(ret);
2288 goto out;
2289 }
2290
2291 ocfs2_inode_unlock(inode, 1);
2292 }
2293
2294 can_do_direct = direct_io;
2295 ret = ocfs2_prepare_inode_for_write(file, ppos,
2296 iocb->ki_nbytes, appending,
2297 &can_do_direct, &has_refcount);
2298 if (ret < 0) {
2299 mlog_errno(ret);
2300 goto out;
2301 }
2302
2303 if (direct_io && !is_sync_kiocb(iocb))
2304 unaligned_dio = ocfs2_is_io_unaligned(inode, iocb->ki_nbytes,
2305 *ppos);
2306
2307 /*
2308 * We can't complete the direct I/O as requested, fall back to
2309 * buffered I/O.
2310 */
2311 if (direct_io && !can_do_direct) {
2312 ocfs2_rw_unlock(inode, rw_level);
2313
2314 have_alloc_sem = 0;
2315 rw_level = -1;
2316
2317 direct_io = 0;
2318 goto relock;
2319 }
2320
2321 if (unaligned_dio) {
2322 /*
2323 * Wait on previous unaligned aio to complete before
2324 * proceeding.
2325 */
2326 ocfs2_aiodio_wait(inode);
2327
2328 /* Mark the iocb as needing a decrement in ocfs2_dio_end_io */
2329 atomic_inc(&OCFS2_I(inode)->ip_unaligned_aio);
2330 ocfs2_iocb_set_unaligned_aio(iocb);
2331 }
2332
2333 /*
2334 * To later detect whether a journal commit for sync writes is
2335 * necessary, we sample i_size, and cluster count here.
2336 */
2337 old_size = i_size_read(inode);
2338 old_clusters = OCFS2_I(inode)->ip_clusters;
2339
2340 /* communicate with ocfs2_dio_end_io */
2341 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2342
2343 ret = generic_segment_checks(iov, &nr_segs, &ocount,
2344 VERIFY_READ);
2345 if (ret)
2346 goto out_dio;
2347
2348 count = ocount;
2349 ret = generic_write_checks(file, ppos, &count,
2350 S_ISBLK(inode->i_mode));
2351 if (ret)
2352 goto out_dio;
2353
2354 if (direct_io) {
2355 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2356 ppos, count, ocount);
2357 if (written < 0) {
2358 ret = written;
2359 goto out_dio;
2360 }
2361 } else {
2362 current->backing_dev_info = file->f_mapping->backing_dev_info;
2363 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2364 ppos, count, 0);
2365 current->backing_dev_info = NULL;
2366 }
2367
2368 out_dio:
2369 /* buffered aio wouldn't have proper lock coverage today */
2370 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2371
2372 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2373 ((file->f_flags & O_DIRECT) && !direct_io)) {
2374 ret = filemap_fdatawrite_range(file->f_mapping, pos,
2375 pos + count - 1);
2376 if (ret < 0)
2377 written = ret;
2378
2379 if (!ret && ((old_size != i_size_read(inode)) ||
2380 (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2381 has_refcount)) {
2382 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2383 if (ret < 0)
2384 written = ret;
2385 }
2386
2387 if (!ret)
2388 ret = filemap_fdatawait_range(file->f_mapping, pos,
2389 pos + count - 1);
2390 }
2391
2392 /*
2393 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2394 * function pointer which is called when o_direct io completes so that
2395 * it can unlock our rw lock.
2396 * Unfortunately there are error cases which call end_io and others
2397 * that don't. so we don't have to unlock the rw_lock if either an
2398 * async dio is going to do it in the future or an end_io after an
2399 * error has already done it.
2400 */
2401 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2402 rw_level = -1;
2403 have_alloc_sem = 0;
2404 unaligned_dio = 0;
2405 }
2406
2407 if (unaligned_dio) {
2408 ocfs2_iocb_clear_unaligned_aio(iocb);
2409 atomic_dec(&OCFS2_I(inode)->ip_unaligned_aio);
2410 }
2411
2412 out:
2413 if (rw_level != -1)
2414 ocfs2_rw_unlock(inode, rw_level);
2415
2416 out_sems:
2417 if (have_alloc_sem)
2418 ocfs2_iocb_clear_sem_locked(iocb);
2419
2420 mutex_unlock(&inode->i_mutex);
2421
2422 if (written)
2423 ret = written;
2424 return ret;
2425 }
2426
2427 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2428 struct file *out,
2429 struct splice_desc *sd)
2430 {
2431 int ret;
2432
2433 ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2434 sd->total_len, 0, NULL, NULL);
2435 if (ret < 0) {
2436 mlog_errno(ret);
2437 return ret;
2438 }
2439
2440 return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2441 }
2442
2443 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2444 struct file *out,
2445 loff_t *ppos,
2446 size_t len,
2447 unsigned int flags)
2448 {
2449 int ret;
2450 struct address_space *mapping = out->f_mapping;
2451 struct inode *inode = mapping->host;
2452 struct splice_desc sd = {
2453 .total_len = len,
2454 .flags = flags,
2455 .pos = *ppos,
2456 .u.file = out,
2457 };
2458
2459
2460 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2461 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2462 out->f_path.dentry->d_name.len,
2463 out->f_path.dentry->d_name.name, len);
2464
2465 pipe_lock(pipe);
2466
2467 splice_from_pipe_begin(&sd);
2468 do {
2469 ret = splice_from_pipe_next(pipe, &sd);
2470 if (ret <= 0)
2471 break;
2472
2473 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2474 ret = ocfs2_rw_lock(inode, 1);
2475 if (ret < 0)
2476 mlog_errno(ret);
2477 else {
2478 ret = ocfs2_splice_to_file(pipe, out, &sd);
2479 ocfs2_rw_unlock(inode, 1);
2480 }
2481 mutex_unlock(&inode->i_mutex);
2482 } while (ret > 0);
2483 splice_from_pipe_end(pipe, &sd);
2484
2485 pipe_unlock(pipe);
2486
2487 if (sd.num_spliced)
2488 ret = sd.num_spliced;
2489
2490 if (ret > 0) {
2491 int err;
2492
2493 err = generic_write_sync(out, *ppos, ret);
2494 if (err)
2495 ret = err;
2496 else
2497 *ppos += ret;
2498
2499 balance_dirty_pages_ratelimited(mapping);
2500 }
2501
2502 return ret;
2503 }
2504
2505 static ssize_t ocfs2_file_splice_read(struct file *in,
2506 loff_t *ppos,
2507 struct pipe_inode_info *pipe,
2508 size_t len,
2509 unsigned int flags)
2510 {
2511 int ret = 0, lock_level = 0;
2512 struct inode *inode = file_inode(in);
2513
2514 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2515 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2516 in->f_path.dentry->d_name.len,
2517 in->f_path.dentry->d_name.name, len);
2518
2519 /*
2520 * See the comment in ocfs2_file_aio_read()
2521 */
2522 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level);
2523 if (ret < 0) {
2524 mlog_errno(ret);
2525 goto bail;
2526 }
2527 ocfs2_inode_unlock(inode, lock_level);
2528
2529 ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2530
2531 bail:
2532 return ret;
2533 }
2534
2535 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2536 const struct iovec *iov,
2537 unsigned long nr_segs,
2538 loff_t pos)
2539 {
2540 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2541 struct file *filp = iocb->ki_filp;
2542 struct inode *inode = file_inode(filp);
2543
2544 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2545 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2546 filp->f_path.dentry->d_name.len,
2547 filp->f_path.dentry->d_name.name, nr_segs);
2548
2549
2550 if (!inode) {
2551 ret = -EINVAL;
2552 mlog_errno(ret);
2553 goto bail;
2554 }
2555
2556 ocfs2_iocb_clear_sem_locked(iocb);
2557
2558 /*
2559 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2560 * need locks to protect pending reads from racing with truncate.
2561 */
2562 if (filp->f_flags & O_DIRECT) {
2563 have_alloc_sem = 1;
2564 ocfs2_iocb_set_sem_locked(iocb);
2565
2566 ret = ocfs2_rw_lock(inode, 0);
2567 if (ret < 0) {
2568 mlog_errno(ret);
2569 goto bail;
2570 }
2571 rw_level = 0;
2572 /* communicate with ocfs2_dio_end_io */
2573 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2574 }
2575
2576 /*
2577 * We're fine letting folks race truncates and extending
2578 * writes with read across the cluster, just like they can
2579 * locally. Hence no rw_lock during read.
2580 *
2581 * Take and drop the meta data lock to update inode fields
2582 * like i_size. This allows the checks down below
2583 * generic_file_aio_read() a chance of actually working.
2584 */
2585 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2586 if (ret < 0) {
2587 mlog_errno(ret);
2588 goto bail;
2589 }
2590 ocfs2_inode_unlock(inode, lock_level);
2591
2592 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2593 trace_generic_file_aio_read_ret(ret);
2594
2595 /* buffered aio wouldn't have proper lock coverage today */
2596 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2597
2598 /* see ocfs2_file_aio_write */
2599 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2600 rw_level = -1;
2601 have_alloc_sem = 0;
2602 }
2603
2604 bail:
2605 if (have_alloc_sem)
2606 ocfs2_iocb_clear_sem_locked(iocb);
2607
2608 if (rw_level != -1)
2609 ocfs2_rw_unlock(inode, rw_level);
2610
2611 return ret;
2612 }
2613
2614 /* Refer generic_file_llseek_unlocked() */
2615 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2616 {
2617 struct inode *inode = file->f_mapping->host;
2618 int ret = 0;
2619
2620 mutex_lock(&inode->i_mutex);
2621
2622 switch (whence) {
2623 case SEEK_SET:
2624 break;
2625 case SEEK_END:
2626 offset += inode->i_size;
2627 break;
2628 case SEEK_CUR:
2629 if (offset == 0) {
2630 offset = file->f_pos;
2631 goto out;
2632 }
2633 offset += file->f_pos;
2634 break;
2635 case SEEK_DATA:
2636 case SEEK_HOLE:
2637 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2638 if (ret)
2639 goto out;
2640 break;
2641 default:
2642 ret = -EINVAL;
2643 goto out;
2644 }
2645
2646 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2647
2648 out:
2649 mutex_unlock(&inode->i_mutex);
2650 if (ret)
2651 return ret;
2652 return offset;
2653 }
2654
2655 const struct inode_operations ocfs2_file_iops = {
2656 .setattr = ocfs2_setattr,
2657 .getattr = ocfs2_getattr,
2658 .permission = ocfs2_permission,
2659 .setxattr = generic_setxattr,
2660 .getxattr = generic_getxattr,
2661 .listxattr = ocfs2_listxattr,
2662 .removexattr = generic_removexattr,
2663 .fiemap = ocfs2_fiemap,
2664 .get_acl = ocfs2_iop_get_acl,
2665 .set_acl = ocfs2_iop_set_acl,
2666 };
2667
2668 const struct inode_operations ocfs2_special_file_iops = {
2669 .setattr = ocfs2_setattr,
2670 .getattr = ocfs2_getattr,
2671 .permission = ocfs2_permission,
2672 .get_acl = ocfs2_iop_get_acl,
2673 .set_acl = ocfs2_iop_set_acl,
2674 };
2675
2676 /*
2677 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2678 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2679 */
2680 const struct file_operations ocfs2_fops = {
2681 .llseek = ocfs2_file_llseek,
2682 .read = do_sync_read,
2683 .write = do_sync_write,
2684 .mmap = ocfs2_mmap,
2685 .fsync = ocfs2_sync_file,
2686 .release = ocfs2_file_release,
2687 .open = ocfs2_file_open,
2688 .aio_read = ocfs2_file_aio_read,
2689 .aio_write = ocfs2_file_aio_write,
2690 .unlocked_ioctl = ocfs2_ioctl,
2691 #ifdef CONFIG_COMPAT
2692 .compat_ioctl = ocfs2_compat_ioctl,
2693 #endif
2694 .lock = ocfs2_lock,
2695 .flock = ocfs2_flock,
2696 .splice_read = ocfs2_file_splice_read,
2697 .splice_write = ocfs2_file_splice_write,
2698 .fallocate = ocfs2_fallocate,
2699 };
2700
2701 const struct file_operations ocfs2_dops = {
2702 .llseek = generic_file_llseek,
2703 .read = generic_read_dir,
2704 .iterate = ocfs2_readdir,
2705 .fsync = ocfs2_sync_file,
2706 .release = ocfs2_dir_release,
2707 .open = ocfs2_dir_open,
2708 .unlocked_ioctl = ocfs2_ioctl,
2709 #ifdef CONFIG_COMPAT
2710 .compat_ioctl = ocfs2_compat_ioctl,
2711 #endif
2712 .lock = ocfs2_lock,
2713 .flock = ocfs2_flock,
2714 };
2715
2716 /*
2717 * POSIX-lockless variants of our file_operations.
2718 *
2719 * These will be used if the underlying cluster stack does not support
2720 * posix file locking, if the user passes the "localflocks" mount
2721 * option, or if we have a local-only fs.
2722 *
2723 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2724 * so we still want it in the case of no stack support for
2725 * plocks. Internally, it will do the right thing when asked to ignore
2726 * the cluster.
2727 */
2728 const struct file_operations ocfs2_fops_no_plocks = {
2729 .llseek = ocfs2_file_llseek,
2730 .read = do_sync_read,
2731 .write = do_sync_write,
2732 .mmap = ocfs2_mmap,
2733 .fsync = ocfs2_sync_file,
2734 .release = ocfs2_file_release,
2735 .open = ocfs2_file_open,
2736 .aio_read = ocfs2_file_aio_read,
2737 .aio_write = ocfs2_file_aio_write,
2738 .unlocked_ioctl = ocfs2_ioctl,
2739 #ifdef CONFIG_COMPAT
2740 .compat_ioctl = ocfs2_compat_ioctl,
2741 #endif
2742 .flock = ocfs2_flock,
2743 .splice_read = ocfs2_file_splice_read,
2744 .splice_write = ocfs2_file_splice_write,
2745 .fallocate = ocfs2_fallocate,
2746 };
2747
2748 const struct file_operations ocfs2_dops_no_plocks = {
2749 .llseek = generic_file_llseek,
2750 .read = generic_read_dir,
2751 .iterate = ocfs2_readdir,
2752 .fsync = ocfs2_sync_file,
2753 .release = ocfs2_dir_release,
2754 .open = ocfs2_dir_open,
2755 .unlocked_ioctl = ocfs2_ioctl,
2756 #ifdef CONFIG_COMPAT
2757 .compat_ioctl = ocfs2_compat_ioctl,
2758 #endif
2759 .flock = ocfs2_flock,
2760 };
This page took 0.088549 seconds and 5 git commands to generate.