ocfs2: Convert to new freezing mechanism
[deliverable/linux.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "blockcheck.h"
40 #include "dir.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "heartbeat.h"
44 #include "inode.h"
45 #include "journal.h"
46 #include "localalloc.h"
47 #include "slot_map.h"
48 #include "super.h"
49 #include "sysfile.h"
50 #include "uptodate.h"
51 #include "quota.h"
52
53 #include "buffer_head_io.h"
54 #include "ocfs2_trace.h"
55
56 DEFINE_SPINLOCK(trans_inc_lock);
57
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
78
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80 {
81 return __ocfs2_wait_on_mount(osb, 0);
82 }
83
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85 {
86 return __ocfs2_wait_on_mount(osb, 1);
87 }
88
89 /*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94 enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
98 };
99
100 struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
104 };
105
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107 {
108 if (!osb->replay_map)
109 return;
110
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
114
115 osb->replay_map->rm_state = state;
116 }
117
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119 {
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
122
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
126
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
133 }
134
135 spin_lock(&osb->osb_lock);
136
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
139
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
144 }
145
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
149 }
150
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152 {
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
155
156 if (!replay_map)
157 return;
158
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
161
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
167 }
168
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170 {
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173 if (!osb->replay_map)
174 return;
175
176 kfree(replay_map);
177 osb->replay_map = NULL;
178 }
179
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
181 {
182 struct ocfs2_recovery_map *rm;
183
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
188
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
195 }
196
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
200
201 return 0;
202 }
203
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208 {
209 mb();
210 return osb->recovery_thread_task != NULL;
211 }
212
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
214 {
215 struct ocfs2_recovery_map *rm;
216
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
228
229 /*
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
232 */
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
235
236 kfree(rm);
237 }
238
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
241 {
242 int i;
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245 assert_spin_locked(&osb->osb_lock);
246
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
249 return 1;
250 }
251
252 return 0;
253 }
254
255 /* Behaves like test-and-set. Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
258 {
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
264 return 1;
265 }
266
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
269
270 rm->rm_entries[rm->rm_used] = node_num;
271 rm->rm_used++;
272 spin_unlock(&osb->osb_lock);
273
274 return 0;
275 }
276
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
279 {
280 int i;
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283 spin_lock(&osb->osb_lock);
284
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
287 break;
288 }
289
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
294 rm->rm_used--;
295 }
296
297 spin_unlock(&osb->osb_lock);
298 }
299
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
301 {
302 int status = 0;
303 unsigned int flushed;
304 struct ocfs2_journal *journal = NULL;
305
306 journal = osb->journal;
307
308 /* Flush all pending commits and checkpoint the journal. */
309 down_write(&journal->j_trans_barrier);
310
311 flushed = atomic_read(&journal->j_num_trans);
312 trace_ocfs2_commit_cache_begin(flushed);
313 if (flushed == 0) {
314 up_write(&journal->j_trans_barrier);
315 goto finally;
316 }
317
318 jbd2_journal_lock_updates(journal->j_journal);
319 status = jbd2_journal_flush(journal->j_journal);
320 jbd2_journal_unlock_updates(journal->j_journal);
321 if (status < 0) {
322 up_write(&journal->j_trans_barrier);
323 mlog_errno(status);
324 goto finally;
325 }
326
327 ocfs2_inc_trans_id(journal);
328
329 flushed = atomic_read(&journal->j_num_trans);
330 atomic_set(&journal->j_num_trans, 0);
331 up_write(&journal->j_trans_barrier);
332
333 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
334
335 ocfs2_wake_downconvert_thread(osb);
336 wake_up(&journal->j_checkpointed);
337 finally:
338 return status;
339 }
340
341 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
342 {
343 journal_t *journal = osb->journal->j_journal;
344 handle_t *handle;
345
346 BUG_ON(!osb || !osb->journal->j_journal);
347
348 if (ocfs2_is_hard_readonly(osb))
349 return ERR_PTR(-EROFS);
350
351 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
352 BUG_ON(max_buffs <= 0);
353
354 /* Nested transaction? Just return the handle... */
355 if (journal_current_handle())
356 return jbd2_journal_start(journal, max_buffs);
357
358 sb_start_intwrite(osb->sb);
359
360 down_read(&osb->journal->j_trans_barrier);
361
362 handle = jbd2_journal_start(journal, max_buffs);
363 if (IS_ERR(handle)) {
364 up_read(&osb->journal->j_trans_barrier);
365 sb_end_intwrite(osb->sb);
366
367 mlog_errno(PTR_ERR(handle));
368
369 if (is_journal_aborted(journal)) {
370 ocfs2_abort(osb->sb, "Detected aborted journal");
371 handle = ERR_PTR(-EROFS);
372 }
373 } else {
374 if (!ocfs2_mount_local(osb))
375 atomic_inc(&(osb->journal->j_num_trans));
376 }
377
378 return handle;
379 }
380
381 int ocfs2_commit_trans(struct ocfs2_super *osb,
382 handle_t *handle)
383 {
384 int ret, nested;
385 struct ocfs2_journal *journal = osb->journal;
386
387 BUG_ON(!handle);
388
389 nested = handle->h_ref > 1;
390 ret = jbd2_journal_stop(handle);
391 if (ret < 0)
392 mlog_errno(ret);
393
394 if (!nested) {
395 up_read(&journal->j_trans_barrier);
396 sb_end_intwrite(osb->sb);
397 }
398
399 return ret;
400 }
401
402 /*
403 * 'nblocks' is what you want to add to the current transaction.
404 *
405 * This might call jbd2_journal_restart() which will commit dirty buffers
406 * and then restart the transaction. Before calling
407 * ocfs2_extend_trans(), any changed blocks should have been
408 * dirtied. After calling it, all blocks which need to be changed must
409 * go through another set of journal_access/journal_dirty calls.
410 *
411 * WARNING: This will not release any semaphores or disk locks taken
412 * during the transaction, so make sure they were taken *before*
413 * start_trans or we'll have ordering deadlocks.
414 *
415 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
416 * good because transaction ids haven't yet been recorded on the
417 * cluster locks associated with this handle.
418 */
419 int ocfs2_extend_trans(handle_t *handle, int nblocks)
420 {
421 int status, old_nblocks;
422
423 BUG_ON(!handle);
424 BUG_ON(nblocks < 0);
425
426 if (!nblocks)
427 return 0;
428
429 old_nblocks = handle->h_buffer_credits;
430
431 trace_ocfs2_extend_trans(old_nblocks, nblocks);
432
433 #ifdef CONFIG_OCFS2_DEBUG_FS
434 status = 1;
435 #else
436 status = jbd2_journal_extend(handle, nblocks);
437 if (status < 0) {
438 mlog_errno(status);
439 goto bail;
440 }
441 #endif
442
443 if (status > 0) {
444 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
445 status = jbd2_journal_restart(handle,
446 old_nblocks + nblocks);
447 if (status < 0) {
448 mlog_errno(status);
449 goto bail;
450 }
451 }
452
453 status = 0;
454 bail:
455 return status;
456 }
457
458 struct ocfs2_triggers {
459 struct jbd2_buffer_trigger_type ot_triggers;
460 int ot_offset;
461 };
462
463 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
464 {
465 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
466 }
467
468 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
469 struct buffer_head *bh,
470 void *data, size_t size)
471 {
472 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
473
474 /*
475 * We aren't guaranteed to have the superblock here, so we
476 * must unconditionally compute the ecc data.
477 * __ocfs2_journal_access() will only set the triggers if
478 * metaecc is enabled.
479 */
480 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
481 }
482
483 /*
484 * Quota blocks have their own trigger because the struct ocfs2_block_check
485 * offset depends on the blocksize.
486 */
487 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
488 struct buffer_head *bh,
489 void *data, size_t size)
490 {
491 struct ocfs2_disk_dqtrailer *dqt =
492 ocfs2_block_dqtrailer(size, data);
493
494 /*
495 * We aren't guaranteed to have the superblock here, so we
496 * must unconditionally compute the ecc data.
497 * __ocfs2_journal_access() will only set the triggers if
498 * metaecc is enabled.
499 */
500 ocfs2_block_check_compute(data, size, &dqt->dq_check);
501 }
502
503 /*
504 * Directory blocks also have their own trigger because the
505 * struct ocfs2_block_check offset depends on the blocksize.
506 */
507 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
508 struct buffer_head *bh,
509 void *data, size_t size)
510 {
511 struct ocfs2_dir_block_trailer *trailer =
512 ocfs2_dir_trailer_from_size(size, data);
513
514 /*
515 * We aren't guaranteed to have the superblock here, so we
516 * must unconditionally compute the ecc data.
517 * __ocfs2_journal_access() will only set the triggers if
518 * metaecc is enabled.
519 */
520 ocfs2_block_check_compute(data, size, &trailer->db_check);
521 }
522
523 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
524 struct buffer_head *bh)
525 {
526 mlog(ML_ERROR,
527 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
528 "bh->b_blocknr = %llu\n",
529 (unsigned long)bh,
530 (unsigned long long)bh->b_blocknr);
531
532 /* We aren't guaranteed to have the superblock here - but if we
533 * don't, it'll just crash. */
534 ocfs2_error(bh->b_assoc_map->host->i_sb,
535 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
536 }
537
538 static struct ocfs2_triggers di_triggers = {
539 .ot_triggers = {
540 .t_frozen = ocfs2_frozen_trigger,
541 .t_abort = ocfs2_abort_trigger,
542 },
543 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
544 };
545
546 static struct ocfs2_triggers eb_triggers = {
547 .ot_triggers = {
548 .t_frozen = ocfs2_frozen_trigger,
549 .t_abort = ocfs2_abort_trigger,
550 },
551 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
552 };
553
554 static struct ocfs2_triggers rb_triggers = {
555 .ot_triggers = {
556 .t_frozen = ocfs2_frozen_trigger,
557 .t_abort = ocfs2_abort_trigger,
558 },
559 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
560 };
561
562 static struct ocfs2_triggers gd_triggers = {
563 .ot_triggers = {
564 .t_frozen = ocfs2_frozen_trigger,
565 .t_abort = ocfs2_abort_trigger,
566 },
567 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
568 };
569
570 static struct ocfs2_triggers db_triggers = {
571 .ot_triggers = {
572 .t_frozen = ocfs2_db_frozen_trigger,
573 .t_abort = ocfs2_abort_trigger,
574 },
575 };
576
577 static struct ocfs2_triggers xb_triggers = {
578 .ot_triggers = {
579 .t_frozen = ocfs2_frozen_trigger,
580 .t_abort = ocfs2_abort_trigger,
581 },
582 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
583 };
584
585 static struct ocfs2_triggers dq_triggers = {
586 .ot_triggers = {
587 .t_frozen = ocfs2_dq_frozen_trigger,
588 .t_abort = ocfs2_abort_trigger,
589 },
590 };
591
592 static struct ocfs2_triggers dr_triggers = {
593 .ot_triggers = {
594 .t_frozen = ocfs2_frozen_trigger,
595 .t_abort = ocfs2_abort_trigger,
596 },
597 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
598 };
599
600 static struct ocfs2_triggers dl_triggers = {
601 .ot_triggers = {
602 .t_frozen = ocfs2_frozen_trigger,
603 .t_abort = ocfs2_abort_trigger,
604 },
605 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
606 };
607
608 static int __ocfs2_journal_access(handle_t *handle,
609 struct ocfs2_caching_info *ci,
610 struct buffer_head *bh,
611 struct ocfs2_triggers *triggers,
612 int type)
613 {
614 int status;
615 struct ocfs2_super *osb =
616 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
617
618 BUG_ON(!ci || !ci->ci_ops);
619 BUG_ON(!handle);
620 BUG_ON(!bh);
621
622 trace_ocfs2_journal_access(
623 (unsigned long long)ocfs2_metadata_cache_owner(ci),
624 (unsigned long long)bh->b_blocknr, type, bh->b_size);
625
626 /* we can safely remove this assertion after testing. */
627 if (!buffer_uptodate(bh)) {
628 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
629 mlog(ML_ERROR, "b_blocknr=%llu\n",
630 (unsigned long long)bh->b_blocknr);
631 BUG();
632 }
633
634 /* Set the current transaction information on the ci so
635 * that the locking code knows whether it can drop it's locks
636 * on this ci or not. We're protected from the commit
637 * thread updating the current transaction id until
638 * ocfs2_commit_trans() because ocfs2_start_trans() took
639 * j_trans_barrier for us. */
640 ocfs2_set_ci_lock_trans(osb->journal, ci);
641
642 ocfs2_metadata_cache_io_lock(ci);
643 switch (type) {
644 case OCFS2_JOURNAL_ACCESS_CREATE:
645 case OCFS2_JOURNAL_ACCESS_WRITE:
646 status = jbd2_journal_get_write_access(handle, bh);
647 break;
648
649 case OCFS2_JOURNAL_ACCESS_UNDO:
650 status = jbd2_journal_get_undo_access(handle, bh);
651 break;
652
653 default:
654 status = -EINVAL;
655 mlog(ML_ERROR, "Unknown access type!\n");
656 }
657 if (!status && ocfs2_meta_ecc(osb) && triggers)
658 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
659 ocfs2_metadata_cache_io_unlock(ci);
660
661 if (status < 0)
662 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
663 status, type);
664
665 return status;
666 }
667
668 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
669 struct buffer_head *bh, int type)
670 {
671 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
672 }
673
674 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
675 struct buffer_head *bh, int type)
676 {
677 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
678 }
679
680 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
681 struct buffer_head *bh, int type)
682 {
683 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
684 type);
685 }
686
687 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
688 struct buffer_head *bh, int type)
689 {
690 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
691 }
692
693 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
694 struct buffer_head *bh, int type)
695 {
696 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
697 }
698
699 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
700 struct buffer_head *bh, int type)
701 {
702 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
703 }
704
705 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
706 struct buffer_head *bh, int type)
707 {
708 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
709 }
710
711 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
712 struct buffer_head *bh, int type)
713 {
714 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
715 }
716
717 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
718 struct buffer_head *bh, int type)
719 {
720 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
721 }
722
723 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
724 struct buffer_head *bh, int type)
725 {
726 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
727 }
728
729 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
730 {
731 int status;
732
733 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
734
735 status = jbd2_journal_dirty_metadata(handle, bh);
736 BUG_ON(status);
737 }
738
739 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
740
741 void ocfs2_set_journal_params(struct ocfs2_super *osb)
742 {
743 journal_t *journal = osb->journal->j_journal;
744 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
745
746 if (osb->osb_commit_interval)
747 commit_interval = osb->osb_commit_interval;
748
749 write_lock(&journal->j_state_lock);
750 journal->j_commit_interval = commit_interval;
751 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
752 journal->j_flags |= JBD2_BARRIER;
753 else
754 journal->j_flags &= ~JBD2_BARRIER;
755 write_unlock(&journal->j_state_lock);
756 }
757
758 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
759 {
760 int status = -1;
761 struct inode *inode = NULL; /* the journal inode */
762 journal_t *j_journal = NULL;
763 struct ocfs2_dinode *di = NULL;
764 struct buffer_head *bh = NULL;
765 struct ocfs2_super *osb;
766 int inode_lock = 0;
767
768 BUG_ON(!journal);
769
770 osb = journal->j_osb;
771
772 /* already have the inode for our journal */
773 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
774 osb->slot_num);
775 if (inode == NULL) {
776 status = -EACCES;
777 mlog_errno(status);
778 goto done;
779 }
780 if (is_bad_inode(inode)) {
781 mlog(ML_ERROR, "access error (bad inode)\n");
782 iput(inode);
783 inode = NULL;
784 status = -EACCES;
785 goto done;
786 }
787
788 SET_INODE_JOURNAL(inode);
789 OCFS2_I(inode)->ip_open_count++;
790
791 /* Skip recovery waits here - journal inode metadata never
792 * changes in a live cluster so it can be considered an
793 * exception to the rule. */
794 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
795 if (status < 0) {
796 if (status != -ERESTARTSYS)
797 mlog(ML_ERROR, "Could not get lock on journal!\n");
798 goto done;
799 }
800
801 inode_lock = 1;
802 di = (struct ocfs2_dinode *)bh->b_data;
803
804 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
805 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
806 inode->i_size);
807 status = -EINVAL;
808 goto done;
809 }
810
811 trace_ocfs2_journal_init(inode->i_size,
812 (unsigned long long)inode->i_blocks,
813 OCFS2_I(inode)->ip_clusters);
814
815 /* call the kernels journal init function now */
816 j_journal = jbd2_journal_init_inode(inode);
817 if (j_journal == NULL) {
818 mlog(ML_ERROR, "Linux journal layer error\n");
819 status = -EINVAL;
820 goto done;
821 }
822
823 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
824
825 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
826 OCFS2_JOURNAL_DIRTY_FL);
827
828 journal->j_journal = j_journal;
829 journal->j_inode = inode;
830 journal->j_bh = bh;
831
832 ocfs2_set_journal_params(osb);
833
834 journal->j_state = OCFS2_JOURNAL_LOADED;
835
836 status = 0;
837 done:
838 if (status < 0) {
839 if (inode_lock)
840 ocfs2_inode_unlock(inode, 1);
841 brelse(bh);
842 if (inode) {
843 OCFS2_I(inode)->ip_open_count--;
844 iput(inode);
845 }
846 }
847
848 return status;
849 }
850
851 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
852 {
853 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
854 }
855
856 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
857 {
858 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
859 }
860
861 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
862 int dirty, int replayed)
863 {
864 int status;
865 unsigned int flags;
866 struct ocfs2_journal *journal = osb->journal;
867 struct buffer_head *bh = journal->j_bh;
868 struct ocfs2_dinode *fe;
869
870 fe = (struct ocfs2_dinode *)bh->b_data;
871
872 /* The journal bh on the osb always comes from ocfs2_journal_init()
873 * and was validated there inside ocfs2_inode_lock_full(). It's a
874 * code bug if we mess it up. */
875 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
876
877 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
878 if (dirty)
879 flags |= OCFS2_JOURNAL_DIRTY_FL;
880 else
881 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
882 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
883
884 if (replayed)
885 ocfs2_bump_recovery_generation(fe);
886
887 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
888 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
889 if (status < 0)
890 mlog_errno(status);
891
892 return status;
893 }
894
895 /*
896 * If the journal has been kmalloc'd it needs to be freed after this
897 * call.
898 */
899 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
900 {
901 struct ocfs2_journal *journal = NULL;
902 int status = 0;
903 struct inode *inode = NULL;
904 int num_running_trans = 0;
905
906 BUG_ON(!osb);
907
908 journal = osb->journal;
909 if (!journal)
910 goto done;
911
912 inode = journal->j_inode;
913
914 if (journal->j_state != OCFS2_JOURNAL_LOADED)
915 goto done;
916
917 /* need to inc inode use count - jbd2_journal_destroy will iput. */
918 if (!igrab(inode))
919 BUG();
920
921 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
922 trace_ocfs2_journal_shutdown(num_running_trans);
923
924 /* Do a commit_cache here. It will flush our journal, *and*
925 * release any locks that are still held.
926 * set the SHUTDOWN flag and release the trans lock.
927 * the commit thread will take the trans lock for us below. */
928 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
929
930 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
931 * drop the trans_lock (which we want to hold until we
932 * completely destroy the journal. */
933 if (osb->commit_task) {
934 /* Wait for the commit thread */
935 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
936 kthread_stop(osb->commit_task);
937 osb->commit_task = NULL;
938 }
939
940 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
941
942 if (ocfs2_mount_local(osb)) {
943 jbd2_journal_lock_updates(journal->j_journal);
944 status = jbd2_journal_flush(journal->j_journal);
945 jbd2_journal_unlock_updates(journal->j_journal);
946 if (status < 0)
947 mlog_errno(status);
948 }
949
950 if (status == 0) {
951 /*
952 * Do not toggle if flush was unsuccessful otherwise
953 * will leave dirty metadata in a "clean" journal
954 */
955 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
956 if (status < 0)
957 mlog_errno(status);
958 }
959
960 /* Shutdown the kernel journal system */
961 jbd2_journal_destroy(journal->j_journal);
962 journal->j_journal = NULL;
963
964 OCFS2_I(inode)->ip_open_count--;
965
966 /* unlock our journal */
967 ocfs2_inode_unlock(inode, 1);
968
969 brelse(journal->j_bh);
970 journal->j_bh = NULL;
971
972 journal->j_state = OCFS2_JOURNAL_FREE;
973
974 // up_write(&journal->j_trans_barrier);
975 done:
976 if (inode)
977 iput(inode);
978 }
979
980 static void ocfs2_clear_journal_error(struct super_block *sb,
981 journal_t *journal,
982 int slot)
983 {
984 int olderr;
985
986 olderr = jbd2_journal_errno(journal);
987 if (olderr) {
988 mlog(ML_ERROR, "File system error %d recorded in "
989 "journal %u.\n", olderr, slot);
990 mlog(ML_ERROR, "File system on device %s needs checking.\n",
991 sb->s_id);
992
993 jbd2_journal_ack_err(journal);
994 jbd2_journal_clear_err(journal);
995 }
996 }
997
998 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
999 {
1000 int status = 0;
1001 struct ocfs2_super *osb;
1002
1003 BUG_ON(!journal);
1004
1005 osb = journal->j_osb;
1006
1007 status = jbd2_journal_load(journal->j_journal);
1008 if (status < 0) {
1009 mlog(ML_ERROR, "Failed to load journal!\n");
1010 goto done;
1011 }
1012
1013 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1014
1015 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1016 if (status < 0) {
1017 mlog_errno(status);
1018 goto done;
1019 }
1020
1021 /* Launch the commit thread */
1022 if (!local) {
1023 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1024 "ocfs2cmt");
1025 if (IS_ERR(osb->commit_task)) {
1026 status = PTR_ERR(osb->commit_task);
1027 osb->commit_task = NULL;
1028 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1029 "error=%d", status);
1030 goto done;
1031 }
1032 } else
1033 osb->commit_task = NULL;
1034
1035 done:
1036 return status;
1037 }
1038
1039
1040 /* 'full' flag tells us whether we clear out all blocks or if we just
1041 * mark the journal clean */
1042 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1043 {
1044 int status;
1045
1046 BUG_ON(!journal);
1047
1048 status = jbd2_journal_wipe(journal->j_journal, full);
1049 if (status < 0) {
1050 mlog_errno(status);
1051 goto bail;
1052 }
1053
1054 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1055 if (status < 0)
1056 mlog_errno(status);
1057
1058 bail:
1059 return status;
1060 }
1061
1062 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1063 {
1064 int empty;
1065 struct ocfs2_recovery_map *rm = osb->recovery_map;
1066
1067 spin_lock(&osb->osb_lock);
1068 empty = (rm->rm_used == 0);
1069 spin_unlock(&osb->osb_lock);
1070
1071 return empty;
1072 }
1073
1074 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1075 {
1076 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1077 }
1078
1079 /*
1080 * JBD Might read a cached version of another nodes journal file. We
1081 * don't want this as this file changes often and we get no
1082 * notification on those changes. The only way to be sure that we've
1083 * got the most up to date version of those blocks then is to force
1084 * read them off disk. Just searching through the buffer cache won't
1085 * work as there may be pages backing this file which are still marked
1086 * up to date. We know things can't change on this file underneath us
1087 * as we have the lock by now :)
1088 */
1089 static int ocfs2_force_read_journal(struct inode *inode)
1090 {
1091 int status = 0;
1092 int i;
1093 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1094 #define CONCURRENT_JOURNAL_FILL 32ULL
1095 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1096
1097 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1098
1099 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1100 v_blkno = 0;
1101 while (v_blkno < num_blocks) {
1102 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1103 &p_blkno, &p_blocks, NULL);
1104 if (status < 0) {
1105 mlog_errno(status);
1106 goto bail;
1107 }
1108
1109 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1110 p_blocks = CONCURRENT_JOURNAL_FILL;
1111
1112 /* We are reading journal data which should not
1113 * be put in the uptodate cache */
1114 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1115 p_blkno, p_blocks, bhs);
1116 if (status < 0) {
1117 mlog_errno(status);
1118 goto bail;
1119 }
1120
1121 for(i = 0; i < p_blocks; i++) {
1122 brelse(bhs[i]);
1123 bhs[i] = NULL;
1124 }
1125
1126 v_blkno += p_blocks;
1127 }
1128
1129 bail:
1130 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1131 brelse(bhs[i]);
1132 return status;
1133 }
1134
1135 struct ocfs2_la_recovery_item {
1136 struct list_head lri_list;
1137 int lri_slot;
1138 struct ocfs2_dinode *lri_la_dinode;
1139 struct ocfs2_dinode *lri_tl_dinode;
1140 struct ocfs2_quota_recovery *lri_qrec;
1141 };
1142
1143 /* Does the second half of the recovery process. By this point, the
1144 * node is marked clean and can actually be considered recovered,
1145 * hence it's no longer in the recovery map, but there's still some
1146 * cleanup we can do which shouldn't happen within the recovery thread
1147 * as locking in that context becomes very difficult if we are to take
1148 * recovering nodes into account.
1149 *
1150 * NOTE: This function can and will sleep on recovery of other nodes
1151 * during cluster locking, just like any other ocfs2 process.
1152 */
1153 void ocfs2_complete_recovery(struct work_struct *work)
1154 {
1155 int ret = 0;
1156 struct ocfs2_journal *journal =
1157 container_of(work, struct ocfs2_journal, j_recovery_work);
1158 struct ocfs2_super *osb = journal->j_osb;
1159 struct ocfs2_dinode *la_dinode, *tl_dinode;
1160 struct ocfs2_la_recovery_item *item, *n;
1161 struct ocfs2_quota_recovery *qrec;
1162 LIST_HEAD(tmp_la_list);
1163
1164 trace_ocfs2_complete_recovery(
1165 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1166
1167 spin_lock(&journal->j_lock);
1168 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1169 spin_unlock(&journal->j_lock);
1170
1171 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1172 list_del_init(&item->lri_list);
1173
1174 ocfs2_wait_on_quotas(osb);
1175
1176 la_dinode = item->lri_la_dinode;
1177 tl_dinode = item->lri_tl_dinode;
1178 qrec = item->lri_qrec;
1179
1180 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1181 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1182 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1183 qrec);
1184
1185 if (la_dinode) {
1186 ret = ocfs2_complete_local_alloc_recovery(osb,
1187 la_dinode);
1188 if (ret < 0)
1189 mlog_errno(ret);
1190
1191 kfree(la_dinode);
1192 }
1193
1194 if (tl_dinode) {
1195 ret = ocfs2_complete_truncate_log_recovery(osb,
1196 tl_dinode);
1197 if (ret < 0)
1198 mlog_errno(ret);
1199
1200 kfree(tl_dinode);
1201 }
1202
1203 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1204 if (ret < 0)
1205 mlog_errno(ret);
1206
1207 if (qrec) {
1208 ret = ocfs2_finish_quota_recovery(osb, qrec,
1209 item->lri_slot);
1210 if (ret < 0)
1211 mlog_errno(ret);
1212 /* Recovery info is already freed now */
1213 }
1214
1215 kfree(item);
1216 }
1217
1218 trace_ocfs2_complete_recovery_end(ret);
1219 }
1220
1221 /* NOTE: This function always eats your references to la_dinode and
1222 * tl_dinode, either manually on error, or by passing them to
1223 * ocfs2_complete_recovery */
1224 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1225 int slot_num,
1226 struct ocfs2_dinode *la_dinode,
1227 struct ocfs2_dinode *tl_dinode,
1228 struct ocfs2_quota_recovery *qrec)
1229 {
1230 struct ocfs2_la_recovery_item *item;
1231
1232 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1233 if (!item) {
1234 /* Though we wish to avoid it, we are in fact safe in
1235 * skipping local alloc cleanup as fsck.ocfs2 is more
1236 * than capable of reclaiming unused space. */
1237 if (la_dinode)
1238 kfree(la_dinode);
1239
1240 if (tl_dinode)
1241 kfree(tl_dinode);
1242
1243 if (qrec)
1244 ocfs2_free_quota_recovery(qrec);
1245
1246 mlog_errno(-ENOMEM);
1247 return;
1248 }
1249
1250 INIT_LIST_HEAD(&item->lri_list);
1251 item->lri_la_dinode = la_dinode;
1252 item->lri_slot = slot_num;
1253 item->lri_tl_dinode = tl_dinode;
1254 item->lri_qrec = qrec;
1255
1256 spin_lock(&journal->j_lock);
1257 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1258 queue_work(ocfs2_wq, &journal->j_recovery_work);
1259 spin_unlock(&journal->j_lock);
1260 }
1261
1262 /* Called by the mount code to queue recovery the last part of
1263 * recovery for it's own and offline slot(s). */
1264 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1265 {
1266 struct ocfs2_journal *journal = osb->journal;
1267
1268 if (ocfs2_is_hard_readonly(osb))
1269 return;
1270
1271 /* No need to queue up our truncate_log as regular cleanup will catch
1272 * that */
1273 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1274 osb->local_alloc_copy, NULL, NULL);
1275 ocfs2_schedule_truncate_log_flush(osb, 0);
1276
1277 osb->local_alloc_copy = NULL;
1278 osb->dirty = 0;
1279
1280 /* queue to recover orphan slots for all offline slots */
1281 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1282 ocfs2_queue_replay_slots(osb);
1283 ocfs2_free_replay_slots(osb);
1284 }
1285
1286 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1287 {
1288 if (osb->quota_rec) {
1289 ocfs2_queue_recovery_completion(osb->journal,
1290 osb->slot_num,
1291 NULL,
1292 NULL,
1293 osb->quota_rec);
1294 osb->quota_rec = NULL;
1295 }
1296 }
1297
1298 static int __ocfs2_recovery_thread(void *arg)
1299 {
1300 int status, node_num, slot_num;
1301 struct ocfs2_super *osb = arg;
1302 struct ocfs2_recovery_map *rm = osb->recovery_map;
1303 int *rm_quota = NULL;
1304 int rm_quota_used = 0, i;
1305 struct ocfs2_quota_recovery *qrec;
1306
1307 status = ocfs2_wait_on_mount(osb);
1308 if (status < 0) {
1309 goto bail;
1310 }
1311
1312 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1313 if (!rm_quota) {
1314 status = -ENOMEM;
1315 goto bail;
1316 }
1317 restart:
1318 status = ocfs2_super_lock(osb, 1);
1319 if (status < 0) {
1320 mlog_errno(status);
1321 goto bail;
1322 }
1323
1324 status = ocfs2_compute_replay_slots(osb);
1325 if (status < 0)
1326 mlog_errno(status);
1327
1328 /* queue recovery for our own slot */
1329 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1330 NULL, NULL);
1331
1332 spin_lock(&osb->osb_lock);
1333 while (rm->rm_used) {
1334 /* It's always safe to remove entry zero, as we won't
1335 * clear it until ocfs2_recover_node() has succeeded. */
1336 node_num = rm->rm_entries[0];
1337 spin_unlock(&osb->osb_lock);
1338 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1339 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1340 if (slot_num == -ENOENT) {
1341 status = 0;
1342 goto skip_recovery;
1343 }
1344
1345 /* It is a bit subtle with quota recovery. We cannot do it
1346 * immediately because we have to obtain cluster locks from
1347 * quota files and we also don't want to just skip it because
1348 * then quota usage would be out of sync until some node takes
1349 * the slot. So we remember which nodes need quota recovery
1350 * and when everything else is done, we recover quotas. */
1351 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1352 if (i == rm_quota_used)
1353 rm_quota[rm_quota_used++] = slot_num;
1354
1355 status = ocfs2_recover_node(osb, node_num, slot_num);
1356 skip_recovery:
1357 if (!status) {
1358 ocfs2_recovery_map_clear(osb, node_num);
1359 } else {
1360 mlog(ML_ERROR,
1361 "Error %d recovering node %d on device (%u,%u)!\n",
1362 status, node_num,
1363 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1364 mlog(ML_ERROR, "Volume requires unmount.\n");
1365 }
1366
1367 spin_lock(&osb->osb_lock);
1368 }
1369 spin_unlock(&osb->osb_lock);
1370 trace_ocfs2_recovery_thread_end(status);
1371
1372 /* Refresh all journal recovery generations from disk */
1373 status = ocfs2_check_journals_nolocks(osb);
1374 status = (status == -EROFS) ? 0 : status;
1375 if (status < 0)
1376 mlog_errno(status);
1377
1378 /* Now it is right time to recover quotas... We have to do this under
1379 * superblock lock so that no one can start using the slot (and crash)
1380 * before we recover it */
1381 for (i = 0; i < rm_quota_used; i++) {
1382 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1383 if (IS_ERR(qrec)) {
1384 status = PTR_ERR(qrec);
1385 mlog_errno(status);
1386 continue;
1387 }
1388 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1389 NULL, NULL, qrec);
1390 }
1391
1392 ocfs2_super_unlock(osb, 1);
1393
1394 /* queue recovery for offline slots */
1395 ocfs2_queue_replay_slots(osb);
1396
1397 bail:
1398 mutex_lock(&osb->recovery_lock);
1399 if (!status && !ocfs2_recovery_completed(osb)) {
1400 mutex_unlock(&osb->recovery_lock);
1401 goto restart;
1402 }
1403
1404 ocfs2_free_replay_slots(osb);
1405 osb->recovery_thread_task = NULL;
1406 mb(); /* sync with ocfs2_recovery_thread_running */
1407 wake_up(&osb->recovery_event);
1408
1409 mutex_unlock(&osb->recovery_lock);
1410
1411 if (rm_quota)
1412 kfree(rm_quota);
1413
1414 /* no one is callint kthread_stop() for us so the kthread() api
1415 * requires that we call do_exit(). And it isn't exported, but
1416 * complete_and_exit() seems to be a minimal wrapper around it. */
1417 complete_and_exit(NULL, status);
1418 return status;
1419 }
1420
1421 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1422 {
1423 mutex_lock(&osb->recovery_lock);
1424
1425 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1426 osb->disable_recovery, osb->recovery_thread_task,
1427 osb->disable_recovery ?
1428 -1 : ocfs2_recovery_map_set(osb, node_num));
1429
1430 if (osb->disable_recovery)
1431 goto out;
1432
1433 if (osb->recovery_thread_task)
1434 goto out;
1435
1436 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1437 "ocfs2rec");
1438 if (IS_ERR(osb->recovery_thread_task)) {
1439 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1440 osb->recovery_thread_task = NULL;
1441 }
1442
1443 out:
1444 mutex_unlock(&osb->recovery_lock);
1445 wake_up(&osb->recovery_event);
1446 }
1447
1448 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1449 int slot_num,
1450 struct buffer_head **bh,
1451 struct inode **ret_inode)
1452 {
1453 int status = -EACCES;
1454 struct inode *inode = NULL;
1455
1456 BUG_ON(slot_num >= osb->max_slots);
1457
1458 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1459 slot_num);
1460 if (!inode || is_bad_inode(inode)) {
1461 mlog_errno(status);
1462 goto bail;
1463 }
1464 SET_INODE_JOURNAL(inode);
1465
1466 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1467 if (status < 0) {
1468 mlog_errno(status);
1469 goto bail;
1470 }
1471
1472 status = 0;
1473
1474 bail:
1475 if (inode) {
1476 if (status || !ret_inode)
1477 iput(inode);
1478 else
1479 *ret_inode = inode;
1480 }
1481 return status;
1482 }
1483
1484 /* Does the actual journal replay and marks the journal inode as
1485 * clean. Will only replay if the journal inode is marked dirty. */
1486 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1487 int node_num,
1488 int slot_num)
1489 {
1490 int status;
1491 int got_lock = 0;
1492 unsigned int flags;
1493 struct inode *inode = NULL;
1494 struct ocfs2_dinode *fe;
1495 journal_t *journal = NULL;
1496 struct buffer_head *bh = NULL;
1497 u32 slot_reco_gen;
1498
1499 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1500 if (status) {
1501 mlog_errno(status);
1502 goto done;
1503 }
1504
1505 fe = (struct ocfs2_dinode *)bh->b_data;
1506 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1507 brelse(bh);
1508 bh = NULL;
1509
1510 /*
1511 * As the fs recovery is asynchronous, there is a small chance that
1512 * another node mounted (and recovered) the slot before the recovery
1513 * thread could get the lock. To handle that, we dirty read the journal
1514 * inode for that slot to get the recovery generation. If it is
1515 * different than what we expected, the slot has been recovered.
1516 * If not, it needs recovery.
1517 */
1518 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1519 trace_ocfs2_replay_journal_recovered(slot_num,
1520 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1521 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1522 status = -EBUSY;
1523 goto done;
1524 }
1525
1526 /* Continue with recovery as the journal has not yet been recovered */
1527
1528 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1529 if (status < 0) {
1530 trace_ocfs2_replay_journal_lock_err(status);
1531 if (status != -ERESTARTSYS)
1532 mlog(ML_ERROR, "Could not lock journal!\n");
1533 goto done;
1534 }
1535 got_lock = 1;
1536
1537 fe = (struct ocfs2_dinode *) bh->b_data;
1538
1539 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1540 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1541
1542 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1543 trace_ocfs2_replay_journal_skip(node_num);
1544 /* Refresh recovery generation for the slot */
1545 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1546 goto done;
1547 }
1548
1549 /* we need to run complete recovery for offline orphan slots */
1550 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1551
1552 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1553 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1554 MINOR(osb->sb->s_dev));
1555
1556 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1557
1558 status = ocfs2_force_read_journal(inode);
1559 if (status < 0) {
1560 mlog_errno(status);
1561 goto done;
1562 }
1563
1564 journal = jbd2_journal_init_inode(inode);
1565 if (journal == NULL) {
1566 mlog(ML_ERROR, "Linux journal layer error\n");
1567 status = -EIO;
1568 goto done;
1569 }
1570
1571 status = jbd2_journal_load(journal);
1572 if (status < 0) {
1573 mlog_errno(status);
1574 if (!igrab(inode))
1575 BUG();
1576 jbd2_journal_destroy(journal);
1577 goto done;
1578 }
1579
1580 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1581
1582 /* wipe the journal */
1583 jbd2_journal_lock_updates(journal);
1584 status = jbd2_journal_flush(journal);
1585 jbd2_journal_unlock_updates(journal);
1586 if (status < 0)
1587 mlog_errno(status);
1588
1589 /* This will mark the node clean */
1590 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1591 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1592 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1593
1594 /* Increment recovery generation to indicate successful recovery */
1595 ocfs2_bump_recovery_generation(fe);
1596 osb->slot_recovery_generations[slot_num] =
1597 ocfs2_get_recovery_generation(fe);
1598
1599 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1600 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1601 if (status < 0)
1602 mlog_errno(status);
1603
1604 if (!igrab(inode))
1605 BUG();
1606
1607 jbd2_journal_destroy(journal);
1608
1609 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1610 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1611 MINOR(osb->sb->s_dev));
1612 done:
1613 /* drop the lock on this nodes journal */
1614 if (got_lock)
1615 ocfs2_inode_unlock(inode, 1);
1616
1617 if (inode)
1618 iput(inode);
1619
1620 brelse(bh);
1621
1622 return status;
1623 }
1624
1625 /*
1626 * Do the most important parts of node recovery:
1627 * - Replay it's journal
1628 * - Stamp a clean local allocator file
1629 * - Stamp a clean truncate log
1630 * - Mark the node clean
1631 *
1632 * If this function completes without error, a node in OCFS2 can be
1633 * said to have been safely recovered. As a result, failure during the
1634 * second part of a nodes recovery process (local alloc recovery) is
1635 * far less concerning.
1636 */
1637 static int ocfs2_recover_node(struct ocfs2_super *osb,
1638 int node_num, int slot_num)
1639 {
1640 int status = 0;
1641 struct ocfs2_dinode *la_copy = NULL;
1642 struct ocfs2_dinode *tl_copy = NULL;
1643
1644 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1645
1646 /* Should not ever be called to recover ourselves -- in that
1647 * case we should've called ocfs2_journal_load instead. */
1648 BUG_ON(osb->node_num == node_num);
1649
1650 status = ocfs2_replay_journal(osb, node_num, slot_num);
1651 if (status < 0) {
1652 if (status == -EBUSY) {
1653 trace_ocfs2_recover_node_skip(slot_num, node_num);
1654 status = 0;
1655 goto done;
1656 }
1657 mlog_errno(status);
1658 goto done;
1659 }
1660
1661 /* Stamp a clean local alloc file AFTER recovering the journal... */
1662 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1663 if (status < 0) {
1664 mlog_errno(status);
1665 goto done;
1666 }
1667
1668 /* An error from begin_truncate_log_recovery is not
1669 * serious enough to warrant halting the rest of
1670 * recovery. */
1671 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1672 if (status < 0)
1673 mlog_errno(status);
1674
1675 /* Likewise, this would be a strange but ultimately not so
1676 * harmful place to get an error... */
1677 status = ocfs2_clear_slot(osb, slot_num);
1678 if (status < 0)
1679 mlog_errno(status);
1680
1681 /* This will kfree the memory pointed to by la_copy and tl_copy */
1682 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1683 tl_copy, NULL);
1684
1685 status = 0;
1686 done:
1687
1688 return status;
1689 }
1690
1691 /* Test node liveness by trylocking his journal. If we get the lock,
1692 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1693 * still alive (we couldn't get the lock) and < 0 on error. */
1694 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1695 int slot_num)
1696 {
1697 int status, flags;
1698 struct inode *inode = NULL;
1699
1700 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1701 slot_num);
1702 if (inode == NULL) {
1703 mlog(ML_ERROR, "access error\n");
1704 status = -EACCES;
1705 goto bail;
1706 }
1707 if (is_bad_inode(inode)) {
1708 mlog(ML_ERROR, "access error (bad inode)\n");
1709 iput(inode);
1710 inode = NULL;
1711 status = -EACCES;
1712 goto bail;
1713 }
1714 SET_INODE_JOURNAL(inode);
1715
1716 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1717 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1718 if (status < 0) {
1719 if (status != -EAGAIN)
1720 mlog_errno(status);
1721 goto bail;
1722 }
1723
1724 ocfs2_inode_unlock(inode, 1);
1725 bail:
1726 if (inode)
1727 iput(inode);
1728
1729 return status;
1730 }
1731
1732 /* Call this underneath ocfs2_super_lock. It also assumes that the
1733 * slot info struct has been updated from disk. */
1734 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1735 {
1736 unsigned int node_num;
1737 int status, i;
1738 u32 gen;
1739 struct buffer_head *bh = NULL;
1740 struct ocfs2_dinode *di;
1741
1742 /* This is called with the super block cluster lock, so we
1743 * know that the slot map can't change underneath us. */
1744
1745 for (i = 0; i < osb->max_slots; i++) {
1746 /* Read journal inode to get the recovery generation */
1747 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1748 if (status) {
1749 mlog_errno(status);
1750 goto bail;
1751 }
1752 di = (struct ocfs2_dinode *)bh->b_data;
1753 gen = ocfs2_get_recovery_generation(di);
1754 brelse(bh);
1755 bh = NULL;
1756
1757 spin_lock(&osb->osb_lock);
1758 osb->slot_recovery_generations[i] = gen;
1759
1760 trace_ocfs2_mark_dead_nodes(i,
1761 osb->slot_recovery_generations[i]);
1762
1763 if (i == osb->slot_num) {
1764 spin_unlock(&osb->osb_lock);
1765 continue;
1766 }
1767
1768 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1769 if (status == -ENOENT) {
1770 spin_unlock(&osb->osb_lock);
1771 continue;
1772 }
1773
1774 if (__ocfs2_recovery_map_test(osb, node_num)) {
1775 spin_unlock(&osb->osb_lock);
1776 continue;
1777 }
1778 spin_unlock(&osb->osb_lock);
1779
1780 /* Ok, we have a slot occupied by another node which
1781 * is not in the recovery map. We trylock his journal
1782 * file here to test if he's alive. */
1783 status = ocfs2_trylock_journal(osb, i);
1784 if (!status) {
1785 /* Since we're called from mount, we know that
1786 * the recovery thread can't race us on
1787 * setting / checking the recovery bits. */
1788 ocfs2_recovery_thread(osb, node_num);
1789 } else if ((status < 0) && (status != -EAGAIN)) {
1790 mlog_errno(status);
1791 goto bail;
1792 }
1793 }
1794
1795 status = 0;
1796 bail:
1797 return status;
1798 }
1799
1800 /*
1801 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1802 * randomness to the timeout to minimize multple nodes firing the timer at the
1803 * same time.
1804 */
1805 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1806 {
1807 unsigned long time;
1808
1809 get_random_bytes(&time, sizeof(time));
1810 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1811 return msecs_to_jiffies(time);
1812 }
1813
1814 /*
1815 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1816 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1817 * is done to catch any orphans that are left over in orphan directories.
1818 *
1819 * It scans all slots, even ones that are in use. It does so to handle the
1820 * case described below:
1821 *
1822 * Node 1 has an inode it was using. The dentry went away due to memory
1823 * pressure. Node 1 closes the inode, but it's on the free list. The node
1824 * has the open lock.
1825 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1826 * but node 1 has no dentry and doesn't get the message. It trylocks the
1827 * open lock, sees that another node has a PR, and does nothing.
1828 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1829 * open lock, sees the PR still, and does nothing.
1830 * Basically, we have to trigger an orphan iput on node 1. The only way
1831 * for this to happen is if node 1 runs node 2's orphan dir.
1832 *
1833 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1834 * seconds. It gets an EX lock on os_lockres and checks sequence number
1835 * stored in LVB. If the sequence number has changed, it means some other
1836 * node has done the scan. This node skips the scan and tracks the
1837 * sequence number. If the sequence number didn't change, it means a scan
1838 * hasn't happened. The node queues a scan and increments the
1839 * sequence number in the LVB.
1840 */
1841 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1842 {
1843 struct ocfs2_orphan_scan *os;
1844 int status, i;
1845 u32 seqno = 0;
1846
1847 os = &osb->osb_orphan_scan;
1848
1849 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1850 goto out;
1851
1852 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1853 atomic_read(&os->os_state));
1854
1855 status = ocfs2_orphan_scan_lock(osb, &seqno);
1856 if (status < 0) {
1857 if (status != -EAGAIN)
1858 mlog_errno(status);
1859 goto out;
1860 }
1861
1862 /* Do no queue the tasks if the volume is being umounted */
1863 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1864 goto unlock;
1865
1866 if (os->os_seqno != seqno) {
1867 os->os_seqno = seqno;
1868 goto unlock;
1869 }
1870
1871 for (i = 0; i < osb->max_slots; i++)
1872 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1873 NULL);
1874 /*
1875 * We queued a recovery on orphan slots, increment the sequence
1876 * number and update LVB so other node will skip the scan for a while
1877 */
1878 seqno++;
1879 os->os_count++;
1880 os->os_scantime = CURRENT_TIME;
1881 unlock:
1882 ocfs2_orphan_scan_unlock(osb, seqno);
1883 out:
1884 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1885 atomic_read(&os->os_state));
1886 return;
1887 }
1888
1889 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1890 void ocfs2_orphan_scan_work(struct work_struct *work)
1891 {
1892 struct ocfs2_orphan_scan *os;
1893 struct ocfs2_super *osb;
1894
1895 os = container_of(work, struct ocfs2_orphan_scan,
1896 os_orphan_scan_work.work);
1897 osb = os->os_osb;
1898
1899 mutex_lock(&os->os_lock);
1900 ocfs2_queue_orphan_scan(osb);
1901 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1902 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1903 ocfs2_orphan_scan_timeout());
1904 mutex_unlock(&os->os_lock);
1905 }
1906
1907 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1908 {
1909 struct ocfs2_orphan_scan *os;
1910
1911 os = &osb->osb_orphan_scan;
1912 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1913 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1914 mutex_lock(&os->os_lock);
1915 cancel_delayed_work(&os->os_orphan_scan_work);
1916 mutex_unlock(&os->os_lock);
1917 }
1918 }
1919
1920 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1921 {
1922 struct ocfs2_orphan_scan *os;
1923
1924 os = &osb->osb_orphan_scan;
1925 os->os_osb = osb;
1926 os->os_count = 0;
1927 os->os_seqno = 0;
1928 mutex_init(&os->os_lock);
1929 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1930 }
1931
1932 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1933 {
1934 struct ocfs2_orphan_scan *os;
1935
1936 os = &osb->osb_orphan_scan;
1937 os->os_scantime = CURRENT_TIME;
1938 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1939 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1940 else {
1941 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1942 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1943 ocfs2_orphan_scan_timeout());
1944 }
1945 }
1946
1947 struct ocfs2_orphan_filldir_priv {
1948 struct inode *head;
1949 struct ocfs2_super *osb;
1950 };
1951
1952 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1953 loff_t pos, u64 ino, unsigned type)
1954 {
1955 struct ocfs2_orphan_filldir_priv *p = priv;
1956 struct inode *iter;
1957
1958 if (name_len == 1 && !strncmp(".", name, 1))
1959 return 0;
1960 if (name_len == 2 && !strncmp("..", name, 2))
1961 return 0;
1962
1963 /* Skip bad inodes so that recovery can continue */
1964 iter = ocfs2_iget(p->osb, ino,
1965 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1966 if (IS_ERR(iter))
1967 return 0;
1968
1969 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
1970 /* No locking is required for the next_orphan queue as there
1971 * is only ever a single process doing orphan recovery. */
1972 OCFS2_I(iter)->ip_next_orphan = p->head;
1973 p->head = iter;
1974
1975 return 0;
1976 }
1977
1978 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1979 int slot,
1980 struct inode **head)
1981 {
1982 int status;
1983 struct inode *orphan_dir_inode = NULL;
1984 struct ocfs2_orphan_filldir_priv priv;
1985 loff_t pos = 0;
1986
1987 priv.osb = osb;
1988 priv.head = *head;
1989
1990 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1991 ORPHAN_DIR_SYSTEM_INODE,
1992 slot);
1993 if (!orphan_dir_inode) {
1994 status = -ENOENT;
1995 mlog_errno(status);
1996 return status;
1997 }
1998
1999 mutex_lock(&orphan_dir_inode->i_mutex);
2000 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2001 if (status < 0) {
2002 mlog_errno(status);
2003 goto out;
2004 }
2005
2006 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2007 ocfs2_orphan_filldir);
2008 if (status) {
2009 mlog_errno(status);
2010 goto out_cluster;
2011 }
2012
2013 *head = priv.head;
2014
2015 out_cluster:
2016 ocfs2_inode_unlock(orphan_dir_inode, 0);
2017 out:
2018 mutex_unlock(&orphan_dir_inode->i_mutex);
2019 iput(orphan_dir_inode);
2020 return status;
2021 }
2022
2023 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2024 int slot)
2025 {
2026 int ret;
2027
2028 spin_lock(&osb->osb_lock);
2029 ret = !osb->osb_orphan_wipes[slot];
2030 spin_unlock(&osb->osb_lock);
2031 return ret;
2032 }
2033
2034 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2035 int slot)
2036 {
2037 spin_lock(&osb->osb_lock);
2038 /* Mark ourselves such that new processes in delete_inode()
2039 * know to quit early. */
2040 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2041 while (osb->osb_orphan_wipes[slot]) {
2042 /* If any processes are already in the middle of an
2043 * orphan wipe on this dir, then we need to wait for
2044 * them. */
2045 spin_unlock(&osb->osb_lock);
2046 wait_event_interruptible(osb->osb_wipe_event,
2047 ocfs2_orphan_recovery_can_continue(osb, slot));
2048 spin_lock(&osb->osb_lock);
2049 }
2050 spin_unlock(&osb->osb_lock);
2051 }
2052
2053 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2054 int slot)
2055 {
2056 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2057 }
2058
2059 /*
2060 * Orphan recovery. Each mounted node has it's own orphan dir which we
2061 * must run during recovery. Our strategy here is to build a list of
2062 * the inodes in the orphan dir and iget/iput them. The VFS does
2063 * (most) of the rest of the work.
2064 *
2065 * Orphan recovery can happen at any time, not just mount so we have a
2066 * couple of extra considerations.
2067 *
2068 * - We grab as many inodes as we can under the orphan dir lock -
2069 * doing iget() outside the orphan dir risks getting a reference on
2070 * an invalid inode.
2071 * - We must be sure not to deadlock with other processes on the
2072 * system wanting to run delete_inode(). This can happen when they go
2073 * to lock the orphan dir and the orphan recovery process attempts to
2074 * iget() inside the orphan dir lock. This can be avoided by
2075 * advertising our state to ocfs2_delete_inode().
2076 */
2077 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2078 int slot)
2079 {
2080 int ret = 0;
2081 struct inode *inode = NULL;
2082 struct inode *iter;
2083 struct ocfs2_inode_info *oi;
2084
2085 trace_ocfs2_recover_orphans(slot);
2086
2087 ocfs2_mark_recovering_orphan_dir(osb, slot);
2088 ret = ocfs2_queue_orphans(osb, slot, &inode);
2089 ocfs2_clear_recovering_orphan_dir(osb, slot);
2090
2091 /* Error here should be noted, but we want to continue with as
2092 * many queued inodes as we've got. */
2093 if (ret)
2094 mlog_errno(ret);
2095
2096 while (inode) {
2097 oi = OCFS2_I(inode);
2098 trace_ocfs2_recover_orphans_iput(
2099 (unsigned long long)oi->ip_blkno);
2100
2101 iter = oi->ip_next_orphan;
2102
2103 spin_lock(&oi->ip_lock);
2104 /* The remote delete code may have set these on the
2105 * assumption that the other node would wipe them
2106 * successfully. If they are still in the node's
2107 * orphan dir, we need to reset that state. */
2108 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2109
2110 /* Set the proper information to get us going into
2111 * ocfs2_delete_inode. */
2112 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2113 spin_unlock(&oi->ip_lock);
2114
2115 iput(inode);
2116
2117 inode = iter;
2118 }
2119
2120 return ret;
2121 }
2122
2123 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2124 {
2125 /* This check is good because ocfs2 will wait on our recovery
2126 * thread before changing it to something other than MOUNTED
2127 * or DISABLED. */
2128 wait_event(osb->osb_mount_event,
2129 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2130 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2131 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2132
2133 /* If there's an error on mount, then we may never get to the
2134 * MOUNTED flag, but this is set right before
2135 * dismount_volume() so we can trust it. */
2136 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2137 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2138 mlog(0, "mount error, exiting!\n");
2139 return -EBUSY;
2140 }
2141
2142 return 0;
2143 }
2144
2145 static int ocfs2_commit_thread(void *arg)
2146 {
2147 int status;
2148 struct ocfs2_super *osb = arg;
2149 struct ocfs2_journal *journal = osb->journal;
2150
2151 /* we can trust j_num_trans here because _should_stop() is only set in
2152 * shutdown and nobody other than ourselves should be able to start
2153 * transactions. committing on shutdown might take a few iterations
2154 * as final transactions put deleted inodes on the list */
2155 while (!(kthread_should_stop() &&
2156 atomic_read(&journal->j_num_trans) == 0)) {
2157
2158 wait_event_interruptible(osb->checkpoint_event,
2159 atomic_read(&journal->j_num_trans)
2160 || kthread_should_stop());
2161
2162 status = ocfs2_commit_cache(osb);
2163 if (status < 0)
2164 mlog_errno(status);
2165
2166 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2167 mlog(ML_KTHREAD,
2168 "commit_thread: %u transactions pending on "
2169 "shutdown\n",
2170 atomic_read(&journal->j_num_trans));
2171 }
2172 }
2173
2174 return 0;
2175 }
2176
2177 /* Reads all the journal inodes without taking any cluster locks. Used
2178 * for hard readonly access to determine whether any journal requires
2179 * recovery. Also used to refresh the recovery generation numbers after
2180 * a journal has been recovered by another node.
2181 */
2182 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2183 {
2184 int ret = 0;
2185 unsigned int slot;
2186 struct buffer_head *di_bh = NULL;
2187 struct ocfs2_dinode *di;
2188 int journal_dirty = 0;
2189
2190 for(slot = 0; slot < osb->max_slots; slot++) {
2191 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2192 if (ret) {
2193 mlog_errno(ret);
2194 goto out;
2195 }
2196
2197 di = (struct ocfs2_dinode *) di_bh->b_data;
2198
2199 osb->slot_recovery_generations[slot] =
2200 ocfs2_get_recovery_generation(di);
2201
2202 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2203 OCFS2_JOURNAL_DIRTY_FL)
2204 journal_dirty = 1;
2205
2206 brelse(di_bh);
2207 di_bh = NULL;
2208 }
2209
2210 out:
2211 if (journal_dirty)
2212 ret = -EROFS;
2213 return ret;
2214 }
This page took 0.079244 seconds and 5 git commands to generate.