Merge tag 'usb-3.16-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[deliverable/linux.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53
54 #include "buffer_head_io.h"
55 #include "ocfs2_trace.h"
56
57 DEFINE_SPINLOCK(trans_inc_lock);
58
59 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
60
61 static int ocfs2_force_read_journal(struct inode *inode);
62 static int ocfs2_recover_node(struct ocfs2_super *osb,
63 int node_num, int slot_num);
64 static int __ocfs2_recovery_thread(void *arg);
65 static int ocfs2_commit_cache(struct ocfs2_super *osb);
66 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
67 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
68 int dirty, int replayed);
69 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
70 int slot_num);
71 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
72 int slot);
73 static int ocfs2_commit_thread(void *arg);
74 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
75 int slot_num,
76 struct ocfs2_dinode *la_dinode,
77 struct ocfs2_dinode *tl_dinode,
78 struct ocfs2_quota_recovery *qrec);
79
80 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
81 {
82 return __ocfs2_wait_on_mount(osb, 0);
83 }
84
85 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
86 {
87 return __ocfs2_wait_on_mount(osb, 1);
88 }
89
90 /*
91 * This replay_map is to track online/offline slots, so we could recover
92 * offline slots during recovery and mount
93 */
94
95 enum ocfs2_replay_state {
96 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
97 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
98 REPLAY_DONE /* Replay was already queued */
99 };
100
101 struct ocfs2_replay_map {
102 unsigned int rm_slots;
103 enum ocfs2_replay_state rm_state;
104 unsigned char rm_replay_slots[0];
105 };
106
107 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
108 {
109 if (!osb->replay_map)
110 return;
111
112 /* If we've already queued the replay, we don't have any more to do */
113 if (osb->replay_map->rm_state == REPLAY_DONE)
114 return;
115
116 osb->replay_map->rm_state = state;
117 }
118
119 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
120 {
121 struct ocfs2_replay_map *replay_map;
122 int i, node_num;
123
124 /* If replay map is already set, we don't do it again */
125 if (osb->replay_map)
126 return 0;
127
128 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
129 (osb->max_slots * sizeof(char)), GFP_KERNEL);
130
131 if (!replay_map) {
132 mlog_errno(-ENOMEM);
133 return -ENOMEM;
134 }
135
136 spin_lock(&osb->osb_lock);
137
138 replay_map->rm_slots = osb->max_slots;
139 replay_map->rm_state = REPLAY_UNNEEDED;
140
141 /* set rm_replay_slots for offline slot(s) */
142 for (i = 0; i < replay_map->rm_slots; i++) {
143 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
144 replay_map->rm_replay_slots[i] = 1;
145 }
146
147 osb->replay_map = replay_map;
148 spin_unlock(&osb->osb_lock);
149 return 0;
150 }
151
152 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
153 {
154 struct ocfs2_replay_map *replay_map = osb->replay_map;
155 int i;
156
157 if (!replay_map)
158 return;
159
160 if (replay_map->rm_state != REPLAY_NEEDED)
161 return;
162
163 for (i = 0; i < replay_map->rm_slots; i++)
164 if (replay_map->rm_replay_slots[i])
165 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
166 NULL, NULL);
167 replay_map->rm_state = REPLAY_DONE;
168 }
169
170 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
171 {
172 struct ocfs2_replay_map *replay_map = osb->replay_map;
173
174 if (!osb->replay_map)
175 return;
176
177 kfree(replay_map);
178 osb->replay_map = NULL;
179 }
180
181 int ocfs2_recovery_init(struct ocfs2_super *osb)
182 {
183 struct ocfs2_recovery_map *rm;
184
185 mutex_init(&osb->recovery_lock);
186 osb->disable_recovery = 0;
187 osb->recovery_thread_task = NULL;
188 init_waitqueue_head(&osb->recovery_event);
189
190 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
191 osb->max_slots * sizeof(unsigned int),
192 GFP_KERNEL);
193 if (!rm) {
194 mlog_errno(-ENOMEM);
195 return -ENOMEM;
196 }
197
198 rm->rm_entries = (unsigned int *)((char *)rm +
199 sizeof(struct ocfs2_recovery_map));
200 osb->recovery_map = rm;
201
202 return 0;
203 }
204
205 /* we can't grab the goofy sem lock from inside wait_event, so we use
206 * memory barriers to make sure that we'll see the null task before
207 * being woken up */
208 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
209 {
210 mb();
211 return osb->recovery_thread_task != NULL;
212 }
213
214 void ocfs2_recovery_exit(struct ocfs2_super *osb)
215 {
216 struct ocfs2_recovery_map *rm;
217
218 /* disable any new recovery threads and wait for any currently
219 * running ones to exit. Do this before setting the vol_state. */
220 mutex_lock(&osb->recovery_lock);
221 osb->disable_recovery = 1;
222 mutex_unlock(&osb->recovery_lock);
223 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
224
225 /* At this point, we know that no more recovery threads can be
226 * launched, so wait for any recovery completion work to
227 * complete. */
228 flush_workqueue(ocfs2_wq);
229
230 /*
231 * Now that recovery is shut down, and the osb is about to be
232 * freed, the osb_lock is not taken here.
233 */
234 rm = osb->recovery_map;
235 /* XXX: Should we bug if there are dirty entries? */
236
237 kfree(rm);
238 }
239
240 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
241 unsigned int node_num)
242 {
243 int i;
244 struct ocfs2_recovery_map *rm = osb->recovery_map;
245
246 assert_spin_locked(&osb->osb_lock);
247
248 for (i = 0; i < rm->rm_used; i++) {
249 if (rm->rm_entries[i] == node_num)
250 return 1;
251 }
252
253 return 0;
254 }
255
256 /* Behaves like test-and-set. Returns the previous value */
257 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
258 unsigned int node_num)
259 {
260 struct ocfs2_recovery_map *rm = osb->recovery_map;
261
262 spin_lock(&osb->osb_lock);
263 if (__ocfs2_recovery_map_test(osb, node_num)) {
264 spin_unlock(&osb->osb_lock);
265 return 1;
266 }
267
268 /* XXX: Can this be exploited? Not from o2dlm... */
269 BUG_ON(rm->rm_used >= osb->max_slots);
270
271 rm->rm_entries[rm->rm_used] = node_num;
272 rm->rm_used++;
273 spin_unlock(&osb->osb_lock);
274
275 return 0;
276 }
277
278 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
279 unsigned int node_num)
280 {
281 int i;
282 struct ocfs2_recovery_map *rm = osb->recovery_map;
283
284 spin_lock(&osb->osb_lock);
285
286 for (i = 0; i < rm->rm_used; i++) {
287 if (rm->rm_entries[i] == node_num)
288 break;
289 }
290
291 if (i < rm->rm_used) {
292 /* XXX: be careful with the pointer math */
293 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
294 (rm->rm_used - i - 1) * sizeof(unsigned int));
295 rm->rm_used--;
296 }
297
298 spin_unlock(&osb->osb_lock);
299 }
300
301 static int ocfs2_commit_cache(struct ocfs2_super *osb)
302 {
303 int status = 0;
304 unsigned int flushed;
305 struct ocfs2_journal *journal = NULL;
306
307 journal = osb->journal;
308
309 /* Flush all pending commits and checkpoint the journal. */
310 down_write(&journal->j_trans_barrier);
311
312 flushed = atomic_read(&journal->j_num_trans);
313 trace_ocfs2_commit_cache_begin(flushed);
314 if (flushed == 0) {
315 up_write(&journal->j_trans_barrier);
316 goto finally;
317 }
318
319 jbd2_journal_lock_updates(journal->j_journal);
320 status = jbd2_journal_flush(journal->j_journal);
321 jbd2_journal_unlock_updates(journal->j_journal);
322 if (status < 0) {
323 up_write(&journal->j_trans_barrier);
324 mlog_errno(status);
325 goto finally;
326 }
327
328 ocfs2_inc_trans_id(journal);
329
330 flushed = atomic_read(&journal->j_num_trans);
331 atomic_set(&journal->j_num_trans, 0);
332 up_write(&journal->j_trans_barrier);
333
334 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
335
336 ocfs2_wake_downconvert_thread(osb);
337 wake_up(&journal->j_checkpointed);
338 finally:
339 return status;
340 }
341
342 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
343 {
344 journal_t *journal = osb->journal->j_journal;
345 handle_t *handle;
346
347 BUG_ON(!osb || !osb->journal->j_journal);
348
349 if (ocfs2_is_hard_readonly(osb))
350 return ERR_PTR(-EROFS);
351
352 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
353 BUG_ON(max_buffs <= 0);
354
355 /* Nested transaction? Just return the handle... */
356 if (journal_current_handle())
357 return jbd2_journal_start(journal, max_buffs);
358
359 sb_start_intwrite(osb->sb);
360
361 down_read(&osb->journal->j_trans_barrier);
362
363 handle = jbd2_journal_start(journal, max_buffs);
364 if (IS_ERR(handle)) {
365 up_read(&osb->journal->j_trans_barrier);
366 sb_end_intwrite(osb->sb);
367
368 mlog_errno(PTR_ERR(handle));
369
370 if (is_journal_aborted(journal)) {
371 ocfs2_abort(osb->sb, "Detected aborted journal");
372 handle = ERR_PTR(-EROFS);
373 }
374 } else {
375 if (!ocfs2_mount_local(osb))
376 atomic_inc(&(osb->journal->j_num_trans));
377 }
378
379 return handle;
380 }
381
382 int ocfs2_commit_trans(struct ocfs2_super *osb,
383 handle_t *handle)
384 {
385 int ret, nested;
386 struct ocfs2_journal *journal = osb->journal;
387
388 BUG_ON(!handle);
389
390 nested = handle->h_ref > 1;
391 ret = jbd2_journal_stop(handle);
392 if (ret < 0)
393 mlog_errno(ret);
394
395 if (!nested) {
396 up_read(&journal->j_trans_barrier);
397 sb_end_intwrite(osb->sb);
398 }
399
400 return ret;
401 }
402
403 /*
404 * 'nblocks' is what you want to add to the current transaction.
405 *
406 * This might call jbd2_journal_restart() which will commit dirty buffers
407 * and then restart the transaction. Before calling
408 * ocfs2_extend_trans(), any changed blocks should have been
409 * dirtied. After calling it, all blocks which need to be changed must
410 * go through another set of journal_access/journal_dirty calls.
411 *
412 * WARNING: This will not release any semaphores or disk locks taken
413 * during the transaction, so make sure they were taken *before*
414 * start_trans or we'll have ordering deadlocks.
415 *
416 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
417 * good because transaction ids haven't yet been recorded on the
418 * cluster locks associated with this handle.
419 */
420 int ocfs2_extend_trans(handle_t *handle, int nblocks)
421 {
422 int status, old_nblocks;
423
424 BUG_ON(!handle);
425 BUG_ON(nblocks < 0);
426
427 if (!nblocks)
428 return 0;
429
430 old_nblocks = handle->h_buffer_credits;
431
432 trace_ocfs2_extend_trans(old_nblocks, nblocks);
433
434 #ifdef CONFIG_OCFS2_DEBUG_FS
435 status = 1;
436 #else
437 status = jbd2_journal_extend(handle, nblocks);
438 if (status < 0) {
439 mlog_errno(status);
440 goto bail;
441 }
442 #endif
443
444 if (status > 0) {
445 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
446 status = jbd2_journal_restart(handle,
447 old_nblocks + nblocks);
448 if (status < 0) {
449 mlog_errno(status);
450 goto bail;
451 }
452 }
453
454 status = 0;
455 bail:
456 return status;
457 }
458
459 /*
460 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
461 * If that fails, restart the transaction & regain write access for the
462 * buffer head which is used for metadata modifications.
463 * Taken from Ext4: extend_or_restart_transaction()
464 */
465 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
466 {
467 int status, old_nblks;
468
469 BUG_ON(!handle);
470
471 old_nblks = handle->h_buffer_credits;
472 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
473
474 if (old_nblks < thresh)
475 return 0;
476
477 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
478 if (status < 0) {
479 mlog_errno(status);
480 goto bail;
481 }
482
483 if (status > 0) {
484 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
485 if (status < 0)
486 mlog_errno(status);
487 }
488
489 bail:
490 return status;
491 }
492
493
494 struct ocfs2_triggers {
495 struct jbd2_buffer_trigger_type ot_triggers;
496 int ot_offset;
497 };
498
499 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
500 {
501 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
502 }
503
504 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
505 struct buffer_head *bh,
506 void *data, size_t size)
507 {
508 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
509
510 /*
511 * We aren't guaranteed to have the superblock here, so we
512 * must unconditionally compute the ecc data.
513 * __ocfs2_journal_access() will only set the triggers if
514 * metaecc is enabled.
515 */
516 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
517 }
518
519 /*
520 * Quota blocks have their own trigger because the struct ocfs2_block_check
521 * offset depends on the blocksize.
522 */
523 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
524 struct buffer_head *bh,
525 void *data, size_t size)
526 {
527 struct ocfs2_disk_dqtrailer *dqt =
528 ocfs2_block_dqtrailer(size, data);
529
530 /*
531 * We aren't guaranteed to have the superblock here, so we
532 * must unconditionally compute the ecc data.
533 * __ocfs2_journal_access() will only set the triggers if
534 * metaecc is enabled.
535 */
536 ocfs2_block_check_compute(data, size, &dqt->dq_check);
537 }
538
539 /*
540 * Directory blocks also have their own trigger because the
541 * struct ocfs2_block_check offset depends on the blocksize.
542 */
543 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
544 struct buffer_head *bh,
545 void *data, size_t size)
546 {
547 struct ocfs2_dir_block_trailer *trailer =
548 ocfs2_dir_trailer_from_size(size, data);
549
550 /*
551 * We aren't guaranteed to have the superblock here, so we
552 * must unconditionally compute the ecc data.
553 * __ocfs2_journal_access() will only set the triggers if
554 * metaecc is enabled.
555 */
556 ocfs2_block_check_compute(data, size, &trailer->db_check);
557 }
558
559 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
560 struct buffer_head *bh)
561 {
562 mlog(ML_ERROR,
563 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
564 "bh->b_blocknr = %llu\n",
565 (unsigned long)bh,
566 (unsigned long long)bh->b_blocknr);
567
568 /* We aren't guaranteed to have the superblock here - but if we
569 * don't, it'll just crash. */
570 ocfs2_error(bh->b_assoc_map->host->i_sb,
571 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
572 }
573
574 static struct ocfs2_triggers di_triggers = {
575 .ot_triggers = {
576 .t_frozen = ocfs2_frozen_trigger,
577 .t_abort = ocfs2_abort_trigger,
578 },
579 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
580 };
581
582 static struct ocfs2_triggers eb_triggers = {
583 .ot_triggers = {
584 .t_frozen = ocfs2_frozen_trigger,
585 .t_abort = ocfs2_abort_trigger,
586 },
587 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
588 };
589
590 static struct ocfs2_triggers rb_triggers = {
591 .ot_triggers = {
592 .t_frozen = ocfs2_frozen_trigger,
593 .t_abort = ocfs2_abort_trigger,
594 },
595 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
596 };
597
598 static struct ocfs2_triggers gd_triggers = {
599 .ot_triggers = {
600 .t_frozen = ocfs2_frozen_trigger,
601 .t_abort = ocfs2_abort_trigger,
602 },
603 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
604 };
605
606 static struct ocfs2_triggers db_triggers = {
607 .ot_triggers = {
608 .t_frozen = ocfs2_db_frozen_trigger,
609 .t_abort = ocfs2_abort_trigger,
610 },
611 };
612
613 static struct ocfs2_triggers xb_triggers = {
614 .ot_triggers = {
615 .t_frozen = ocfs2_frozen_trigger,
616 .t_abort = ocfs2_abort_trigger,
617 },
618 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
619 };
620
621 static struct ocfs2_triggers dq_triggers = {
622 .ot_triggers = {
623 .t_frozen = ocfs2_dq_frozen_trigger,
624 .t_abort = ocfs2_abort_trigger,
625 },
626 };
627
628 static struct ocfs2_triggers dr_triggers = {
629 .ot_triggers = {
630 .t_frozen = ocfs2_frozen_trigger,
631 .t_abort = ocfs2_abort_trigger,
632 },
633 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
634 };
635
636 static struct ocfs2_triggers dl_triggers = {
637 .ot_triggers = {
638 .t_frozen = ocfs2_frozen_trigger,
639 .t_abort = ocfs2_abort_trigger,
640 },
641 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
642 };
643
644 static int __ocfs2_journal_access(handle_t *handle,
645 struct ocfs2_caching_info *ci,
646 struct buffer_head *bh,
647 struct ocfs2_triggers *triggers,
648 int type)
649 {
650 int status;
651 struct ocfs2_super *osb =
652 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
653
654 BUG_ON(!ci || !ci->ci_ops);
655 BUG_ON(!handle);
656 BUG_ON(!bh);
657
658 trace_ocfs2_journal_access(
659 (unsigned long long)ocfs2_metadata_cache_owner(ci),
660 (unsigned long long)bh->b_blocknr, type, bh->b_size);
661
662 /* we can safely remove this assertion after testing. */
663 if (!buffer_uptodate(bh)) {
664 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
665 mlog(ML_ERROR, "b_blocknr=%llu\n",
666 (unsigned long long)bh->b_blocknr);
667 BUG();
668 }
669
670 /* Set the current transaction information on the ci so
671 * that the locking code knows whether it can drop it's locks
672 * on this ci or not. We're protected from the commit
673 * thread updating the current transaction id until
674 * ocfs2_commit_trans() because ocfs2_start_trans() took
675 * j_trans_barrier for us. */
676 ocfs2_set_ci_lock_trans(osb->journal, ci);
677
678 ocfs2_metadata_cache_io_lock(ci);
679 switch (type) {
680 case OCFS2_JOURNAL_ACCESS_CREATE:
681 case OCFS2_JOURNAL_ACCESS_WRITE:
682 status = jbd2_journal_get_write_access(handle, bh);
683 break;
684
685 case OCFS2_JOURNAL_ACCESS_UNDO:
686 status = jbd2_journal_get_undo_access(handle, bh);
687 break;
688
689 default:
690 status = -EINVAL;
691 mlog(ML_ERROR, "Unknown access type!\n");
692 }
693 if (!status && ocfs2_meta_ecc(osb) && triggers)
694 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
695 ocfs2_metadata_cache_io_unlock(ci);
696
697 if (status < 0)
698 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
699 status, type);
700
701 return status;
702 }
703
704 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
705 struct buffer_head *bh, int type)
706 {
707 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
708 }
709
710 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
711 struct buffer_head *bh, int type)
712 {
713 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
714 }
715
716 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
717 struct buffer_head *bh, int type)
718 {
719 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
720 type);
721 }
722
723 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
724 struct buffer_head *bh, int type)
725 {
726 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
727 }
728
729 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
730 struct buffer_head *bh, int type)
731 {
732 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
733 }
734
735 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
736 struct buffer_head *bh, int type)
737 {
738 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
739 }
740
741 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
742 struct buffer_head *bh, int type)
743 {
744 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
745 }
746
747 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
748 struct buffer_head *bh, int type)
749 {
750 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
751 }
752
753 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
754 struct buffer_head *bh, int type)
755 {
756 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
757 }
758
759 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
760 struct buffer_head *bh, int type)
761 {
762 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
763 }
764
765 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
766 {
767 int status;
768
769 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
770
771 status = jbd2_journal_dirty_metadata(handle, bh);
772 BUG_ON(status);
773 }
774
775 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
776
777 void ocfs2_set_journal_params(struct ocfs2_super *osb)
778 {
779 journal_t *journal = osb->journal->j_journal;
780 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
781
782 if (osb->osb_commit_interval)
783 commit_interval = osb->osb_commit_interval;
784
785 write_lock(&journal->j_state_lock);
786 journal->j_commit_interval = commit_interval;
787 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
788 journal->j_flags |= JBD2_BARRIER;
789 else
790 journal->j_flags &= ~JBD2_BARRIER;
791 write_unlock(&journal->j_state_lock);
792 }
793
794 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
795 {
796 int status = -1;
797 struct inode *inode = NULL; /* the journal inode */
798 journal_t *j_journal = NULL;
799 struct ocfs2_dinode *di = NULL;
800 struct buffer_head *bh = NULL;
801 struct ocfs2_super *osb;
802 int inode_lock = 0;
803
804 BUG_ON(!journal);
805
806 osb = journal->j_osb;
807
808 /* already have the inode for our journal */
809 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
810 osb->slot_num);
811 if (inode == NULL) {
812 status = -EACCES;
813 mlog_errno(status);
814 goto done;
815 }
816 if (is_bad_inode(inode)) {
817 mlog(ML_ERROR, "access error (bad inode)\n");
818 iput(inode);
819 inode = NULL;
820 status = -EACCES;
821 goto done;
822 }
823
824 SET_INODE_JOURNAL(inode);
825 OCFS2_I(inode)->ip_open_count++;
826
827 /* Skip recovery waits here - journal inode metadata never
828 * changes in a live cluster so it can be considered an
829 * exception to the rule. */
830 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
831 if (status < 0) {
832 if (status != -ERESTARTSYS)
833 mlog(ML_ERROR, "Could not get lock on journal!\n");
834 goto done;
835 }
836
837 inode_lock = 1;
838 di = (struct ocfs2_dinode *)bh->b_data;
839
840 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
841 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
842 i_size_read(inode));
843 status = -EINVAL;
844 goto done;
845 }
846
847 trace_ocfs2_journal_init(i_size_read(inode),
848 (unsigned long long)inode->i_blocks,
849 OCFS2_I(inode)->ip_clusters);
850
851 /* call the kernels journal init function now */
852 j_journal = jbd2_journal_init_inode(inode);
853 if (j_journal == NULL) {
854 mlog(ML_ERROR, "Linux journal layer error\n");
855 status = -EINVAL;
856 goto done;
857 }
858
859 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
860
861 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
862 OCFS2_JOURNAL_DIRTY_FL);
863
864 journal->j_journal = j_journal;
865 journal->j_inode = inode;
866 journal->j_bh = bh;
867
868 ocfs2_set_journal_params(osb);
869
870 journal->j_state = OCFS2_JOURNAL_LOADED;
871
872 status = 0;
873 done:
874 if (status < 0) {
875 if (inode_lock)
876 ocfs2_inode_unlock(inode, 1);
877 brelse(bh);
878 if (inode) {
879 OCFS2_I(inode)->ip_open_count--;
880 iput(inode);
881 }
882 }
883
884 return status;
885 }
886
887 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
888 {
889 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
890 }
891
892 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
893 {
894 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
895 }
896
897 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
898 int dirty, int replayed)
899 {
900 int status;
901 unsigned int flags;
902 struct ocfs2_journal *journal = osb->journal;
903 struct buffer_head *bh = journal->j_bh;
904 struct ocfs2_dinode *fe;
905
906 fe = (struct ocfs2_dinode *)bh->b_data;
907
908 /* The journal bh on the osb always comes from ocfs2_journal_init()
909 * and was validated there inside ocfs2_inode_lock_full(). It's a
910 * code bug if we mess it up. */
911 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
912
913 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
914 if (dirty)
915 flags |= OCFS2_JOURNAL_DIRTY_FL;
916 else
917 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
918 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
919
920 if (replayed)
921 ocfs2_bump_recovery_generation(fe);
922
923 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
924 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
925 if (status < 0)
926 mlog_errno(status);
927
928 return status;
929 }
930
931 /*
932 * If the journal has been kmalloc'd it needs to be freed after this
933 * call.
934 */
935 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
936 {
937 struct ocfs2_journal *journal = NULL;
938 int status = 0;
939 struct inode *inode = NULL;
940 int num_running_trans = 0;
941
942 BUG_ON(!osb);
943
944 journal = osb->journal;
945 if (!journal)
946 goto done;
947
948 inode = journal->j_inode;
949
950 if (journal->j_state != OCFS2_JOURNAL_LOADED)
951 goto done;
952
953 /* need to inc inode use count - jbd2_journal_destroy will iput. */
954 if (!igrab(inode))
955 BUG();
956
957 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
958 trace_ocfs2_journal_shutdown(num_running_trans);
959
960 /* Do a commit_cache here. It will flush our journal, *and*
961 * release any locks that are still held.
962 * set the SHUTDOWN flag and release the trans lock.
963 * the commit thread will take the trans lock for us below. */
964 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
965
966 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
967 * drop the trans_lock (which we want to hold until we
968 * completely destroy the journal. */
969 if (osb->commit_task) {
970 /* Wait for the commit thread */
971 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
972 kthread_stop(osb->commit_task);
973 osb->commit_task = NULL;
974 }
975
976 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
977
978 if (ocfs2_mount_local(osb)) {
979 jbd2_journal_lock_updates(journal->j_journal);
980 status = jbd2_journal_flush(journal->j_journal);
981 jbd2_journal_unlock_updates(journal->j_journal);
982 if (status < 0)
983 mlog_errno(status);
984 }
985
986 if (status == 0) {
987 /*
988 * Do not toggle if flush was unsuccessful otherwise
989 * will leave dirty metadata in a "clean" journal
990 */
991 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
992 if (status < 0)
993 mlog_errno(status);
994 }
995
996 /* Shutdown the kernel journal system */
997 jbd2_journal_destroy(journal->j_journal);
998 journal->j_journal = NULL;
999
1000 OCFS2_I(inode)->ip_open_count--;
1001
1002 /* unlock our journal */
1003 ocfs2_inode_unlock(inode, 1);
1004
1005 brelse(journal->j_bh);
1006 journal->j_bh = NULL;
1007
1008 journal->j_state = OCFS2_JOURNAL_FREE;
1009
1010 // up_write(&journal->j_trans_barrier);
1011 done:
1012 if (inode)
1013 iput(inode);
1014 }
1015
1016 static void ocfs2_clear_journal_error(struct super_block *sb,
1017 journal_t *journal,
1018 int slot)
1019 {
1020 int olderr;
1021
1022 olderr = jbd2_journal_errno(journal);
1023 if (olderr) {
1024 mlog(ML_ERROR, "File system error %d recorded in "
1025 "journal %u.\n", olderr, slot);
1026 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1027 sb->s_id);
1028
1029 jbd2_journal_ack_err(journal);
1030 jbd2_journal_clear_err(journal);
1031 }
1032 }
1033
1034 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1035 {
1036 int status = 0;
1037 struct ocfs2_super *osb;
1038
1039 BUG_ON(!journal);
1040
1041 osb = journal->j_osb;
1042
1043 status = jbd2_journal_load(journal->j_journal);
1044 if (status < 0) {
1045 mlog(ML_ERROR, "Failed to load journal!\n");
1046 goto done;
1047 }
1048
1049 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1050
1051 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1052 if (status < 0) {
1053 mlog_errno(status);
1054 goto done;
1055 }
1056
1057 /* Launch the commit thread */
1058 if (!local) {
1059 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1060 "ocfs2cmt");
1061 if (IS_ERR(osb->commit_task)) {
1062 status = PTR_ERR(osb->commit_task);
1063 osb->commit_task = NULL;
1064 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1065 "error=%d", status);
1066 goto done;
1067 }
1068 } else
1069 osb->commit_task = NULL;
1070
1071 done:
1072 return status;
1073 }
1074
1075
1076 /* 'full' flag tells us whether we clear out all blocks or if we just
1077 * mark the journal clean */
1078 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1079 {
1080 int status;
1081
1082 BUG_ON(!journal);
1083
1084 status = jbd2_journal_wipe(journal->j_journal, full);
1085 if (status < 0) {
1086 mlog_errno(status);
1087 goto bail;
1088 }
1089
1090 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1091 if (status < 0)
1092 mlog_errno(status);
1093
1094 bail:
1095 return status;
1096 }
1097
1098 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1099 {
1100 int empty;
1101 struct ocfs2_recovery_map *rm = osb->recovery_map;
1102
1103 spin_lock(&osb->osb_lock);
1104 empty = (rm->rm_used == 0);
1105 spin_unlock(&osb->osb_lock);
1106
1107 return empty;
1108 }
1109
1110 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1111 {
1112 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1113 }
1114
1115 /*
1116 * JBD Might read a cached version of another nodes journal file. We
1117 * don't want this as this file changes often and we get no
1118 * notification on those changes. The only way to be sure that we've
1119 * got the most up to date version of those blocks then is to force
1120 * read them off disk. Just searching through the buffer cache won't
1121 * work as there may be pages backing this file which are still marked
1122 * up to date. We know things can't change on this file underneath us
1123 * as we have the lock by now :)
1124 */
1125 static int ocfs2_force_read_journal(struct inode *inode)
1126 {
1127 int status = 0;
1128 int i;
1129 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1130 #define CONCURRENT_JOURNAL_FILL 32ULL
1131 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1132
1133 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1134
1135 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1136 v_blkno = 0;
1137 while (v_blkno < num_blocks) {
1138 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1139 &p_blkno, &p_blocks, NULL);
1140 if (status < 0) {
1141 mlog_errno(status);
1142 goto bail;
1143 }
1144
1145 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1146 p_blocks = CONCURRENT_JOURNAL_FILL;
1147
1148 /* We are reading journal data which should not
1149 * be put in the uptodate cache */
1150 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1151 p_blkno, p_blocks, bhs);
1152 if (status < 0) {
1153 mlog_errno(status);
1154 goto bail;
1155 }
1156
1157 for(i = 0; i < p_blocks; i++) {
1158 brelse(bhs[i]);
1159 bhs[i] = NULL;
1160 }
1161
1162 v_blkno += p_blocks;
1163 }
1164
1165 bail:
1166 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1167 brelse(bhs[i]);
1168 return status;
1169 }
1170
1171 struct ocfs2_la_recovery_item {
1172 struct list_head lri_list;
1173 int lri_slot;
1174 struct ocfs2_dinode *lri_la_dinode;
1175 struct ocfs2_dinode *lri_tl_dinode;
1176 struct ocfs2_quota_recovery *lri_qrec;
1177 };
1178
1179 /* Does the second half of the recovery process. By this point, the
1180 * node is marked clean and can actually be considered recovered,
1181 * hence it's no longer in the recovery map, but there's still some
1182 * cleanup we can do which shouldn't happen within the recovery thread
1183 * as locking in that context becomes very difficult if we are to take
1184 * recovering nodes into account.
1185 *
1186 * NOTE: This function can and will sleep on recovery of other nodes
1187 * during cluster locking, just like any other ocfs2 process.
1188 */
1189 void ocfs2_complete_recovery(struct work_struct *work)
1190 {
1191 int ret = 0;
1192 struct ocfs2_journal *journal =
1193 container_of(work, struct ocfs2_journal, j_recovery_work);
1194 struct ocfs2_super *osb = journal->j_osb;
1195 struct ocfs2_dinode *la_dinode, *tl_dinode;
1196 struct ocfs2_la_recovery_item *item, *n;
1197 struct ocfs2_quota_recovery *qrec;
1198 LIST_HEAD(tmp_la_list);
1199
1200 trace_ocfs2_complete_recovery(
1201 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1202
1203 spin_lock(&journal->j_lock);
1204 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1205 spin_unlock(&journal->j_lock);
1206
1207 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1208 list_del_init(&item->lri_list);
1209
1210 ocfs2_wait_on_quotas(osb);
1211
1212 la_dinode = item->lri_la_dinode;
1213 tl_dinode = item->lri_tl_dinode;
1214 qrec = item->lri_qrec;
1215
1216 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1217 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1218 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1219 qrec);
1220
1221 if (la_dinode) {
1222 ret = ocfs2_complete_local_alloc_recovery(osb,
1223 la_dinode);
1224 if (ret < 0)
1225 mlog_errno(ret);
1226
1227 kfree(la_dinode);
1228 }
1229
1230 if (tl_dinode) {
1231 ret = ocfs2_complete_truncate_log_recovery(osb,
1232 tl_dinode);
1233 if (ret < 0)
1234 mlog_errno(ret);
1235
1236 kfree(tl_dinode);
1237 }
1238
1239 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1240 if (ret < 0)
1241 mlog_errno(ret);
1242
1243 if (qrec) {
1244 ret = ocfs2_finish_quota_recovery(osb, qrec,
1245 item->lri_slot);
1246 if (ret < 0)
1247 mlog_errno(ret);
1248 /* Recovery info is already freed now */
1249 }
1250
1251 kfree(item);
1252 }
1253
1254 trace_ocfs2_complete_recovery_end(ret);
1255 }
1256
1257 /* NOTE: This function always eats your references to la_dinode and
1258 * tl_dinode, either manually on error, or by passing them to
1259 * ocfs2_complete_recovery */
1260 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1261 int slot_num,
1262 struct ocfs2_dinode *la_dinode,
1263 struct ocfs2_dinode *tl_dinode,
1264 struct ocfs2_quota_recovery *qrec)
1265 {
1266 struct ocfs2_la_recovery_item *item;
1267
1268 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1269 if (!item) {
1270 /* Though we wish to avoid it, we are in fact safe in
1271 * skipping local alloc cleanup as fsck.ocfs2 is more
1272 * than capable of reclaiming unused space. */
1273 kfree(la_dinode);
1274 kfree(tl_dinode);
1275
1276 if (qrec)
1277 ocfs2_free_quota_recovery(qrec);
1278
1279 mlog_errno(-ENOMEM);
1280 return;
1281 }
1282
1283 INIT_LIST_HEAD(&item->lri_list);
1284 item->lri_la_dinode = la_dinode;
1285 item->lri_slot = slot_num;
1286 item->lri_tl_dinode = tl_dinode;
1287 item->lri_qrec = qrec;
1288
1289 spin_lock(&journal->j_lock);
1290 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1291 queue_work(ocfs2_wq, &journal->j_recovery_work);
1292 spin_unlock(&journal->j_lock);
1293 }
1294
1295 /* Called by the mount code to queue recovery the last part of
1296 * recovery for it's own and offline slot(s). */
1297 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1298 {
1299 struct ocfs2_journal *journal = osb->journal;
1300
1301 if (ocfs2_is_hard_readonly(osb))
1302 return;
1303
1304 /* No need to queue up our truncate_log as regular cleanup will catch
1305 * that */
1306 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1307 osb->local_alloc_copy, NULL, NULL);
1308 ocfs2_schedule_truncate_log_flush(osb, 0);
1309
1310 osb->local_alloc_copy = NULL;
1311 osb->dirty = 0;
1312
1313 /* queue to recover orphan slots for all offline slots */
1314 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1315 ocfs2_queue_replay_slots(osb);
1316 ocfs2_free_replay_slots(osb);
1317 }
1318
1319 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1320 {
1321 if (osb->quota_rec) {
1322 ocfs2_queue_recovery_completion(osb->journal,
1323 osb->slot_num,
1324 NULL,
1325 NULL,
1326 osb->quota_rec);
1327 osb->quota_rec = NULL;
1328 }
1329 }
1330
1331 static int __ocfs2_recovery_thread(void *arg)
1332 {
1333 int status, node_num, slot_num;
1334 struct ocfs2_super *osb = arg;
1335 struct ocfs2_recovery_map *rm = osb->recovery_map;
1336 int *rm_quota = NULL;
1337 int rm_quota_used = 0, i;
1338 struct ocfs2_quota_recovery *qrec;
1339
1340 status = ocfs2_wait_on_mount(osb);
1341 if (status < 0) {
1342 goto bail;
1343 }
1344
1345 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1346 if (!rm_quota) {
1347 status = -ENOMEM;
1348 goto bail;
1349 }
1350 restart:
1351 status = ocfs2_super_lock(osb, 1);
1352 if (status < 0) {
1353 mlog_errno(status);
1354 goto bail;
1355 }
1356
1357 status = ocfs2_compute_replay_slots(osb);
1358 if (status < 0)
1359 mlog_errno(status);
1360
1361 /* queue recovery for our own slot */
1362 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1363 NULL, NULL);
1364
1365 spin_lock(&osb->osb_lock);
1366 while (rm->rm_used) {
1367 /* It's always safe to remove entry zero, as we won't
1368 * clear it until ocfs2_recover_node() has succeeded. */
1369 node_num = rm->rm_entries[0];
1370 spin_unlock(&osb->osb_lock);
1371 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1372 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1373 if (slot_num == -ENOENT) {
1374 status = 0;
1375 goto skip_recovery;
1376 }
1377
1378 /* It is a bit subtle with quota recovery. We cannot do it
1379 * immediately because we have to obtain cluster locks from
1380 * quota files and we also don't want to just skip it because
1381 * then quota usage would be out of sync until some node takes
1382 * the slot. So we remember which nodes need quota recovery
1383 * and when everything else is done, we recover quotas. */
1384 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1385 if (i == rm_quota_used)
1386 rm_quota[rm_quota_used++] = slot_num;
1387
1388 status = ocfs2_recover_node(osb, node_num, slot_num);
1389 skip_recovery:
1390 if (!status) {
1391 ocfs2_recovery_map_clear(osb, node_num);
1392 } else {
1393 mlog(ML_ERROR,
1394 "Error %d recovering node %d on device (%u,%u)!\n",
1395 status, node_num,
1396 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1397 mlog(ML_ERROR, "Volume requires unmount.\n");
1398 }
1399
1400 spin_lock(&osb->osb_lock);
1401 }
1402 spin_unlock(&osb->osb_lock);
1403 trace_ocfs2_recovery_thread_end(status);
1404
1405 /* Refresh all journal recovery generations from disk */
1406 status = ocfs2_check_journals_nolocks(osb);
1407 status = (status == -EROFS) ? 0 : status;
1408 if (status < 0)
1409 mlog_errno(status);
1410
1411 /* Now it is right time to recover quotas... We have to do this under
1412 * superblock lock so that no one can start using the slot (and crash)
1413 * before we recover it */
1414 for (i = 0; i < rm_quota_used; i++) {
1415 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1416 if (IS_ERR(qrec)) {
1417 status = PTR_ERR(qrec);
1418 mlog_errno(status);
1419 continue;
1420 }
1421 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1422 NULL, NULL, qrec);
1423 }
1424
1425 ocfs2_super_unlock(osb, 1);
1426
1427 /* queue recovery for offline slots */
1428 ocfs2_queue_replay_slots(osb);
1429
1430 bail:
1431 mutex_lock(&osb->recovery_lock);
1432 if (!status && !ocfs2_recovery_completed(osb)) {
1433 mutex_unlock(&osb->recovery_lock);
1434 goto restart;
1435 }
1436
1437 ocfs2_free_replay_slots(osb);
1438 osb->recovery_thread_task = NULL;
1439 mb(); /* sync with ocfs2_recovery_thread_running */
1440 wake_up(&osb->recovery_event);
1441
1442 mutex_unlock(&osb->recovery_lock);
1443
1444 kfree(rm_quota);
1445
1446 /* no one is callint kthread_stop() for us so the kthread() api
1447 * requires that we call do_exit(). And it isn't exported, but
1448 * complete_and_exit() seems to be a minimal wrapper around it. */
1449 complete_and_exit(NULL, status);
1450 return status;
1451 }
1452
1453 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1454 {
1455 mutex_lock(&osb->recovery_lock);
1456
1457 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1458 osb->disable_recovery, osb->recovery_thread_task,
1459 osb->disable_recovery ?
1460 -1 : ocfs2_recovery_map_set(osb, node_num));
1461
1462 if (osb->disable_recovery)
1463 goto out;
1464
1465 if (osb->recovery_thread_task)
1466 goto out;
1467
1468 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1469 "ocfs2rec");
1470 if (IS_ERR(osb->recovery_thread_task)) {
1471 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1472 osb->recovery_thread_task = NULL;
1473 }
1474
1475 out:
1476 mutex_unlock(&osb->recovery_lock);
1477 wake_up(&osb->recovery_event);
1478 }
1479
1480 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1481 int slot_num,
1482 struct buffer_head **bh,
1483 struct inode **ret_inode)
1484 {
1485 int status = -EACCES;
1486 struct inode *inode = NULL;
1487
1488 BUG_ON(slot_num >= osb->max_slots);
1489
1490 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1491 slot_num);
1492 if (!inode || is_bad_inode(inode)) {
1493 mlog_errno(status);
1494 goto bail;
1495 }
1496 SET_INODE_JOURNAL(inode);
1497
1498 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1499 if (status < 0) {
1500 mlog_errno(status);
1501 goto bail;
1502 }
1503
1504 status = 0;
1505
1506 bail:
1507 if (inode) {
1508 if (status || !ret_inode)
1509 iput(inode);
1510 else
1511 *ret_inode = inode;
1512 }
1513 return status;
1514 }
1515
1516 /* Does the actual journal replay and marks the journal inode as
1517 * clean. Will only replay if the journal inode is marked dirty. */
1518 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1519 int node_num,
1520 int slot_num)
1521 {
1522 int status;
1523 int got_lock = 0;
1524 unsigned int flags;
1525 struct inode *inode = NULL;
1526 struct ocfs2_dinode *fe;
1527 journal_t *journal = NULL;
1528 struct buffer_head *bh = NULL;
1529 u32 slot_reco_gen;
1530
1531 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1532 if (status) {
1533 mlog_errno(status);
1534 goto done;
1535 }
1536
1537 fe = (struct ocfs2_dinode *)bh->b_data;
1538 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1539 brelse(bh);
1540 bh = NULL;
1541
1542 /*
1543 * As the fs recovery is asynchronous, there is a small chance that
1544 * another node mounted (and recovered) the slot before the recovery
1545 * thread could get the lock. To handle that, we dirty read the journal
1546 * inode for that slot to get the recovery generation. If it is
1547 * different than what we expected, the slot has been recovered.
1548 * If not, it needs recovery.
1549 */
1550 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1551 trace_ocfs2_replay_journal_recovered(slot_num,
1552 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1553 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1554 status = -EBUSY;
1555 goto done;
1556 }
1557
1558 /* Continue with recovery as the journal has not yet been recovered */
1559
1560 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1561 if (status < 0) {
1562 trace_ocfs2_replay_journal_lock_err(status);
1563 if (status != -ERESTARTSYS)
1564 mlog(ML_ERROR, "Could not lock journal!\n");
1565 goto done;
1566 }
1567 got_lock = 1;
1568
1569 fe = (struct ocfs2_dinode *) bh->b_data;
1570
1571 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1572 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1573
1574 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1575 trace_ocfs2_replay_journal_skip(node_num);
1576 /* Refresh recovery generation for the slot */
1577 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1578 goto done;
1579 }
1580
1581 /* we need to run complete recovery for offline orphan slots */
1582 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1583
1584 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1585 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1586 MINOR(osb->sb->s_dev));
1587
1588 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1589
1590 status = ocfs2_force_read_journal(inode);
1591 if (status < 0) {
1592 mlog_errno(status);
1593 goto done;
1594 }
1595
1596 journal = jbd2_journal_init_inode(inode);
1597 if (journal == NULL) {
1598 mlog(ML_ERROR, "Linux journal layer error\n");
1599 status = -EIO;
1600 goto done;
1601 }
1602
1603 status = jbd2_journal_load(journal);
1604 if (status < 0) {
1605 mlog_errno(status);
1606 if (!igrab(inode))
1607 BUG();
1608 jbd2_journal_destroy(journal);
1609 goto done;
1610 }
1611
1612 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1613
1614 /* wipe the journal */
1615 jbd2_journal_lock_updates(journal);
1616 status = jbd2_journal_flush(journal);
1617 jbd2_journal_unlock_updates(journal);
1618 if (status < 0)
1619 mlog_errno(status);
1620
1621 /* This will mark the node clean */
1622 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1623 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1624 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1625
1626 /* Increment recovery generation to indicate successful recovery */
1627 ocfs2_bump_recovery_generation(fe);
1628 osb->slot_recovery_generations[slot_num] =
1629 ocfs2_get_recovery_generation(fe);
1630
1631 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1632 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1633 if (status < 0)
1634 mlog_errno(status);
1635
1636 if (!igrab(inode))
1637 BUG();
1638
1639 jbd2_journal_destroy(journal);
1640
1641 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1642 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1643 MINOR(osb->sb->s_dev));
1644 done:
1645 /* drop the lock on this nodes journal */
1646 if (got_lock)
1647 ocfs2_inode_unlock(inode, 1);
1648
1649 if (inode)
1650 iput(inode);
1651
1652 brelse(bh);
1653
1654 return status;
1655 }
1656
1657 /*
1658 * Do the most important parts of node recovery:
1659 * - Replay it's journal
1660 * - Stamp a clean local allocator file
1661 * - Stamp a clean truncate log
1662 * - Mark the node clean
1663 *
1664 * If this function completes without error, a node in OCFS2 can be
1665 * said to have been safely recovered. As a result, failure during the
1666 * second part of a nodes recovery process (local alloc recovery) is
1667 * far less concerning.
1668 */
1669 static int ocfs2_recover_node(struct ocfs2_super *osb,
1670 int node_num, int slot_num)
1671 {
1672 int status = 0;
1673 struct ocfs2_dinode *la_copy = NULL;
1674 struct ocfs2_dinode *tl_copy = NULL;
1675
1676 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1677
1678 /* Should not ever be called to recover ourselves -- in that
1679 * case we should've called ocfs2_journal_load instead. */
1680 BUG_ON(osb->node_num == node_num);
1681
1682 status = ocfs2_replay_journal(osb, node_num, slot_num);
1683 if (status < 0) {
1684 if (status == -EBUSY) {
1685 trace_ocfs2_recover_node_skip(slot_num, node_num);
1686 status = 0;
1687 goto done;
1688 }
1689 mlog_errno(status);
1690 goto done;
1691 }
1692
1693 /* Stamp a clean local alloc file AFTER recovering the journal... */
1694 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1695 if (status < 0) {
1696 mlog_errno(status);
1697 goto done;
1698 }
1699
1700 /* An error from begin_truncate_log_recovery is not
1701 * serious enough to warrant halting the rest of
1702 * recovery. */
1703 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1704 if (status < 0)
1705 mlog_errno(status);
1706
1707 /* Likewise, this would be a strange but ultimately not so
1708 * harmful place to get an error... */
1709 status = ocfs2_clear_slot(osb, slot_num);
1710 if (status < 0)
1711 mlog_errno(status);
1712
1713 /* This will kfree the memory pointed to by la_copy and tl_copy */
1714 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1715 tl_copy, NULL);
1716
1717 status = 0;
1718 done:
1719
1720 return status;
1721 }
1722
1723 /* Test node liveness by trylocking his journal. If we get the lock,
1724 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1725 * still alive (we couldn't get the lock) and < 0 on error. */
1726 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1727 int slot_num)
1728 {
1729 int status, flags;
1730 struct inode *inode = NULL;
1731
1732 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1733 slot_num);
1734 if (inode == NULL) {
1735 mlog(ML_ERROR, "access error\n");
1736 status = -EACCES;
1737 goto bail;
1738 }
1739 if (is_bad_inode(inode)) {
1740 mlog(ML_ERROR, "access error (bad inode)\n");
1741 iput(inode);
1742 inode = NULL;
1743 status = -EACCES;
1744 goto bail;
1745 }
1746 SET_INODE_JOURNAL(inode);
1747
1748 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1749 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1750 if (status < 0) {
1751 if (status != -EAGAIN)
1752 mlog_errno(status);
1753 goto bail;
1754 }
1755
1756 ocfs2_inode_unlock(inode, 1);
1757 bail:
1758 if (inode)
1759 iput(inode);
1760
1761 return status;
1762 }
1763
1764 /* Call this underneath ocfs2_super_lock. It also assumes that the
1765 * slot info struct has been updated from disk. */
1766 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1767 {
1768 unsigned int node_num;
1769 int status, i;
1770 u32 gen;
1771 struct buffer_head *bh = NULL;
1772 struct ocfs2_dinode *di;
1773
1774 /* This is called with the super block cluster lock, so we
1775 * know that the slot map can't change underneath us. */
1776
1777 for (i = 0; i < osb->max_slots; i++) {
1778 /* Read journal inode to get the recovery generation */
1779 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1780 if (status) {
1781 mlog_errno(status);
1782 goto bail;
1783 }
1784 di = (struct ocfs2_dinode *)bh->b_data;
1785 gen = ocfs2_get_recovery_generation(di);
1786 brelse(bh);
1787 bh = NULL;
1788
1789 spin_lock(&osb->osb_lock);
1790 osb->slot_recovery_generations[i] = gen;
1791
1792 trace_ocfs2_mark_dead_nodes(i,
1793 osb->slot_recovery_generations[i]);
1794
1795 if (i == osb->slot_num) {
1796 spin_unlock(&osb->osb_lock);
1797 continue;
1798 }
1799
1800 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1801 if (status == -ENOENT) {
1802 spin_unlock(&osb->osb_lock);
1803 continue;
1804 }
1805
1806 if (__ocfs2_recovery_map_test(osb, node_num)) {
1807 spin_unlock(&osb->osb_lock);
1808 continue;
1809 }
1810 spin_unlock(&osb->osb_lock);
1811
1812 /* Ok, we have a slot occupied by another node which
1813 * is not in the recovery map. We trylock his journal
1814 * file here to test if he's alive. */
1815 status = ocfs2_trylock_journal(osb, i);
1816 if (!status) {
1817 /* Since we're called from mount, we know that
1818 * the recovery thread can't race us on
1819 * setting / checking the recovery bits. */
1820 ocfs2_recovery_thread(osb, node_num);
1821 } else if ((status < 0) && (status != -EAGAIN)) {
1822 mlog_errno(status);
1823 goto bail;
1824 }
1825 }
1826
1827 status = 0;
1828 bail:
1829 return status;
1830 }
1831
1832 /*
1833 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1834 * randomness to the timeout to minimize multple nodes firing the timer at the
1835 * same time.
1836 */
1837 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1838 {
1839 unsigned long time;
1840
1841 get_random_bytes(&time, sizeof(time));
1842 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1843 return msecs_to_jiffies(time);
1844 }
1845
1846 /*
1847 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1848 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1849 * is done to catch any orphans that are left over in orphan directories.
1850 *
1851 * It scans all slots, even ones that are in use. It does so to handle the
1852 * case described below:
1853 *
1854 * Node 1 has an inode it was using. The dentry went away due to memory
1855 * pressure. Node 1 closes the inode, but it's on the free list. The node
1856 * has the open lock.
1857 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1858 * but node 1 has no dentry and doesn't get the message. It trylocks the
1859 * open lock, sees that another node has a PR, and does nothing.
1860 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1861 * open lock, sees the PR still, and does nothing.
1862 * Basically, we have to trigger an orphan iput on node 1. The only way
1863 * for this to happen is if node 1 runs node 2's orphan dir.
1864 *
1865 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1866 * seconds. It gets an EX lock on os_lockres and checks sequence number
1867 * stored in LVB. If the sequence number has changed, it means some other
1868 * node has done the scan. This node skips the scan and tracks the
1869 * sequence number. If the sequence number didn't change, it means a scan
1870 * hasn't happened. The node queues a scan and increments the
1871 * sequence number in the LVB.
1872 */
1873 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1874 {
1875 struct ocfs2_orphan_scan *os;
1876 int status, i;
1877 u32 seqno = 0;
1878
1879 os = &osb->osb_orphan_scan;
1880
1881 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1882 goto out;
1883
1884 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1885 atomic_read(&os->os_state));
1886
1887 status = ocfs2_orphan_scan_lock(osb, &seqno);
1888 if (status < 0) {
1889 if (status != -EAGAIN)
1890 mlog_errno(status);
1891 goto out;
1892 }
1893
1894 /* Do no queue the tasks if the volume is being umounted */
1895 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1896 goto unlock;
1897
1898 if (os->os_seqno != seqno) {
1899 os->os_seqno = seqno;
1900 goto unlock;
1901 }
1902
1903 for (i = 0; i < osb->max_slots; i++)
1904 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1905 NULL);
1906 /*
1907 * We queued a recovery on orphan slots, increment the sequence
1908 * number and update LVB so other node will skip the scan for a while
1909 */
1910 seqno++;
1911 os->os_count++;
1912 os->os_scantime = CURRENT_TIME;
1913 unlock:
1914 ocfs2_orphan_scan_unlock(osb, seqno);
1915 out:
1916 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1917 atomic_read(&os->os_state));
1918 return;
1919 }
1920
1921 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1922 void ocfs2_orphan_scan_work(struct work_struct *work)
1923 {
1924 struct ocfs2_orphan_scan *os;
1925 struct ocfs2_super *osb;
1926
1927 os = container_of(work, struct ocfs2_orphan_scan,
1928 os_orphan_scan_work.work);
1929 osb = os->os_osb;
1930
1931 mutex_lock(&os->os_lock);
1932 ocfs2_queue_orphan_scan(osb);
1933 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1934 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1935 ocfs2_orphan_scan_timeout());
1936 mutex_unlock(&os->os_lock);
1937 }
1938
1939 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1940 {
1941 struct ocfs2_orphan_scan *os;
1942
1943 os = &osb->osb_orphan_scan;
1944 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1945 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1946 mutex_lock(&os->os_lock);
1947 cancel_delayed_work(&os->os_orphan_scan_work);
1948 mutex_unlock(&os->os_lock);
1949 }
1950 }
1951
1952 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1953 {
1954 struct ocfs2_orphan_scan *os;
1955
1956 os = &osb->osb_orphan_scan;
1957 os->os_osb = osb;
1958 os->os_count = 0;
1959 os->os_seqno = 0;
1960 mutex_init(&os->os_lock);
1961 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1962 }
1963
1964 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1965 {
1966 struct ocfs2_orphan_scan *os;
1967
1968 os = &osb->osb_orphan_scan;
1969 os->os_scantime = CURRENT_TIME;
1970 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1971 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1972 else {
1973 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1974 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1975 ocfs2_orphan_scan_timeout());
1976 }
1977 }
1978
1979 struct ocfs2_orphan_filldir_priv {
1980 struct dir_context ctx;
1981 struct inode *head;
1982 struct ocfs2_super *osb;
1983 };
1984
1985 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1986 loff_t pos, u64 ino, unsigned type)
1987 {
1988 struct ocfs2_orphan_filldir_priv *p = priv;
1989 struct inode *iter;
1990
1991 if (name_len == 1 && !strncmp(".", name, 1))
1992 return 0;
1993 if (name_len == 2 && !strncmp("..", name, 2))
1994 return 0;
1995
1996 /* Skip bad inodes so that recovery can continue */
1997 iter = ocfs2_iget(p->osb, ino,
1998 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1999 if (IS_ERR(iter))
2000 return 0;
2001
2002 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2003 /* No locking is required for the next_orphan queue as there
2004 * is only ever a single process doing orphan recovery. */
2005 OCFS2_I(iter)->ip_next_orphan = p->head;
2006 p->head = iter;
2007
2008 return 0;
2009 }
2010
2011 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2012 int slot,
2013 struct inode **head)
2014 {
2015 int status;
2016 struct inode *orphan_dir_inode = NULL;
2017 struct ocfs2_orphan_filldir_priv priv = {
2018 .ctx.actor = ocfs2_orphan_filldir,
2019 .osb = osb,
2020 .head = *head
2021 };
2022
2023 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2024 ORPHAN_DIR_SYSTEM_INODE,
2025 slot);
2026 if (!orphan_dir_inode) {
2027 status = -ENOENT;
2028 mlog_errno(status);
2029 return status;
2030 }
2031
2032 mutex_lock(&orphan_dir_inode->i_mutex);
2033 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2034 if (status < 0) {
2035 mlog_errno(status);
2036 goto out;
2037 }
2038
2039 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2040 if (status) {
2041 mlog_errno(status);
2042 goto out_cluster;
2043 }
2044
2045 *head = priv.head;
2046
2047 out_cluster:
2048 ocfs2_inode_unlock(orphan_dir_inode, 0);
2049 out:
2050 mutex_unlock(&orphan_dir_inode->i_mutex);
2051 iput(orphan_dir_inode);
2052 return status;
2053 }
2054
2055 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2056 int slot)
2057 {
2058 int ret;
2059
2060 spin_lock(&osb->osb_lock);
2061 ret = !osb->osb_orphan_wipes[slot];
2062 spin_unlock(&osb->osb_lock);
2063 return ret;
2064 }
2065
2066 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2067 int slot)
2068 {
2069 spin_lock(&osb->osb_lock);
2070 /* Mark ourselves such that new processes in delete_inode()
2071 * know to quit early. */
2072 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2073 while (osb->osb_orphan_wipes[slot]) {
2074 /* If any processes are already in the middle of an
2075 * orphan wipe on this dir, then we need to wait for
2076 * them. */
2077 spin_unlock(&osb->osb_lock);
2078 wait_event_interruptible(osb->osb_wipe_event,
2079 ocfs2_orphan_recovery_can_continue(osb, slot));
2080 spin_lock(&osb->osb_lock);
2081 }
2082 spin_unlock(&osb->osb_lock);
2083 }
2084
2085 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2086 int slot)
2087 {
2088 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2089 }
2090
2091 /*
2092 * Orphan recovery. Each mounted node has it's own orphan dir which we
2093 * must run during recovery. Our strategy here is to build a list of
2094 * the inodes in the orphan dir and iget/iput them. The VFS does
2095 * (most) of the rest of the work.
2096 *
2097 * Orphan recovery can happen at any time, not just mount so we have a
2098 * couple of extra considerations.
2099 *
2100 * - We grab as many inodes as we can under the orphan dir lock -
2101 * doing iget() outside the orphan dir risks getting a reference on
2102 * an invalid inode.
2103 * - We must be sure not to deadlock with other processes on the
2104 * system wanting to run delete_inode(). This can happen when they go
2105 * to lock the orphan dir and the orphan recovery process attempts to
2106 * iget() inside the orphan dir lock. This can be avoided by
2107 * advertising our state to ocfs2_delete_inode().
2108 */
2109 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2110 int slot)
2111 {
2112 int ret = 0;
2113 struct inode *inode = NULL;
2114 struct inode *iter;
2115 struct ocfs2_inode_info *oi;
2116
2117 trace_ocfs2_recover_orphans(slot);
2118
2119 ocfs2_mark_recovering_orphan_dir(osb, slot);
2120 ret = ocfs2_queue_orphans(osb, slot, &inode);
2121 ocfs2_clear_recovering_orphan_dir(osb, slot);
2122
2123 /* Error here should be noted, but we want to continue with as
2124 * many queued inodes as we've got. */
2125 if (ret)
2126 mlog_errno(ret);
2127
2128 while (inode) {
2129 oi = OCFS2_I(inode);
2130 trace_ocfs2_recover_orphans_iput(
2131 (unsigned long long)oi->ip_blkno);
2132
2133 iter = oi->ip_next_orphan;
2134
2135 spin_lock(&oi->ip_lock);
2136 /* Set the proper information to get us going into
2137 * ocfs2_delete_inode. */
2138 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2139 spin_unlock(&oi->ip_lock);
2140
2141 iput(inode);
2142
2143 inode = iter;
2144 }
2145
2146 return ret;
2147 }
2148
2149 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2150 {
2151 /* This check is good because ocfs2 will wait on our recovery
2152 * thread before changing it to something other than MOUNTED
2153 * or DISABLED. */
2154 wait_event(osb->osb_mount_event,
2155 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2156 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2157 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2158
2159 /* If there's an error on mount, then we may never get to the
2160 * MOUNTED flag, but this is set right before
2161 * dismount_volume() so we can trust it. */
2162 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2163 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2164 mlog(0, "mount error, exiting!\n");
2165 return -EBUSY;
2166 }
2167
2168 return 0;
2169 }
2170
2171 static int ocfs2_commit_thread(void *arg)
2172 {
2173 int status;
2174 struct ocfs2_super *osb = arg;
2175 struct ocfs2_journal *journal = osb->journal;
2176
2177 /* we can trust j_num_trans here because _should_stop() is only set in
2178 * shutdown and nobody other than ourselves should be able to start
2179 * transactions. committing on shutdown might take a few iterations
2180 * as final transactions put deleted inodes on the list */
2181 while (!(kthread_should_stop() &&
2182 atomic_read(&journal->j_num_trans) == 0)) {
2183
2184 wait_event_interruptible(osb->checkpoint_event,
2185 atomic_read(&journal->j_num_trans)
2186 || kthread_should_stop());
2187
2188 status = ocfs2_commit_cache(osb);
2189 if (status < 0) {
2190 static unsigned long abort_warn_time;
2191
2192 /* Warn about this once per minute */
2193 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2194 mlog(ML_ERROR, "status = %d, journal is "
2195 "already aborted.\n", status);
2196 /*
2197 * After ocfs2_commit_cache() fails, j_num_trans has a
2198 * non-zero value. Sleep here to avoid a busy-wait
2199 * loop.
2200 */
2201 msleep_interruptible(1000);
2202 }
2203
2204 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2205 mlog(ML_KTHREAD,
2206 "commit_thread: %u transactions pending on "
2207 "shutdown\n",
2208 atomic_read(&journal->j_num_trans));
2209 }
2210 }
2211
2212 return 0;
2213 }
2214
2215 /* Reads all the journal inodes without taking any cluster locks. Used
2216 * for hard readonly access to determine whether any journal requires
2217 * recovery. Also used to refresh the recovery generation numbers after
2218 * a journal has been recovered by another node.
2219 */
2220 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2221 {
2222 int ret = 0;
2223 unsigned int slot;
2224 struct buffer_head *di_bh = NULL;
2225 struct ocfs2_dinode *di;
2226 int journal_dirty = 0;
2227
2228 for(slot = 0; slot < osb->max_slots; slot++) {
2229 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2230 if (ret) {
2231 mlog_errno(ret);
2232 goto out;
2233 }
2234
2235 di = (struct ocfs2_dinode *) di_bh->b_data;
2236
2237 osb->slot_recovery_generations[slot] =
2238 ocfs2_get_recovery_generation(di);
2239
2240 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2241 OCFS2_JOURNAL_DIRTY_FL)
2242 journal_dirty = 1;
2243
2244 brelse(di_bh);
2245 di_bh = NULL;
2246 }
2247
2248 out:
2249 if (journal_dirty)
2250 ret = -EROFS;
2251 return ret;
2252 }
This page took 0.169292 seconds and 5 git commands to generate.