ocfs2: remove unused ocfs2_handle_add_inode()
[deliverable/linux.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "heartbeat.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "namei.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49
50 #include "buffer_head_io.h"
51
52 DEFINE_SPINLOCK(trans_inc_lock);
53
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
61 struct ocfs2_journal_handle *handle);
62 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle);
63 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
64 int dirty);
65 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
66 int slot_num);
67 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
68 int slot);
69 static int ocfs2_commit_thread(void *arg);
70
71 static int ocfs2_commit_cache(struct ocfs2_super *osb)
72 {
73 int status = 0;
74 unsigned int flushed;
75 unsigned long old_id;
76 struct ocfs2_journal *journal = NULL;
77
78 mlog_entry_void();
79
80 journal = osb->journal;
81
82 /* Flush all pending commits and checkpoint the journal. */
83 down_write(&journal->j_trans_barrier);
84
85 if (atomic_read(&journal->j_num_trans) == 0) {
86 up_write(&journal->j_trans_barrier);
87 mlog(0, "No transactions for me to flush!\n");
88 goto finally;
89 }
90
91 journal_lock_updates(journal->j_journal);
92 status = journal_flush(journal->j_journal);
93 journal_unlock_updates(journal->j_journal);
94 if (status < 0) {
95 up_write(&journal->j_trans_barrier);
96 mlog_errno(status);
97 goto finally;
98 }
99
100 old_id = ocfs2_inc_trans_id(journal);
101
102 flushed = atomic_read(&journal->j_num_trans);
103 atomic_set(&journal->j_num_trans, 0);
104 up_write(&journal->j_trans_barrier);
105
106 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
107 journal->j_trans_id, flushed);
108
109 ocfs2_kick_vote_thread(osb);
110 wake_up(&journal->j_checkpointed);
111 finally:
112 mlog_exit(status);
113 return status;
114 }
115
116 struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
117 {
118 struct ocfs2_journal_handle *retval = NULL;
119
120 retval = kcalloc(1, sizeof(*retval), GFP_NOFS);
121 if (!retval) {
122 mlog(ML_ERROR, "Failed to allocate memory for journal "
123 "handle!\n");
124 return NULL;
125 }
126
127 retval->num_locks = 0;
128 retval->k_handle = NULL;
129
130 INIT_LIST_HEAD(&retval->locks);
131 retval->journal = osb->journal;
132
133 return retval;
134 }
135
136 /* pass it NULL and it will allocate a new handle object for you. If
137 * you pass it a handle however, it may still return error, in which
138 * case it has free'd the passed handle for you. */
139 struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
140 struct ocfs2_journal_handle *handle,
141 int max_buffs)
142 {
143 int ret;
144 journal_t *journal = osb->journal->j_journal;
145
146 mlog_entry("(max_buffs = %d)\n", max_buffs);
147
148 BUG_ON(!osb || !osb->journal->j_journal);
149
150 if (ocfs2_is_hard_readonly(osb)) {
151 ret = -EROFS;
152 goto done_free;
153 }
154
155 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
156 BUG_ON(max_buffs <= 0);
157
158 /* JBD might support this, but our journalling code doesn't yet. */
159 if (journal_current_handle()) {
160 mlog(ML_ERROR, "Recursive transaction attempted!\n");
161 BUG();
162 }
163
164 if (!handle)
165 handle = ocfs2_alloc_handle(osb);
166 if (!handle) {
167 ret = -ENOMEM;
168 mlog(ML_ERROR, "Failed to allocate memory for journal "
169 "handle!\n");
170 goto done_free;
171 }
172
173 down_read(&osb->journal->j_trans_barrier);
174
175 /* actually start the transaction now */
176 handle->k_handle = journal_start(journal, max_buffs);
177 if (IS_ERR(handle->k_handle)) {
178 up_read(&osb->journal->j_trans_barrier);
179
180 ret = PTR_ERR(handle->k_handle);
181 handle->k_handle = NULL;
182 mlog_errno(ret);
183
184 if (is_journal_aborted(journal)) {
185 ocfs2_abort(osb->sb, "Detected aborted journal");
186 ret = -EROFS;
187 }
188 goto done_free;
189 }
190
191 atomic_inc(&(osb->journal->j_num_trans));
192
193 mlog_exit_ptr(handle);
194 return handle;
195
196 done_free:
197 if (handle)
198 ocfs2_commit_unstarted_handle(handle); /* will kfree handle */
199
200 mlog_exit(ret);
201 return ERR_PTR(ret);
202 }
203
204 /* This is trivial so we do it out of the main commit
205 * paths. Beware, it can be called from start_trans too! */
206 static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle)
207 {
208 mlog_entry_void();
209
210 /* You are allowed to add journal locks before the transaction
211 * has started. */
212 ocfs2_handle_cleanup_locks(handle->journal, handle);
213
214 kfree(handle);
215
216 mlog_exit_void();
217 }
218
219 void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
220 {
221 handle_t *jbd_handle;
222 int retval;
223 struct ocfs2_journal *journal = handle->journal;
224
225 mlog_entry_void();
226
227 BUG_ON(!handle);
228
229 if (!handle->k_handle) {
230 ocfs2_commit_unstarted_handle(handle);
231 mlog_exit_void();
232 return;
233 }
234
235 /* ocfs2_extend_trans may have had to call journal_restart
236 * which will always commit the transaction, but may return
237 * error for any number of reasons. If this is the case, we
238 * clear k_handle as it's not valid any more. */
239 if (handle->k_handle) {
240 jbd_handle = handle->k_handle;
241
242 /* actually stop the transaction. if we've set h_sync,
243 * it'll have been committed when we return */
244 retval = journal_stop(jbd_handle);
245 if (retval < 0) {
246 mlog_errno(retval);
247 mlog(ML_ERROR, "Could not commit transaction\n");
248 BUG();
249 }
250
251 handle->k_handle = NULL; /* it's been free'd in journal_stop */
252 }
253
254 ocfs2_handle_cleanup_locks(journal, handle);
255
256 up_read(&journal->j_trans_barrier);
257
258 kfree(handle);
259 mlog_exit_void();
260 }
261
262 /*
263 * 'nblocks' is what you want to add to the current
264 * transaction. extend_trans will either extend the current handle by
265 * nblocks, or commit it and start a new one with nblocks credits.
266 *
267 * WARNING: This will not release any semaphores or disk locks taken
268 * during the transaction, so make sure they were taken *before*
269 * start_trans or we'll have ordering deadlocks.
270 *
271 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
272 * good because transaction ids haven't yet been recorded on the
273 * cluster locks associated with this handle.
274 */
275 int ocfs2_extend_trans(handle_t *handle, int nblocks)
276 {
277 int status;
278
279 BUG_ON(!handle);
280 BUG_ON(!nblocks);
281
282 mlog_entry_void();
283
284 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
285
286 status = journal_extend(handle, nblocks);
287 if (status < 0) {
288 mlog_errno(status);
289 goto bail;
290 }
291
292 if (status > 0) {
293 mlog(0, "journal_extend failed, trying journal_restart\n");
294 status = journal_restart(handle, nblocks);
295 if (status < 0) {
296 mlog_errno(status);
297 goto bail;
298 }
299 }
300
301 status = 0;
302 bail:
303
304 mlog_exit(status);
305 return status;
306 }
307
308 int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
309 struct inode *inode,
310 struct buffer_head *bh,
311 int type)
312 {
313 int status;
314
315 BUG_ON(!inode);
316 BUG_ON(!handle);
317 BUG_ON(!bh);
318
319 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
320 (unsigned long long)bh->b_blocknr, type,
321 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
322 "OCFS2_JOURNAL_ACCESS_CREATE" :
323 "OCFS2_JOURNAL_ACCESS_WRITE",
324 bh->b_size);
325
326 /* we can safely remove this assertion after testing. */
327 if (!buffer_uptodate(bh)) {
328 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
329 mlog(ML_ERROR, "b_blocknr=%llu\n",
330 (unsigned long long)bh->b_blocknr);
331 BUG();
332 }
333
334 /* Set the current transaction information on the inode so
335 * that the locking code knows whether it can drop it's locks
336 * on this inode or not. We're protected from the commit
337 * thread updating the current transaction id until
338 * ocfs2_commit_trans() because ocfs2_start_trans() took
339 * j_trans_barrier for us. */
340 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
341
342 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
343 switch (type) {
344 case OCFS2_JOURNAL_ACCESS_CREATE:
345 case OCFS2_JOURNAL_ACCESS_WRITE:
346 status = journal_get_write_access(handle->k_handle, bh);
347 break;
348
349 case OCFS2_JOURNAL_ACCESS_UNDO:
350 status = journal_get_undo_access(handle->k_handle, bh);
351 break;
352
353 default:
354 status = -EINVAL;
355 mlog(ML_ERROR, "Uknown access type!\n");
356 }
357 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
358
359 if (status < 0)
360 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
361 status, type);
362
363 mlog_exit(status);
364 return status;
365 }
366
367 int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
368 struct buffer_head *bh)
369 {
370 int status;
371
372 mlog_entry("(bh->b_blocknr=%llu)\n",
373 (unsigned long long)bh->b_blocknr);
374
375 status = journal_dirty_metadata(handle->k_handle, bh);
376 if (status < 0)
377 mlog(ML_ERROR, "Could not dirty metadata buffer. "
378 "(bh->b_blocknr=%llu)\n",
379 (unsigned long long)bh->b_blocknr);
380
381 mlog_exit(status);
382 return status;
383 }
384
385 int ocfs2_journal_dirty_data(handle_t *handle,
386 struct buffer_head *bh)
387 {
388 int err = journal_dirty_data(handle, bh);
389 if (err)
390 mlog_errno(err);
391 /* TODO: When we can handle it, abort the handle and go RO on
392 * error here. */
393
394 return err;
395 }
396
397 /* We always assume you're adding a metadata lock at level 'ex' */
398 int ocfs2_handle_add_lock(struct ocfs2_journal_handle *handle,
399 struct inode *inode)
400 {
401 int status;
402 struct ocfs2_journal_lock *lock;
403
404 BUG_ON(!inode);
405
406 lock = kmem_cache_alloc(ocfs2_lock_cache, GFP_NOFS);
407 if (!lock) {
408 status = -ENOMEM;
409 mlog_errno(-ENOMEM);
410 goto bail;
411 }
412
413 if (!igrab(inode))
414 BUG();
415 lock->jl_inode = inode;
416
417 list_add_tail(&(lock->jl_lock_list), &(handle->locks));
418 handle->num_locks++;
419
420 status = 0;
421 bail:
422 mlog_exit(status);
423 return status;
424 }
425
426 static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal,
427 struct ocfs2_journal_handle *handle)
428 {
429 struct list_head *p, *n;
430 struct ocfs2_journal_lock *lock;
431 struct inode *inode;
432
433 list_for_each_safe(p, n, &(handle->locks)) {
434 lock = list_entry(p, struct ocfs2_journal_lock,
435 jl_lock_list);
436 list_del(&lock->jl_lock_list);
437 handle->num_locks--;
438
439 inode = lock->jl_inode;
440 ocfs2_meta_unlock(inode, 1);
441 if (atomic_read(&inode->i_count) == 1)
442 mlog(ML_ERROR,
443 "Inode %llu, I'm doing a last iput for!",
444 (unsigned long long)OCFS2_I(inode)->ip_blkno);
445 iput(inode);
446 kmem_cache_free(ocfs2_lock_cache, lock);
447 }
448 }
449
450 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
451
452 void ocfs2_set_journal_params(struct ocfs2_super *osb)
453 {
454 journal_t *journal = osb->journal->j_journal;
455
456 spin_lock(&journal->j_state_lock);
457 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
458 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
459 journal->j_flags |= JFS_BARRIER;
460 else
461 journal->j_flags &= ~JFS_BARRIER;
462 spin_unlock(&journal->j_state_lock);
463 }
464
465 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
466 {
467 int status = -1;
468 struct inode *inode = NULL; /* the journal inode */
469 journal_t *j_journal = NULL;
470 struct ocfs2_dinode *di = NULL;
471 struct buffer_head *bh = NULL;
472 struct ocfs2_super *osb;
473 int meta_lock = 0;
474
475 mlog_entry_void();
476
477 BUG_ON(!journal);
478
479 osb = journal->j_osb;
480
481 /* already have the inode for our journal */
482 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
483 osb->slot_num);
484 if (inode == NULL) {
485 status = -EACCES;
486 mlog_errno(status);
487 goto done;
488 }
489 if (is_bad_inode(inode)) {
490 mlog(ML_ERROR, "access error (bad inode)\n");
491 iput(inode);
492 inode = NULL;
493 status = -EACCES;
494 goto done;
495 }
496
497 SET_INODE_JOURNAL(inode);
498 OCFS2_I(inode)->ip_open_count++;
499
500 /* Skip recovery waits here - journal inode metadata never
501 * changes in a live cluster so it can be considered an
502 * exception to the rule. */
503 status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
504 OCFS2_META_LOCK_RECOVERY);
505 if (status < 0) {
506 if (status != -ERESTARTSYS)
507 mlog(ML_ERROR, "Could not get lock on journal!\n");
508 goto done;
509 }
510
511 meta_lock = 1;
512 di = (struct ocfs2_dinode *)bh->b_data;
513
514 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
515 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
516 inode->i_size);
517 status = -EINVAL;
518 goto done;
519 }
520
521 mlog(0, "inode->i_size = %lld\n", inode->i_size);
522 mlog(0, "inode->i_blocks = %llu\n",
523 (unsigned long long)inode->i_blocks);
524 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
525
526 /* call the kernels journal init function now */
527 j_journal = journal_init_inode(inode);
528 if (j_journal == NULL) {
529 mlog(ML_ERROR, "Linux journal layer error\n");
530 status = -EINVAL;
531 goto done;
532 }
533
534 mlog(0, "Returned from journal_init_inode\n");
535 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
536
537 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
538 OCFS2_JOURNAL_DIRTY_FL);
539
540 journal->j_journal = j_journal;
541 journal->j_inode = inode;
542 journal->j_bh = bh;
543
544 ocfs2_set_journal_params(osb);
545
546 journal->j_state = OCFS2_JOURNAL_LOADED;
547
548 status = 0;
549 done:
550 if (status < 0) {
551 if (meta_lock)
552 ocfs2_meta_unlock(inode, 1);
553 if (bh != NULL)
554 brelse(bh);
555 if (inode) {
556 OCFS2_I(inode)->ip_open_count--;
557 iput(inode);
558 }
559 }
560
561 mlog_exit(status);
562 return status;
563 }
564
565 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
566 int dirty)
567 {
568 int status;
569 unsigned int flags;
570 struct ocfs2_journal *journal = osb->journal;
571 struct buffer_head *bh = journal->j_bh;
572 struct ocfs2_dinode *fe;
573
574 mlog_entry_void();
575
576 fe = (struct ocfs2_dinode *)bh->b_data;
577 if (!OCFS2_IS_VALID_DINODE(fe)) {
578 /* This is called from startup/shutdown which will
579 * handle the errors in a specific manner, so no need
580 * to call ocfs2_error() here. */
581 mlog(ML_ERROR, "Journal dinode %llu has invalid "
582 "signature: %.*s", (unsigned long long)fe->i_blkno, 7,
583 fe->i_signature);
584 status = -EIO;
585 goto out;
586 }
587
588 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
589 if (dirty)
590 flags |= OCFS2_JOURNAL_DIRTY_FL;
591 else
592 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
593 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
594
595 status = ocfs2_write_block(osb, bh, journal->j_inode);
596 if (status < 0)
597 mlog_errno(status);
598
599 out:
600 mlog_exit(status);
601 return status;
602 }
603
604 /*
605 * If the journal has been kmalloc'd it needs to be freed after this
606 * call.
607 */
608 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
609 {
610 struct ocfs2_journal *journal = NULL;
611 int status = 0;
612 struct inode *inode = NULL;
613 int num_running_trans = 0;
614
615 mlog_entry_void();
616
617 BUG_ON(!osb);
618
619 journal = osb->journal;
620 if (!journal)
621 goto done;
622
623 inode = journal->j_inode;
624
625 if (journal->j_state != OCFS2_JOURNAL_LOADED)
626 goto done;
627
628 /* need to inc inode use count as journal_destroy will iput. */
629 if (!igrab(inode))
630 BUG();
631
632 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
633 if (num_running_trans > 0)
634 mlog(0, "Shutting down journal: must wait on %d "
635 "running transactions!\n",
636 num_running_trans);
637
638 /* Do a commit_cache here. It will flush our journal, *and*
639 * release any locks that are still held.
640 * set the SHUTDOWN flag and release the trans lock.
641 * the commit thread will take the trans lock for us below. */
642 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
643
644 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
645 * drop the trans_lock (which we want to hold until we
646 * completely destroy the journal. */
647 if (osb->commit_task) {
648 /* Wait for the commit thread */
649 mlog(0, "Waiting for ocfs2commit to exit....\n");
650 kthread_stop(osb->commit_task);
651 osb->commit_task = NULL;
652 }
653
654 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
655
656 status = ocfs2_journal_toggle_dirty(osb, 0);
657 if (status < 0)
658 mlog_errno(status);
659
660 /* Shutdown the kernel journal system */
661 journal_destroy(journal->j_journal);
662
663 OCFS2_I(inode)->ip_open_count--;
664
665 /* unlock our journal */
666 ocfs2_meta_unlock(inode, 1);
667
668 brelse(journal->j_bh);
669 journal->j_bh = NULL;
670
671 journal->j_state = OCFS2_JOURNAL_FREE;
672
673 // up_write(&journal->j_trans_barrier);
674 done:
675 if (inode)
676 iput(inode);
677 mlog_exit_void();
678 }
679
680 static void ocfs2_clear_journal_error(struct super_block *sb,
681 journal_t *journal,
682 int slot)
683 {
684 int olderr;
685
686 olderr = journal_errno(journal);
687 if (olderr) {
688 mlog(ML_ERROR, "File system error %d recorded in "
689 "journal %u.\n", olderr, slot);
690 mlog(ML_ERROR, "File system on device %s needs checking.\n",
691 sb->s_id);
692
693 journal_ack_err(journal);
694 journal_clear_err(journal);
695 }
696 }
697
698 int ocfs2_journal_load(struct ocfs2_journal *journal)
699 {
700 int status = 0;
701 struct ocfs2_super *osb;
702
703 mlog_entry_void();
704
705 if (!journal)
706 BUG();
707
708 osb = journal->j_osb;
709
710 status = journal_load(journal->j_journal);
711 if (status < 0) {
712 mlog(ML_ERROR, "Failed to load journal!\n");
713 goto done;
714 }
715
716 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
717
718 status = ocfs2_journal_toggle_dirty(osb, 1);
719 if (status < 0) {
720 mlog_errno(status);
721 goto done;
722 }
723
724 /* Launch the commit thread */
725 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt");
726 if (IS_ERR(osb->commit_task)) {
727 status = PTR_ERR(osb->commit_task);
728 osb->commit_task = NULL;
729 mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
730 status);
731 goto done;
732 }
733
734 done:
735 mlog_exit(status);
736 return status;
737 }
738
739
740 /* 'full' flag tells us whether we clear out all blocks or if we just
741 * mark the journal clean */
742 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
743 {
744 int status;
745
746 mlog_entry_void();
747
748 BUG_ON(!journal);
749
750 status = journal_wipe(journal->j_journal, full);
751 if (status < 0) {
752 mlog_errno(status);
753 goto bail;
754 }
755
756 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
757 if (status < 0)
758 mlog_errno(status);
759
760 bail:
761 mlog_exit(status);
762 return status;
763 }
764
765 /*
766 * JBD Might read a cached version of another nodes journal file. We
767 * don't want this as this file changes often and we get no
768 * notification on those changes. The only way to be sure that we've
769 * got the most up to date version of those blocks then is to force
770 * read them off disk. Just searching through the buffer cache won't
771 * work as there may be pages backing this file which are still marked
772 * up to date. We know things can't change on this file underneath us
773 * as we have the lock by now :)
774 */
775 static int ocfs2_force_read_journal(struct inode *inode)
776 {
777 int status = 0;
778 int i, p_blocks;
779 u64 v_blkno, p_blkno;
780 #define CONCURRENT_JOURNAL_FILL 32
781 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
782
783 mlog_entry_void();
784
785 BUG_ON(inode->i_blocks !=
786 ocfs2_align_bytes_to_sectors(i_size_read(inode)));
787
788 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
789
790 mlog(0, "Force reading %llu blocks\n",
791 (unsigned long long)(inode->i_blocks >>
792 (inode->i_sb->s_blocksize_bits - 9)));
793
794 v_blkno = 0;
795 while (v_blkno <
796 (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
797
798 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
799 1, &p_blkno,
800 &p_blocks);
801 if (status < 0) {
802 mlog_errno(status);
803 goto bail;
804 }
805
806 if (p_blocks > CONCURRENT_JOURNAL_FILL)
807 p_blocks = CONCURRENT_JOURNAL_FILL;
808
809 /* We are reading journal data which should not
810 * be put in the uptodate cache */
811 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
812 p_blkno, p_blocks, bhs, 0,
813 NULL);
814 if (status < 0) {
815 mlog_errno(status);
816 goto bail;
817 }
818
819 for(i = 0; i < p_blocks; i++) {
820 brelse(bhs[i]);
821 bhs[i] = NULL;
822 }
823
824 v_blkno += p_blocks;
825 }
826
827 bail:
828 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
829 if (bhs[i])
830 brelse(bhs[i]);
831 mlog_exit(status);
832 return status;
833 }
834
835 struct ocfs2_la_recovery_item {
836 struct list_head lri_list;
837 int lri_slot;
838 struct ocfs2_dinode *lri_la_dinode;
839 struct ocfs2_dinode *lri_tl_dinode;
840 };
841
842 /* Does the second half of the recovery process. By this point, the
843 * node is marked clean and can actually be considered recovered,
844 * hence it's no longer in the recovery map, but there's still some
845 * cleanup we can do which shouldn't happen within the recovery thread
846 * as locking in that context becomes very difficult if we are to take
847 * recovering nodes into account.
848 *
849 * NOTE: This function can and will sleep on recovery of other nodes
850 * during cluster locking, just like any other ocfs2 process.
851 */
852 void ocfs2_complete_recovery(void *data)
853 {
854 int ret;
855 struct ocfs2_super *osb = data;
856 struct ocfs2_journal *journal = osb->journal;
857 struct ocfs2_dinode *la_dinode, *tl_dinode;
858 struct ocfs2_la_recovery_item *item;
859 struct list_head *p, *n;
860 LIST_HEAD(tmp_la_list);
861
862 mlog_entry_void();
863
864 mlog(0, "completing recovery from keventd\n");
865
866 spin_lock(&journal->j_lock);
867 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
868 spin_unlock(&journal->j_lock);
869
870 list_for_each_safe(p, n, &tmp_la_list) {
871 item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
872 list_del_init(&item->lri_list);
873
874 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
875
876 la_dinode = item->lri_la_dinode;
877 if (la_dinode) {
878 mlog(0, "Clean up local alloc %llu\n",
879 (unsigned long long)la_dinode->i_blkno);
880
881 ret = ocfs2_complete_local_alloc_recovery(osb,
882 la_dinode);
883 if (ret < 0)
884 mlog_errno(ret);
885
886 kfree(la_dinode);
887 }
888
889 tl_dinode = item->lri_tl_dinode;
890 if (tl_dinode) {
891 mlog(0, "Clean up truncate log %llu\n",
892 (unsigned long long)tl_dinode->i_blkno);
893
894 ret = ocfs2_complete_truncate_log_recovery(osb,
895 tl_dinode);
896 if (ret < 0)
897 mlog_errno(ret);
898
899 kfree(tl_dinode);
900 }
901
902 ret = ocfs2_recover_orphans(osb, item->lri_slot);
903 if (ret < 0)
904 mlog_errno(ret);
905
906 kfree(item);
907 }
908
909 mlog(0, "Recovery completion\n");
910 mlog_exit_void();
911 }
912
913 /* NOTE: This function always eats your references to la_dinode and
914 * tl_dinode, either manually on error, or by passing them to
915 * ocfs2_complete_recovery */
916 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
917 int slot_num,
918 struct ocfs2_dinode *la_dinode,
919 struct ocfs2_dinode *tl_dinode)
920 {
921 struct ocfs2_la_recovery_item *item;
922
923 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
924 if (!item) {
925 /* Though we wish to avoid it, we are in fact safe in
926 * skipping local alloc cleanup as fsck.ocfs2 is more
927 * than capable of reclaiming unused space. */
928 if (la_dinode)
929 kfree(la_dinode);
930
931 if (tl_dinode)
932 kfree(tl_dinode);
933
934 mlog_errno(-ENOMEM);
935 return;
936 }
937
938 INIT_LIST_HEAD(&item->lri_list);
939 item->lri_la_dinode = la_dinode;
940 item->lri_slot = slot_num;
941 item->lri_tl_dinode = tl_dinode;
942
943 spin_lock(&journal->j_lock);
944 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
945 queue_work(ocfs2_wq, &journal->j_recovery_work);
946 spin_unlock(&journal->j_lock);
947 }
948
949 /* Called by the mount code to queue recovery the last part of
950 * recovery for it's own slot. */
951 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
952 {
953 struct ocfs2_journal *journal = osb->journal;
954
955 if (osb->dirty) {
956 /* No need to queue up our truncate_log as regular
957 * cleanup will catch that. */
958 ocfs2_queue_recovery_completion(journal,
959 osb->slot_num,
960 osb->local_alloc_copy,
961 NULL);
962 ocfs2_schedule_truncate_log_flush(osb, 0);
963
964 osb->local_alloc_copy = NULL;
965 osb->dirty = 0;
966 }
967 }
968
969 static int __ocfs2_recovery_thread(void *arg)
970 {
971 int status, node_num;
972 struct ocfs2_super *osb = arg;
973
974 mlog_entry_void();
975
976 status = ocfs2_wait_on_mount(osb);
977 if (status < 0) {
978 goto bail;
979 }
980
981 restart:
982 status = ocfs2_super_lock(osb, 1);
983 if (status < 0) {
984 mlog_errno(status);
985 goto bail;
986 }
987
988 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
989 node_num = ocfs2_node_map_first_set_bit(osb,
990 &osb->recovery_map);
991 if (node_num == O2NM_INVALID_NODE_NUM) {
992 mlog(0, "Out of nodes to recover.\n");
993 break;
994 }
995
996 status = ocfs2_recover_node(osb, node_num);
997 if (status < 0) {
998 mlog(ML_ERROR,
999 "Error %d recovering node %d on device (%u,%u)!\n",
1000 status, node_num,
1001 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1002 mlog(ML_ERROR, "Volume requires unmount.\n");
1003 continue;
1004 }
1005
1006 ocfs2_recovery_map_clear(osb, node_num);
1007 }
1008 ocfs2_super_unlock(osb, 1);
1009
1010 /* We always run recovery on our own orphan dir - the dead
1011 * node(s) may have voted "no" on an inode delete earlier. A
1012 * revote is therefore required. */
1013 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1014 NULL);
1015
1016 bail:
1017 mutex_lock(&osb->recovery_lock);
1018 if (!status &&
1019 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
1020 mutex_unlock(&osb->recovery_lock);
1021 goto restart;
1022 }
1023
1024 osb->recovery_thread_task = NULL;
1025 mb(); /* sync with ocfs2_recovery_thread_running */
1026 wake_up(&osb->recovery_event);
1027
1028 mutex_unlock(&osb->recovery_lock);
1029
1030 mlog_exit(status);
1031 /* no one is callint kthread_stop() for us so the kthread() api
1032 * requires that we call do_exit(). And it isn't exported, but
1033 * complete_and_exit() seems to be a minimal wrapper around it. */
1034 complete_and_exit(NULL, status);
1035 return status;
1036 }
1037
1038 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1039 {
1040 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1041 node_num, osb->node_num);
1042
1043 mutex_lock(&osb->recovery_lock);
1044 if (osb->disable_recovery)
1045 goto out;
1046
1047 /* People waiting on recovery will wait on
1048 * the recovery map to empty. */
1049 if (!ocfs2_recovery_map_set(osb, node_num))
1050 mlog(0, "node %d already be in recovery.\n", node_num);
1051
1052 mlog(0, "starting recovery thread...\n");
1053
1054 if (osb->recovery_thread_task)
1055 goto out;
1056
1057 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1058 "ocfs2rec");
1059 if (IS_ERR(osb->recovery_thread_task)) {
1060 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1061 osb->recovery_thread_task = NULL;
1062 }
1063
1064 out:
1065 mutex_unlock(&osb->recovery_lock);
1066 wake_up(&osb->recovery_event);
1067
1068 mlog_exit_void();
1069 }
1070
1071 /* Does the actual journal replay and marks the journal inode as
1072 * clean. Will only replay if the journal inode is marked dirty. */
1073 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1074 int node_num,
1075 int slot_num)
1076 {
1077 int status;
1078 int got_lock = 0;
1079 unsigned int flags;
1080 struct inode *inode = NULL;
1081 struct ocfs2_dinode *fe;
1082 journal_t *journal = NULL;
1083 struct buffer_head *bh = NULL;
1084
1085 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1086 slot_num);
1087 if (inode == NULL) {
1088 status = -EACCES;
1089 mlog_errno(status);
1090 goto done;
1091 }
1092 if (is_bad_inode(inode)) {
1093 status = -EACCES;
1094 iput(inode);
1095 inode = NULL;
1096 mlog_errno(status);
1097 goto done;
1098 }
1099 SET_INODE_JOURNAL(inode);
1100
1101 status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
1102 OCFS2_META_LOCK_RECOVERY);
1103 if (status < 0) {
1104 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1105 if (status != -ERESTARTSYS)
1106 mlog(ML_ERROR, "Could not lock journal!\n");
1107 goto done;
1108 }
1109 got_lock = 1;
1110
1111 fe = (struct ocfs2_dinode *) bh->b_data;
1112
1113 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1114
1115 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1116 mlog(0, "No recovery required for node %d\n", node_num);
1117 goto done;
1118 }
1119
1120 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1121 node_num, slot_num,
1122 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1123
1124 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1125
1126 status = ocfs2_force_read_journal(inode);
1127 if (status < 0) {
1128 mlog_errno(status);
1129 goto done;
1130 }
1131
1132 mlog(0, "calling journal_init_inode\n");
1133 journal = journal_init_inode(inode);
1134 if (journal == NULL) {
1135 mlog(ML_ERROR, "Linux journal layer error\n");
1136 status = -EIO;
1137 goto done;
1138 }
1139
1140 status = journal_load(journal);
1141 if (status < 0) {
1142 mlog_errno(status);
1143 if (!igrab(inode))
1144 BUG();
1145 journal_destroy(journal);
1146 goto done;
1147 }
1148
1149 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1150
1151 /* wipe the journal */
1152 mlog(0, "flushing the journal.\n");
1153 journal_lock_updates(journal);
1154 status = journal_flush(journal);
1155 journal_unlock_updates(journal);
1156 if (status < 0)
1157 mlog_errno(status);
1158
1159 /* This will mark the node clean */
1160 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1161 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1162 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1163
1164 status = ocfs2_write_block(osb, bh, inode);
1165 if (status < 0)
1166 mlog_errno(status);
1167
1168 if (!igrab(inode))
1169 BUG();
1170
1171 journal_destroy(journal);
1172
1173 done:
1174 /* drop the lock on this nodes journal */
1175 if (got_lock)
1176 ocfs2_meta_unlock(inode, 1);
1177
1178 if (inode)
1179 iput(inode);
1180
1181 if (bh)
1182 brelse(bh);
1183
1184 mlog_exit(status);
1185 return status;
1186 }
1187
1188 /*
1189 * Do the most important parts of node recovery:
1190 * - Replay it's journal
1191 * - Stamp a clean local allocator file
1192 * - Stamp a clean truncate log
1193 * - Mark the node clean
1194 *
1195 * If this function completes without error, a node in OCFS2 can be
1196 * said to have been safely recovered. As a result, failure during the
1197 * second part of a nodes recovery process (local alloc recovery) is
1198 * far less concerning.
1199 */
1200 static int ocfs2_recover_node(struct ocfs2_super *osb,
1201 int node_num)
1202 {
1203 int status = 0;
1204 int slot_num;
1205 struct ocfs2_slot_info *si = osb->slot_info;
1206 struct ocfs2_dinode *la_copy = NULL;
1207 struct ocfs2_dinode *tl_copy = NULL;
1208
1209 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1210 node_num, osb->node_num);
1211
1212 mlog(0, "checking node %d\n", node_num);
1213
1214 /* Should not ever be called to recover ourselves -- in that
1215 * case we should've called ocfs2_journal_load instead. */
1216 BUG_ON(osb->node_num == node_num);
1217
1218 slot_num = ocfs2_node_num_to_slot(si, node_num);
1219 if (slot_num == OCFS2_INVALID_SLOT) {
1220 status = 0;
1221 mlog(0, "no slot for this node, so no recovery required.\n");
1222 goto done;
1223 }
1224
1225 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1226
1227 status = ocfs2_replay_journal(osb, node_num, slot_num);
1228 if (status < 0) {
1229 mlog_errno(status);
1230 goto done;
1231 }
1232
1233 /* Stamp a clean local alloc file AFTER recovering the journal... */
1234 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1235 if (status < 0) {
1236 mlog_errno(status);
1237 goto done;
1238 }
1239
1240 /* An error from begin_truncate_log_recovery is not
1241 * serious enough to warrant halting the rest of
1242 * recovery. */
1243 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1244 if (status < 0)
1245 mlog_errno(status);
1246
1247 /* Likewise, this would be a strange but ultimately not so
1248 * harmful place to get an error... */
1249 ocfs2_clear_slot(si, slot_num);
1250 status = ocfs2_update_disk_slots(osb, si);
1251 if (status < 0)
1252 mlog_errno(status);
1253
1254 /* This will kfree the memory pointed to by la_copy and tl_copy */
1255 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1256 tl_copy);
1257
1258 status = 0;
1259 done:
1260
1261 mlog_exit(status);
1262 return status;
1263 }
1264
1265 /* Test node liveness by trylocking his journal. If we get the lock,
1266 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1267 * still alive (we couldn't get the lock) and < 0 on error. */
1268 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1269 int slot_num)
1270 {
1271 int status, flags;
1272 struct inode *inode = NULL;
1273
1274 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1275 slot_num);
1276 if (inode == NULL) {
1277 mlog(ML_ERROR, "access error\n");
1278 status = -EACCES;
1279 goto bail;
1280 }
1281 if (is_bad_inode(inode)) {
1282 mlog(ML_ERROR, "access error (bad inode)\n");
1283 iput(inode);
1284 inode = NULL;
1285 status = -EACCES;
1286 goto bail;
1287 }
1288 SET_INODE_JOURNAL(inode);
1289
1290 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1291 status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags);
1292 if (status < 0) {
1293 if (status != -EAGAIN)
1294 mlog_errno(status);
1295 goto bail;
1296 }
1297
1298 ocfs2_meta_unlock(inode, 1);
1299 bail:
1300 if (inode)
1301 iput(inode);
1302
1303 return status;
1304 }
1305
1306 /* Call this underneath ocfs2_super_lock. It also assumes that the
1307 * slot info struct has been updated from disk. */
1308 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1309 {
1310 int status, i, node_num;
1311 struct ocfs2_slot_info *si = osb->slot_info;
1312
1313 /* This is called with the super block cluster lock, so we
1314 * know that the slot map can't change underneath us. */
1315
1316 spin_lock(&si->si_lock);
1317 for(i = 0; i < si->si_num_slots; i++) {
1318 if (i == osb->slot_num)
1319 continue;
1320 if (ocfs2_is_empty_slot(si, i))
1321 continue;
1322
1323 node_num = si->si_global_node_nums[i];
1324 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1325 continue;
1326 spin_unlock(&si->si_lock);
1327
1328 /* Ok, we have a slot occupied by another node which
1329 * is not in the recovery map. We trylock his journal
1330 * file here to test if he's alive. */
1331 status = ocfs2_trylock_journal(osb, i);
1332 if (!status) {
1333 /* Since we're called from mount, we know that
1334 * the recovery thread can't race us on
1335 * setting / checking the recovery bits. */
1336 ocfs2_recovery_thread(osb, node_num);
1337 } else if ((status < 0) && (status != -EAGAIN)) {
1338 mlog_errno(status);
1339 goto bail;
1340 }
1341
1342 spin_lock(&si->si_lock);
1343 }
1344 spin_unlock(&si->si_lock);
1345
1346 status = 0;
1347 bail:
1348 mlog_exit(status);
1349 return status;
1350 }
1351
1352 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1353 int slot,
1354 struct inode **head)
1355 {
1356 int status;
1357 struct inode *orphan_dir_inode = NULL;
1358 struct inode *iter;
1359 unsigned long offset, blk, local;
1360 struct buffer_head *bh = NULL;
1361 struct ocfs2_dir_entry *de;
1362 struct super_block *sb = osb->sb;
1363
1364 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1365 ORPHAN_DIR_SYSTEM_INODE,
1366 slot);
1367 if (!orphan_dir_inode) {
1368 status = -ENOENT;
1369 mlog_errno(status);
1370 return status;
1371 }
1372
1373 mutex_lock(&orphan_dir_inode->i_mutex);
1374 status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0);
1375 if (status < 0) {
1376 mlog_errno(status);
1377 goto out;
1378 }
1379
1380 offset = 0;
1381 iter = NULL;
1382 while(offset < i_size_read(orphan_dir_inode)) {
1383 blk = offset >> sb->s_blocksize_bits;
1384
1385 bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1386 if (!bh)
1387 status = -EINVAL;
1388 if (status < 0) {
1389 if (bh)
1390 brelse(bh);
1391 mlog_errno(status);
1392 goto out_unlock;
1393 }
1394
1395 local = 0;
1396 while(offset < i_size_read(orphan_dir_inode)
1397 && local < sb->s_blocksize) {
1398 de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1399
1400 if (!ocfs2_check_dir_entry(orphan_dir_inode,
1401 de, bh, local)) {
1402 status = -EINVAL;
1403 mlog_errno(status);
1404 brelse(bh);
1405 goto out_unlock;
1406 }
1407
1408 local += le16_to_cpu(de->rec_len);
1409 offset += le16_to_cpu(de->rec_len);
1410
1411 /* I guess we silently fail on no inode? */
1412 if (!le64_to_cpu(de->inode))
1413 continue;
1414 if (de->file_type > OCFS2_FT_MAX) {
1415 mlog(ML_ERROR,
1416 "block %llu contains invalid de: "
1417 "inode = %llu, rec_len = %u, "
1418 "name_len = %u, file_type = %u, "
1419 "name='%.*s'\n",
1420 (unsigned long long)bh->b_blocknr,
1421 (unsigned long long)le64_to_cpu(de->inode),
1422 le16_to_cpu(de->rec_len),
1423 de->name_len,
1424 de->file_type,
1425 de->name_len,
1426 de->name);
1427 continue;
1428 }
1429 if (de->name_len == 1 && !strncmp(".", de->name, 1))
1430 continue;
1431 if (de->name_len == 2 && !strncmp("..", de->name, 2))
1432 continue;
1433
1434 iter = ocfs2_iget(osb, le64_to_cpu(de->inode),
1435 OCFS2_FI_FLAG_NOLOCK);
1436 if (IS_ERR(iter))
1437 continue;
1438
1439 mlog(0, "queue orphan %llu\n",
1440 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1441 /* No locking is required for the next_orphan
1442 * queue as there is only ever a single
1443 * process doing orphan recovery. */
1444 OCFS2_I(iter)->ip_next_orphan = *head;
1445 *head = iter;
1446 }
1447 brelse(bh);
1448 }
1449
1450 out_unlock:
1451 ocfs2_meta_unlock(orphan_dir_inode, 0);
1452 out:
1453 mutex_unlock(&orphan_dir_inode->i_mutex);
1454 iput(orphan_dir_inode);
1455 return status;
1456 }
1457
1458 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1459 int slot)
1460 {
1461 int ret;
1462
1463 spin_lock(&osb->osb_lock);
1464 ret = !osb->osb_orphan_wipes[slot];
1465 spin_unlock(&osb->osb_lock);
1466 return ret;
1467 }
1468
1469 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1470 int slot)
1471 {
1472 spin_lock(&osb->osb_lock);
1473 /* Mark ourselves such that new processes in delete_inode()
1474 * know to quit early. */
1475 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1476 while (osb->osb_orphan_wipes[slot]) {
1477 /* If any processes are already in the middle of an
1478 * orphan wipe on this dir, then we need to wait for
1479 * them. */
1480 spin_unlock(&osb->osb_lock);
1481 wait_event_interruptible(osb->osb_wipe_event,
1482 ocfs2_orphan_recovery_can_continue(osb, slot));
1483 spin_lock(&osb->osb_lock);
1484 }
1485 spin_unlock(&osb->osb_lock);
1486 }
1487
1488 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1489 int slot)
1490 {
1491 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1492 }
1493
1494 /*
1495 * Orphan recovery. Each mounted node has it's own orphan dir which we
1496 * must run during recovery. Our strategy here is to build a list of
1497 * the inodes in the orphan dir and iget/iput them. The VFS does
1498 * (most) of the rest of the work.
1499 *
1500 * Orphan recovery can happen at any time, not just mount so we have a
1501 * couple of extra considerations.
1502 *
1503 * - We grab as many inodes as we can under the orphan dir lock -
1504 * doing iget() outside the orphan dir risks getting a reference on
1505 * an invalid inode.
1506 * - We must be sure not to deadlock with other processes on the
1507 * system wanting to run delete_inode(). This can happen when they go
1508 * to lock the orphan dir and the orphan recovery process attempts to
1509 * iget() inside the orphan dir lock. This can be avoided by
1510 * advertising our state to ocfs2_delete_inode().
1511 */
1512 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1513 int slot)
1514 {
1515 int ret = 0;
1516 struct inode *inode = NULL;
1517 struct inode *iter;
1518 struct ocfs2_inode_info *oi;
1519
1520 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1521
1522 ocfs2_mark_recovering_orphan_dir(osb, slot);
1523 ret = ocfs2_queue_orphans(osb, slot, &inode);
1524 ocfs2_clear_recovering_orphan_dir(osb, slot);
1525
1526 /* Error here should be noted, but we want to continue with as
1527 * many queued inodes as we've got. */
1528 if (ret)
1529 mlog_errno(ret);
1530
1531 while (inode) {
1532 oi = OCFS2_I(inode);
1533 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1534
1535 iter = oi->ip_next_orphan;
1536
1537 spin_lock(&oi->ip_lock);
1538 /* Delete voting may have set these on the assumption
1539 * that the other node would wipe them successfully.
1540 * If they are still in the node's orphan dir, we need
1541 * to reset that state. */
1542 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1543
1544 /* Set the proper information to get us going into
1545 * ocfs2_delete_inode. */
1546 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1547 oi->ip_orphaned_slot = slot;
1548 spin_unlock(&oi->ip_lock);
1549
1550 iput(inode);
1551
1552 inode = iter;
1553 }
1554
1555 return ret;
1556 }
1557
1558 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1559 {
1560 /* This check is good because ocfs2 will wait on our recovery
1561 * thread before changing it to something other than MOUNTED
1562 * or DISABLED. */
1563 wait_event(osb->osb_mount_event,
1564 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1565 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1566
1567 /* If there's an error on mount, then we may never get to the
1568 * MOUNTED flag, but this is set right before
1569 * dismount_volume() so we can trust it. */
1570 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1571 mlog(0, "mount error, exiting!\n");
1572 return -EBUSY;
1573 }
1574
1575 return 0;
1576 }
1577
1578 static int ocfs2_commit_thread(void *arg)
1579 {
1580 int status;
1581 struct ocfs2_super *osb = arg;
1582 struct ocfs2_journal *journal = osb->journal;
1583
1584 /* we can trust j_num_trans here because _should_stop() is only set in
1585 * shutdown and nobody other than ourselves should be able to start
1586 * transactions. committing on shutdown might take a few iterations
1587 * as final transactions put deleted inodes on the list */
1588 while (!(kthread_should_stop() &&
1589 atomic_read(&journal->j_num_trans) == 0)) {
1590
1591 wait_event_interruptible(osb->checkpoint_event,
1592 atomic_read(&journal->j_num_trans)
1593 || kthread_should_stop());
1594
1595 status = ocfs2_commit_cache(osb);
1596 if (status < 0)
1597 mlog_errno(status);
1598
1599 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1600 mlog(ML_KTHREAD,
1601 "commit_thread: %u transactions pending on "
1602 "shutdown\n",
1603 atomic_read(&journal->j_num_trans));
1604 }
1605 }
1606
1607 return 0;
1608 }
1609
1610 /* Look for a dirty journal without taking any cluster locks. Used for
1611 * hard readonly access to determine whether the file system journals
1612 * require recovery. */
1613 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1614 {
1615 int ret = 0;
1616 unsigned int slot;
1617 struct buffer_head *di_bh;
1618 struct ocfs2_dinode *di;
1619 struct inode *journal = NULL;
1620
1621 for(slot = 0; slot < osb->max_slots; slot++) {
1622 journal = ocfs2_get_system_file_inode(osb,
1623 JOURNAL_SYSTEM_INODE,
1624 slot);
1625 if (!journal || is_bad_inode(journal)) {
1626 ret = -EACCES;
1627 mlog_errno(ret);
1628 goto out;
1629 }
1630
1631 di_bh = NULL;
1632 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1633 0, journal);
1634 if (ret < 0) {
1635 mlog_errno(ret);
1636 goto out;
1637 }
1638
1639 di = (struct ocfs2_dinode *) di_bh->b_data;
1640
1641 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1642 OCFS2_JOURNAL_DIRTY_FL)
1643 ret = -EROFS;
1644
1645 brelse(di_bh);
1646 if (ret)
1647 break;
1648 }
1649
1650 out:
1651 if (journal)
1652 iput(journal);
1653
1654 return ret;
1655 }
This page took 0.064731 seconds and 6 git commands to generate.