ocfs2: remove ocfs2_journal_handle journal field
[deliverable/linux.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "heartbeat.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "namei.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49
50 #include "buffer_head_io.h"
51
52 DEFINE_SPINLOCK(trans_inc_lock);
53
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
61 int dirty);
62 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
63 int slot_num);
64 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
65 int slot);
66 static int ocfs2_commit_thread(void *arg);
67
68 static int ocfs2_commit_cache(struct ocfs2_super *osb)
69 {
70 int status = 0;
71 unsigned int flushed;
72 unsigned long old_id;
73 struct ocfs2_journal *journal = NULL;
74
75 mlog_entry_void();
76
77 journal = osb->journal;
78
79 /* Flush all pending commits and checkpoint the journal. */
80 down_write(&journal->j_trans_barrier);
81
82 if (atomic_read(&journal->j_num_trans) == 0) {
83 up_write(&journal->j_trans_barrier);
84 mlog(0, "No transactions for me to flush!\n");
85 goto finally;
86 }
87
88 journal_lock_updates(journal->j_journal);
89 status = journal_flush(journal->j_journal);
90 journal_unlock_updates(journal->j_journal);
91 if (status < 0) {
92 up_write(&journal->j_trans_barrier);
93 mlog_errno(status);
94 goto finally;
95 }
96
97 old_id = ocfs2_inc_trans_id(journal);
98
99 flushed = atomic_read(&journal->j_num_trans);
100 atomic_set(&journal->j_num_trans, 0);
101 up_write(&journal->j_trans_barrier);
102
103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 journal->j_trans_id, flushed);
105
106 ocfs2_kick_vote_thread(osb);
107 wake_up(&journal->j_checkpointed);
108 finally:
109 mlog_exit(status);
110 return status;
111 }
112
113 static struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
114 {
115 struct ocfs2_journal_handle *retval = NULL;
116
117 retval = kcalloc(1, sizeof(*retval), GFP_NOFS);
118 if (!retval) {
119 mlog(ML_ERROR, "Failed to allocate memory for journal "
120 "handle!\n");
121 return NULL;
122 }
123 retval->k_handle = NULL;
124
125 return retval;
126 }
127
128 /* pass it NULL and it will allocate a new handle object for you. If
129 * you pass it a handle however, it may still return error, in which
130 * case it has free'd the passed handle for you. */
131 struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
132 struct ocfs2_journal_handle *handle,
133 int max_buffs)
134 {
135 int ret;
136 journal_t *journal = osb->journal->j_journal;
137
138 mlog_entry("(max_buffs = %d)\n", max_buffs);
139
140 BUG_ON(!osb || !osb->journal->j_journal);
141
142 if (ocfs2_is_hard_readonly(osb)) {
143 ret = -EROFS;
144 goto done_free;
145 }
146
147 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
148 BUG_ON(max_buffs <= 0);
149
150 /* JBD might support this, but our journalling code doesn't yet. */
151 if (journal_current_handle()) {
152 mlog(ML_ERROR, "Recursive transaction attempted!\n");
153 BUG();
154 }
155
156 if (!handle)
157 handle = ocfs2_alloc_handle(osb);
158 if (!handle) {
159 ret = -ENOMEM;
160 mlog(ML_ERROR, "Failed to allocate memory for journal "
161 "handle!\n");
162 goto done_free;
163 }
164
165 down_read(&osb->journal->j_trans_barrier);
166
167 /* actually start the transaction now */
168 handle->k_handle = journal_start(journal, max_buffs);
169 if (IS_ERR(handle->k_handle)) {
170 up_read(&osb->journal->j_trans_barrier);
171
172 ret = PTR_ERR(handle->k_handle);
173 handle->k_handle = NULL;
174 mlog_errno(ret);
175
176 if (is_journal_aborted(journal)) {
177 ocfs2_abort(osb->sb, "Detected aborted journal");
178 ret = -EROFS;
179 }
180 goto done_free;
181 }
182
183 atomic_inc(&(osb->journal->j_num_trans));
184
185 mlog_exit_ptr(handle);
186 return handle;
187
188 done_free:
189 if (handle)
190 kfree(handle);
191
192 mlog_exit(ret);
193 return ERR_PTR(ret);
194 }
195
196 void ocfs2_commit_trans(struct ocfs2_super *osb,
197 struct ocfs2_journal_handle *handle)
198 {
199 handle_t *jbd_handle;
200 int retval;
201 struct ocfs2_journal *journal = osb->journal;
202
203 mlog_entry_void();
204
205 BUG_ON(!handle);
206
207 if (!handle->k_handle) {
208 kfree(handle);
209 mlog_exit_void();
210 return;
211 }
212
213 /* ocfs2_extend_trans may have had to call journal_restart
214 * which will always commit the transaction, but may return
215 * error for any number of reasons. If this is the case, we
216 * clear k_handle as it's not valid any more. */
217 if (handle->k_handle) {
218 jbd_handle = handle->k_handle;
219
220 /* actually stop the transaction. if we've set h_sync,
221 * it'll have been committed when we return */
222 retval = journal_stop(jbd_handle);
223 if (retval < 0) {
224 mlog_errno(retval);
225 mlog(ML_ERROR, "Could not commit transaction\n");
226 BUG();
227 }
228
229 handle->k_handle = NULL; /* it's been free'd in journal_stop */
230 }
231
232 up_read(&journal->j_trans_barrier);
233
234 kfree(handle);
235 mlog_exit_void();
236 }
237
238 /*
239 * 'nblocks' is what you want to add to the current
240 * transaction. extend_trans will either extend the current handle by
241 * nblocks, or commit it and start a new one with nblocks credits.
242 *
243 * WARNING: This will not release any semaphores or disk locks taken
244 * during the transaction, so make sure they were taken *before*
245 * start_trans or we'll have ordering deadlocks.
246 *
247 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
248 * good because transaction ids haven't yet been recorded on the
249 * cluster locks associated with this handle.
250 */
251 int ocfs2_extend_trans(handle_t *handle, int nblocks)
252 {
253 int status;
254
255 BUG_ON(!handle);
256 BUG_ON(!nblocks);
257
258 mlog_entry_void();
259
260 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
261
262 status = journal_extend(handle, nblocks);
263 if (status < 0) {
264 mlog_errno(status);
265 goto bail;
266 }
267
268 if (status > 0) {
269 mlog(0, "journal_extend failed, trying journal_restart\n");
270 status = journal_restart(handle, nblocks);
271 if (status < 0) {
272 mlog_errno(status);
273 goto bail;
274 }
275 }
276
277 status = 0;
278 bail:
279
280 mlog_exit(status);
281 return status;
282 }
283
284 int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
285 struct inode *inode,
286 struct buffer_head *bh,
287 int type)
288 {
289 int status;
290
291 BUG_ON(!inode);
292 BUG_ON(!handle);
293 BUG_ON(!bh);
294
295 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
296 (unsigned long long)bh->b_blocknr, type,
297 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
298 "OCFS2_JOURNAL_ACCESS_CREATE" :
299 "OCFS2_JOURNAL_ACCESS_WRITE",
300 bh->b_size);
301
302 /* we can safely remove this assertion after testing. */
303 if (!buffer_uptodate(bh)) {
304 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
305 mlog(ML_ERROR, "b_blocknr=%llu\n",
306 (unsigned long long)bh->b_blocknr);
307 BUG();
308 }
309
310 /* Set the current transaction information on the inode so
311 * that the locking code knows whether it can drop it's locks
312 * on this inode or not. We're protected from the commit
313 * thread updating the current transaction id until
314 * ocfs2_commit_trans() because ocfs2_start_trans() took
315 * j_trans_barrier for us. */
316 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
317
318 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
319 switch (type) {
320 case OCFS2_JOURNAL_ACCESS_CREATE:
321 case OCFS2_JOURNAL_ACCESS_WRITE:
322 status = journal_get_write_access(handle->k_handle, bh);
323 break;
324
325 case OCFS2_JOURNAL_ACCESS_UNDO:
326 status = journal_get_undo_access(handle->k_handle, bh);
327 break;
328
329 default:
330 status = -EINVAL;
331 mlog(ML_ERROR, "Uknown access type!\n");
332 }
333 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
334
335 if (status < 0)
336 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
337 status, type);
338
339 mlog_exit(status);
340 return status;
341 }
342
343 int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
344 struct buffer_head *bh)
345 {
346 int status;
347
348 mlog_entry("(bh->b_blocknr=%llu)\n",
349 (unsigned long long)bh->b_blocknr);
350
351 status = journal_dirty_metadata(handle->k_handle, bh);
352 if (status < 0)
353 mlog(ML_ERROR, "Could not dirty metadata buffer. "
354 "(bh->b_blocknr=%llu)\n",
355 (unsigned long long)bh->b_blocknr);
356
357 mlog_exit(status);
358 return status;
359 }
360
361 int ocfs2_journal_dirty_data(handle_t *handle,
362 struct buffer_head *bh)
363 {
364 int err = journal_dirty_data(handle, bh);
365 if (err)
366 mlog_errno(err);
367 /* TODO: When we can handle it, abort the handle and go RO on
368 * error here. */
369
370 return err;
371 }
372
373 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
374
375 void ocfs2_set_journal_params(struct ocfs2_super *osb)
376 {
377 journal_t *journal = osb->journal->j_journal;
378
379 spin_lock(&journal->j_state_lock);
380 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
381 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
382 journal->j_flags |= JFS_BARRIER;
383 else
384 journal->j_flags &= ~JFS_BARRIER;
385 spin_unlock(&journal->j_state_lock);
386 }
387
388 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
389 {
390 int status = -1;
391 struct inode *inode = NULL; /* the journal inode */
392 journal_t *j_journal = NULL;
393 struct ocfs2_dinode *di = NULL;
394 struct buffer_head *bh = NULL;
395 struct ocfs2_super *osb;
396 int meta_lock = 0;
397
398 mlog_entry_void();
399
400 BUG_ON(!journal);
401
402 osb = journal->j_osb;
403
404 /* already have the inode for our journal */
405 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
406 osb->slot_num);
407 if (inode == NULL) {
408 status = -EACCES;
409 mlog_errno(status);
410 goto done;
411 }
412 if (is_bad_inode(inode)) {
413 mlog(ML_ERROR, "access error (bad inode)\n");
414 iput(inode);
415 inode = NULL;
416 status = -EACCES;
417 goto done;
418 }
419
420 SET_INODE_JOURNAL(inode);
421 OCFS2_I(inode)->ip_open_count++;
422
423 /* Skip recovery waits here - journal inode metadata never
424 * changes in a live cluster so it can be considered an
425 * exception to the rule. */
426 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
427 if (status < 0) {
428 if (status != -ERESTARTSYS)
429 mlog(ML_ERROR, "Could not get lock on journal!\n");
430 goto done;
431 }
432
433 meta_lock = 1;
434 di = (struct ocfs2_dinode *)bh->b_data;
435
436 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
437 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
438 inode->i_size);
439 status = -EINVAL;
440 goto done;
441 }
442
443 mlog(0, "inode->i_size = %lld\n", inode->i_size);
444 mlog(0, "inode->i_blocks = %llu\n",
445 (unsigned long long)inode->i_blocks);
446 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
447
448 /* call the kernels journal init function now */
449 j_journal = journal_init_inode(inode);
450 if (j_journal == NULL) {
451 mlog(ML_ERROR, "Linux journal layer error\n");
452 status = -EINVAL;
453 goto done;
454 }
455
456 mlog(0, "Returned from journal_init_inode\n");
457 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
458
459 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
460 OCFS2_JOURNAL_DIRTY_FL);
461
462 journal->j_journal = j_journal;
463 journal->j_inode = inode;
464 journal->j_bh = bh;
465
466 ocfs2_set_journal_params(osb);
467
468 journal->j_state = OCFS2_JOURNAL_LOADED;
469
470 status = 0;
471 done:
472 if (status < 0) {
473 if (meta_lock)
474 ocfs2_meta_unlock(inode, 1);
475 if (bh != NULL)
476 brelse(bh);
477 if (inode) {
478 OCFS2_I(inode)->ip_open_count--;
479 iput(inode);
480 }
481 }
482
483 mlog_exit(status);
484 return status;
485 }
486
487 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
488 int dirty)
489 {
490 int status;
491 unsigned int flags;
492 struct ocfs2_journal *journal = osb->journal;
493 struct buffer_head *bh = journal->j_bh;
494 struct ocfs2_dinode *fe;
495
496 mlog_entry_void();
497
498 fe = (struct ocfs2_dinode *)bh->b_data;
499 if (!OCFS2_IS_VALID_DINODE(fe)) {
500 /* This is called from startup/shutdown which will
501 * handle the errors in a specific manner, so no need
502 * to call ocfs2_error() here. */
503 mlog(ML_ERROR, "Journal dinode %llu has invalid "
504 "signature: %.*s", (unsigned long long)fe->i_blkno, 7,
505 fe->i_signature);
506 status = -EIO;
507 goto out;
508 }
509
510 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
511 if (dirty)
512 flags |= OCFS2_JOURNAL_DIRTY_FL;
513 else
514 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
515 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
516
517 status = ocfs2_write_block(osb, bh, journal->j_inode);
518 if (status < 0)
519 mlog_errno(status);
520
521 out:
522 mlog_exit(status);
523 return status;
524 }
525
526 /*
527 * If the journal has been kmalloc'd it needs to be freed after this
528 * call.
529 */
530 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
531 {
532 struct ocfs2_journal *journal = NULL;
533 int status = 0;
534 struct inode *inode = NULL;
535 int num_running_trans = 0;
536
537 mlog_entry_void();
538
539 BUG_ON(!osb);
540
541 journal = osb->journal;
542 if (!journal)
543 goto done;
544
545 inode = journal->j_inode;
546
547 if (journal->j_state != OCFS2_JOURNAL_LOADED)
548 goto done;
549
550 /* need to inc inode use count as journal_destroy will iput. */
551 if (!igrab(inode))
552 BUG();
553
554 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
555 if (num_running_trans > 0)
556 mlog(0, "Shutting down journal: must wait on %d "
557 "running transactions!\n",
558 num_running_trans);
559
560 /* Do a commit_cache here. It will flush our journal, *and*
561 * release any locks that are still held.
562 * set the SHUTDOWN flag and release the trans lock.
563 * the commit thread will take the trans lock for us below. */
564 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
565
566 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
567 * drop the trans_lock (which we want to hold until we
568 * completely destroy the journal. */
569 if (osb->commit_task) {
570 /* Wait for the commit thread */
571 mlog(0, "Waiting for ocfs2commit to exit....\n");
572 kthread_stop(osb->commit_task);
573 osb->commit_task = NULL;
574 }
575
576 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
577
578 status = ocfs2_journal_toggle_dirty(osb, 0);
579 if (status < 0)
580 mlog_errno(status);
581
582 /* Shutdown the kernel journal system */
583 journal_destroy(journal->j_journal);
584
585 OCFS2_I(inode)->ip_open_count--;
586
587 /* unlock our journal */
588 ocfs2_meta_unlock(inode, 1);
589
590 brelse(journal->j_bh);
591 journal->j_bh = NULL;
592
593 journal->j_state = OCFS2_JOURNAL_FREE;
594
595 // up_write(&journal->j_trans_barrier);
596 done:
597 if (inode)
598 iput(inode);
599 mlog_exit_void();
600 }
601
602 static void ocfs2_clear_journal_error(struct super_block *sb,
603 journal_t *journal,
604 int slot)
605 {
606 int olderr;
607
608 olderr = journal_errno(journal);
609 if (olderr) {
610 mlog(ML_ERROR, "File system error %d recorded in "
611 "journal %u.\n", olderr, slot);
612 mlog(ML_ERROR, "File system on device %s needs checking.\n",
613 sb->s_id);
614
615 journal_ack_err(journal);
616 journal_clear_err(journal);
617 }
618 }
619
620 int ocfs2_journal_load(struct ocfs2_journal *journal)
621 {
622 int status = 0;
623 struct ocfs2_super *osb;
624
625 mlog_entry_void();
626
627 if (!journal)
628 BUG();
629
630 osb = journal->j_osb;
631
632 status = journal_load(journal->j_journal);
633 if (status < 0) {
634 mlog(ML_ERROR, "Failed to load journal!\n");
635 goto done;
636 }
637
638 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
639
640 status = ocfs2_journal_toggle_dirty(osb, 1);
641 if (status < 0) {
642 mlog_errno(status);
643 goto done;
644 }
645
646 /* Launch the commit thread */
647 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt");
648 if (IS_ERR(osb->commit_task)) {
649 status = PTR_ERR(osb->commit_task);
650 osb->commit_task = NULL;
651 mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
652 status);
653 goto done;
654 }
655
656 done:
657 mlog_exit(status);
658 return status;
659 }
660
661
662 /* 'full' flag tells us whether we clear out all blocks or if we just
663 * mark the journal clean */
664 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
665 {
666 int status;
667
668 mlog_entry_void();
669
670 BUG_ON(!journal);
671
672 status = journal_wipe(journal->j_journal, full);
673 if (status < 0) {
674 mlog_errno(status);
675 goto bail;
676 }
677
678 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
679 if (status < 0)
680 mlog_errno(status);
681
682 bail:
683 mlog_exit(status);
684 return status;
685 }
686
687 /*
688 * JBD Might read a cached version of another nodes journal file. We
689 * don't want this as this file changes often and we get no
690 * notification on those changes. The only way to be sure that we've
691 * got the most up to date version of those blocks then is to force
692 * read them off disk. Just searching through the buffer cache won't
693 * work as there may be pages backing this file which are still marked
694 * up to date. We know things can't change on this file underneath us
695 * as we have the lock by now :)
696 */
697 static int ocfs2_force_read_journal(struct inode *inode)
698 {
699 int status = 0;
700 int i, p_blocks;
701 u64 v_blkno, p_blkno;
702 #define CONCURRENT_JOURNAL_FILL 32
703 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
704
705 mlog_entry_void();
706
707 BUG_ON(inode->i_blocks !=
708 ocfs2_align_bytes_to_sectors(i_size_read(inode)));
709
710 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
711
712 mlog(0, "Force reading %llu blocks\n",
713 (unsigned long long)(inode->i_blocks >>
714 (inode->i_sb->s_blocksize_bits - 9)));
715
716 v_blkno = 0;
717 while (v_blkno <
718 (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
719
720 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
721 1, &p_blkno,
722 &p_blocks);
723 if (status < 0) {
724 mlog_errno(status);
725 goto bail;
726 }
727
728 if (p_blocks > CONCURRENT_JOURNAL_FILL)
729 p_blocks = CONCURRENT_JOURNAL_FILL;
730
731 /* We are reading journal data which should not
732 * be put in the uptodate cache */
733 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
734 p_blkno, p_blocks, bhs, 0,
735 NULL);
736 if (status < 0) {
737 mlog_errno(status);
738 goto bail;
739 }
740
741 for(i = 0; i < p_blocks; i++) {
742 brelse(bhs[i]);
743 bhs[i] = NULL;
744 }
745
746 v_blkno += p_blocks;
747 }
748
749 bail:
750 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
751 if (bhs[i])
752 brelse(bhs[i]);
753 mlog_exit(status);
754 return status;
755 }
756
757 struct ocfs2_la_recovery_item {
758 struct list_head lri_list;
759 int lri_slot;
760 struct ocfs2_dinode *lri_la_dinode;
761 struct ocfs2_dinode *lri_tl_dinode;
762 };
763
764 /* Does the second half of the recovery process. By this point, the
765 * node is marked clean and can actually be considered recovered,
766 * hence it's no longer in the recovery map, but there's still some
767 * cleanup we can do which shouldn't happen within the recovery thread
768 * as locking in that context becomes very difficult if we are to take
769 * recovering nodes into account.
770 *
771 * NOTE: This function can and will sleep on recovery of other nodes
772 * during cluster locking, just like any other ocfs2 process.
773 */
774 void ocfs2_complete_recovery(void *data)
775 {
776 int ret;
777 struct ocfs2_super *osb = data;
778 struct ocfs2_journal *journal = osb->journal;
779 struct ocfs2_dinode *la_dinode, *tl_dinode;
780 struct ocfs2_la_recovery_item *item;
781 struct list_head *p, *n;
782 LIST_HEAD(tmp_la_list);
783
784 mlog_entry_void();
785
786 mlog(0, "completing recovery from keventd\n");
787
788 spin_lock(&journal->j_lock);
789 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
790 spin_unlock(&journal->j_lock);
791
792 list_for_each_safe(p, n, &tmp_la_list) {
793 item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
794 list_del_init(&item->lri_list);
795
796 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
797
798 la_dinode = item->lri_la_dinode;
799 if (la_dinode) {
800 mlog(0, "Clean up local alloc %llu\n",
801 (unsigned long long)la_dinode->i_blkno);
802
803 ret = ocfs2_complete_local_alloc_recovery(osb,
804 la_dinode);
805 if (ret < 0)
806 mlog_errno(ret);
807
808 kfree(la_dinode);
809 }
810
811 tl_dinode = item->lri_tl_dinode;
812 if (tl_dinode) {
813 mlog(0, "Clean up truncate log %llu\n",
814 (unsigned long long)tl_dinode->i_blkno);
815
816 ret = ocfs2_complete_truncate_log_recovery(osb,
817 tl_dinode);
818 if (ret < 0)
819 mlog_errno(ret);
820
821 kfree(tl_dinode);
822 }
823
824 ret = ocfs2_recover_orphans(osb, item->lri_slot);
825 if (ret < 0)
826 mlog_errno(ret);
827
828 kfree(item);
829 }
830
831 mlog(0, "Recovery completion\n");
832 mlog_exit_void();
833 }
834
835 /* NOTE: This function always eats your references to la_dinode and
836 * tl_dinode, either manually on error, or by passing them to
837 * ocfs2_complete_recovery */
838 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
839 int slot_num,
840 struct ocfs2_dinode *la_dinode,
841 struct ocfs2_dinode *tl_dinode)
842 {
843 struct ocfs2_la_recovery_item *item;
844
845 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
846 if (!item) {
847 /* Though we wish to avoid it, we are in fact safe in
848 * skipping local alloc cleanup as fsck.ocfs2 is more
849 * than capable of reclaiming unused space. */
850 if (la_dinode)
851 kfree(la_dinode);
852
853 if (tl_dinode)
854 kfree(tl_dinode);
855
856 mlog_errno(-ENOMEM);
857 return;
858 }
859
860 INIT_LIST_HEAD(&item->lri_list);
861 item->lri_la_dinode = la_dinode;
862 item->lri_slot = slot_num;
863 item->lri_tl_dinode = tl_dinode;
864
865 spin_lock(&journal->j_lock);
866 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
867 queue_work(ocfs2_wq, &journal->j_recovery_work);
868 spin_unlock(&journal->j_lock);
869 }
870
871 /* Called by the mount code to queue recovery the last part of
872 * recovery for it's own slot. */
873 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
874 {
875 struct ocfs2_journal *journal = osb->journal;
876
877 if (osb->dirty) {
878 /* No need to queue up our truncate_log as regular
879 * cleanup will catch that. */
880 ocfs2_queue_recovery_completion(journal,
881 osb->slot_num,
882 osb->local_alloc_copy,
883 NULL);
884 ocfs2_schedule_truncate_log_flush(osb, 0);
885
886 osb->local_alloc_copy = NULL;
887 osb->dirty = 0;
888 }
889 }
890
891 static int __ocfs2_recovery_thread(void *arg)
892 {
893 int status, node_num;
894 struct ocfs2_super *osb = arg;
895
896 mlog_entry_void();
897
898 status = ocfs2_wait_on_mount(osb);
899 if (status < 0) {
900 goto bail;
901 }
902
903 restart:
904 status = ocfs2_super_lock(osb, 1);
905 if (status < 0) {
906 mlog_errno(status);
907 goto bail;
908 }
909
910 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
911 node_num = ocfs2_node_map_first_set_bit(osb,
912 &osb->recovery_map);
913 if (node_num == O2NM_INVALID_NODE_NUM) {
914 mlog(0, "Out of nodes to recover.\n");
915 break;
916 }
917
918 status = ocfs2_recover_node(osb, node_num);
919 if (status < 0) {
920 mlog(ML_ERROR,
921 "Error %d recovering node %d on device (%u,%u)!\n",
922 status, node_num,
923 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
924 mlog(ML_ERROR, "Volume requires unmount.\n");
925 continue;
926 }
927
928 ocfs2_recovery_map_clear(osb, node_num);
929 }
930 ocfs2_super_unlock(osb, 1);
931
932 /* We always run recovery on our own orphan dir - the dead
933 * node(s) may have voted "no" on an inode delete earlier. A
934 * revote is therefore required. */
935 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
936 NULL);
937
938 bail:
939 mutex_lock(&osb->recovery_lock);
940 if (!status &&
941 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
942 mutex_unlock(&osb->recovery_lock);
943 goto restart;
944 }
945
946 osb->recovery_thread_task = NULL;
947 mb(); /* sync with ocfs2_recovery_thread_running */
948 wake_up(&osb->recovery_event);
949
950 mutex_unlock(&osb->recovery_lock);
951
952 mlog_exit(status);
953 /* no one is callint kthread_stop() for us so the kthread() api
954 * requires that we call do_exit(). And it isn't exported, but
955 * complete_and_exit() seems to be a minimal wrapper around it. */
956 complete_and_exit(NULL, status);
957 return status;
958 }
959
960 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
961 {
962 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
963 node_num, osb->node_num);
964
965 mutex_lock(&osb->recovery_lock);
966 if (osb->disable_recovery)
967 goto out;
968
969 /* People waiting on recovery will wait on
970 * the recovery map to empty. */
971 if (!ocfs2_recovery_map_set(osb, node_num))
972 mlog(0, "node %d already be in recovery.\n", node_num);
973
974 mlog(0, "starting recovery thread...\n");
975
976 if (osb->recovery_thread_task)
977 goto out;
978
979 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
980 "ocfs2rec");
981 if (IS_ERR(osb->recovery_thread_task)) {
982 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
983 osb->recovery_thread_task = NULL;
984 }
985
986 out:
987 mutex_unlock(&osb->recovery_lock);
988 wake_up(&osb->recovery_event);
989
990 mlog_exit_void();
991 }
992
993 /* Does the actual journal replay and marks the journal inode as
994 * clean. Will only replay if the journal inode is marked dirty. */
995 static int ocfs2_replay_journal(struct ocfs2_super *osb,
996 int node_num,
997 int slot_num)
998 {
999 int status;
1000 int got_lock = 0;
1001 unsigned int flags;
1002 struct inode *inode = NULL;
1003 struct ocfs2_dinode *fe;
1004 journal_t *journal = NULL;
1005 struct buffer_head *bh = NULL;
1006
1007 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1008 slot_num);
1009 if (inode == NULL) {
1010 status = -EACCES;
1011 mlog_errno(status);
1012 goto done;
1013 }
1014 if (is_bad_inode(inode)) {
1015 status = -EACCES;
1016 iput(inode);
1017 inode = NULL;
1018 mlog_errno(status);
1019 goto done;
1020 }
1021 SET_INODE_JOURNAL(inode);
1022
1023 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1024 if (status < 0) {
1025 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1026 if (status != -ERESTARTSYS)
1027 mlog(ML_ERROR, "Could not lock journal!\n");
1028 goto done;
1029 }
1030 got_lock = 1;
1031
1032 fe = (struct ocfs2_dinode *) bh->b_data;
1033
1034 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1035
1036 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1037 mlog(0, "No recovery required for node %d\n", node_num);
1038 goto done;
1039 }
1040
1041 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1042 node_num, slot_num,
1043 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1044
1045 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1046
1047 status = ocfs2_force_read_journal(inode);
1048 if (status < 0) {
1049 mlog_errno(status);
1050 goto done;
1051 }
1052
1053 mlog(0, "calling journal_init_inode\n");
1054 journal = journal_init_inode(inode);
1055 if (journal == NULL) {
1056 mlog(ML_ERROR, "Linux journal layer error\n");
1057 status = -EIO;
1058 goto done;
1059 }
1060
1061 status = journal_load(journal);
1062 if (status < 0) {
1063 mlog_errno(status);
1064 if (!igrab(inode))
1065 BUG();
1066 journal_destroy(journal);
1067 goto done;
1068 }
1069
1070 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1071
1072 /* wipe the journal */
1073 mlog(0, "flushing the journal.\n");
1074 journal_lock_updates(journal);
1075 status = journal_flush(journal);
1076 journal_unlock_updates(journal);
1077 if (status < 0)
1078 mlog_errno(status);
1079
1080 /* This will mark the node clean */
1081 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1082 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1083 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1084
1085 status = ocfs2_write_block(osb, bh, inode);
1086 if (status < 0)
1087 mlog_errno(status);
1088
1089 if (!igrab(inode))
1090 BUG();
1091
1092 journal_destroy(journal);
1093
1094 done:
1095 /* drop the lock on this nodes journal */
1096 if (got_lock)
1097 ocfs2_meta_unlock(inode, 1);
1098
1099 if (inode)
1100 iput(inode);
1101
1102 if (bh)
1103 brelse(bh);
1104
1105 mlog_exit(status);
1106 return status;
1107 }
1108
1109 /*
1110 * Do the most important parts of node recovery:
1111 * - Replay it's journal
1112 * - Stamp a clean local allocator file
1113 * - Stamp a clean truncate log
1114 * - Mark the node clean
1115 *
1116 * If this function completes without error, a node in OCFS2 can be
1117 * said to have been safely recovered. As a result, failure during the
1118 * second part of a nodes recovery process (local alloc recovery) is
1119 * far less concerning.
1120 */
1121 static int ocfs2_recover_node(struct ocfs2_super *osb,
1122 int node_num)
1123 {
1124 int status = 0;
1125 int slot_num;
1126 struct ocfs2_slot_info *si = osb->slot_info;
1127 struct ocfs2_dinode *la_copy = NULL;
1128 struct ocfs2_dinode *tl_copy = NULL;
1129
1130 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1131 node_num, osb->node_num);
1132
1133 mlog(0, "checking node %d\n", node_num);
1134
1135 /* Should not ever be called to recover ourselves -- in that
1136 * case we should've called ocfs2_journal_load instead. */
1137 BUG_ON(osb->node_num == node_num);
1138
1139 slot_num = ocfs2_node_num_to_slot(si, node_num);
1140 if (slot_num == OCFS2_INVALID_SLOT) {
1141 status = 0;
1142 mlog(0, "no slot for this node, so no recovery required.\n");
1143 goto done;
1144 }
1145
1146 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1147
1148 status = ocfs2_replay_journal(osb, node_num, slot_num);
1149 if (status < 0) {
1150 mlog_errno(status);
1151 goto done;
1152 }
1153
1154 /* Stamp a clean local alloc file AFTER recovering the journal... */
1155 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1156 if (status < 0) {
1157 mlog_errno(status);
1158 goto done;
1159 }
1160
1161 /* An error from begin_truncate_log_recovery is not
1162 * serious enough to warrant halting the rest of
1163 * recovery. */
1164 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1165 if (status < 0)
1166 mlog_errno(status);
1167
1168 /* Likewise, this would be a strange but ultimately not so
1169 * harmful place to get an error... */
1170 ocfs2_clear_slot(si, slot_num);
1171 status = ocfs2_update_disk_slots(osb, si);
1172 if (status < 0)
1173 mlog_errno(status);
1174
1175 /* This will kfree the memory pointed to by la_copy and tl_copy */
1176 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1177 tl_copy);
1178
1179 status = 0;
1180 done:
1181
1182 mlog_exit(status);
1183 return status;
1184 }
1185
1186 /* Test node liveness by trylocking his journal. If we get the lock,
1187 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1188 * still alive (we couldn't get the lock) and < 0 on error. */
1189 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1190 int slot_num)
1191 {
1192 int status, flags;
1193 struct inode *inode = NULL;
1194
1195 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1196 slot_num);
1197 if (inode == NULL) {
1198 mlog(ML_ERROR, "access error\n");
1199 status = -EACCES;
1200 goto bail;
1201 }
1202 if (is_bad_inode(inode)) {
1203 mlog(ML_ERROR, "access error (bad inode)\n");
1204 iput(inode);
1205 inode = NULL;
1206 status = -EACCES;
1207 goto bail;
1208 }
1209 SET_INODE_JOURNAL(inode);
1210
1211 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1212 status = ocfs2_meta_lock_full(inode, NULL, 1, flags);
1213 if (status < 0) {
1214 if (status != -EAGAIN)
1215 mlog_errno(status);
1216 goto bail;
1217 }
1218
1219 ocfs2_meta_unlock(inode, 1);
1220 bail:
1221 if (inode)
1222 iput(inode);
1223
1224 return status;
1225 }
1226
1227 /* Call this underneath ocfs2_super_lock. It also assumes that the
1228 * slot info struct has been updated from disk. */
1229 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1230 {
1231 int status, i, node_num;
1232 struct ocfs2_slot_info *si = osb->slot_info;
1233
1234 /* This is called with the super block cluster lock, so we
1235 * know that the slot map can't change underneath us. */
1236
1237 spin_lock(&si->si_lock);
1238 for(i = 0; i < si->si_num_slots; i++) {
1239 if (i == osb->slot_num)
1240 continue;
1241 if (ocfs2_is_empty_slot(si, i))
1242 continue;
1243
1244 node_num = si->si_global_node_nums[i];
1245 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1246 continue;
1247 spin_unlock(&si->si_lock);
1248
1249 /* Ok, we have a slot occupied by another node which
1250 * is not in the recovery map. We trylock his journal
1251 * file here to test if he's alive. */
1252 status = ocfs2_trylock_journal(osb, i);
1253 if (!status) {
1254 /* Since we're called from mount, we know that
1255 * the recovery thread can't race us on
1256 * setting / checking the recovery bits. */
1257 ocfs2_recovery_thread(osb, node_num);
1258 } else if ((status < 0) && (status != -EAGAIN)) {
1259 mlog_errno(status);
1260 goto bail;
1261 }
1262
1263 spin_lock(&si->si_lock);
1264 }
1265 spin_unlock(&si->si_lock);
1266
1267 status = 0;
1268 bail:
1269 mlog_exit(status);
1270 return status;
1271 }
1272
1273 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1274 int slot,
1275 struct inode **head)
1276 {
1277 int status;
1278 struct inode *orphan_dir_inode = NULL;
1279 struct inode *iter;
1280 unsigned long offset, blk, local;
1281 struct buffer_head *bh = NULL;
1282 struct ocfs2_dir_entry *de;
1283 struct super_block *sb = osb->sb;
1284
1285 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1286 ORPHAN_DIR_SYSTEM_INODE,
1287 slot);
1288 if (!orphan_dir_inode) {
1289 status = -ENOENT;
1290 mlog_errno(status);
1291 return status;
1292 }
1293
1294 mutex_lock(&orphan_dir_inode->i_mutex);
1295 status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0);
1296 if (status < 0) {
1297 mlog_errno(status);
1298 goto out;
1299 }
1300
1301 offset = 0;
1302 iter = NULL;
1303 while(offset < i_size_read(orphan_dir_inode)) {
1304 blk = offset >> sb->s_blocksize_bits;
1305
1306 bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1307 if (!bh)
1308 status = -EINVAL;
1309 if (status < 0) {
1310 if (bh)
1311 brelse(bh);
1312 mlog_errno(status);
1313 goto out_unlock;
1314 }
1315
1316 local = 0;
1317 while(offset < i_size_read(orphan_dir_inode)
1318 && local < sb->s_blocksize) {
1319 de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1320
1321 if (!ocfs2_check_dir_entry(orphan_dir_inode,
1322 de, bh, local)) {
1323 status = -EINVAL;
1324 mlog_errno(status);
1325 brelse(bh);
1326 goto out_unlock;
1327 }
1328
1329 local += le16_to_cpu(de->rec_len);
1330 offset += le16_to_cpu(de->rec_len);
1331
1332 /* I guess we silently fail on no inode? */
1333 if (!le64_to_cpu(de->inode))
1334 continue;
1335 if (de->file_type > OCFS2_FT_MAX) {
1336 mlog(ML_ERROR,
1337 "block %llu contains invalid de: "
1338 "inode = %llu, rec_len = %u, "
1339 "name_len = %u, file_type = %u, "
1340 "name='%.*s'\n",
1341 (unsigned long long)bh->b_blocknr,
1342 (unsigned long long)le64_to_cpu(de->inode),
1343 le16_to_cpu(de->rec_len),
1344 de->name_len,
1345 de->file_type,
1346 de->name_len,
1347 de->name);
1348 continue;
1349 }
1350 if (de->name_len == 1 && !strncmp(".", de->name, 1))
1351 continue;
1352 if (de->name_len == 2 && !strncmp("..", de->name, 2))
1353 continue;
1354
1355 iter = ocfs2_iget(osb, le64_to_cpu(de->inode),
1356 OCFS2_FI_FLAG_NOLOCK);
1357 if (IS_ERR(iter))
1358 continue;
1359
1360 mlog(0, "queue orphan %llu\n",
1361 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1362 /* No locking is required for the next_orphan
1363 * queue as there is only ever a single
1364 * process doing orphan recovery. */
1365 OCFS2_I(iter)->ip_next_orphan = *head;
1366 *head = iter;
1367 }
1368 brelse(bh);
1369 }
1370
1371 out_unlock:
1372 ocfs2_meta_unlock(orphan_dir_inode, 0);
1373 out:
1374 mutex_unlock(&orphan_dir_inode->i_mutex);
1375 iput(orphan_dir_inode);
1376 return status;
1377 }
1378
1379 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1380 int slot)
1381 {
1382 int ret;
1383
1384 spin_lock(&osb->osb_lock);
1385 ret = !osb->osb_orphan_wipes[slot];
1386 spin_unlock(&osb->osb_lock);
1387 return ret;
1388 }
1389
1390 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1391 int slot)
1392 {
1393 spin_lock(&osb->osb_lock);
1394 /* Mark ourselves such that new processes in delete_inode()
1395 * know to quit early. */
1396 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1397 while (osb->osb_orphan_wipes[slot]) {
1398 /* If any processes are already in the middle of an
1399 * orphan wipe on this dir, then we need to wait for
1400 * them. */
1401 spin_unlock(&osb->osb_lock);
1402 wait_event_interruptible(osb->osb_wipe_event,
1403 ocfs2_orphan_recovery_can_continue(osb, slot));
1404 spin_lock(&osb->osb_lock);
1405 }
1406 spin_unlock(&osb->osb_lock);
1407 }
1408
1409 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1410 int slot)
1411 {
1412 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1413 }
1414
1415 /*
1416 * Orphan recovery. Each mounted node has it's own orphan dir which we
1417 * must run during recovery. Our strategy here is to build a list of
1418 * the inodes in the orphan dir and iget/iput them. The VFS does
1419 * (most) of the rest of the work.
1420 *
1421 * Orphan recovery can happen at any time, not just mount so we have a
1422 * couple of extra considerations.
1423 *
1424 * - We grab as many inodes as we can under the orphan dir lock -
1425 * doing iget() outside the orphan dir risks getting a reference on
1426 * an invalid inode.
1427 * - We must be sure not to deadlock with other processes on the
1428 * system wanting to run delete_inode(). This can happen when they go
1429 * to lock the orphan dir and the orphan recovery process attempts to
1430 * iget() inside the orphan dir lock. This can be avoided by
1431 * advertising our state to ocfs2_delete_inode().
1432 */
1433 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1434 int slot)
1435 {
1436 int ret = 0;
1437 struct inode *inode = NULL;
1438 struct inode *iter;
1439 struct ocfs2_inode_info *oi;
1440
1441 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1442
1443 ocfs2_mark_recovering_orphan_dir(osb, slot);
1444 ret = ocfs2_queue_orphans(osb, slot, &inode);
1445 ocfs2_clear_recovering_orphan_dir(osb, slot);
1446
1447 /* Error here should be noted, but we want to continue with as
1448 * many queued inodes as we've got. */
1449 if (ret)
1450 mlog_errno(ret);
1451
1452 while (inode) {
1453 oi = OCFS2_I(inode);
1454 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1455
1456 iter = oi->ip_next_orphan;
1457
1458 spin_lock(&oi->ip_lock);
1459 /* Delete voting may have set these on the assumption
1460 * that the other node would wipe them successfully.
1461 * If they are still in the node's orphan dir, we need
1462 * to reset that state. */
1463 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1464
1465 /* Set the proper information to get us going into
1466 * ocfs2_delete_inode. */
1467 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1468 oi->ip_orphaned_slot = slot;
1469 spin_unlock(&oi->ip_lock);
1470
1471 iput(inode);
1472
1473 inode = iter;
1474 }
1475
1476 return ret;
1477 }
1478
1479 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1480 {
1481 /* This check is good because ocfs2 will wait on our recovery
1482 * thread before changing it to something other than MOUNTED
1483 * or DISABLED. */
1484 wait_event(osb->osb_mount_event,
1485 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1486 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1487
1488 /* If there's an error on mount, then we may never get to the
1489 * MOUNTED flag, but this is set right before
1490 * dismount_volume() so we can trust it. */
1491 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1492 mlog(0, "mount error, exiting!\n");
1493 return -EBUSY;
1494 }
1495
1496 return 0;
1497 }
1498
1499 static int ocfs2_commit_thread(void *arg)
1500 {
1501 int status;
1502 struct ocfs2_super *osb = arg;
1503 struct ocfs2_journal *journal = osb->journal;
1504
1505 /* we can trust j_num_trans here because _should_stop() is only set in
1506 * shutdown and nobody other than ourselves should be able to start
1507 * transactions. committing on shutdown might take a few iterations
1508 * as final transactions put deleted inodes on the list */
1509 while (!(kthread_should_stop() &&
1510 atomic_read(&journal->j_num_trans) == 0)) {
1511
1512 wait_event_interruptible(osb->checkpoint_event,
1513 atomic_read(&journal->j_num_trans)
1514 || kthread_should_stop());
1515
1516 status = ocfs2_commit_cache(osb);
1517 if (status < 0)
1518 mlog_errno(status);
1519
1520 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1521 mlog(ML_KTHREAD,
1522 "commit_thread: %u transactions pending on "
1523 "shutdown\n",
1524 atomic_read(&journal->j_num_trans));
1525 }
1526 }
1527
1528 return 0;
1529 }
1530
1531 /* Look for a dirty journal without taking any cluster locks. Used for
1532 * hard readonly access to determine whether the file system journals
1533 * require recovery. */
1534 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1535 {
1536 int ret = 0;
1537 unsigned int slot;
1538 struct buffer_head *di_bh;
1539 struct ocfs2_dinode *di;
1540 struct inode *journal = NULL;
1541
1542 for(slot = 0; slot < osb->max_slots; slot++) {
1543 journal = ocfs2_get_system_file_inode(osb,
1544 JOURNAL_SYSTEM_INODE,
1545 slot);
1546 if (!journal || is_bad_inode(journal)) {
1547 ret = -EACCES;
1548 mlog_errno(ret);
1549 goto out;
1550 }
1551
1552 di_bh = NULL;
1553 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1554 0, journal);
1555 if (ret < 0) {
1556 mlog_errno(ret);
1557 goto out;
1558 }
1559
1560 di = (struct ocfs2_dinode *) di_bh->b_data;
1561
1562 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1563 OCFS2_JOURNAL_DIRTY_FL)
1564 ret = -EROFS;
1565
1566 brelse(di_bh);
1567 if (ret)
1568 break;
1569 }
1570
1571 out:
1572 if (journal)
1573 iput(journal);
1574
1575 return ret;
1576 }
This page took 0.060919 seconds and 6 git commands to generate.