1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
39 #include "extent_map.h"
40 #include "heartbeat.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 DEFINE_SPINLOCK(trans_inc_lock
);
54 static int ocfs2_force_read_journal(struct inode
*inode
);
55 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
57 static int __ocfs2_recovery_thread(void *arg
);
58 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
59 static int ocfs2_wait_on_mount(struct ocfs2_super
*osb
);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
62 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
64 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
66 static int ocfs2_commit_thread(void *arg
);
68 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
73 struct ocfs2_journal
*journal
= NULL
;
77 journal
= osb
->journal
;
79 /* Flush all pending commits and checkpoint the journal. */
80 down_write(&journal
->j_trans_barrier
);
82 if (atomic_read(&journal
->j_num_trans
) == 0) {
83 up_write(&journal
->j_trans_barrier
);
84 mlog(0, "No transactions for me to flush!\n");
88 journal_lock_updates(journal
->j_journal
);
89 status
= journal_flush(journal
->j_journal
);
90 journal_unlock_updates(journal
->j_journal
);
92 up_write(&journal
->j_trans_barrier
);
97 old_id
= ocfs2_inc_trans_id(journal
);
99 flushed
= atomic_read(&journal
->j_num_trans
);
100 atomic_set(&journal
->j_num_trans
, 0);
101 up_write(&journal
->j_trans_barrier
);
103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 journal
->j_trans_id
, flushed
);
106 ocfs2_kick_vote_thread(osb
);
107 wake_up(&journal
->j_checkpointed
);
113 static struct ocfs2_journal_handle
*ocfs2_alloc_handle(struct ocfs2_super
*osb
)
115 struct ocfs2_journal_handle
*retval
= NULL
;
117 retval
= kcalloc(1, sizeof(*retval
), GFP_NOFS
);
119 mlog(ML_ERROR
, "Failed to allocate memory for journal "
123 retval
->k_handle
= NULL
;
128 /* pass it NULL and it will allocate a new handle object for you. If
129 * you pass it a handle however, it may still return error, in which
130 * case it has free'd the passed handle for you. */
131 struct ocfs2_journal_handle
*ocfs2_start_trans(struct ocfs2_super
*osb
,
132 struct ocfs2_journal_handle
*handle
,
136 journal_t
*journal
= osb
->journal
->j_journal
;
138 mlog_entry("(max_buffs = %d)\n", max_buffs
);
140 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
142 if (ocfs2_is_hard_readonly(osb
)) {
147 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
148 BUG_ON(max_buffs
<= 0);
150 /* JBD might support this, but our journalling code doesn't yet. */
151 if (journal_current_handle()) {
152 mlog(ML_ERROR
, "Recursive transaction attempted!\n");
157 handle
= ocfs2_alloc_handle(osb
);
160 mlog(ML_ERROR
, "Failed to allocate memory for journal "
165 down_read(&osb
->journal
->j_trans_barrier
);
167 /* actually start the transaction now */
168 handle
->k_handle
= journal_start(journal
, max_buffs
);
169 if (IS_ERR(handle
->k_handle
)) {
170 up_read(&osb
->journal
->j_trans_barrier
);
172 ret
= PTR_ERR(handle
->k_handle
);
173 handle
->k_handle
= NULL
;
176 if (is_journal_aborted(journal
)) {
177 ocfs2_abort(osb
->sb
, "Detected aborted journal");
183 atomic_inc(&(osb
->journal
->j_num_trans
));
185 mlog_exit_ptr(handle
);
196 void ocfs2_commit_trans(struct ocfs2_super
*osb
,
197 struct ocfs2_journal_handle
*handle
)
199 handle_t
*jbd_handle
;
201 struct ocfs2_journal
*journal
= osb
->journal
;
207 if (!handle
->k_handle
) {
213 /* ocfs2_extend_trans may have had to call journal_restart
214 * which will always commit the transaction, but may return
215 * error for any number of reasons. If this is the case, we
216 * clear k_handle as it's not valid any more. */
217 if (handle
->k_handle
) {
218 jbd_handle
= handle
->k_handle
;
220 /* actually stop the transaction. if we've set h_sync,
221 * it'll have been committed when we return */
222 retval
= journal_stop(jbd_handle
);
225 mlog(ML_ERROR
, "Could not commit transaction\n");
229 handle
->k_handle
= NULL
; /* it's been free'd in journal_stop */
232 up_read(&journal
->j_trans_barrier
);
239 * 'nblocks' is what you want to add to the current
240 * transaction. extend_trans will either extend the current handle by
241 * nblocks, or commit it and start a new one with nblocks credits.
243 * WARNING: This will not release any semaphores or disk locks taken
244 * during the transaction, so make sure they were taken *before*
245 * start_trans or we'll have ordering deadlocks.
247 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
248 * good because transaction ids haven't yet been recorded on the
249 * cluster locks associated with this handle.
251 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
260 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks
);
262 status
= journal_extend(handle
, nblocks
);
269 mlog(0, "journal_extend failed, trying journal_restart\n");
270 status
= journal_restart(handle
, nblocks
);
284 int ocfs2_journal_access(struct ocfs2_journal_handle
*handle
,
286 struct buffer_head
*bh
,
295 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
296 (unsigned long long)bh
->b_blocknr
, type
,
297 (type
== OCFS2_JOURNAL_ACCESS_CREATE
) ?
298 "OCFS2_JOURNAL_ACCESS_CREATE" :
299 "OCFS2_JOURNAL_ACCESS_WRITE",
302 /* we can safely remove this assertion after testing. */
303 if (!buffer_uptodate(bh
)) {
304 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
305 mlog(ML_ERROR
, "b_blocknr=%llu\n",
306 (unsigned long long)bh
->b_blocknr
);
310 /* Set the current transaction information on the inode so
311 * that the locking code knows whether it can drop it's locks
312 * on this inode or not. We're protected from the commit
313 * thread updating the current transaction id until
314 * ocfs2_commit_trans() because ocfs2_start_trans() took
315 * j_trans_barrier for us. */
316 ocfs2_set_inode_lock_trans(OCFS2_SB(inode
->i_sb
)->journal
, inode
);
318 mutex_lock(&OCFS2_I(inode
)->ip_io_mutex
);
320 case OCFS2_JOURNAL_ACCESS_CREATE
:
321 case OCFS2_JOURNAL_ACCESS_WRITE
:
322 status
= journal_get_write_access(handle
->k_handle
, bh
);
325 case OCFS2_JOURNAL_ACCESS_UNDO
:
326 status
= journal_get_undo_access(handle
->k_handle
, bh
);
331 mlog(ML_ERROR
, "Uknown access type!\n");
333 mutex_unlock(&OCFS2_I(inode
)->ip_io_mutex
);
336 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
343 int ocfs2_journal_dirty(struct ocfs2_journal_handle
*handle
,
344 struct buffer_head
*bh
)
348 mlog_entry("(bh->b_blocknr=%llu)\n",
349 (unsigned long long)bh
->b_blocknr
);
351 status
= journal_dirty_metadata(handle
->k_handle
, bh
);
353 mlog(ML_ERROR
, "Could not dirty metadata buffer. "
354 "(bh->b_blocknr=%llu)\n",
355 (unsigned long long)bh
->b_blocknr
);
361 int ocfs2_journal_dirty_data(handle_t
*handle
,
362 struct buffer_head
*bh
)
364 int err
= journal_dirty_data(handle
, bh
);
367 /* TODO: When we can handle it, abort the handle and go RO on
373 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
375 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
377 journal_t
*journal
= osb
->journal
->j_journal
;
379 spin_lock(&journal
->j_state_lock
);
380 journal
->j_commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
381 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
382 journal
->j_flags
|= JFS_BARRIER
;
384 journal
->j_flags
&= ~JFS_BARRIER
;
385 spin_unlock(&journal
->j_state_lock
);
388 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
391 struct inode
*inode
= NULL
; /* the journal inode */
392 journal_t
*j_journal
= NULL
;
393 struct ocfs2_dinode
*di
= NULL
;
394 struct buffer_head
*bh
= NULL
;
395 struct ocfs2_super
*osb
;
402 osb
= journal
->j_osb
;
404 /* already have the inode for our journal */
405 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
412 if (is_bad_inode(inode
)) {
413 mlog(ML_ERROR
, "access error (bad inode)\n");
420 SET_INODE_JOURNAL(inode
);
421 OCFS2_I(inode
)->ip_open_count
++;
423 /* Skip recovery waits here - journal inode metadata never
424 * changes in a live cluster so it can be considered an
425 * exception to the rule. */
426 status
= ocfs2_meta_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
428 if (status
!= -ERESTARTSYS
)
429 mlog(ML_ERROR
, "Could not get lock on journal!\n");
434 di
= (struct ocfs2_dinode
*)bh
->b_data
;
436 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
437 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
443 mlog(0, "inode->i_size = %lld\n", inode
->i_size
);
444 mlog(0, "inode->i_blocks = %llu\n",
445 (unsigned long long)inode
->i_blocks
);
446 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode
)->ip_clusters
);
448 /* call the kernels journal init function now */
449 j_journal
= journal_init_inode(inode
);
450 if (j_journal
== NULL
) {
451 mlog(ML_ERROR
, "Linux journal layer error\n");
456 mlog(0, "Returned from journal_init_inode\n");
457 mlog(0, "j_journal->j_maxlen = %u\n", j_journal
->j_maxlen
);
459 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
460 OCFS2_JOURNAL_DIRTY_FL
);
462 journal
->j_journal
= j_journal
;
463 journal
->j_inode
= inode
;
466 ocfs2_set_journal_params(osb
);
468 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
474 ocfs2_meta_unlock(inode
, 1);
478 OCFS2_I(inode
)->ip_open_count
--;
487 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
492 struct ocfs2_journal
*journal
= osb
->journal
;
493 struct buffer_head
*bh
= journal
->j_bh
;
494 struct ocfs2_dinode
*fe
;
498 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
499 if (!OCFS2_IS_VALID_DINODE(fe
)) {
500 /* This is called from startup/shutdown which will
501 * handle the errors in a specific manner, so no need
502 * to call ocfs2_error() here. */
503 mlog(ML_ERROR
, "Journal dinode %llu has invalid "
504 "signature: %.*s", (unsigned long long)fe
->i_blkno
, 7,
510 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
512 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
514 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
515 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
517 status
= ocfs2_write_block(osb
, bh
, journal
->j_inode
);
527 * If the journal has been kmalloc'd it needs to be freed after this
530 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
532 struct ocfs2_journal
*journal
= NULL
;
534 struct inode
*inode
= NULL
;
535 int num_running_trans
= 0;
541 journal
= osb
->journal
;
545 inode
= journal
->j_inode
;
547 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
550 /* need to inc inode use count as journal_destroy will iput. */
554 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
555 if (num_running_trans
> 0)
556 mlog(0, "Shutting down journal: must wait on %d "
557 "running transactions!\n",
560 /* Do a commit_cache here. It will flush our journal, *and*
561 * release any locks that are still held.
562 * set the SHUTDOWN flag and release the trans lock.
563 * the commit thread will take the trans lock for us below. */
564 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
566 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
567 * drop the trans_lock (which we want to hold until we
568 * completely destroy the journal. */
569 if (osb
->commit_task
) {
570 /* Wait for the commit thread */
571 mlog(0, "Waiting for ocfs2commit to exit....\n");
572 kthread_stop(osb
->commit_task
);
573 osb
->commit_task
= NULL
;
576 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
578 status
= ocfs2_journal_toggle_dirty(osb
, 0);
582 /* Shutdown the kernel journal system */
583 journal_destroy(journal
->j_journal
);
585 OCFS2_I(inode
)->ip_open_count
--;
587 /* unlock our journal */
588 ocfs2_meta_unlock(inode
, 1);
590 brelse(journal
->j_bh
);
591 journal
->j_bh
= NULL
;
593 journal
->j_state
= OCFS2_JOURNAL_FREE
;
595 // up_write(&journal->j_trans_barrier);
602 static void ocfs2_clear_journal_error(struct super_block
*sb
,
608 olderr
= journal_errno(journal
);
610 mlog(ML_ERROR
, "File system error %d recorded in "
611 "journal %u.\n", olderr
, slot
);
612 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
615 journal_ack_err(journal
);
616 journal_clear_err(journal
);
620 int ocfs2_journal_load(struct ocfs2_journal
*journal
)
623 struct ocfs2_super
*osb
;
630 osb
= journal
->j_osb
;
632 status
= journal_load(journal
->j_journal
);
634 mlog(ML_ERROR
, "Failed to load journal!\n");
638 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
640 status
= ocfs2_journal_toggle_dirty(osb
, 1);
646 /* Launch the commit thread */
647 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
, "ocfs2cmt");
648 if (IS_ERR(osb
->commit_task
)) {
649 status
= PTR_ERR(osb
->commit_task
);
650 osb
->commit_task
= NULL
;
651 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, error=%d",
662 /* 'full' flag tells us whether we clear out all blocks or if we just
663 * mark the journal clean */
664 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
672 status
= journal_wipe(journal
->j_journal
, full
);
678 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0);
688 * JBD Might read a cached version of another nodes journal file. We
689 * don't want this as this file changes often and we get no
690 * notification on those changes. The only way to be sure that we've
691 * got the most up to date version of those blocks then is to force
692 * read them off disk. Just searching through the buffer cache won't
693 * work as there may be pages backing this file which are still marked
694 * up to date. We know things can't change on this file underneath us
695 * as we have the lock by now :)
697 static int ocfs2_force_read_journal(struct inode
*inode
)
701 u64 v_blkno
, p_blkno
;
702 #define CONCURRENT_JOURNAL_FILL 32
703 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
707 BUG_ON(inode
->i_blocks
!=
708 ocfs2_align_bytes_to_sectors(i_size_read(inode
)));
710 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
712 mlog(0, "Force reading %llu blocks\n",
713 (unsigned long long)(inode
->i_blocks
>>
714 (inode
->i_sb
->s_blocksize_bits
- 9)));
718 (inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9))) {
720 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
728 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
729 p_blocks
= CONCURRENT_JOURNAL_FILL
;
731 /* We are reading journal data which should not
732 * be put in the uptodate cache */
733 status
= ocfs2_read_blocks(OCFS2_SB(inode
->i_sb
),
734 p_blkno
, p_blocks
, bhs
, 0,
741 for(i
= 0; i
< p_blocks
; i
++) {
750 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
757 struct ocfs2_la_recovery_item
{
758 struct list_head lri_list
;
760 struct ocfs2_dinode
*lri_la_dinode
;
761 struct ocfs2_dinode
*lri_tl_dinode
;
764 /* Does the second half of the recovery process. By this point, the
765 * node is marked clean and can actually be considered recovered,
766 * hence it's no longer in the recovery map, but there's still some
767 * cleanup we can do which shouldn't happen within the recovery thread
768 * as locking in that context becomes very difficult if we are to take
769 * recovering nodes into account.
771 * NOTE: This function can and will sleep on recovery of other nodes
772 * during cluster locking, just like any other ocfs2 process.
774 void ocfs2_complete_recovery(void *data
)
777 struct ocfs2_super
*osb
= data
;
778 struct ocfs2_journal
*journal
= osb
->journal
;
779 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
780 struct ocfs2_la_recovery_item
*item
;
781 struct list_head
*p
, *n
;
782 LIST_HEAD(tmp_la_list
);
786 mlog(0, "completing recovery from keventd\n");
788 spin_lock(&journal
->j_lock
);
789 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
790 spin_unlock(&journal
->j_lock
);
792 list_for_each_safe(p
, n
, &tmp_la_list
) {
793 item
= list_entry(p
, struct ocfs2_la_recovery_item
, lri_list
);
794 list_del_init(&item
->lri_list
);
796 mlog(0, "Complete recovery for slot %d\n", item
->lri_slot
);
798 la_dinode
= item
->lri_la_dinode
;
800 mlog(0, "Clean up local alloc %llu\n",
801 (unsigned long long)la_dinode
->i_blkno
);
803 ret
= ocfs2_complete_local_alloc_recovery(osb
,
811 tl_dinode
= item
->lri_tl_dinode
;
813 mlog(0, "Clean up truncate log %llu\n",
814 (unsigned long long)tl_dinode
->i_blkno
);
816 ret
= ocfs2_complete_truncate_log_recovery(osb
,
824 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
831 mlog(0, "Recovery completion\n");
835 /* NOTE: This function always eats your references to la_dinode and
836 * tl_dinode, either manually on error, or by passing them to
837 * ocfs2_complete_recovery */
838 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
840 struct ocfs2_dinode
*la_dinode
,
841 struct ocfs2_dinode
*tl_dinode
)
843 struct ocfs2_la_recovery_item
*item
;
845 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
847 /* Though we wish to avoid it, we are in fact safe in
848 * skipping local alloc cleanup as fsck.ocfs2 is more
849 * than capable of reclaiming unused space. */
860 INIT_LIST_HEAD(&item
->lri_list
);
861 item
->lri_la_dinode
= la_dinode
;
862 item
->lri_slot
= slot_num
;
863 item
->lri_tl_dinode
= tl_dinode
;
865 spin_lock(&journal
->j_lock
);
866 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
867 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
868 spin_unlock(&journal
->j_lock
);
871 /* Called by the mount code to queue recovery the last part of
872 * recovery for it's own slot. */
873 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
875 struct ocfs2_journal
*journal
= osb
->journal
;
878 /* No need to queue up our truncate_log as regular
879 * cleanup will catch that. */
880 ocfs2_queue_recovery_completion(journal
,
882 osb
->local_alloc_copy
,
884 ocfs2_schedule_truncate_log_flush(osb
, 0);
886 osb
->local_alloc_copy
= NULL
;
891 static int __ocfs2_recovery_thread(void *arg
)
893 int status
, node_num
;
894 struct ocfs2_super
*osb
= arg
;
898 status
= ocfs2_wait_on_mount(osb
);
904 status
= ocfs2_super_lock(osb
, 1);
910 while(!ocfs2_node_map_is_empty(osb
, &osb
->recovery_map
)) {
911 node_num
= ocfs2_node_map_first_set_bit(osb
,
913 if (node_num
== O2NM_INVALID_NODE_NUM
) {
914 mlog(0, "Out of nodes to recover.\n");
918 status
= ocfs2_recover_node(osb
, node_num
);
921 "Error %d recovering node %d on device (%u,%u)!\n",
923 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
924 mlog(ML_ERROR
, "Volume requires unmount.\n");
928 ocfs2_recovery_map_clear(osb
, node_num
);
930 ocfs2_super_unlock(osb
, 1);
932 /* We always run recovery on our own orphan dir - the dead
933 * node(s) may have voted "no" on an inode delete earlier. A
934 * revote is therefore required. */
935 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
939 mutex_lock(&osb
->recovery_lock
);
941 !ocfs2_node_map_is_empty(osb
, &osb
->recovery_map
)) {
942 mutex_unlock(&osb
->recovery_lock
);
946 osb
->recovery_thread_task
= NULL
;
947 mb(); /* sync with ocfs2_recovery_thread_running */
948 wake_up(&osb
->recovery_event
);
950 mutex_unlock(&osb
->recovery_lock
);
953 /* no one is callint kthread_stop() for us so the kthread() api
954 * requires that we call do_exit(). And it isn't exported, but
955 * complete_and_exit() seems to be a minimal wrapper around it. */
956 complete_and_exit(NULL
, status
);
960 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
962 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
963 node_num
, osb
->node_num
);
965 mutex_lock(&osb
->recovery_lock
);
966 if (osb
->disable_recovery
)
969 /* People waiting on recovery will wait on
970 * the recovery map to empty. */
971 if (!ocfs2_recovery_map_set(osb
, node_num
))
972 mlog(0, "node %d already be in recovery.\n", node_num
);
974 mlog(0, "starting recovery thread...\n");
976 if (osb
->recovery_thread_task
)
979 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
981 if (IS_ERR(osb
->recovery_thread_task
)) {
982 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
983 osb
->recovery_thread_task
= NULL
;
987 mutex_unlock(&osb
->recovery_lock
);
988 wake_up(&osb
->recovery_event
);
993 /* Does the actual journal replay and marks the journal inode as
994 * clean. Will only replay if the journal inode is marked dirty. */
995 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1002 struct inode
*inode
= NULL
;
1003 struct ocfs2_dinode
*fe
;
1004 journal_t
*journal
= NULL
;
1005 struct buffer_head
*bh
= NULL
;
1007 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1009 if (inode
== NULL
) {
1014 if (is_bad_inode(inode
)) {
1021 SET_INODE_JOURNAL(inode
);
1023 status
= ocfs2_meta_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1025 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status
);
1026 if (status
!= -ERESTARTSYS
)
1027 mlog(ML_ERROR
, "Could not lock journal!\n");
1032 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1034 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1036 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1037 mlog(0, "No recovery required for node %d\n", node_num
);
1041 mlog(ML_NOTICE
, "Recovering node %d from slot %d on device (%u,%u)\n",
1043 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1045 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1047 status
= ocfs2_force_read_journal(inode
);
1053 mlog(0, "calling journal_init_inode\n");
1054 journal
= journal_init_inode(inode
);
1055 if (journal
== NULL
) {
1056 mlog(ML_ERROR
, "Linux journal layer error\n");
1061 status
= journal_load(journal
);
1066 journal_destroy(journal
);
1070 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1072 /* wipe the journal */
1073 mlog(0, "flushing the journal.\n");
1074 journal_lock_updates(journal
);
1075 status
= journal_flush(journal
);
1076 journal_unlock_updates(journal
);
1080 /* This will mark the node clean */
1081 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1082 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1083 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1085 status
= ocfs2_write_block(osb
, bh
, inode
);
1092 journal_destroy(journal
);
1095 /* drop the lock on this nodes journal */
1097 ocfs2_meta_unlock(inode
, 1);
1110 * Do the most important parts of node recovery:
1111 * - Replay it's journal
1112 * - Stamp a clean local allocator file
1113 * - Stamp a clean truncate log
1114 * - Mark the node clean
1116 * If this function completes without error, a node in OCFS2 can be
1117 * said to have been safely recovered. As a result, failure during the
1118 * second part of a nodes recovery process (local alloc recovery) is
1119 * far less concerning.
1121 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1126 struct ocfs2_slot_info
*si
= osb
->slot_info
;
1127 struct ocfs2_dinode
*la_copy
= NULL
;
1128 struct ocfs2_dinode
*tl_copy
= NULL
;
1130 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1131 node_num
, osb
->node_num
);
1133 mlog(0, "checking node %d\n", node_num
);
1135 /* Should not ever be called to recover ourselves -- in that
1136 * case we should've called ocfs2_journal_load instead. */
1137 BUG_ON(osb
->node_num
== node_num
);
1139 slot_num
= ocfs2_node_num_to_slot(si
, node_num
);
1140 if (slot_num
== OCFS2_INVALID_SLOT
) {
1142 mlog(0, "no slot for this node, so no recovery required.\n");
1146 mlog(0, "node %d was using slot %d\n", node_num
, slot_num
);
1148 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1154 /* Stamp a clean local alloc file AFTER recovering the journal... */
1155 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1161 /* An error from begin_truncate_log_recovery is not
1162 * serious enough to warrant halting the rest of
1164 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1168 /* Likewise, this would be a strange but ultimately not so
1169 * harmful place to get an error... */
1170 ocfs2_clear_slot(si
, slot_num
);
1171 status
= ocfs2_update_disk_slots(osb
, si
);
1175 /* This will kfree the memory pointed to by la_copy and tl_copy */
1176 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1186 /* Test node liveness by trylocking his journal. If we get the lock,
1187 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1188 * still alive (we couldn't get the lock) and < 0 on error. */
1189 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1193 struct inode
*inode
= NULL
;
1195 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1197 if (inode
== NULL
) {
1198 mlog(ML_ERROR
, "access error\n");
1202 if (is_bad_inode(inode
)) {
1203 mlog(ML_ERROR
, "access error (bad inode)\n");
1209 SET_INODE_JOURNAL(inode
);
1211 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1212 status
= ocfs2_meta_lock_full(inode
, NULL
, 1, flags
);
1214 if (status
!= -EAGAIN
)
1219 ocfs2_meta_unlock(inode
, 1);
1227 /* Call this underneath ocfs2_super_lock. It also assumes that the
1228 * slot info struct has been updated from disk. */
1229 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1231 int status
, i
, node_num
;
1232 struct ocfs2_slot_info
*si
= osb
->slot_info
;
1234 /* This is called with the super block cluster lock, so we
1235 * know that the slot map can't change underneath us. */
1237 spin_lock(&si
->si_lock
);
1238 for(i
= 0; i
< si
->si_num_slots
; i
++) {
1239 if (i
== osb
->slot_num
)
1241 if (ocfs2_is_empty_slot(si
, i
))
1244 node_num
= si
->si_global_node_nums
[i
];
1245 if (ocfs2_node_map_test_bit(osb
, &osb
->recovery_map
, node_num
))
1247 spin_unlock(&si
->si_lock
);
1249 /* Ok, we have a slot occupied by another node which
1250 * is not in the recovery map. We trylock his journal
1251 * file here to test if he's alive. */
1252 status
= ocfs2_trylock_journal(osb
, i
);
1254 /* Since we're called from mount, we know that
1255 * the recovery thread can't race us on
1256 * setting / checking the recovery bits. */
1257 ocfs2_recovery_thread(osb
, node_num
);
1258 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1263 spin_lock(&si
->si_lock
);
1265 spin_unlock(&si
->si_lock
);
1273 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
1275 struct inode
**head
)
1278 struct inode
*orphan_dir_inode
= NULL
;
1280 unsigned long offset
, blk
, local
;
1281 struct buffer_head
*bh
= NULL
;
1282 struct ocfs2_dir_entry
*de
;
1283 struct super_block
*sb
= osb
->sb
;
1285 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
1286 ORPHAN_DIR_SYSTEM_INODE
,
1288 if (!orphan_dir_inode
) {
1294 mutex_lock(&orphan_dir_inode
->i_mutex
);
1295 status
= ocfs2_meta_lock(orphan_dir_inode
, NULL
, 0);
1303 while(offset
< i_size_read(orphan_dir_inode
)) {
1304 blk
= offset
>> sb
->s_blocksize_bits
;
1306 bh
= ocfs2_bread(orphan_dir_inode
, blk
, &status
, 0);
1317 while(offset
< i_size_read(orphan_dir_inode
)
1318 && local
< sb
->s_blocksize
) {
1319 de
= (struct ocfs2_dir_entry
*) (bh
->b_data
+ local
);
1321 if (!ocfs2_check_dir_entry(orphan_dir_inode
,
1329 local
+= le16_to_cpu(de
->rec_len
);
1330 offset
+= le16_to_cpu(de
->rec_len
);
1332 /* I guess we silently fail on no inode? */
1333 if (!le64_to_cpu(de
->inode
))
1335 if (de
->file_type
> OCFS2_FT_MAX
) {
1337 "block %llu contains invalid de: "
1338 "inode = %llu, rec_len = %u, "
1339 "name_len = %u, file_type = %u, "
1341 (unsigned long long)bh
->b_blocknr
,
1342 (unsigned long long)le64_to_cpu(de
->inode
),
1343 le16_to_cpu(de
->rec_len
),
1350 if (de
->name_len
== 1 && !strncmp(".", de
->name
, 1))
1352 if (de
->name_len
== 2 && !strncmp("..", de
->name
, 2))
1355 iter
= ocfs2_iget(osb
, le64_to_cpu(de
->inode
),
1356 OCFS2_FI_FLAG_NOLOCK
);
1360 mlog(0, "queue orphan %llu\n",
1361 (unsigned long long)OCFS2_I(iter
)->ip_blkno
);
1362 /* No locking is required for the next_orphan
1363 * queue as there is only ever a single
1364 * process doing orphan recovery. */
1365 OCFS2_I(iter
)->ip_next_orphan
= *head
;
1372 ocfs2_meta_unlock(orphan_dir_inode
, 0);
1374 mutex_unlock(&orphan_dir_inode
->i_mutex
);
1375 iput(orphan_dir_inode
);
1379 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
1384 spin_lock(&osb
->osb_lock
);
1385 ret
= !osb
->osb_orphan_wipes
[slot
];
1386 spin_unlock(&osb
->osb_lock
);
1390 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
1393 spin_lock(&osb
->osb_lock
);
1394 /* Mark ourselves such that new processes in delete_inode()
1395 * know to quit early. */
1396 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1397 while (osb
->osb_orphan_wipes
[slot
]) {
1398 /* If any processes are already in the middle of an
1399 * orphan wipe on this dir, then we need to wait for
1401 spin_unlock(&osb
->osb_lock
);
1402 wait_event_interruptible(osb
->osb_wipe_event
,
1403 ocfs2_orphan_recovery_can_continue(osb
, slot
));
1404 spin_lock(&osb
->osb_lock
);
1406 spin_unlock(&osb
->osb_lock
);
1409 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
1412 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1416 * Orphan recovery. Each mounted node has it's own orphan dir which we
1417 * must run during recovery. Our strategy here is to build a list of
1418 * the inodes in the orphan dir and iget/iput them. The VFS does
1419 * (most) of the rest of the work.
1421 * Orphan recovery can happen at any time, not just mount so we have a
1422 * couple of extra considerations.
1424 * - We grab as many inodes as we can under the orphan dir lock -
1425 * doing iget() outside the orphan dir risks getting a reference on
1427 * - We must be sure not to deadlock with other processes on the
1428 * system wanting to run delete_inode(). This can happen when they go
1429 * to lock the orphan dir and the orphan recovery process attempts to
1430 * iget() inside the orphan dir lock. This can be avoided by
1431 * advertising our state to ocfs2_delete_inode().
1433 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
1437 struct inode
*inode
= NULL
;
1439 struct ocfs2_inode_info
*oi
;
1441 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot
);
1443 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
1444 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
1445 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
1447 /* Error here should be noted, but we want to continue with as
1448 * many queued inodes as we've got. */
1453 oi
= OCFS2_I(inode
);
1454 mlog(0, "iput orphan %llu\n", (unsigned long long)oi
->ip_blkno
);
1456 iter
= oi
->ip_next_orphan
;
1458 spin_lock(&oi
->ip_lock
);
1459 /* Delete voting may have set these on the assumption
1460 * that the other node would wipe them successfully.
1461 * If they are still in the node's orphan dir, we need
1462 * to reset that state. */
1463 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
1465 /* Set the proper information to get us going into
1466 * ocfs2_delete_inode. */
1467 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
1468 oi
->ip_orphaned_slot
= slot
;
1469 spin_unlock(&oi
->ip_lock
);
1479 static int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
1481 /* This check is good because ocfs2 will wait on our recovery
1482 * thread before changing it to something other than MOUNTED
1484 wait_event(osb
->osb_mount_event
,
1485 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
||
1486 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
1488 /* If there's an error on mount, then we may never get to the
1489 * MOUNTED flag, but this is set right before
1490 * dismount_volume() so we can trust it. */
1491 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
1492 mlog(0, "mount error, exiting!\n");
1499 static int ocfs2_commit_thread(void *arg
)
1502 struct ocfs2_super
*osb
= arg
;
1503 struct ocfs2_journal
*journal
= osb
->journal
;
1505 /* we can trust j_num_trans here because _should_stop() is only set in
1506 * shutdown and nobody other than ourselves should be able to start
1507 * transactions. committing on shutdown might take a few iterations
1508 * as final transactions put deleted inodes on the list */
1509 while (!(kthread_should_stop() &&
1510 atomic_read(&journal
->j_num_trans
) == 0)) {
1512 wait_event_interruptible(osb
->checkpoint_event
,
1513 atomic_read(&journal
->j_num_trans
)
1514 || kthread_should_stop());
1516 status
= ocfs2_commit_cache(osb
);
1520 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
1522 "commit_thread: %u transactions pending on "
1524 atomic_read(&journal
->j_num_trans
));
1531 /* Look for a dirty journal without taking any cluster locks. Used for
1532 * hard readonly access to determine whether the file system journals
1533 * require recovery. */
1534 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
1538 struct buffer_head
*di_bh
;
1539 struct ocfs2_dinode
*di
;
1540 struct inode
*journal
= NULL
;
1542 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
1543 journal
= ocfs2_get_system_file_inode(osb
,
1544 JOURNAL_SYSTEM_INODE
,
1546 if (!journal
|| is_bad_inode(journal
)) {
1553 ret
= ocfs2_read_block(osb
, OCFS2_I(journal
)->ip_blkno
, &di_bh
,
1560 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
1562 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
1563 OCFS2_JOURNAL_DIRTY_FL
)