ocfs2: remove unused ocfs2_handle_add_lock()
[deliverable/linux.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "heartbeat.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "localalloc.h"
44 #include "namei.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "vote.h"
48 #include "sysfile.h"
49
50 #include "buffer_head_io.h"
51
52 DEFINE_SPINLOCK(trans_inc_lock);
53
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 int node_num);
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
61 int dirty);
62 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
63 int slot_num);
64 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
65 int slot);
66 static int ocfs2_commit_thread(void *arg);
67
68 static int ocfs2_commit_cache(struct ocfs2_super *osb)
69 {
70 int status = 0;
71 unsigned int flushed;
72 unsigned long old_id;
73 struct ocfs2_journal *journal = NULL;
74
75 mlog_entry_void();
76
77 journal = osb->journal;
78
79 /* Flush all pending commits and checkpoint the journal. */
80 down_write(&journal->j_trans_barrier);
81
82 if (atomic_read(&journal->j_num_trans) == 0) {
83 up_write(&journal->j_trans_barrier);
84 mlog(0, "No transactions for me to flush!\n");
85 goto finally;
86 }
87
88 journal_lock_updates(journal->j_journal);
89 status = journal_flush(journal->j_journal);
90 journal_unlock_updates(journal->j_journal);
91 if (status < 0) {
92 up_write(&journal->j_trans_barrier);
93 mlog_errno(status);
94 goto finally;
95 }
96
97 old_id = ocfs2_inc_trans_id(journal);
98
99 flushed = atomic_read(&journal->j_num_trans);
100 atomic_set(&journal->j_num_trans, 0);
101 up_write(&journal->j_trans_barrier);
102
103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 journal->j_trans_id, flushed);
105
106 ocfs2_kick_vote_thread(osb);
107 wake_up(&journal->j_checkpointed);
108 finally:
109 mlog_exit(status);
110 return status;
111 }
112
113 struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb)
114 {
115 struct ocfs2_journal_handle *retval = NULL;
116
117 retval = kcalloc(1, sizeof(*retval), GFP_NOFS);
118 if (!retval) {
119 mlog(ML_ERROR, "Failed to allocate memory for journal "
120 "handle!\n");
121 return NULL;
122 }
123 retval->k_handle = NULL;
124
125 retval->journal = osb->journal;
126
127 return retval;
128 }
129
130 /* pass it NULL and it will allocate a new handle object for you. If
131 * you pass it a handle however, it may still return error, in which
132 * case it has free'd the passed handle for you. */
133 struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb,
134 struct ocfs2_journal_handle *handle,
135 int max_buffs)
136 {
137 int ret;
138 journal_t *journal = osb->journal->j_journal;
139
140 mlog_entry("(max_buffs = %d)\n", max_buffs);
141
142 BUG_ON(!osb || !osb->journal->j_journal);
143
144 if (ocfs2_is_hard_readonly(osb)) {
145 ret = -EROFS;
146 goto done_free;
147 }
148
149 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
150 BUG_ON(max_buffs <= 0);
151
152 /* JBD might support this, but our journalling code doesn't yet. */
153 if (journal_current_handle()) {
154 mlog(ML_ERROR, "Recursive transaction attempted!\n");
155 BUG();
156 }
157
158 if (!handle)
159 handle = ocfs2_alloc_handle(osb);
160 if (!handle) {
161 ret = -ENOMEM;
162 mlog(ML_ERROR, "Failed to allocate memory for journal "
163 "handle!\n");
164 goto done_free;
165 }
166
167 down_read(&osb->journal->j_trans_barrier);
168
169 /* actually start the transaction now */
170 handle->k_handle = journal_start(journal, max_buffs);
171 if (IS_ERR(handle->k_handle)) {
172 up_read(&osb->journal->j_trans_barrier);
173
174 ret = PTR_ERR(handle->k_handle);
175 handle->k_handle = NULL;
176 mlog_errno(ret);
177
178 if (is_journal_aborted(journal)) {
179 ocfs2_abort(osb->sb, "Detected aborted journal");
180 ret = -EROFS;
181 }
182 goto done_free;
183 }
184
185 atomic_inc(&(osb->journal->j_num_trans));
186
187 mlog_exit_ptr(handle);
188 return handle;
189
190 done_free:
191 if (handle)
192 kfree(handle);
193
194 mlog_exit(ret);
195 return ERR_PTR(ret);
196 }
197
198 void ocfs2_commit_trans(struct ocfs2_journal_handle *handle)
199 {
200 handle_t *jbd_handle;
201 int retval;
202 struct ocfs2_journal *journal = handle->journal;
203
204 mlog_entry_void();
205
206 BUG_ON(!handle);
207
208 if (!handle->k_handle) {
209 kfree(handle);
210 mlog_exit_void();
211 return;
212 }
213
214 /* ocfs2_extend_trans may have had to call journal_restart
215 * which will always commit the transaction, but may return
216 * error for any number of reasons. If this is the case, we
217 * clear k_handle as it's not valid any more. */
218 if (handle->k_handle) {
219 jbd_handle = handle->k_handle;
220
221 /* actually stop the transaction. if we've set h_sync,
222 * it'll have been committed when we return */
223 retval = journal_stop(jbd_handle);
224 if (retval < 0) {
225 mlog_errno(retval);
226 mlog(ML_ERROR, "Could not commit transaction\n");
227 BUG();
228 }
229
230 handle->k_handle = NULL; /* it's been free'd in journal_stop */
231 }
232
233 up_read(&journal->j_trans_barrier);
234
235 kfree(handle);
236 mlog_exit_void();
237 }
238
239 /*
240 * 'nblocks' is what you want to add to the current
241 * transaction. extend_trans will either extend the current handle by
242 * nblocks, or commit it and start a new one with nblocks credits.
243 *
244 * WARNING: This will not release any semaphores or disk locks taken
245 * during the transaction, so make sure they were taken *before*
246 * start_trans or we'll have ordering deadlocks.
247 *
248 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
249 * good because transaction ids haven't yet been recorded on the
250 * cluster locks associated with this handle.
251 */
252 int ocfs2_extend_trans(handle_t *handle, int nblocks)
253 {
254 int status;
255
256 BUG_ON(!handle);
257 BUG_ON(!nblocks);
258
259 mlog_entry_void();
260
261 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
262
263 status = journal_extend(handle, nblocks);
264 if (status < 0) {
265 mlog_errno(status);
266 goto bail;
267 }
268
269 if (status > 0) {
270 mlog(0, "journal_extend failed, trying journal_restart\n");
271 status = journal_restart(handle, nblocks);
272 if (status < 0) {
273 mlog_errno(status);
274 goto bail;
275 }
276 }
277
278 status = 0;
279 bail:
280
281 mlog_exit(status);
282 return status;
283 }
284
285 int ocfs2_journal_access(struct ocfs2_journal_handle *handle,
286 struct inode *inode,
287 struct buffer_head *bh,
288 int type)
289 {
290 int status;
291
292 BUG_ON(!inode);
293 BUG_ON(!handle);
294 BUG_ON(!bh);
295
296 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
297 (unsigned long long)bh->b_blocknr, type,
298 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
299 "OCFS2_JOURNAL_ACCESS_CREATE" :
300 "OCFS2_JOURNAL_ACCESS_WRITE",
301 bh->b_size);
302
303 /* we can safely remove this assertion after testing. */
304 if (!buffer_uptodate(bh)) {
305 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
306 mlog(ML_ERROR, "b_blocknr=%llu\n",
307 (unsigned long long)bh->b_blocknr);
308 BUG();
309 }
310
311 /* Set the current transaction information on the inode so
312 * that the locking code knows whether it can drop it's locks
313 * on this inode or not. We're protected from the commit
314 * thread updating the current transaction id until
315 * ocfs2_commit_trans() because ocfs2_start_trans() took
316 * j_trans_barrier for us. */
317 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
318
319 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
320 switch (type) {
321 case OCFS2_JOURNAL_ACCESS_CREATE:
322 case OCFS2_JOURNAL_ACCESS_WRITE:
323 status = journal_get_write_access(handle->k_handle, bh);
324 break;
325
326 case OCFS2_JOURNAL_ACCESS_UNDO:
327 status = journal_get_undo_access(handle->k_handle, bh);
328 break;
329
330 default:
331 status = -EINVAL;
332 mlog(ML_ERROR, "Uknown access type!\n");
333 }
334 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
335
336 if (status < 0)
337 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
338 status, type);
339
340 mlog_exit(status);
341 return status;
342 }
343
344 int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle,
345 struct buffer_head *bh)
346 {
347 int status;
348
349 mlog_entry("(bh->b_blocknr=%llu)\n",
350 (unsigned long long)bh->b_blocknr);
351
352 status = journal_dirty_metadata(handle->k_handle, bh);
353 if (status < 0)
354 mlog(ML_ERROR, "Could not dirty metadata buffer. "
355 "(bh->b_blocknr=%llu)\n",
356 (unsigned long long)bh->b_blocknr);
357
358 mlog_exit(status);
359 return status;
360 }
361
362 int ocfs2_journal_dirty_data(handle_t *handle,
363 struct buffer_head *bh)
364 {
365 int err = journal_dirty_data(handle, bh);
366 if (err)
367 mlog_errno(err);
368 /* TODO: When we can handle it, abort the handle and go RO on
369 * error here. */
370
371 return err;
372 }
373
374 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
375
376 void ocfs2_set_journal_params(struct ocfs2_super *osb)
377 {
378 journal_t *journal = osb->journal->j_journal;
379
380 spin_lock(&journal->j_state_lock);
381 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
382 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
383 journal->j_flags |= JFS_BARRIER;
384 else
385 journal->j_flags &= ~JFS_BARRIER;
386 spin_unlock(&journal->j_state_lock);
387 }
388
389 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
390 {
391 int status = -1;
392 struct inode *inode = NULL; /* the journal inode */
393 journal_t *j_journal = NULL;
394 struct ocfs2_dinode *di = NULL;
395 struct buffer_head *bh = NULL;
396 struct ocfs2_super *osb;
397 int meta_lock = 0;
398
399 mlog_entry_void();
400
401 BUG_ON(!journal);
402
403 osb = journal->j_osb;
404
405 /* already have the inode for our journal */
406 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
407 osb->slot_num);
408 if (inode == NULL) {
409 status = -EACCES;
410 mlog_errno(status);
411 goto done;
412 }
413 if (is_bad_inode(inode)) {
414 mlog(ML_ERROR, "access error (bad inode)\n");
415 iput(inode);
416 inode = NULL;
417 status = -EACCES;
418 goto done;
419 }
420
421 SET_INODE_JOURNAL(inode);
422 OCFS2_I(inode)->ip_open_count++;
423
424 /* Skip recovery waits here - journal inode metadata never
425 * changes in a live cluster so it can be considered an
426 * exception to the rule. */
427 status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
428 OCFS2_META_LOCK_RECOVERY);
429 if (status < 0) {
430 if (status != -ERESTARTSYS)
431 mlog(ML_ERROR, "Could not get lock on journal!\n");
432 goto done;
433 }
434
435 meta_lock = 1;
436 di = (struct ocfs2_dinode *)bh->b_data;
437
438 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
439 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
440 inode->i_size);
441 status = -EINVAL;
442 goto done;
443 }
444
445 mlog(0, "inode->i_size = %lld\n", inode->i_size);
446 mlog(0, "inode->i_blocks = %llu\n",
447 (unsigned long long)inode->i_blocks);
448 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
449
450 /* call the kernels journal init function now */
451 j_journal = journal_init_inode(inode);
452 if (j_journal == NULL) {
453 mlog(ML_ERROR, "Linux journal layer error\n");
454 status = -EINVAL;
455 goto done;
456 }
457
458 mlog(0, "Returned from journal_init_inode\n");
459 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
460
461 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
462 OCFS2_JOURNAL_DIRTY_FL);
463
464 journal->j_journal = j_journal;
465 journal->j_inode = inode;
466 journal->j_bh = bh;
467
468 ocfs2_set_journal_params(osb);
469
470 journal->j_state = OCFS2_JOURNAL_LOADED;
471
472 status = 0;
473 done:
474 if (status < 0) {
475 if (meta_lock)
476 ocfs2_meta_unlock(inode, 1);
477 if (bh != NULL)
478 brelse(bh);
479 if (inode) {
480 OCFS2_I(inode)->ip_open_count--;
481 iput(inode);
482 }
483 }
484
485 mlog_exit(status);
486 return status;
487 }
488
489 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
490 int dirty)
491 {
492 int status;
493 unsigned int flags;
494 struct ocfs2_journal *journal = osb->journal;
495 struct buffer_head *bh = journal->j_bh;
496 struct ocfs2_dinode *fe;
497
498 mlog_entry_void();
499
500 fe = (struct ocfs2_dinode *)bh->b_data;
501 if (!OCFS2_IS_VALID_DINODE(fe)) {
502 /* This is called from startup/shutdown which will
503 * handle the errors in a specific manner, so no need
504 * to call ocfs2_error() here. */
505 mlog(ML_ERROR, "Journal dinode %llu has invalid "
506 "signature: %.*s", (unsigned long long)fe->i_blkno, 7,
507 fe->i_signature);
508 status = -EIO;
509 goto out;
510 }
511
512 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
513 if (dirty)
514 flags |= OCFS2_JOURNAL_DIRTY_FL;
515 else
516 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
517 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
518
519 status = ocfs2_write_block(osb, bh, journal->j_inode);
520 if (status < 0)
521 mlog_errno(status);
522
523 out:
524 mlog_exit(status);
525 return status;
526 }
527
528 /*
529 * If the journal has been kmalloc'd it needs to be freed after this
530 * call.
531 */
532 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
533 {
534 struct ocfs2_journal *journal = NULL;
535 int status = 0;
536 struct inode *inode = NULL;
537 int num_running_trans = 0;
538
539 mlog_entry_void();
540
541 BUG_ON(!osb);
542
543 journal = osb->journal;
544 if (!journal)
545 goto done;
546
547 inode = journal->j_inode;
548
549 if (journal->j_state != OCFS2_JOURNAL_LOADED)
550 goto done;
551
552 /* need to inc inode use count as journal_destroy will iput. */
553 if (!igrab(inode))
554 BUG();
555
556 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
557 if (num_running_trans > 0)
558 mlog(0, "Shutting down journal: must wait on %d "
559 "running transactions!\n",
560 num_running_trans);
561
562 /* Do a commit_cache here. It will flush our journal, *and*
563 * release any locks that are still held.
564 * set the SHUTDOWN flag and release the trans lock.
565 * the commit thread will take the trans lock for us below. */
566 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
567
568 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
569 * drop the trans_lock (which we want to hold until we
570 * completely destroy the journal. */
571 if (osb->commit_task) {
572 /* Wait for the commit thread */
573 mlog(0, "Waiting for ocfs2commit to exit....\n");
574 kthread_stop(osb->commit_task);
575 osb->commit_task = NULL;
576 }
577
578 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
579
580 status = ocfs2_journal_toggle_dirty(osb, 0);
581 if (status < 0)
582 mlog_errno(status);
583
584 /* Shutdown the kernel journal system */
585 journal_destroy(journal->j_journal);
586
587 OCFS2_I(inode)->ip_open_count--;
588
589 /* unlock our journal */
590 ocfs2_meta_unlock(inode, 1);
591
592 brelse(journal->j_bh);
593 journal->j_bh = NULL;
594
595 journal->j_state = OCFS2_JOURNAL_FREE;
596
597 // up_write(&journal->j_trans_barrier);
598 done:
599 if (inode)
600 iput(inode);
601 mlog_exit_void();
602 }
603
604 static void ocfs2_clear_journal_error(struct super_block *sb,
605 journal_t *journal,
606 int slot)
607 {
608 int olderr;
609
610 olderr = journal_errno(journal);
611 if (olderr) {
612 mlog(ML_ERROR, "File system error %d recorded in "
613 "journal %u.\n", olderr, slot);
614 mlog(ML_ERROR, "File system on device %s needs checking.\n",
615 sb->s_id);
616
617 journal_ack_err(journal);
618 journal_clear_err(journal);
619 }
620 }
621
622 int ocfs2_journal_load(struct ocfs2_journal *journal)
623 {
624 int status = 0;
625 struct ocfs2_super *osb;
626
627 mlog_entry_void();
628
629 if (!journal)
630 BUG();
631
632 osb = journal->j_osb;
633
634 status = journal_load(journal->j_journal);
635 if (status < 0) {
636 mlog(ML_ERROR, "Failed to load journal!\n");
637 goto done;
638 }
639
640 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
641
642 status = ocfs2_journal_toggle_dirty(osb, 1);
643 if (status < 0) {
644 mlog_errno(status);
645 goto done;
646 }
647
648 /* Launch the commit thread */
649 osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt");
650 if (IS_ERR(osb->commit_task)) {
651 status = PTR_ERR(osb->commit_task);
652 osb->commit_task = NULL;
653 mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d",
654 status);
655 goto done;
656 }
657
658 done:
659 mlog_exit(status);
660 return status;
661 }
662
663
664 /* 'full' flag tells us whether we clear out all blocks or if we just
665 * mark the journal clean */
666 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
667 {
668 int status;
669
670 mlog_entry_void();
671
672 BUG_ON(!journal);
673
674 status = journal_wipe(journal->j_journal, full);
675 if (status < 0) {
676 mlog_errno(status);
677 goto bail;
678 }
679
680 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
681 if (status < 0)
682 mlog_errno(status);
683
684 bail:
685 mlog_exit(status);
686 return status;
687 }
688
689 /*
690 * JBD Might read a cached version of another nodes journal file. We
691 * don't want this as this file changes often and we get no
692 * notification on those changes. The only way to be sure that we've
693 * got the most up to date version of those blocks then is to force
694 * read them off disk. Just searching through the buffer cache won't
695 * work as there may be pages backing this file which are still marked
696 * up to date. We know things can't change on this file underneath us
697 * as we have the lock by now :)
698 */
699 static int ocfs2_force_read_journal(struct inode *inode)
700 {
701 int status = 0;
702 int i, p_blocks;
703 u64 v_blkno, p_blkno;
704 #define CONCURRENT_JOURNAL_FILL 32
705 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
706
707 mlog_entry_void();
708
709 BUG_ON(inode->i_blocks !=
710 ocfs2_align_bytes_to_sectors(i_size_read(inode)));
711
712 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
713
714 mlog(0, "Force reading %llu blocks\n",
715 (unsigned long long)(inode->i_blocks >>
716 (inode->i_sb->s_blocksize_bits - 9)));
717
718 v_blkno = 0;
719 while (v_blkno <
720 (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) {
721
722 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
723 1, &p_blkno,
724 &p_blocks);
725 if (status < 0) {
726 mlog_errno(status);
727 goto bail;
728 }
729
730 if (p_blocks > CONCURRENT_JOURNAL_FILL)
731 p_blocks = CONCURRENT_JOURNAL_FILL;
732
733 /* We are reading journal data which should not
734 * be put in the uptodate cache */
735 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
736 p_blkno, p_blocks, bhs, 0,
737 NULL);
738 if (status < 0) {
739 mlog_errno(status);
740 goto bail;
741 }
742
743 for(i = 0; i < p_blocks; i++) {
744 brelse(bhs[i]);
745 bhs[i] = NULL;
746 }
747
748 v_blkno += p_blocks;
749 }
750
751 bail:
752 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
753 if (bhs[i])
754 brelse(bhs[i]);
755 mlog_exit(status);
756 return status;
757 }
758
759 struct ocfs2_la_recovery_item {
760 struct list_head lri_list;
761 int lri_slot;
762 struct ocfs2_dinode *lri_la_dinode;
763 struct ocfs2_dinode *lri_tl_dinode;
764 };
765
766 /* Does the second half of the recovery process. By this point, the
767 * node is marked clean and can actually be considered recovered,
768 * hence it's no longer in the recovery map, but there's still some
769 * cleanup we can do which shouldn't happen within the recovery thread
770 * as locking in that context becomes very difficult if we are to take
771 * recovering nodes into account.
772 *
773 * NOTE: This function can and will sleep on recovery of other nodes
774 * during cluster locking, just like any other ocfs2 process.
775 */
776 void ocfs2_complete_recovery(void *data)
777 {
778 int ret;
779 struct ocfs2_super *osb = data;
780 struct ocfs2_journal *journal = osb->journal;
781 struct ocfs2_dinode *la_dinode, *tl_dinode;
782 struct ocfs2_la_recovery_item *item;
783 struct list_head *p, *n;
784 LIST_HEAD(tmp_la_list);
785
786 mlog_entry_void();
787
788 mlog(0, "completing recovery from keventd\n");
789
790 spin_lock(&journal->j_lock);
791 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
792 spin_unlock(&journal->j_lock);
793
794 list_for_each_safe(p, n, &tmp_la_list) {
795 item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
796 list_del_init(&item->lri_list);
797
798 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
799
800 la_dinode = item->lri_la_dinode;
801 if (la_dinode) {
802 mlog(0, "Clean up local alloc %llu\n",
803 (unsigned long long)la_dinode->i_blkno);
804
805 ret = ocfs2_complete_local_alloc_recovery(osb,
806 la_dinode);
807 if (ret < 0)
808 mlog_errno(ret);
809
810 kfree(la_dinode);
811 }
812
813 tl_dinode = item->lri_tl_dinode;
814 if (tl_dinode) {
815 mlog(0, "Clean up truncate log %llu\n",
816 (unsigned long long)tl_dinode->i_blkno);
817
818 ret = ocfs2_complete_truncate_log_recovery(osb,
819 tl_dinode);
820 if (ret < 0)
821 mlog_errno(ret);
822
823 kfree(tl_dinode);
824 }
825
826 ret = ocfs2_recover_orphans(osb, item->lri_slot);
827 if (ret < 0)
828 mlog_errno(ret);
829
830 kfree(item);
831 }
832
833 mlog(0, "Recovery completion\n");
834 mlog_exit_void();
835 }
836
837 /* NOTE: This function always eats your references to la_dinode and
838 * tl_dinode, either manually on error, or by passing them to
839 * ocfs2_complete_recovery */
840 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
841 int slot_num,
842 struct ocfs2_dinode *la_dinode,
843 struct ocfs2_dinode *tl_dinode)
844 {
845 struct ocfs2_la_recovery_item *item;
846
847 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
848 if (!item) {
849 /* Though we wish to avoid it, we are in fact safe in
850 * skipping local alloc cleanup as fsck.ocfs2 is more
851 * than capable of reclaiming unused space. */
852 if (la_dinode)
853 kfree(la_dinode);
854
855 if (tl_dinode)
856 kfree(tl_dinode);
857
858 mlog_errno(-ENOMEM);
859 return;
860 }
861
862 INIT_LIST_HEAD(&item->lri_list);
863 item->lri_la_dinode = la_dinode;
864 item->lri_slot = slot_num;
865 item->lri_tl_dinode = tl_dinode;
866
867 spin_lock(&journal->j_lock);
868 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
869 queue_work(ocfs2_wq, &journal->j_recovery_work);
870 spin_unlock(&journal->j_lock);
871 }
872
873 /* Called by the mount code to queue recovery the last part of
874 * recovery for it's own slot. */
875 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
876 {
877 struct ocfs2_journal *journal = osb->journal;
878
879 if (osb->dirty) {
880 /* No need to queue up our truncate_log as regular
881 * cleanup will catch that. */
882 ocfs2_queue_recovery_completion(journal,
883 osb->slot_num,
884 osb->local_alloc_copy,
885 NULL);
886 ocfs2_schedule_truncate_log_flush(osb, 0);
887
888 osb->local_alloc_copy = NULL;
889 osb->dirty = 0;
890 }
891 }
892
893 static int __ocfs2_recovery_thread(void *arg)
894 {
895 int status, node_num;
896 struct ocfs2_super *osb = arg;
897
898 mlog_entry_void();
899
900 status = ocfs2_wait_on_mount(osb);
901 if (status < 0) {
902 goto bail;
903 }
904
905 restart:
906 status = ocfs2_super_lock(osb, 1);
907 if (status < 0) {
908 mlog_errno(status);
909 goto bail;
910 }
911
912 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
913 node_num = ocfs2_node_map_first_set_bit(osb,
914 &osb->recovery_map);
915 if (node_num == O2NM_INVALID_NODE_NUM) {
916 mlog(0, "Out of nodes to recover.\n");
917 break;
918 }
919
920 status = ocfs2_recover_node(osb, node_num);
921 if (status < 0) {
922 mlog(ML_ERROR,
923 "Error %d recovering node %d on device (%u,%u)!\n",
924 status, node_num,
925 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
926 mlog(ML_ERROR, "Volume requires unmount.\n");
927 continue;
928 }
929
930 ocfs2_recovery_map_clear(osb, node_num);
931 }
932 ocfs2_super_unlock(osb, 1);
933
934 /* We always run recovery on our own orphan dir - the dead
935 * node(s) may have voted "no" on an inode delete earlier. A
936 * revote is therefore required. */
937 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
938 NULL);
939
940 bail:
941 mutex_lock(&osb->recovery_lock);
942 if (!status &&
943 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
944 mutex_unlock(&osb->recovery_lock);
945 goto restart;
946 }
947
948 osb->recovery_thread_task = NULL;
949 mb(); /* sync with ocfs2_recovery_thread_running */
950 wake_up(&osb->recovery_event);
951
952 mutex_unlock(&osb->recovery_lock);
953
954 mlog_exit(status);
955 /* no one is callint kthread_stop() for us so the kthread() api
956 * requires that we call do_exit(). And it isn't exported, but
957 * complete_and_exit() seems to be a minimal wrapper around it. */
958 complete_and_exit(NULL, status);
959 return status;
960 }
961
962 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
963 {
964 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
965 node_num, osb->node_num);
966
967 mutex_lock(&osb->recovery_lock);
968 if (osb->disable_recovery)
969 goto out;
970
971 /* People waiting on recovery will wait on
972 * the recovery map to empty. */
973 if (!ocfs2_recovery_map_set(osb, node_num))
974 mlog(0, "node %d already be in recovery.\n", node_num);
975
976 mlog(0, "starting recovery thread...\n");
977
978 if (osb->recovery_thread_task)
979 goto out;
980
981 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
982 "ocfs2rec");
983 if (IS_ERR(osb->recovery_thread_task)) {
984 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
985 osb->recovery_thread_task = NULL;
986 }
987
988 out:
989 mutex_unlock(&osb->recovery_lock);
990 wake_up(&osb->recovery_event);
991
992 mlog_exit_void();
993 }
994
995 /* Does the actual journal replay and marks the journal inode as
996 * clean. Will only replay if the journal inode is marked dirty. */
997 static int ocfs2_replay_journal(struct ocfs2_super *osb,
998 int node_num,
999 int slot_num)
1000 {
1001 int status;
1002 int got_lock = 0;
1003 unsigned int flags;
1004 struct inode *inode = NULL;
1005 struct ocfs2_dinode *fe;
1006 journal_t *journal = NULL;
1007 struct buffer_head *bh = NULL;
1008
1009 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1010 slot_num);
1011 if (inode == NULL) {
1012 status = -EACCES;
1013 mlog_errno(status);
1014 goto done;
1015 }
1016 if (is_bad_inode(inode)) {
1017 status = -EACCES;
1018 iput(inode);
1019 inode = NULL;
1020 mlog_errno(status);
1021 goto done;
1022 }
1023 SET_INODE_JOURNAL(inode);
1024
1025 status = ocfs2_meta_lock_full(inode, NULL, &bh, 1,
1026 OCFS2_META_LOCK_RECOVERY);
1027 if (status < 0) {
1028 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
1029 if (status != -ERESTARTSYS)
1030 mlog(ML_ERROR, "Could not lock journal!\n");
1031 goto done;
1032 }
1033 got_lock = 1;
1034
1035 fe = (struct ocfs2_dinode *) bh->b_data;
1036
1037 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1038
1039 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1040 mlog(0, "No recovery required for node %d\n", node_num);
1041 goto done;
1042 }
1043
1044 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1045 node_num, slot_num,
1046 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1047
1048 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1049
1050 status = ocfs2_force_read_journal(inode);
1051 if (status < 0) {
1052 mlog_errno(status);
1053 goto done;
1054 }
1055
1056 mlog(0, "calling journal_init_inode\n");
1057 journal = journal_init_inode(inode);
1058 if (journal == NULL) {
1059 mlog(ML_ERROR, "Linux journal layer error\n");
1060 status = -EIO;
1061 goto done;
1062 }
1063
1064 status = journal_load(journal);
1065 if (status < 0) {
1066 mlog_errno(status);
1067 if (!igrab(inode))
1068 BUG();
1069 journal_destroy(journal);
1070 goto done;
1071 }
1072
1073 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1074
1075 /* wipe the journal */
1076 mlog(0, "flushing the journal.\n");
1077 journal_lock_updates(journal);
1078 status = journal_flush(journal);
1079 journal_unlock_updates(journal);
1080 if (status < 0)
1081 mlog_errno(status);
1082
1083 /* This will mark the node clean */
1084 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1085 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1086 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1087
1088 status = ocfs2_write_block(osb, bh, inode);
1089 if (status < 0)
1090 mlog_errno(status);
1091
1092 if (!igrab(inode))
1093 BUG();
1094
1095 journal_destroy(journal);
1096
1097 done:
1098 /* drop the lock on this nodes journal */
1099 if (got_lock)
1100 ocfs2_meta_unlock(inode, 1);
1101
1102 if (inode)
1103 iput(inode);
1104
1105 if (bh)
1106 brelse(bh);
1107
1108 mlog_exit(status);
1109 return status;
1110 }
1111
1112 /*
1113 * Do the most important parts of node recovery:
1114 * - Replay it's journal
1115 * - Stamp a clean local allocator file
1116 * - Stamp a clean truncate log
1117 * - Mark the node clean
1118 *
1119 * If this function completes without error, a node in OCFS2 can be
1120 * said to have been safely recovered. As a result, failure during the
1121 * second part of a nodes recovery process (local alloc recovery) is
1122 * far less concerning.
1123 */
1124 static int ocfs2_recover_node(struct ocfs2_super *osb,
1125 int node_num)
1126 {
1127 int status = 0;
1128 int slot_num;
1129 struct ocfs2_slot_info *si = osb->slot_info;
1130 struct ocfs2_dinode *la_copy = NULL;
1131 struct ocfs2_dinode *tl_copy = NULL;
1132
1133 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1134 node_num, osb->node_num);
1135
1136 mlog(0, "checking node %d\n", node_num);
1137
1138 /* Should not ever be called to recover ourselves -- in that
1139 * case we should've called ocfs2_journal_load instead. */
1140 BUG_ON(osb->node_num == node_num);
1141
1142 slot_num = ocfs2_node_num_to_slot(si, node_num);
1143 if (slot_num == OCFS2_INVALID_SLOT) {
1144 status = 0;
1145 mlog(0, "no slot for this node, so no recovery required.\n");
1146 goto done;
1147 }
1148
1149 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1150
1151 status = ocfs2_replay_journal(osb, node_num, slot_num);
1152 if (status < 0) {
1153 mlog_errno(status);
1154 goto done;
1155 }
1156
1157 /* Stamp a clean local alloc file AFTER recovering the journal... */
1158 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1159 if (status < 0) {
1160 mlog_errno(status);
1161 goto done;
1162 }
1163
1164 /* An error from begin_truncate_log_recovery is not
1165 * serious enough to warrant halting the rest of
1166 * recovery. */
1167 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1168 if (status < 0)
1169 mlog_errno(status);
1170
1171 /* Likewise, this would be a strange but ultimately not so
1172 * harmful place to get an error... */
1173 ocfs2_clear_slot(si, slot_num);
1174 status = ocfs2_update_disk_slots(osb, si);
1175 if (status < 0)
1176 mlog_errno(status);
1177
1178 /* This will kfree the memory pointed to by la_copy and tl_copy */
1179 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1180 tl_copy);
1181
1182 status = 0;
1183 done:
1184
1185 mlog_exit(status);
1186 return status;
1187 }
1188
1189 /* Test node liveness by trylocking his journal. If we get the lock,
1190 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1191 * still alive (we couldn't get the lock) and < 0 on error. */
1192 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1193 int slot_num)
1194 {
1195 int status, flags;
1196 struct inode *inode = NULL;
1197
1198 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1199 slot_num);
1200 if (inode == NULL) {
1201 mlog(ML_ERROR, "access error\n");
1202 status = -EACCES;
1203 goto bail;
1204 }
1205 if (is_bad_inode(inode)) {
1206 mlog(ML_ERROR, "access error (bad inode)\n");
1207 iput(inode);
1208 inode = NULL;
1209 status = -EACCES;
1210 goto bail;
1211 }
1212 SET_INODE_JOURNAL(inode);
1213
1214 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1215 status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags);
1216 if (status < 0) {
1217 if (status != -EAGAIN)
1218 mlog_errno(status);
1219 goto bail;
1220 }
1221
1222 ocfs2_meta_unlock(inode, 1);
1223 bail:
1224 if (inode)
1225 iput(inode);
1226
1227 return status;
1228 }
1229
1230 /* Call this underneath ocfs2_super_lock. It also assumes that the
1231 * slot info struct has been updated from disk. */
1232 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1233 {
1234 int status, i, node_num;
1235 struct ocfs2_slot_info *si = osb->slot_info;
1236
1237 /* This is called with the super block cluster lock, so we
1238 * know that the slot map can't change underneath us. */
1239
1240 spin_lock(&si->si_lock);
1241 for(i = 0; i < si->si_num_slots; i++) {
1242 if (i == osb->slot_num)
1243 continue;
1244 if (ocfs2_is_empty_slot(si, i))
1245 continue;
1246
1247 node_num = si->si_global_node_nums[i];
1248 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1249 continue;
1250 spin_unlock(&si->si_lock);
1251
1252 /* Ok, we have a slot occupied by another node which
1253 * is not in the recovery map. We trylock his journal
1254 * file here to test if he's alive. */
1255 status = ocfs2_trylock_journal(osb, i);
1256 if (!status) {
1257 /* Since we're called from mount, we know that
1258 * the recovery thread can't race us on
1259 * setting / checking the recovery bits. */
1260 ocfs2_recovery_thread(osb, node_num);
1261 } else if ((status < 0) && (status != -EAGAIN)) {
1262 mlog_errno(status);
1263 goto bail;
1264 }
1265
1266 spin_lock(&si->si_lock);
1267 }
1268 spin_unlock(&si->si_lock);
1269
1270 status = 0;
1271 bail:
1272 mlog_exit(status);
1273 return status;
1274 }
1275
1276 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1277 int slot,
1278 struct inode **head)
1279 {
1280 int status;
1281 struct inode *orphan_dir_inode = NULL;
1282 struct inode *iter;
1283 unsigned long offset, blk, local;
1284 struct buffer_head *bh = NULL;
1285 struct ocfs2_dir_entry *de;
1286 struct super_block *sb = osb->sb;
1287
1288 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1289 ORPHAN_DIR_SYSTEM_INODE,
1290 slot);
1291 if (!orphan_dir_inode) {
1292 status = -ENOENT;
1293 mlog_errno(status);
1294 return status;
1295 }
1296
1297 mutex_lock(&orphan_dir_inode->i_mutex);
1298 status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0);
1299 if (status < 0) {
1300 mlog_errno(status);
1301 goto out;
1302 }
1303
1304 offset = 0;
1305 iter = NULL;
1306 while(offset < i_size_read(orphan_dir_inode)) {
1307 blk = offset >> sb->s_blocksize_bits;
1308
1309 bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1310 if (!bh)
1311 status = -EINVAL;
1312 if (status < 0) {
1313 if (bh)
1314 brelse(bh);
1315 mlog_errno(status);
1316 goto out_unlock;
1317 }
1318
1319 local = 0;
1320 while(offset < i_size_read(orphan_dir_inode)
1321 && local < sb->s_blocksize) {
1322 de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1323
1324 if (!ocfs2_check_dir_entry(orphan_dir_inode,
1325 de, bh, local)) {
1326 status = -EINVAL;
1327 mlog_errno(status);
1328 brelse(bh);
1329 goto out_unlock;
1330 }
1331
1332 local += le16_to_cpu(de->rec_len);
1333 offset += le16_to_cpu(de->rec_len);
1334
1335 /* I guess we silently fail on no inode? */
1336 if (!le64_to_cpu(de->inode))
1337 continue;
1338 if (de->file_type > OCFS2_FT_MAX) {
1339 mlog(ML_ERROR,
1340 "block %llu contains invalid de: "
1341 "inode = %llu, rec_len = %u, "
1342 "name_len = %u, file_type = %u, "
1343 "name='%.*s'\n",
1344 (unsigned long long)bh->b_blocknr,
1345 (unsigned long long)le64_to_cpu(de->inode),
1346 le16_to_cpu(de->rec_len),
1347 de->name_len,
1348 de->file_type,
1349 de->name_len,
1350 de->name);
1351 continue;
1352 }
1353 if (de->name_len == 1 && !strncmp(".", de->name, 1))
1354 continue;
1355 if (de->name_len == 2 && !strncmp("..", de->name, 2))
1356 continue;
1357
1358 iter = ocfs2_iget(osb, le64_to_cpu(de->inode),
1359 OCFS2_FI_FLAG_NOLOCK);
1360 if (IS_ERR(iter))
1361 continue;
1362
1363 mlog(0, "queue orphan %llu\n",
1364 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1365 /* No locking is required for the next_orphan
1366 * queue as there is only ever a single
1367 * process doing orphan recovery. */
1368 OCFS2_I(iter)->ip_next_orphan = *head;
1369 *head = iter;
1370 }
1371 brelse(bh);
1372 }
1373
1374 out_unlock:
1375 ocfs2_meta_unlock(orphan_dir_inode, 0);
1376 out:
1377 mutex_unlock(&orphan_dir_inode->i_mutex);
1378 iput(orphan_dir_inode);
1379 return status;
1380 }
1381
1382 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1383 int slot)
1384 {
1385 int ret;
1386
1387 spin_lock(&osb->osb_lock);
1388 ret = !osb->osb_orphan_wipes[slot];
1389 spin_unlock(&osb->osb_lock);
1390 return ret;
1391 }
1392
1393 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1394 int slot)
1395 {
1396 spin_lock(&osb->osb_lock);
1397 /* Mark ourselves such that new processes in delete_inode()
1398 * know to quit early. */
1399 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1400 while (osb->osb_orphan_wipes[slot]) {
1401 /* If any processes are already in the middle of an
1402 * orphan wipe on this dir, then we need to wait for
1403 * them. */
1404 spin_unlock(&osb->osb_lock);
1405 wait_event_interruptible(osb->osb_wipe_event,
1406 ocfs2_orphan_recovery_can_continue(osb, slot));
1407 spin_lock(&osb->osb_lock);
1408 }
1409 spin_unlock(&osb->osb_lock);
1410 }
1411
1412 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1413 int slot)
1414 {
1415 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1416 }
1417
1418 /*
1419 * Orphan recovery. Each mounted node has it's own orphan dir which we
1420 * must run during recovery. Our strategy here is to build a list of
1421 * the inodes in the orphan dir and iget/iput them. The VFS does
1422 * (most) of the rest of the work.
1423 *
1424 * Orphan recovery can happen at any time, not just mount so we have a
1425 * couple of extra considerations.
1426 *
1427 * - We grab as many inodes as we can under the orphan dir lock -
1428 * doing iget() outside the orphan dir risks getting a reference on
1429 * an invalid inode.
1430 * - We must be sure not to deadlock with other processes on the
1431 * system wanting to run delete_inode(). This can happen when they go
1432 * to lock the orphan dir and the orphan recovery process attempts to
1433 * iget() inside the orphan dir lock. This can be avoided by
1434 * advertising our state to ocfs2_delete_inode().
1435 */
1436 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1437 int slot)
1438 {
1439 int ret = 0;
1440 struct inode *inode = NULL;
1441 struct inode *iter;
1442 struct ocfs2_inode_info *oi;
1443
1444 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1445
1446 ocfs2_mark_recovering_orphan_dir(osb, slot);
1447 ret = ocfs2_queue_orphans(osb, slot, &inode);
1448 ocfs2_clear_recovering_orphan_dir(osb, slot);
1449
1450 /* Error here should be noted, but we want to continue with as
1451 * many queued inodes as we've got. */
1452 if (ret)
1453 mlog_errno(ret);
1454
1455 while (inode) {
1456 oi = OCFS2_I(inode);
1457 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1458
1459 iter = oi->ip_next_orphan;
1460
1461 spin_lock(&oi->ip_lock);
1462 /* Delete voting may have set these on the assumption
1463 * that the other node would wipe them successfully.
1464 * If they are still in the node's orphan dir, we need
1465 * to reset that state. */
1466 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1467
1468 /* Set the proper information to get us going into
1469 * ocfs2_delete_inode. */
1470 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1471 oi->ip_orphaned_slot = slot;
1472 spin_unlock(&oi->ip_lock);
1473
1474 iput(inode);
1475
1476 inode = iter;
1477 }
1478
1479 return ret;
1480 }
1481
1482 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1483 {
1484 /* This check is good because ocfs2 will wait on our recovery
1485 * thread before changing it to something other than MOUNTED
1486 * or DISABLED. */
1487 wait_event(osb->osb_mount_event,
1488 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1489 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1490
1491 /* If there's an error on mount, then we may never get to the
1492 * MOUNTED flag, but this is set right before
1493 * dismount_volume() so we can trust it. */
1494 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1495 mlog(0, "mount error, exiting!\n");
1496 return -EBUSY;
1497 }
1498
1499 return 0;
1500 }
1501
1502 static int ocfs2_commit_thread(void *arg)
1503 {
1504 int status;
1505 struct ocfs2_super *osb = arg;
1506 struct ocfs2_journal *journal = osb->journal;
1507
1508 /* we can trust j_num_trans here because _should_stop() is only set in
1509 * shutdown and nobody other than ourselves should be able to start
1510 * transactions. committing on shutdown might take a few iterations
1511 * as final transactions put deleted inodes on the list */
1512 while (!(kthread_should_stop() &&
1513 atomic_read(&journal->j_num_trans) == 0)) {
1514
1515 wait_event_interruptible(osb->checkpoint_event,
1516 atomic_read(&journal->j_num_trans)
1517 || kthread_should_stop());
1518
1519 status = ocfs2_commit_cache(osb);
1520 if (status < 0)
1521 mlog_errno(status);
1522
1523 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1524 mlog(ML_KTHREAD,
1525 "commit_thread: %u transactions pending on "
1526 "shutdown\n",
1527 atomic_read(&journal->j_num_trans));
1528 }
1529 }
1530
1531 return 0;
1532 }
1533
1534 /* Look for a dirty journal without taking any cluster locks. Used for
1535 * hard readonly access to determine whether the file system journals
1536 * require recovery. */
1537 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1538 {
1539 int ret = 0;
1540 unsigned int slot;
1541 struct buffer_head *di_bh;
1542 struct ocfs2_dinode *di;
1543 struct inode *journal = NULL;
1544
1545 for(slot = 0; slot < osb->max_slots; slot++) {
1546 journal = ocfs2_get_system_file_inode(osb,
1547 JOURNAL_SYSTEM_INODE,
1548 slot);
1549 if (!journal || is_bad_inode(journal)) {
1550 ret = -EACCES;
1551 mlog_errno(ret);
1552 goto out;
1553 }
1554
1555 di_bh = NULL;
1556 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1557 0, journal);
1558 if (ret < 0) {
1559 mlog_errno(ret);
1560 goto out;
1561 }
1562
1563 di = (struct ocfs2_dinode *) di_bh->b_data;
1564
1565 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1566 OCFS2_JOURNAL_DIRTY_FL)
1567 ret = -EROFS;
1568
1569 brelse(di_bh);
1570 if (ret)
1571 break;
1572 }
1573
1574 out:
1575 if (journal)
1576 iput(journal);
1577
1578 return ret;
1579 }
This page took 0.095392 seconds and 6 git commands to generate.