Merge commit 'v2.6.28-rc8' into x86/cpufeature
[deliverable/linux.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
34
35 #include "ocfs2.h"
36
37 #include "alloc.h"
38 #include "dir.h"
39 #include "dlmglue.h"
40 #include "extent_map.h"
41 #include "heartbeat.h"
42 #include "inode.h"
43 #include "journal.h"
44 #include "localalloc.h"
45 #include "slot_map.h"
46 #include "super.h"
47 #include "sysfile.h"
48
49 #include "buffer_head_io.h"
50
51 DEFINE_SPINLOCK(trans_inc_lock);
52
53 static int ocfs2_force_read_journal(struct inode *inode);
54 static int ocfs2_recover_node(struct ocfs2_super *osb,
55 int node_num);
56 static int __ocfs2_recovery_thread(void *arg);
57 static int ocfs2_commit_cache(struct ocfs2_super *osb);
58 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
59 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
60 int dirty, int replayed);
61 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
62 int slot_num);
63 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
64 int slot);
65 static int ocfs2_commit_thread(void *arg);
66
67
68 /*
69 * The recovery_list is a simple linked list of node numbers to recover.
70 * It is protected by the recovery_lock.
71 */
72
73 struct ocfs2_recovery_map {
74 unsigned int rm_used;
75 unsigned int *rm_entries;
76 };
77
78 int ocfs2_recovery_init(struct ocfs2_super *osb)
79 {
80 struct ocfs2_recovery_map *rm;
81
82 mutex_init(&osb->recovery_lock);
83 osb->disable_recovery = 0;
84 osb->recovery_thread_task = NULL;
85 init_waitqueue_head(&osb->recovery_event);
86
87 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
88 osb->max_slots * sizeof(unsigned int),
89 GFP_KERNEL);
90 if (!rm) {
91 mlog_errno(-ENOMEM);
92 return -ENOMEM;
93 }
94
95 rm->rm_entries = (unsigned int *)((char *)rm +
96 sizeof(struct ocfs2_recovery_map));
97 osb->recovery_map = rm;
98
99 return 0;
100 }
101
102 /* we can't grab the goofy sem lock from inside wait_event, so we use
103 * memory barriers to make sure that we'll see the null task before
104 * being woken up */
105 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
106 {
107 mb();
108 return osb->recovery_thread_task != NULL;
109 }
110
111 void ocfs2_recovery_exit(struct ocfs2_super *osb)
112 {
113 struct ocfs2_recovery_map *rm;
114
115 /* disable any new recovery threads and wait for any currently
116 * running ones to exit. Do this before setting the vol_state. */
117 mutex_lock(&osb->recovery_lock);
118 osb->disable_recovery = 1;
119 mutex_unlock(&osb->recovery_lock);
120 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
121
122 /* At this point, we know that no more recovery threads can be
123 * launched, so wait for any recovery completion work to
124 * complete. */
125 flush_workqueue(ocfs2_wq);
126
127 /*
128 * Now that recovery is shut down, and the osb is about to be
129 * freed, the osb_lock is not taken here.
130 */
131 rm = osb->recovery_map;
132 /* XXX: Should we bug if there are dirty entries? */
133
134 kfree(rm);
135 }
136
137 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
138 unsigned int node_num)
139 {
140 int i;
141 struct ocfs2_recovery_map *rm = osb->recovery_map;
142
143 assert_spin_locked(&osb->osb_lock);
144
145 for (i = 0; i < rm->rm_used; i++) {
146 if (rm->rm_entries[i] == node_num)
147 return 1;
148 }
149
150 return 0;
151 }
152
153 /* Behaves like test-and-set. Returns the previous value */
154 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
155 unsigned int node_num)
156 {
157 struct ocfs2_recovery_map *rm = osb->recovery_map;
158
159 spin_lock(&osb->osb_lock);
160 if (__ocfs2_recovery_map_test(osb, node_num)) {
161 spin_unlock(&osb->osb_lock);
162 return 1;
163 }
164
165 /* XXX: Can this be exploited? Not from o2dlm... */
166 BUG_ON(rm->rm_used >= osb->max_slots);
167
168 rm->rm_entries[rm->rm_used] = node_num;
169 rm->rm_used++;
170 spin_unlock(&osb->osb_lock);
171
172 return 0;
173 }
174
175 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
176 unsigned int node_num)
177 {
178 int i;
179 struct ocfs2_recovery_map *rm = osb->recovery_map;
180
181 spin_lock(&osb->osb_lock);
182
183 for (i = 0; i < rm->rm_used; i++) {
184 if (rm->rm_entries[i] == node_num)
185 break;
186 }
187
188 if (i < rm->rm_used) {
189 /* XXX: be careful with the pointer math */
190 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
191 (rm->rm_used - i - 1) * sizeof(unsigned int));
192 rm->rm_used--;
193 }
194
195 spin_unlock(&osb->osb_lock);
196 }
197
198 static int ocfs2_commit_cache(struct ocfs2_super *osb)
199 {
200 int status = 0;
201 unsigned int flushed;
202 unsigned long old_id;
203 struct ocfs2_journal *journal = NULL;
204
205 mlog_entry_void();
206
207 journal = osb->journal;
208
209 /* Flush all pending commits and checkpoint the journal. */
210 down_write(&journal->j_trans_barrier);
211
212 if (atomic_read(&journal->j_num_trans) == 0) {
213 up_write(&journal->j_trans_barrier);
214 mlog(0, "No transactions for me to flush!\n");
215 goto finally;
216 }
217
218 jbd2_journal_lock_updates(journal->j_journal);
219 status = jbd2_journal_flush(journal->j_journal);
220 jbd2_journal_unlock_updates(journal->j_journal);
221 if (status < 0) {
222 up_write(&journal->j_trans_barrier);
223 mlog_errno(status);
224 goto finally;
225 }
226
227 old_id = ocfs2_inc_trans_id(journal);
228
229 flushed = atomic_read(&journal->j_num_trans);
230 atomic_set(&journal->j_num_trans, 0);
231 up_write(&journal->j_trans_barrier);
232
233 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
234 journal->j_trans_id, flushed);
235
236 ocfs2_wake_downconvert_thread(osb);
237 wake_up(&journal->j_checkpointed);
238 finally:
239 mlog_exit(status);
240 return status;
241 }
242
243 /* pass it NULL and it will allocate a new handle object for you. If
244 * you pass it a handle however, it may still return error, in which
245 * case it has free'd the passed handle for you. */
246 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
247 {
248 journal_t *journal = osb->journal->j_journal;
249 handle_t *handle;
250
251 BUG_ON(!osb || !osb->journal->j_journal);
252
253 if (ocfs2_is_hard_readonly(osb))
254 return ERR_PTR(-EROFS);
255
256 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
257 BUG_ON(max_buffs <= 0);
258
259 /* JBD might support this, but our journalling code doesn't yet. */
260 if (journal_current_handle()) {
261 mlog(ML_ERROR, "Recursive transaction attempted!\n");
262 BUG();
263 }
264
265 down_read(&osb->journal->j_trans_barrier);
266
267 handle = jbd2_journal_start(journal, max_buffs);
268 if (IS_ERR(handle)) {
269 up_read(&osb->journal->j_trans_barrier);
270
271 mlog_errno(PTR_ERR(handle));
272
273 if (is_journal_aborted(journal)) {
274 ocfs2_abort(osb->sb, "Detected aborted journal");
275 handle = ERR_PTR(-EROFS);
276 }
277 } else {
278 if (!ocfs2_mount_local(osb))
279 atomic_inc(&(osb->journal->j_num_trans));
280 }
281
282 return handle;
283 }
284
285 int ocfs2_commit_trans(struct ocfs2_super *osb,
286 handle_t *handle)
287 {
288 int ret;
289 struct ocfs2_journal *journal = osb->journal;
290
291 BUG_ON(!handle);
292
293 ret = jbd2_journal_stop(handle);
294 if (ret < 0)
295 mlog_errno(ret);
296
297 up_read(&journal->j_trans_barrier);
298
299 return ret;
300 }
301
302 /*
303 * 'nblocks' is what you want to add to the current
304 * transaction. extend_trans will either extend the current handle by
305 * nblocks, or commit it and start a new one with nblocks credits.
306 *
307 * This might call jbd2_journal_restart() which will commit dirty buffers
308 * and then restart the transaction. Before calling
309 * ocfs2_extend_trans(), any changed blocks should have been
310 * dirtied. After calling it, all blocks which need to be changed must
311 * go through another set of journal_access/journal_dirty calls.
312 *
313 * WARNING: This will not release any semaphores or disk locks taken
314 * during the transaction, so make sure they were taken *before*
315 * start_trans or we'll have ordering deadlocks.
316 *
317 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
318 * good because transaction ids haven't yet been recorded on the
319 * cluster locks associated with this handle.
320 */
321 int ocfs2_extend_trans(handle_t *handle, int nblocks)
322 {
323 int status;
324
325 BUG_ON(!handle);
326 BUG_ON(!nblocks);
327
328 mlog_entry_void();
329
330 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
331
332 #ifdef CONFIG_OCFS2_DEBUG_FS
333 status = 1;
334 #else
335 status = jbd2_journal_extend(handle, nblocks);
336 if (status < 0) {
337 mlog_errno(status);
338 goto bail;
339 }
340 #endif
341
342 if (status > 0) {
343 mlog(0,
344 "jbd2_journal_extend failed, trying "
345 "jbd2_journal_restart\n");
346 status = jbd2_journal_restart(handle, nblocks);
347 if (status < 0) {
348 mlog_errno(status);
349 goto bail;
350 }
351 }
352
353 status = 0;
354 bail:
355
356 mlog_exit(status);
357 return status;
358 }
359
360 int ocfs2_journal_access(handle_t *handle,
361 struct inode *inode,
362 struct buffer_head *bh,
363 int type)
364 {
365 int status;
366
367 BUG_ON(!inode);
368 BUG_ON(!handle);
369 BUG_ON(!bh);
370
371 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
372 (unsigned long long)bh->b_blocknr, type,
373 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
374 "OCFS2_JOURNAL_ACCESS_CREATE" :
375 "OCFS2_JOURNAL_ACCESS_WRITE",
376 bh->b_size);
377
378 /* we can safely remove this assertion after testing. */
379 if (!buffer_uptodate(bh)) {
380 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
381 mlog(ML_ERROR, "b_blocknr=%llu\n",
382 (unsigned long long)bh->b_blocknr);
383 BUG();
384 }
385
386 /* Set the current transaction information on the inode so
387 * that the locking code knows whether it can drop it's locks
388 * on this inode or not. We're protected from the commit
389 * thread updating the current transaction id until
390 * ocfs2_commit_trans() because ocfs2_start_trans() took
391 * j_trans_barrier for us. */
392 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
393
394 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
395 switch (type) {
396 case OCFS2_JOURNAL_ACCESS_CREATE:
397 case OCFS2_JOURNAL_ACCESS_WRITE:
398 status = jbd2_journal_get_write_access(handle, bh);
399 break;
400
401 case OCFS2_JOURNAL_ACCESS_UNDO:
402 status = jbd2_journal_get_undo_access(handle, bh);
403 break;
404
405 default:
406 status = -EINVAL;
407 mlog(ML_ERROR, "Uknown access type!\n");
408 }
409 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
410
411 if (status < 0)
412 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
413 status, type);
414
415 mlog_exit(status);
416 return status;
417 }
418
419 int ocfs2_journal_dirty(handle_t *handle,
420 struct buffer_head *bh)
421 {
422 int status;
423
424 mlog_entry("(bh->b_blocknr=%llu)\n",
425 (unsigned long long)bh->b_blocknr);
426
427 status = jbd2_journal_dirty_metadata(handle, bh);
428 if (status < 0)
429 mlog(ML_ERROR, "Could not dirty metadata buffer. "
430 "(bh->b_blocknr=%llu)\n",
431 (unsigned long long)bh->b_blocknr);
432
433 mlog_exit(status);
434 return status;
435 }
436
437 #ifdef CONFIG_OCFS2_COMPAT_JBD
438 int ocfs2_journal_dirty_data(handle_t *handle,
439 struct buffer_head *bh)
440 {
441 int err = journal_dirty_data(handle, bh);
442 if (err)
443 mlog_errno(err);
444 /* TODO: When we can handle it, abort the handle and go RO on
445 * error here. */
446
447 return err;
448 }
449 #endif
450
451 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
452
453 void ocfs2_set_journal_params(struct ocfs2_super *osb)
454 {
455 journal_t *journal = osb->journal->j_journal;
456 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
457
458 if (osb->osb_commit_interval)
459 commit_interval = osb->osb_commit_interval;
460
461 spin_lock(&journal->j_state_lock);
462 journal->j_commit_interval = commit_interval;
463 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
464 journal->j_flags |= JBD2_BARRIER;
465 else
466 journal->j_flags &= ~JBD2_BARRIER;
467 spin_unlock(&journal->j_state_lock);
468 }
469
470 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
471 {
472 int status = -1;
473 struct inode *inode = NULL; /* the journal inode */
474 journal_t *j_journal = NULL;
475 struct ocfs2_dinode *di = NULL;
476 struct buffer_head *bh = NULL;
477 struct ocfs2_super *osb;
478 int inode_lock = 0;
479
480 mlog_entry_void();
481
482 BUG_ON(!journal);
483
484 osb = journal->j_osb;
485
486 /* already have the inode for our journal */
487 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
488 osb->slot_num);
489 if (inode == NULL) {
490 status = -EACCES;
491 mlog_errno(status);
492 goto done;
493 }
494 if (is_bad_inode(inode)) {
495 mlog(ML_ERROR, "access error (bad inode)\n");
496 iput(inode);
497 inode = NULL;
498 status = -EACCES;
499 goto done;
500 }
501
502 SET_INODE_JOURNAL(inode);
503 OCFS2_I(inode)->ip_open_count++;
504
505 /* Skip recovery waits here - journal inode metadata never
506 * changes in a live cluster so it can be considered an
507 * exception to the rule. */
508 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
509 if (status < 0) {
510 if (status != -ERESTARTSYS)
511 mlog(ML_ERROR, "Could not get lock on journal!\n");
512 goto done;
513 }
514
515 inode_lock = 1;
516 di = (struct ocfs2_dinode *)bh->b_data;
517
518 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
519 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
520 inode->i_size);
521 status = -EINVAL;
522 goto done;
523 }
524
525 mlog(0, "inode->i_size = %lld\n", inode->i_size);
526 mlog(0, "inode->i_blocks = %llu\n",
527 (unsigned long long)inode->i_blocks);
528 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
529
530 /* call the kernels journal init function now */
531 j_journal = jbd2_journal_init_inode(inode);
532 if (j_journal == NULL) {
533 mlog(ML_ERROR, "Linux journal layer error\n");
534 status = -EINVAL;
535 goto done;
536 }
537
538 mlog(0, "Returned from jbd2_journal_init_inode\n");
539 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
540
541 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
542 OCFS2_JOURNAL_DIRTY_FL);
543
544 journal->j_journal = j_journal;
545 journal->j_inode = inode;
546 journal->j_bh = bh;
547
548 ocfs2_set_journal_params(osb);
549
550 journal->j_state = OCFS2_JOURNAL_LOADED;
551
552 status = 0;
553 done:
554 if (status < 0) {
555 if (inode_lock)
556 ocfs2_inode_unlock(inode, 1);
557 brelse(bh);
558 if (inode) {
559 OCFS2_I(inode)->ip_open_count--;
560 iput(inode);
561 }
562 }
563
564 mlog_exit(status);
565 return status;
566 }
567
568 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
569 {
570 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
571 }
572
573 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
574 {
575 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
576 }
577
578 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
579 int dirty, int replayed)
580 {
581 int status;
582 unsigned int flags;
583 struct ocfs2_journal *journal = osb->journal;
584 struct buffer_head *bh = journal->j_bh;
585 struct ocfs2_dinode *fe;
586
587 mlog_entry_void();
588
589 fe = (struct ocfs2_dinode *)bh->b_data;
590 if (!OCFS2_IS_VALID_DINODE(fe)) {
591 /* This is called from startup/shutdown which will
592 * handle the errors in a specific manner, so no need
593 * to call ocfs2_error() here. */
594 mlog(ML_ERROR, "Journal dinode %llu has invalid "
595 "signature: %.*s",
596 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
597 fe->i_signature);
598 status = -EIO;
599 goto out;
600 }
601
602 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
603 if (dirty)
604 flags |= OCFS2_JOURNAL_DIRTY_FL;
605 else
606 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
607 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
608
609 if (replayed)
610 ocfs2_bump_recovery_generation(fe);
611
612 status = ocfs2_write_block(osb, bh, journal->j_inode);
613 if (status < 0)
614 mlog_errno(status);
615
616 out:
617 mlog_exit(status);
618 return status;
619 }
620
621 /*
622 * If the journal has been kmalloc'd it needs to be freed after this
623 * call.
624 */
625 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
626 {
627 struct ocfs2_journal *journal = NULL;
628 int status = 0;
629 struct inode *inode = NULL;
630 int num_running_trans = 0;
631
632 mlog_entry_void();
633
634 BUG_ON(!osb);
635
636 journal = osb->journal;
637 if (!journal)
638 goto done;
639
640 inode = journal->j_inode;
641
642 if (journal->j_state != OCFS2_JOURNAL_LOADED)
643 goto done;
644
645 /* need to inc inode use count - jbd2_journal_destroy will iput. */
646 if (!igrab(inode))
647 BUG();
648
649 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
650 if (num_running_trans > 0)
651 mlog(0, "Shutting down journal: must wait on %d "
652 "running transactions!\n",
653 num_running_trans);
654
655 /* Do a commit_cache here. It will flush our journal, *and*
656 * release any locks that are still held.
657 * set the SHUTDOWN flag and release the trans lock.
658 * the commit thread will take the trans lock for us below. */
659 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
660
661 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
662 * drop the trans_lock (which we want to hold until we
663 * completely destroy the journal. */
664 if (osb->commit_task) {
665 /* Wait for the commit thread */
666 mlog(0, "Waiting for ocfs2commit to exit....\n");
667 kthread_stop(osb->commit_task);
668 osb->commit_task = NULL;
669 }
670
671 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
672
673 if (ocfs2_mount_local(osb)) {
674 jbd2_journal_lock_updates(journal->j_journal);
675 status = jbd2_journal_flush(journal->j_journal);
676 jbd2_journal_unlock_updates(journal->j_journal);
677 if (status < 0)
678 mlog_errno(status);
679 }
680
681 if (status == 0) {
682 /*
683 * Do not toggle if flush was unsuccessful otherwise
684 * will leave dirty metadata in a "clean" journal
685 */
686 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
687 if (status < 0)
688 mlog_errno(status);
689 }
690
691 /* Shutdown the kernel journal system */
692 jbd2_journal_destroy(journal->j_journal);
693 journal->j_journal = NULL;
694
695 OCFS2_I(inode)->ip_open_count--;
696
697 /* unlock our journal */
698 ocfs2_inode_unlock(inode, 1);
699
700 brelse(journal->j_bh);
701 journal->j_bh = NULL;
702
703 journal->j_state = OCFS2_JOURNAL_FREE;
704
705 // up_write(&journal->j_trans_barrier);
706 done:
707 if (inode)
708 iput(inode);
709 mlog_exit_void();
710 }
711
712 static void ocfs2_clear_journal_error(struct super_block *sb,
713 journal_t *journal,
714 int slot)
715 {
716 int olderr;
717
718 olderr = jbd2_journal_errno(journal);
719 if (olderr) {
720 mlog(ML_ERROR, "File system error %d recorded in "
721 "journal %u.\n", olderr, slot);
722 mlog(ML_ERROR, "File system on device %s needs checking.\n",
723 sb->s_id);
724
725 jbd2_journal_ack_err(journal);
726 jbd2_journal_clear_err(journal);
727 }
728 }
729
730 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
731 {
732 int status = 0;
733 struct ocfs2_super *osb;
734
735 mlog_entry_void();
736
737 BUG_ON(!journal);
738
739 osb = journal->j_osb;
740
741 status = jbd2_journal_load(journal->j_journal);
742 if (status < 0) {
743 mlog(ML_ERROR, "Failed to load journal!\n");
744 goto done;
745 }
746
747 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
748
749 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
750 if (status < 0) {
751 mlog_errno(status);
752 goto done;
753 }
754
755 /* Launch the commit thread */
756 if (!local) {
757 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
758 "ocfs2cmt");
759 if (IS_ERR(osb->commit_task)) {
760 status = PTR_ERR(osb->commit_task);
761 osb->commit_task = NULL;
762 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
763 "error=%d", status);
764 goto done;
765 }
766 } else
767 osb->commit_task = NULL;
768
769 done:
770 mlog_exit(status);
771 return status;
772 }
773
774
775 /* 'full' flag tells us whether we clear out all blocks or if we just
776 * mark the journal clean */
777 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
778 {
779 int status;
780
781 mlog_entry_void();
782
783 BUG_ON(!journal);
784
785 status = jbd2_journal_wipe(journal->j_journal, full);
786 if (status < 0) {
787 mlog_errno(status);
788 goto bail;
789 }
790
791 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
792 if (status < 0)
793 mlog_errno(status);
794
795 bail:
796 mlog_exit(status);
797 return status;
798 }
799
800 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
801 {
802 int empty;
803 struct ocfs2_recovery_map *rm = osb->recovery_map;
804
805 spin_lock(&osb->osb_lock);
806 empty = (rm->rm_used == 0);
807 spin_unlock(&osb->osb_lock);
808
809 return empty;
810 }
811
812 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
813 {
814 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
815 }
816
817 /*
818 * JBD Might read a cached version of another nodes journal file. We
819 * don't want this as this file changes often and we get no
820 * notification on those changes. The only way to be sure that we've
821 * got the most up to date version of those blocks then is to force
822 * read them off disk. Just searching through the buffer cache won't
823 * work as there may be pages backing this file which are still marked
824 * up to date. We know things can't change on this file underneath us
825 * as we have the lock by now :)
826 */
827 static int ocfs2_force_read_journal(struct inode *inode)
828 {
829 int status = 0;
830 int i;
831 u64 v_blkno, p_blkno, p_blocks, num_blocks;
832 #define CONCURRENT_JOURNAL_FILL 32ULL
833 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
834
835 mlog_entry_void();
836
837 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
838
839 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
840 v_blkno = 0;
841 while (v_blkno < num_blocks) {
842 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
843 &p_blkno, &p_blocks, NULL);
844 if (status < 0) {
845 mlog_errno(status);
846 goto bail;
847 }
848
849 if (p_blocks > CONCURRENT_JOURNAL_FILL)
850 p_blocks = CONCURRENT_JOURNAL_FILL;
851
852 /* We are reading journal data which should not
853 * be put in the uptodate cache */
854 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
855 p_blkno, p_blocks, bhs);
856 if (status < 0) {
857 mlog_errno(status);
858 goto bail;
859 }
860
861 for(i = 0; i < p_blocks; i++) {
862 brelse(bhs[i]);
863 bhs[i] = NULL;
864 }
865
866 v_blkno += p_blocks;
867 }
868
869 bail:
870 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
871 brelse(bhs[i]);
872 mlog_exit(status);
873 return status;
874 }
875
876 struct ocfs2_la_recovery_item {
877 struct list_head lri_list;
878 int lri_slot;
879 struct ocfs2_dinode *lri_la_dinode;
880 struct ocfs2_dinode *lri_tl_dinode;
881 };
882
883 /* Does the second half of the recovery process. By this point, the
884 * node is marked clean and can actually be considered recovered,
885 * hence it's no longer in the recovery map, but there's still some
886 * cleanup we can do which shouldn't happen within the recovery thread
887 * as locking in that context becomes very difficult if we are to take
888 * recovering nodes into account.
889 *
890 * NOTE: This function can and will sleep on recovery of other nodes
891 * during cluster locking, just like any other ocfs2 process.
892 */
893 void ocfs2_complete_recovery(struct work_struct *work)
894 {
895 int ret;
896 struct ocfs2_journal *journal =
897 container_of(work, struct ocfs2_journal, j_recovery_work);
898 struct ocfs2_super *osb = journal->j_osb;
899 struct ocfs2_dinode *la_dinode, *tl_dinode;
900 struct ocfs2_la_recovery_item *item, *n;
901 LIST_HEAD(tmp_la_list);
902
903 mlog_entry_void();
904
905 mlog(0, "completing recovery from keventd\n");
906
907 spin_lock(&journal->j_lock);
908 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
909 spin_unlock(&journal->j_lock);
910
911 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
912 list_del_init(&item->lri_list);
913
914 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
915
916 la_dinode = item->lri_la_dinode;
917 if (la_dinode) {
918 mlog(0, "Clean up local alloc %llu\n",
919 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
920
921 ret = ocfs2_complete_local_alloc_recovery(osb,
922 la_dinode);
923 if (ret < 0)
924 mlog_errno(ret);
925
926 kfree(la_dinode);
927 }
928
929 tl_dinode = item->lri_tl_dinode;
930 if (tl_dinode) {
931 mlog(0, "Clean up truncate log %llu\n",
932 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
933
934 ret = ocfs2_complete_truncate_log_recovery(osb,
935 tl_dinode);
936 if (ret < 0)
937 mlog_errno(ret);
938
939 kfree(tl_dinode);
940 }
941
942 ret = ocfs2_recover_orphans(osb, item->lri_slot);
943 if (ret < 0)
944 mlog_errno(ret);
945
946 kfree(item);
947 }
948
949 mlog(0, "Recovery completion\n");
950 mlog_exit_void();
951 }
952
953 /* NOTE: This function always eats your references to la_dinode and
954 * tl_dinode, either manually on error, or by passing them to
955 * ocfs2_complete_recovery */
956 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
957 int slot_num,
958 struct ocfs2_dinode *la_dinode,
959 struct ocfs2_dinode *tl_dinode)
960 {
961 struct ocfs2_la_recovery_item *item;
962
963 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
964 if (!item) {
965 /* Though we wish to avoid it, we are in fact safe in
966 * skipping local alloc cleanup as fsck.ocfs2 is more
967 * than capable of reclaiming unused space. */
968 if (la_dinode)
969 kfree(la_dinode);
970
971 if (tl_dinode)
972 kfree(tl_dinode);
973
974 mlog_errno(-ENOMEM);
975 return;
976 }
977
978 INIT_LIST_HEAD(&item->lri_list);
979 item->lri_la_dinode = la_dinode;
980 item->lri_slot = slot_num;
981 item->lri_tl_dinode = tl_dinode;
982
983 spin_lock(&journal->j_lock);
984 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
985 queue_work(ocfs2_wq, &journal->j_recovery_work);
986 spin_unlock(&journal->j_lock);
987 }
988
989 /* Called by the mount code to queue recovery the last part of
990 * recovery for it's own slot. */
991 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
992 {
993 struct ocfs2_journal *journal = osb->journal;
994
995 if (osb->dirty) {
996 /* No need to queue up our truncate_log as regular
997 * cleanup will catch that. */
998 ocfs2_queue_recovery_completion(journal,
999 osb->slot_num,
1000 osb->local_alloc_copy,
1001 NULL);
1002 ocfs2_schedule_truncate_log_flush(osb, 0);
1003
1004 osb->local_alloc_copy = NULL;
1005 osb->dirty = 0;
1006 }
1007 }
1008
1009 static int __ocfs2_recovery_thread(void *arg)
1010 {
1011 int status, node_num;
1012 struct ocfs2_super *osb = arg;
1013 struct ocfs2_recovery_map *rm = osb->recovery_map;
1014
1015 mlog_entry_void();
1016
1017 status = ocfs2_wait_on_mount(osb);
1018 if (status < 0) {
1019 goto bail;
1020 }
1021
1022 restart:
1023 status = ocfs2_super_lock(osb, 1);
1024 if (status < 0) {
1025 mlog_errno(status);
1026 goto bail;
1027 }
1028
1029 spin_lock(&osb->osb_lock);
1030 while (rm->rm_used) {
1031 /* It's always safe to remove entry zero, as we won't
1032 * clear it until ocfs2_recover_node() has succeeded. */
1033 node_num = rm->rm_entries[0];
1034 spin_unlock(&osb->osb_lock);
1035
1036 status = ocfs2_recover_node(osb, node_num);
1037 if (!status) {
1038 ocfs2_recovery_map_clear(osb, node_num);
1039 } else {
1040 mlog(ML_ERROR,
1041 "Error %d recovering node %d on device (%u,%u)!\n",
1042 status, node_num,
1043 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1044 mlog(ML_ERROR, "Volume requires unmount.\n");
1045 }
1046
1047 spin_lock(&osb->osb_lock);
1048 }
1049 spin_unlock(&osb->osb_lock);
1050 mlog(0, "All nodes recovered\n");
1051
1052 /* Refresh all journal recovery generations from disk */
1053 status = ocfs2_check_journals_nolocks(osb);
1054 status = (status == -EROFS) ? 0 : status;
1055 if (status < 0)
1056 mlog_errno(status);
1057
1058 ocfs2_super_unlock(osb, 1);
1059
1060 /* We always run recovery on our own orphan dir - the dead
1061 * node(s) may have disallowd a previos inode delete. Re-processing
1062 * is therefore required. */
1063 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1064 NULL);
1065
1066 bail:
1067 mutex_lock(&osb->recovery_lock);
1068 if (!status && !ocfs2_recovery_completed(osb)) {
1069 mutex_unlock(&osb->recovery_lock);
1070 goto restart;
1071 }
1072
1073 osb->recovery_thread_task = NULL;
1074 mb(); /* sync with ocfs2_recovery_thread_running */
1075 wake_up(&osb->recovery_event);
1076
1077 mutex_unlock(&osb->recovery_lock);
1078
1079 mlog_exit(status);
1080 /* no one is callint kthread_stop() for us so the kthread() api
1081 * requires that we call do_exit(). And it isn't exported, but
1082 * complete_and_exit() seems to be a minimal wrapper around it. */
1083 complete_and_exit(NULL, status);
1084 return status;
1085 }
1086
1087 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1088 {
1089 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1090 node_num, osb->node_num);
1091
1092 mutex_lock(&osb->recovery_lock);
1093 if (osb->disable_recovery)
1094 goto out;
1095
1096 /* People waiting on recovery will wait on
1097 * the recovery map to empty. */
1098 if (ocfs2_recovery_map_set(osb, node_num))
1099 mlog(0, "node %d already in recovery map.\n", node_num);
1100
1101 mlog(0, "starting recovery thread...\n");
1102
1103 if (osb->recovery_thread_task)
1104 goto out;
1105
1106 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1107 "ocfs2rec");
1108 if (IS_ERR(osb->recovery_thread_task)) {
1109 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1110 osb->recovery_thread_task = NULL;
1111 }
1112
1113 out:
1114 mutex_unlock(&osb->recovery_lock);
1115 wake_up(&osb->recovery_event);
1116
1117 mlog_exit_void();
1118 }
1119
1120 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1121 int slot_num,
1122 struct buffer_head **bh,
1123 struct inode **ret_inode)
1124 {
1125 int status = -EACCES;
1126 struct inode *inode = NULL;
1127
1128 BUG_ON(slot_num >= osb->max_slots);
1129
1130 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1131 slot_num);
1132 if (!inode || is_bad_inode(inode)) {
1133 mlog_errno(status);
1134 goto bail;
1135 }
1136 SET_INODE_JOURNAL(inode);
1137
1138 status = ocfs2_read_blocks(inode, OCFS2_I(inode)->ip_blkno, 1, bh,
1139 OCFS2_BH_IGNORE_CACHE);
1140 if (status < 0) {
1141 mlog_errno(status);
1142 goto bail;
1143 }
1144
1145 status = 0;
1146
1147 bail:
1148 if (inode) {
1149 if (status || !ret_inode)
1150 iput(inode);
1151 else
1152 *ret_inode = inode;
1153 }
1154 return status;
1155 }
1156
1157 /* Does the actual journal replay and marks the journal inode as
1158 * clean. Will only replay if the journal inode is marked dirty. */
1159 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1160 int node_num,
1161 int slot_num)
1162 {
1163 int status;
1164 int got_lock = 0;
1165 unsigned int flags;
1166 struct inode *inode = NULL;
1167 struct ocfs2_dinode *fe;
1168 journal_t *journal = NULL;
1169 struct buffer_head *bh = NULL;
1170 u32 slot_reco_gen;
1171
1172 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1173 if (status) {
1174 mlog_errno(status);
1175 goto done;
1176 }
1177
1178 fe = (struct ocfs2_dinode *)bh->b_data;
1179 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1180 brelse(bh);
1181 bh = NULL;
1182
1183 /*
1184 * As the fs recovery is asynchronous, there is a small chance that
1185 * another node mounted (and recovered) the slot before the recovery
1186 * thread could get the lock. To handle that, we dirty read the journal
1187 * inode for that slot to get the recovery generation. If it is
1188 * different than what we expected, the slot has been recovered.
1189 * If not, it needs recovery.
1190 */
1191 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1192 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1193 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1194 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1195 status = -EBUSY;
1196 goto done;
1197 }
1198
1199 /* Continue with recovery as the journal has not yet been recovered */
1200
1201 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1202 if (status < 0) {
1203 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1204 if (status != -ERESTARTSYS)
1205 mlog(ML_ERROR, "Could not lock journal!\n");
1206 goto done;
1207 }
1208 got_lock = 1;
1209
1210 fe = (struct ocfs2_dinode *) bh->b_data;
1211
1212 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1213 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1214
1215 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1216 mlog(0, "No recovery required for node %d\n", node_num);
1217 /* Refresh recovery generation for the slot */
1218 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1219 goto done;
1220 }
1221
1222 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1223 node_num, slot_num,
1224 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1225
1226 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1227
1228 status = ocfs2_force_read_journal(inode);
1229 if (status < 0) {
1230 mlog_errno(status);
1231 goto done;
1232 }
1233
1234 mlog(0, "calling journal_init_inode\n");
1235 journal = jbd2_journal_init_inode(inode);
1236 if (journal == NULL) {
1237 mlog(ML_ERROR, "Linux journal layer error\n");
1238 status = -EIO;
1239 goto done;
1240 }
1241
1242 status = jbd2_journal_load(journal);
1243 if (status < 0) {
1244 mlog_errno(status);
1245 if (!igrab(inode))
1246 BUG();
1247 jbd2_journal_destroy(journal);
1248 goto done;
1249 }
1250
1251 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1252
1253 /* wipe the journal */
1254 mlog(0, "flushing the journal.\n");
1255 jbd2_journal_lock_updates(journal);
1256 status = jbd2_journal_flush(journal);
1257 jbd2_journal_unlock_updates(journal);
1258 if (status < 0)
1259 mlog_errno(status);
1260
1261 /* This will mark the node clean */
1262 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1263 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1264 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1265
1266 /* Increment recovery generation to indicate successful recovery */
1267 ocfs2_bump_recovery_generation(fe);
1268 osb->slot_recovery_generations[slot_num] =
1269 ocfs2_get_recovery_generation(fe);
1270
1271 status = ocfs2_write_block(osb, bh, inode);
1272 if (status < 0)
1273 mlog_errno(status);
1274
1275 if (!igrab(inode))
1276 BUG();
1277
1278 jbd2_journal_destroy(journal);
1279
1280 done:
1281 /* drop the lock on this nodes journal */
1282 if (got_lock)
1283 ocfs2_inode_unlock(inode, 1);
1284
1285 if (inode)
1286 iput(inode);
1287
1288 brelse(bh);
1289
1290 mlog_exit(status);
1291 return status;
1292 }
1293
1294 /*
1295 * Do the most important parts of node recovery:
1296 * - Replay it's journal
1297 * - Stamp a clean local allocator file
1298 * - Stamp a clean truncate log
1299 * - Mark the node clean
1300 *
1301 * If this function completes without error, a node in OCFS2 can be
1302 * said to have been safely recovered. As a result, failure during the
1303 * second part of a nodes recovery process (local alloc recovery) is
1304 * far less concerning.
1305 */
1306 static int ocfs2_recover_node(struct ocfs2_super *osb,
1307 int node_num)
1308 {
1309 int status = 0;
1310 int slot_num;
1311 struct ocfs2_dinode *la_copy = NULL;
1312 struct ocfs2_dinode *tl_copy = NULL;
1313
1314 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1315 node_num, osb->node_num);
1316
1317 mlog(0, "checking node %d\n", node_num);
1318
1319 /* Should not ever be called to recover ourselves -- in that
1320 * case we should've called ocfs2_journal_load instead. */
1321 BUG_ON(osb->node_num == node_num);
1322
1323 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1324 if (slot_num == -ENOENT) {
1325 status = 0;
1326 mlog(0, "no slot for this node, so no recovery required.\n");
1327 goto done;
1328 }
1329
1330 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1331
1332 status = ocfs2_replay_journal(osb, node_num, slot_num);
1333 if (status < 0) {
1334 if (status == -EBUSY) {
1335 mlog(0, "Skipping recovery for slot %u (node %u) "
1336 "as another node has recovered it\n", slot_num,
1337 node_num);
1338 status = 0;
1339 goto done;
1340 }
1341 mlog_errno(status);
1342 goto done;
1343 }
1344
1345 /* Stamp a clean local alloc file AFTER recovering the journal... */
1346 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1347 if (status < 0) {
1348 mlog_errno(status);
1349 goto done;
1350 }
1351
1352 /* An error from begin_truncate_log_recovery is not
1353 * serious enough to warrant halting the rest of
1354 * recovery. */
1355 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1356 if (status < 0)
1357 mlog_errno(status);
1358
1359 /* Likewise, this would be a strange but ultimately not so
1360 * harmful place to get an error... */
1361 status = ocfs2_clear_slot(osb, slot_num);
1362 if (status < 0)
1363 mlog_errno(status);
1364
1365 /* This will kfree the memory pointed to by la_copy and tl_copy */
1366 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1367 tl_copy);
1368
1369 status = 0;
1370 done:
1371
1372 mlog_exit(status);
1373 return status;
1374 }
1375
1376 /* Test node liveness by trylocking his journal. If we get the lock,
1377 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1378 * still alive (we couldn't get the lock) and < 0 on error. */
1379 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1380 int slot_num)
1381 {
1382 int status, flags;
1383 struct inode *inode = NULL;
1384
1385 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1386 slot_num);
1387 if (inode == NULL) {
1388 mlog(ML_ERROR, "access error\n");
1389 status = -EACCES;
1390 goto bail;
1391 }
1392 if (is_bad_inode(inode)) {
1393 mlog(ML_ERROR, "access error (bad inode)\n");
1394 iput(inode);
1395 inode = NULL;
1396 status = -EACCES;
1397 goto bail;
1398 }
1399 SET_INODE_JOURNAL(inode);
1400
1401 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1402 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1403 if (status < 0) {
1404 if (status != -EAGAIN)
1405 mlog_errno(status);
1406 goto bail;
1407 }
1408
1409 ocfs2_inode_unlock(inode, 1);
1410 bail:
1411 if (inode)
1412 iput(inode);
1413
1414 return status;
1415 }
1416
1417 /* Call this underneath ocfs2_super_lock. It also assumes that the
1418 * slot info struct has been updated from disk. */
1419 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1420 {
1421 unsigned int node_num;
1422 int status, i;
1423 u32 gen;
1424 struct buffer_head *bh = NULL;
1425 struct ocfs2_dinode *di;
1426
1427 /* This is called with the super block cluster lock, so we
1428 * know that the slot map can't change underneath us. */
1429
1430 for (i = 0; i < osb->max_slots; i++) {
1431 /* Read journal inode to get the recovery generation */
1432 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1433 if (status) {
1434 mlog_errno(status);
1435 goto bail;
1436 }
1437 di = (struct ocfs2_dinode *)bh->b_data;
1438 gen = ocfs2_get_recovery_generation(di);
1439 brelse(bh);
1440 bh = NULL;
1441
1442 spin_lock(&osb->osb_lock);
1443 osb->slot_recovery_generations[i] = gen;
1444
1445 mlog(0, "Slot %u recovery generation is %u\n", i,
1446 osb->slot_recovery_generations[i]);
1447
1448 if (i == osb->slot_num) {
1449 spin_unlock(&osb->osb_lock);
1450 continue;
1451 }
1452
1453 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1454 if (status == -ENOENT) {
1455 spin_unlock(&osb->osb_lock);
1456 continue;
1457 }
1458
1459 if (__ocfs2_recovery_map_test(osb, node_num)) {
1460 spin_unlock(&osb->osb_lock);
1461 continue;
1462 }
1463 spin_unlock(&osb->osb_lock);
1464
1465 /* Ok, we have a slot occupied by another node which
1466 * is not in the recovery map. We trylock his journal
1467 * file here to test if he's alive. */
1468 status = ocfs2_trylock_journal(osb, i);
1469 if (!status) {
1470 /* Since we're called from mount, we know that
1471 * the recovery thread can't race us on
1472 * setting / checking the recovery bits. */
1473 ocfs2_recovery_thread(osb, node_num);
1474 } else if ((status < 0) && (status != -EAGAIN)) {
1475 mlog_errno(status);
1476 goto bail;
1477 }
1478 }
1479
1480 status = 0;
1481 bail:
1482 mlog_exit(status);
1483 return status;
1484 }
1485
1486 struct ocfs2_orphan_filldir_priv {
1487 struct inode *head;
1488 struct ocfs2_super *osb;
1489 };
1490
1491 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1492 loff_t pos, u64 ino, unsigned type)
1493 {
1494 struct ocfs2_orphan_filldir_priv *p = priv;
1495 struct inode *iter;
1496
1497 if (name_len == 1 && !strncmp(".", name, 1))
1498 return 0;
1499 if (name_len == 2 && !strncmp("..", name, 2))
1500 return 0;
1501
1502 /* Skip bad inodes so that recovery can continue */
1503 iter = ocfs2_iget(p->osb, ino,
1504 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1505 if (IS_ERR(iter))
1506 return 0;
1507
1508 mlog(0, "queue orphan %llu\n",
1509 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1510 /* No locking is required for the next_orphan queue as there
1511 * is only ever a single process doing orphan recovery. */
1512 OCFS2_I(iter)->ip_next_orphan = p->head;
1513 p->head = iter;
1514
1515 return 0;
1516 }
1517
1518 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1519 int slot,
1520 struct inode **head)
1521 {
1522 int status;
1523 struct inode *orphan_dir_inode = NULL;
1524 struct ocfs2_orphan_filldir_priv priv;
1525 loff_t pos = 0;
1526
1527 priv.osb = osb;
1528 priv.head = *head;
1529
1530 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1531 ORPHAN_DIR_SYSTEM_INODE,
1532 slot);
1533 if (!orphan_dir_inode) {
1534 status = -ENOENT;
1535 mlog_errno(status);
1536 return status;
1537 }
1538
1539 mutex_lock(&orphan_dir_inode->i_mutex);
1540 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1541 if (status < 0) {
1542 mlog_errno(status);
1543 goto out;
1544 }
1545
1546 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1547 ocfs2_orphan_filldir);
1548 if (status) {
1549 mlog_errno(status);
1550 goto out_cluster;
1551 }
1552
1553 *head = priv.head;
1554
1555 out_cluster:
1556 ocfs2_inode_unlock(orphan_dir_inode, 0);
1557 out:
1558 mutex_unlock(&orphan_dir_inode->i_mutex);
1559 iput(orphan_dir_inode);
1560 return status;
1561 }
1562
1563 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1564 int slot)
1565 {
1566 int ret;
1567
1568 spin_lock(&osb->osb_lock);
1569 ret = !osb->osb_orphan_wipes[slot];
1570 spin_unlock(&osb->osb_lock);
1571 return ret;
1572 }
1573
1574 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1575 int slot)
1576 {
1577 spin_lock(&osb->osb_lock);
1578 /* Mark ourselves such that new processes in delete_inode()
1579 * know to quit early. */
1580 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1581 while (osb->osb_orphan_wipes[slot]) {
1582 /* If any processes are already in the middle of an
1583 * orphan wipe on this dir, then we need to wait for
1584 * them. */
1585 spin_unlock(&osb->osb_lock);
1586 wait_event_interruptible(osb->osb_wipe_event,
1587 ocfs2_orphan_recovery_can_continue(osb, slot));
1588 spin_lock(&osb->osb_lock);
1589 }
1590 spin_unlock(&osb->osb_lock);
1591 }
1592
1593 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1594 int slot)
1595 {
1596 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1597 }
1598
1599 /*
1600 * Orphan recovery. Each mounted node has it's own orphan dir which we
1601 * must run during recovery. Our strategy here is to build a list of
1602 * the inodes in the orphan dir and iget/iput them. The VFS does
1603 * (most) of the rest of the work.
1604 *
1605 * Orphan recovery can happen at any time, not just mount so we have a
1606 * couple of extra considerations.
1607 *
1608 * - We grab as many inodes as we can under the orphan dir lock -
1609 * doing iget() outside the orphan dir risks getting a reference on
1610 * an invalid inode.
1611 * - We must be sure not to deadlock with other processes on the
1612 * system wanting to run delete_inode(). This can happen when they go
1613 * to lock the orphan dir and the orphan recovery process attempts to
1614 * iget() inside the orphan dir lock. This can be avoided by
1615 * advertising our state to ocfs2_delete_inode().
1616 */
1617 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1618 int slot)
1619 {
1620 int ret = 0;
1621 struct inode *inode = NULL;
1622 struct inode *iter;
1623 struct ocfs2_inode_info *oi;
1624
1625 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1626
1627 ocfs2_mark_recovering_orphan_dir(osb, slot);
1628 ret = ocfs2_queue_orphans(osb, slot, &inode);
1629 ocfs2_clear_recovering_orphan_dir(osb, slot);
1630
1631 /* Error here should be noted, but we want to continue with as
1632 * many queued inodes as we've got. */
1633 if (ret)
1634 mlog_errno(ret);
1635
1636 while (inode) {
1637 oi = OCFS2_I(inode);
1638 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1639
1640 iter = oi->ip_next_orphan;
1641
1642 spin_lock(&oi->ip_lock);
1643 /* The remote delete code may have set these on the
1644 * assumption that the other node would wipe them
1645 * successfully. If they are still in the node's
1646 * orphan dir, we need to reset that state. */
1647 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1648
1649 /* Set the proper information to get us going into
1650 * ocfs2_delete_inode. */
1651 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1652 spin_unlock(&oi->ip_lock);
1653
1654 iput(inode);
1655
1656 inode = iter;
1657 }
1658
1659 return ret;
1660 }
1661
1662 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1663 {
1664 /* This check is good because ocfs2 will wait on our recovery
1665 * thread before changing it to something other than MOUNTED
1666 * or DISABLED. */
1667 wait_event(osb->osb_mount_event,
1668 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1669 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1670
1671 /* If there's an error on mount, then we may never get to the
1672 * MOUNTED flag, but this is set right before
1673 * dismount_volume() so we can trust it. */
1674 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1675 mlog(0, "mount error, exiting!\n");
1676 return -EBUSY;
1677 }
1678
1679 return 0;
1680 }
1681
1682 static int ocfs2_commit_thread(void *arg)
1683 {
1684 int status;
1685 struct ocfs2_super *osb = arg;
1686 struct ocfs2_journal *journal = osb->journal;
1687
1688 /* we can trust j_num_trans here because _should_stop() is only set in
1689 * shutdown and nobody other than ourselves should be able to start
1690 * transactions. committing on shutdown might take a few iterations
1691 * as final transactions put deleted inodes on the list */
1692 while (!(kthread_should_stop() &&
1693 atomic_read(&journal->j_num_trans) == 0)) {
1694
1695 wait_event_interruptible(osb->checkpoint_event,
1696 atomic_read(&journal->j_num_trans)
1697 || kthread_should_stop());
1698
1699 status = ocfs2_commit_cache(osb);
1700 if (status < 0)
1701 mlog_errno(status);
1702
1703 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1704 mlog(ML_KTHREAD,
1705 "commit_thread: %u transactions pending on "
1706 "shutdown\n",
1707 atomic_read(&journal->j_num_trans));
1708 }
1709 }
1710
1711 return 0;
1712 }
1713
1714 /* Reads all the journal inodes without taking any cluster locks. Used
1715 * for hard readonly access to determine whether any journal requires
1716 * recovery. Also used to refresh the recovery generation numbers after
1717 * a journal has been recovered by another node.
1718 */
1719 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1720 {
1721 int ret = 0;
1722 unsigned int slot;
1723 struct buffer_head *di_bh = NULL;
1724 struct ocfs2_dinode *di;
1725 int journal_dirty = 0;
1726
1727 for(slot = 0; slot < osb->max_slots; slot++) {
1728 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
1729 if (ret) {
1730 mlog_errno(ret);
1731 goto out;
1732 }
1733
1734 di = (struct ocfs2_dinode *) di_bh->b_data;
1735
1736 osb->slot_recovery_generations[slot] =
1737 ocfs2_get_recovery_generation(di);
1738
1739 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1740 OCFS2_JOURNAL_DIRTY_FL)
1741 journal_dirty = 1;
1742
1743 brelse(di_bh);
1744 di_bh = NULL;
1745 }
1746
1747 out:
1748 if (journal_dirty)
1749 ret = -EROFS;
1750 return ret;
1751 }
This page took 0.091458 seconds and 6 git commands to generate.