ARM: Merge next-simtec
[deliverable/linux.git] / fs / pipe.c
1 /*
2 * linux/fs/pipe.c
3 *
4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
19 #include <linux/audit.h>
20 #include <linux/syscalls.h>
21
22 #include <asm/uaccess.h>
23 #include <asm/ioctls.h>
24
25 /*
26 * We use a start+len construction, which provides full use of the
27 * allocated memory.
28 * -- Florian Coosmann (FGC)
29 *
30 * Reads with count = 0 should always return 0.
31 * -- Julian Bradfield 1999-06-07.
32 *
33 * FIFOs and Pipes now generate SIGIO for both readers and writers.
34 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
35 *
36 * pipe_read & write cleanup
37 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
38 */
39
40 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
41 {
42 if (pipe->inode)
43 mutex_lock_nested(&pipe->inode->i_mutex, subclass);
44 }
45
46 void pipe_lock(struct pipe_inode_info *pipe)
47 {
48 /*
49 * pipe_lock() nests non-pipe inode locks (for writing to a file)
50 */
51 pipe_lock_nested(pipe, I_MUTEX_PARENT);
52 }
53 EXPORT_SYMBOL(pipe_lock);
54
55 void pipe_unlock(struct pipe_inode_info *pipe)
56 {
57 if (pipe->inode)
58 mutex_unlock(&pipe->inode->i_mutex);
59 }
60 EXPORT_SYMBOL(pipe_unlock);
61
62 void pipe_double_lock(struct pipe_inode_info *pipe1,
63 struct pipe_inode_info *pipe2)
64 {
65 BUG_ON(pipe1 == pipe2);
66
67 if (pipe1 < pipe2) {
68 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
69 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
70 } else {
71 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
72 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
73 }
74 }
75
76 /* Drop the inode semaphore and wait for a pipe event, atomically */
77 void pipe_wait(struct pipe_inode_info *pipe)
78 {
79 DEFINE_WAIT(wait);
80
81 /*
82 * Pipes are system-local resources, so sleeping on them
83 * is considered a noninteractive wait:
84 */
85 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
86 pipe_unlock(pipe);
87 schedule();
88 finish_wait(&pipe->wait, &wait);
89 pipe_lock(pipe);
90 }
91
92 static int
93 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
94 int atomic)
95 {
96 unsigned long copy;
97
98 while (len > 0) {
99 while (!iov->iov_len)
100 iov++;
101 copy = min_t(unsigned long, len, iov->iov_len);
102
103 if (atomic) {
104 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
105 return -EFAULT;
106 } else {
107 if (copy_from_user(to, iov->iov_base, copy))
108 return -EFAULT;
109 }
110 to += copy;
111 len -= copy;
112 iov->iov_base += copy;
113 iov->iov_len -= copy;
114 }
115 return 0;
116 }
117
118 static int
119 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
120 int atomic)
121 {
122 unsigned long copy;
123
124 while (len > 0) {
125 while (!iov->iov_len)
126 iov++;
127 copy = min_t(unsigned long, len, iov->iov_len);
128
129 if (atomic) {
130 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
131 return -EFAULT;
132 } else {
133 if (copy_to_user(iov->iov_base, from, copy))
134 return -EFAULT;
135 }
136 from += copy;
137 len -= copy;
138 iov->iov_base += copy;
139 iov->iov_len -= copy;
140 }
141 return 0;
142 }
143
144 /*
145 * Attempt to pre-fault in the user memory, so we can use atomic copies.
146 * Returns the number of bytes not faulted in.
147 */
148 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
149 {
150 while (!iov->iov_len)
151 iov++;
152
153 while (len > 0) {
154 unsigned long this_len;
155
156 this_len = min_t(unsigned long, len, iov->iov_len);
157 if (fault_in_pages_writeable(iov->iov_base, this_len))
158 break;
159
160 len -= this_len;
161 iov++;
162 }
163
164 return len;
165 }
166
167 /*
168 * Pre-fault in the user memory, so we can use atomic copies.
169 */
170 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
171 {
172 while (!iov->iov_len)
173 iov++;
174
175 while (len > 0) {
176 unsigned long this_len;
177
178 this_len = min_t(unsigned long, len, iov->iov_len);
179 fault_in_pages_readable(iov->iov_base, this_len);
180 len -= this_len;
181 iov++;
182 }
183 }
184
185 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
186 struct pipe_buffer *buf)
187 {
188 struct page *page = buf->page;
189
190 /*
191 * If nobody else uses this page, and we don't already have a
192 * temporary page, let's keep track of it as a one-deep
193 * allocation cache. (Otherwise just release our reference to it)
194 */
195 if (page_count(page) == 1 && !pipe->tmp_page)
196 pipe->tmp_page = page;
197 else
198 page_cache_release(page);
199 }
200
201 /**
202 * generic_pipe_buf_map - virtually map a pipe buffer
203 * @pipe: the pipe that the buffer belongs to
204 * @buf: the buffer that should be mapped
205 * @atomic: whether to use an atomic map
206 *
207 * Description:
208 * This function returns a kernel virtual address mapping for the
209 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
210 * and the caller has to be careful not to fault before calling
211 * the unmap function.
212 *
213 * Note that this function occupies KM_USER0 if @atomic != 0.
214 */
215 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
216 struct pipe_buffer *buf, int atomic)
217 {
218 if (atomic) {
219 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
220 return kmap_atomic(buf->page, KM_USER0);
221 }
222
223 return kmap(buf->page);
224 }
225
226 /**
227 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
228 * @pipe: the pipe that the buffer belongs to
229 * @buf: the buffer that should be unmapped
230 * @map_data: the data that the mapping function returned
231 *
232 * Description:
233 * This function undoes the mapping that ->map() provided.
234 */
235 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
236 struct pipe_buffer *buf, void *map_data)
237 {
238 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
239 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
240 kunmap_atomic(map_data, KM_USER0);
241 } else
242 kunmap(buf->page);
243 }
244
245 /**
246 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
247 * @pipe: the pipe that the buffer belongs to
248 * @buf: the buffer to attempt to steal
249 *
250 * Description:
251 * This function attempts to steal the &struct page attached to
252 * @buf. If successful, this function returns 0 and returns with
253 * the page locked. The caller may then reuse the page for whatever
254 * he wishes; the typical use is insertion into a different file
255 * page cache.
256 */
257 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
258 struct pipe_buffer *buf)
259 {
260 struct page *page = buf->page;
261
262 /*
263 * A reference of one is golden, that means that the owner of this
264 * page is the only one holding a reference to it. lock the page
265 * and return OK.
266 */
267 if (page_count(page) == 1) {
268 lock_page(page);
269 return 0;
270 }
271
272 return 1;
273 }
274
275 /**
276 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
277 * @pipe: the pipe that the buffer belongs to
278 * @buf: the buffer to get a reference to
279 *
280 * Description:
281 * This function grabs an extra reference to @buf. It's used in
282 * in the tee() system call, when we duplicate the buffers in one
283 * pipe into another.
284 */
285 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
286 {
287 page_cache_get(buf->page);
288 }
289
290 /**
291 * generic_pipe_buf_confirm - verify contents of the pipe buffer
292 * @info: the pipe that the buffer belongs to
293 * @buf: the buffer to confirm
294 *
295 * Description:
296 * This function does nothing, because the generic pipe code uses
297 * pages that are always good when inserted into the pipe.
298 */
299 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
300 struct pipe_buffer *buf)
301 {
302 return 0;
303 }
304
305 /**
306 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
307 * @pipe: the pipe that the buffer belongs to
308 * @buf: the buffer to put a reference to
309 *
310 * Description:
311 * This function releases a reference to @buf.
312 */
313 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
314 struct pipe_buffer *buf)
315 {
316 page_cache_release(buf->page);
317 }
318
319 static const struct pipe_buf_operations anon_pipe_buf_ops = {
320 .can_merge = 1,
321 .map = generic_pipe_buf_map,
322 .unmap = generic_pipe_buf_unmap,
323 .confirm = generic_pipe_buf_confirm,
324 .release = anon_pipe_buf_release,
325 .steal = generic_pipe_buf_steal,
326 .get = generic_pipe_buf_get,
327 };
328
329 static ssize_t
330 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
331 unsigned long nr_segs, loff_t pos)
332 {
333 struct file *filp = iocb->ki_filp;
334 struct inode *inode = filp->f_path.dentry->d_inode;
335 struct pipe_inode_info *pipe;
336 int do_wakeup;
337 ssize_t ret;
338 struct iovec *iov = (struct iovec *)_iov;
339 size_t total_len;
340
341 total_len = iov_length(iov, nr_segs);
342 /* Null read succeeds. */
343 if (unlikely(total_len == 0))
344 return 0;
345
346 do_wakeup = 0;
347 ret = 0;
348 mutex_lock(&inode->i_mutex);
349 pipe = inode->i_pipe;
350 for (;;) {
351 int bufs = pipe->nrbufs;
352 if (bufs) {
353 int curbuf = pipe->curbuf;
354 struct pipe_buffer *buf = pipe->bufs + curbuf;
355 const struct pipe_buf_operations *ops = buf->ops;
356 void *addr;
357 size_t chars = buf->len;
358 int error, atomic;
359
360 if (chars > total_len)
361 chars = total_len;
362
363 error = ops->confirm(pipe, buf);
364 if (error) {
365 if (!ret)
366 error = ret;
367 break;
368 }
369
370 atomic = !iov_fault_in_pages_write(iov, chars);
371 redo:
372 addr = ops->map(pipe, buf, atomic);
373 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
374 ops->unmap(pipe, buf, addr);
375 if (unlikely(error)) {
376 /*
377 * Just retry with the slow path if we failed.
378 */
379 if (atomic) {
380 atomic = 0;
381 goto redo;
382 }
383 if (!ret)
384 ret = error;
385 break;
386 }
387 ret += chars;
388 buf->offset += chars;
389 buf->len -= chars;
390 if (!buf->len) {
391 buf->ops = NULL;
392 ops->release(pipe, buf);
393 curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
394 pipe->curbuf = curbuf;
395 pipe->nrbufs = --bufs;
396 do_wakeup = 1;
397 }
398 total_len -= chars;
399 if (!total_len)
400 break; /* common path: read succeeded */
401 }
402 if (bufs) /* More to do? */
403 continue;
404 if (!pipe->writers)
405 break;
406 if (!pipe->waiting_writers) {
407 /* syscall merging: Usually we must not sleep
408 * if O_NONBLOCK is set, or if we got some data.
409 * But if a writer sleeps in kernel space, then
410 * we can wait for that data without violating POSIX.
411 */
412 if (ret)
413 break;
414 if (filp->f_flags & O_NONBLOCK) {
415 ret = -EAGAIN;
416 break;
417 }
418 }
419 if (signal_pending(current)) {
420 if (!ret)
421 ret = -ERESTARTSYS;
422 break;
423 }
424 if (do_wakeup) {
425 wake_up_interruptible_sync(&pipe->wait);
426 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
427 }
428 pipe_wait(pipe);
429 }
430 mutex_unlock(&inode->i_mutex);
431
432 /* Signal writers asynchronously that there is more room. */
433 if (do_wakeup) {
434 wake_up_interruptible_sync(&pipe->wait);
435 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
436 }
437 if (ret > 0)
438 file_accessed(filp);
439 return ret;
440 }
441
442 static ssize_t
443 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
444 unsigned long nr_segs, loff_t ppos)
445 {
446 struct file *filp = iocb->ki_filp;
447 struct inode *inode = filp->f_path.dentry->d_inode;
448 struct pipe_inode_info *pipe;
449 ssize_t ret;
450 int do_wakeup;
451 struct iovec *iov = (struct iovec *)_iov;
452 size_t total_len;
453 ssize_t chars;
454
455 total_len = iov_length(iov, nr_segs);
456 /* Null write succeeds. */
457 if (unlikely(total_len == 0))
458 return 0;
459
460 do_wakeup = 0;
461 ret = 0;
462 mutex_lock(&inode->i_mutex);
463 pipe = inode->i_pipe;
464
465 if (!pipe->readers) {
466 send_sig(SIGPIPE, current, 0);
467 ret = -EPIPE;
468 goto out;
469 }
470
471 /* We try to merge small writes */
472 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
473 if (pipe->nrbufs && chars != 0) {
474 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
475 (PIPE_BUFFERS-1);
476 struct pipe_buffer *buf = pipe->bufs + lastbuf;
477 const struct pipe_buf_operations *ops = buf->ops;
478 int offset = buf->offset + buf->len;
479
480 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
481 int error, atomic = 1;
482 void *addr;
483
484 error = ops->confirm(pipe, buf);
485 if (error)
486 goto out;
487
488 iov_fault_in_pages_read(iov, chars);
489 redo1:
490 addr = ops->map(pipe, buf, atomic);
491 error = pipe_iov_copy_from_user(offset + addr, iov,
492 chars, atomic);
493 ops->unmap(pipe, buf, addr);
494 ret = error;
495 do_wakeup = 1;
496 if (error) {
497 if (atomic) {
498 atomic = 0;
499 goto redo1;
500 }
501 goto out;
502 }
503 buf->len += chars;
504 total_len -= chars;
505 ret = chars;
506 if (!total_len)
507 goto out;
508 }
509 }
510
511 for (;;) {
512 int bufs;
513
514 if (!pipe->readers) {
515 send_sig(SIGPIPE, current, 0);
516 if (!ret)
517 ret = -EPIPE;
518 break;
519 }
520 bufs = pipe->nrbufs;
521 if (bufs < PIPE_BUFFERS) {
522 int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
523 struct pipe_buffer *buf = pipe->bufs + newbuf;
524 struct page *page = pipe->tmp_page;
525 char *src;
526 int error, atomic = 1;
527
528 if (!page) {
529 page = alloc_page(GFP_HIGHUSER);
530 if (unlikely(!page)) {
531 ret = ret ? : -ENOMEM;
532 break;
533 }
534 pipe->tmp_page = page;
535 }
536 /* Always wake up, even if the copy fails. Otherwise
537 * we lock up (O_NONBLOCK-)readers that sleep due to
538 * syscall merging.
539 * FIXME! Is this really true?
540 */
541 do_wakeup = 1;
542 chars = PAGE_SIZE;
543 if (chars > total_len)
544 chars = total_len;
545
546 iov_fault_in_pages_read(iov, chars);
547 redo2:
548 if (atomic)
549 src = kmap_atomic(page, KM_USER0);
550 else
551 src = kmap(page);
552
553 error = pipe_iov_copy_from_user(src, iov, chars,
554 atomic);
555 if (atomic)
556 kunmap_atomic(src, KM_USER0);
557 else
558 kunmap(page);
559
560 if (unlikely(error)) {
561 if (atomic) {
562 atomic = 0;
563 goto redo2;
564 }
565 if (!ret)
566 ret = error;
567 break;
568 }
569 ret += chars;
570
571 /* Insert it into the buffer array */
572 buf->page = page;
573 buf->ops = &anon_pipe_buf_ops;
574 buf->offset = 0;
575 buf->len = chars;
576 pipe->nrbufs = ++bufs;
577 pipe->tmp_page = NULL;
578
579 total_len -= chars;
580 if (!total_len)
581 break;
582 }
583 if (bufs < PIPE_BUFFERS)
584 continue;
585 if (filp->f_flags & O_NONBLOCK) {
586 if (!ret)
587 ret = -EAGAIN;
588 break;
589 }
590 if (signal_pending(current)) {
591 if (!ret)
592 ret = -ERESTARTSYS;
593 break;
594 }
595 if (do_wakeup) {
596 wake_up_interruptible_sync(&pipe->wait);
597 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
598 do_wakeup = 0;
599 }
600 pipe->waiting_writers++;
601 pipe_wait(pipe);
602 pipe->waiting_writers--;
603 }
604 out:
605 mutex_unlock(&inode->i_mutex);
606 if (do_wakeup) {
607 wake_up_interruptible_sync(&pipe->wait);
608 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
609 }
610 if (ret > 0)
611 file_update_time(filp);
612 return ret;
613 }
614
615 static ssize_t
616 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
617 {
618 return -EBADF;
619 }
620
621 static ssize_t
622 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
623 loff_t *ppos)
624 {
625 return -EBADF;
626 }
627
628 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
629 {
630 struct inode *inode = filp->f_path.dentry->d_inode;
631 struct pipe_inode_info *pipe;
632 int count, buf, nrbufs;
633
634 switch (cmd) {
635 case FIONREAD:
636 mutex_lock(&inode->i_mutex);
637 pipe = inode->i_pipe;
638 count = 0;
639 buf = pipe->curbuf;
640 nrbufs = pipe->nrbufs;
641 while (--nrbufs >= 0) {
642 count += pipe->bufs[buf].len;
643 buf = (buf+1) & (PIPE_BUFFERS-1);
644 }
645 mutex_unlock(&inode->i_mutex);
646
647 return put_user(count, (int __user *)arg);
648 default:
649 return -EINVAL;
650 }
651 }
652
653 /* No kernel lock held - fine */
654 static unsigned int
655 pipe_poll(struct file *filp, poll_table *wait)
656 {
657 unsigned int mask;
658 struct inode *inode = filp->f_path.dentry->d_inode;
659 struct pipe_inode_info *pipe = inode->i_pipe;
660 int nrbufs;
661
662 poll_wait(filp, &pipe->wait, wait);
663
664 /* Reading only -- no need for acquiring the semaphore. */
665 nrbufs = pipe->nrbufs;
666 mask = 0;
667 if (filp->f_mode & FMODE_READ) {
668 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
669 if (!pipe->writers && filp->f_version != pipe->w_counter)
670 mask |= POLLHUP;
671 }
672
673 if (filp->f_mode & FMODE_WRITE) {
674 mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
675 /*
676 * Most Unices do not set POLLERR for FIFOs but on Linux they
677 * behave exactly like pipes for poll().
678 */
679 if (!pipe->readers)
680 mask |= POLLERR;
681 }
682
683 return mask;
684 }
685
686 static int
687 pipe_release(struct inode *inode, int decr, int decw)
688 {
689 struct pipe_inode_info *pipe;
690
691 mutex_lock(&inode->i_mutex);
692 pipe = inode->i_pipe;
693 pipe->readers -= decr;
694 pipe->writers -= decw;
695
696 if (!pipe->readers && !pipe->writers) {
697 free_pipe_info(inode);
698 } else {
699 wake_up_interruptible_sync(&pipe->wait);
700 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
701 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
702 }
703 mutex_unlock(&inode->i_mutex);
704
705 return 0;
706 }
707
708 static int
709 pipe_read_fasync(int fd, struct file *filp, int on)
710 {
711 struct inode *inode = filp->f_path.dentry->d_inode;
712 int retval;
713
714 mutex_lock(&inode->i_mutex);
715 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
716 mutex_unlock(&inode->i_mutex);
717
718 return retval;
719 }
720
721
722 static int
723 pipe_write_fasync(int fd, struct file *filp, int on)
724 {
725 struct inode *inode = filp->f_path.dentry->d_inode;
726 int retval;
727
728 mutex_lock(&inode->i_mutex);
729 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
730 mutex_unlock(&inode->i_mutex);
731
732 return retval;
733 }
734
735
736 static int
737 pipe_rdwr_fasync(int fd, struct file *filp, int on)
738 {
739 struct inode *inode = filp->f_path.dentry->d_inode;
740 struct pipe_inode_info *pipe = inode->i_pipe;
741 int retval;
742
743 mutex_lock(&inode->i_mutex);
744 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
745 if (retval >= 0) {
746 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
747 if (retval < 0) /* this can happen only if on == T */
748 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
749 }
750 mutex_unlock(&inode->i_mutex);
751 return retval;
752 }
753
754
755 static int
756 pipe_read_release(struct inode *inode, struct file *filp)
757 {
758 return pipe_release(inode, 1, 0);
759 }
760
761 static int
762 pipe_write_release(struct inode *inode, struct file *filp)
763 {
764 return pipe_release(inode, 0, 1);
765 }
766
767 static int
768 pipe_rdwr_release(struct inode *inode, struct file *filp)
769 {
770 int decr, decw;
771
772 decr = (filp->f_mode & FMODE_READ) != 0;
773 decw = (filp->f_mode & FMODE_WRITE) != 0;
774 return pipe_release(inode, decr, decw);
775 }
776
777 static int
778 pipe_read_open(struct inode *inode, struct file *filp)
779 {
780 int ret = -ENOENT;
781
782 mutex_lock(&inode->i_mutex);
783
784 if (inode->i_pipe) {
785 ret = 0;
786 inode->i_pipe->readers++;
787 }
788
789 mutex_unlock(&inode->i_mutex);
790
791 return ret;
792 }
793
794 static int
795 pipe_write_open(struct inode *inode, struct file *filp)
796 {
797 int ret = -ENOENT;
798
799 mutex_lock(&inode->i_mutex);
800
801 if (inode->i_pipe) {
802 ret = 0;
803 inode->i_pipe->writers++;
804 }
805
806 mutex_unlock(&inode->i_mutex);
807
808 return ret;
809 }
810
811 static int
812 pipe_rdwr_open(struct inode *inode, struct file *filp)
813 {
814 int ret = -ENOENT;
815
816 mutex_lock(&inode->i_mutex);
817
818 if (inode->i_pipe) {
819 ret = 0;
820 if (filp->f_mode & FMODE_READ)
821 inode->i_pipe->readers++;
822 if (filp->f_mode & FMODE_WRITE)
823 inode->i_pipe->writers++;
824 }
825
826 mutex_unlock(&inode->i_mutex);
827
828 return ret;
829 }
830
831 /*
832 * The file_operations structs are not static because they
833 * are also used in linux/fs/fifo.c to do operations on FIFOs.
834 *
835 * Pipes reuse fifos' file_operations structs.
836 */
837 const struct file_operations read_pipefifo_fops = {
838 .llseek = no_llseek,
839 .read = do_sync_read,
840 .aio_read = pipe_read,
841 .write = bad_pipe_w,
842 .poll = pipe_poll,
843 .unlocked_ioctl = pipe_ioctl,
844 .open = pipe_read_open,
845 .release = pipe_read_release,
846 .fasync = pipe_read_fasync,
847 };
848
849 const struct file_operations write_pipefifo_fops = {
850 .llseek = no_llseek,
851 .read = bad_pipe_r,
852 .write = do_sync_write,
853 .aio_write = pipe_write,
854 .poll = pipe_poll,
855 .unlocked_ioctl = pipe_ioctl,
856 .open = pipe_write_open,
857 .release = pipe_write_release,
858 .fasync = pipe_write_fasync,
859 };
860
861 const struct file_operations rdwr_pipefifo_fops = {
862 .llseek = no_llseek,
863 .read = do_sync_read,
864 .aio_read = pipe_read,
865 .write = do_sync_write,
866 .aio_write = pipe_write,
867 .poll = pipe_poll,
868 .unlocked_ioctl = pipe_ioctl,
869 .open = pipe_rdwr_open,
870 .release = pipe_rdwr_release,
871 .fasync = pipe_rdwr_fasync,
872 };
873
874 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
875 {
876 struct pipe_inode_info *pipe;
877
878 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
879 if (pipe) {
880 init_waitqueue_head(&pipe->wait);
881 pipe->r_counter = pipe->w_counter = 1;
882 pipe->inode = inode;
883 }
884
885 return pipe;
886 }
887
888 void __free_pipe_info(struct pipe_inode_info *pipe)
889 {
890 int i;
891
892 for (i = 0; i < PIPE_BUFFERS; i++) {
893 struct pipe_buffer *buf = pipe->bufs + i;
894 if (buf->ops)
895 buf->ops->release(pipe, buf);
896 }
897 if (pipe->tmp_page)
898 __free_page(pipe->tmp_page);
899 kfree(pipe);
900 }
901
902 void free_pipe_info(struct inode *inode)
903 {
904 __free_pipe_info(inode->i_pipe);
905 inode->i_pipe = NULL;
906 }
907
908 static struct vfsmount *pipe_mnt __read_mostly;
909
910 /*
911 * pipefs_dname() is called from d_path().
912 */
913 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
914 {
915 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
916 dentry->d_inode->i_ino);
917 }
918
919 static const struct dentry_operations pipefs_dentry_operations = {
920 .d_dname = pipefs_dname,
921 };
922
923 static struct inode * get_pipe_inode(void)
924 {
925 struct inode *inode = new_inode(pipe_mnt->mnt_sb);
926 struct pipe_inode_info *pipe;
927
928 if (!inode)
929 goto fail_inode;
930
931 pipe = alloc_pipe_info(inode);
932 if (!pipe)
933 goto fail_iput;
934 inode->i_pipe = pipe;
935
936 pipe->readers = pipe->writers = 1;
937 inode->i_fop = &rdwr_pipefifo_fops;
938
939 /*
940 * Mark the inode dirty from the very beginning,
941 * that way it will never be moved to the dirty
942 * list because "mark_inode_dirty()" will think
943 * that it already _is_ on the dirty list.
944 */
945 inode->i_state = I_DIRTY;
946 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
947 inode->i_uid = current_fsuid();
948 inode->i_gid = current_fsgid();
949 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
950
951 return inode;
952
953 fail_iput:
954 iput(inode);
955
956 fail_inode:
957 return NULL;
958 }
959
960 struct file *create_write_pipe(int flags)
961 {
962 int err;
963 struct inode *inode;
964 struct file *f;
965 struct path path;
966 struct qstr name = { .name = "" };
967
968 err = -ENFILE;
969 inode = get_pipe_inode();
970 if (!inode)
971 goto err;
972
973 err = -ENOMEM;
974 path.dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
975 if (!path.dentry)
976 goto err_inode;
977 path.mnt = mntget(pipe_mnt);
978
979 path.dentry->d_op = &pipefs_dentry_operations;
980 d_instantiate(path.dentry, inode);
981
982 err = -ENFILE;
983 f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
984 if (!f)
985 goto err_dentry;
986 f->f_mapping = inode->i_mapping;
987
988 f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
989 f->f_version = 0;
990
991 return f;
992
993 err_dentry:
994 free_pipe_info(inode);
995 path_put(&path);
996 return ERR_PTR(err);
997
998 err_inode:
999 free_pipe_info(inode);
1000 iput(inode);
1001 err:
1002 return ERR_PTR(err);
1003 }
1004
1005 void free_write_pipe(struct file *f)
1006 {
1007 free_pipe_info(f->f_dentry->d_inode);
1008 path_put(&f->f_path);
1009 put_filp(f);
1010 }
1011
1012 struct file *create_read_pipe(struct file *wrf, int flags)
1013 {
1014 /* Grab pipe from the writer */
1015 struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1016 &read_pipefifo_fops);
1017 if (!f)
1018 return ERR_PTR(-ENFILE);
1019
1020 path_get(&wrf->f_path);
1021 f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1022
1023 return f;
1024 }
1025
1026 int do_pipe_flags(int *fd, int flags)
1027 {
1028 struct file *fw, *fr;
1029 int error;
1030 int fdw, fdr;
1031
1032 if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1033 return -EINVAL;
1034
1035 fw = create_write_pipe(flags);
1036 if (IS_ERR(fw))
1037 return PTR_ERR(fw);
1038 fr = create_read_pipe(fw, flags);
1039 error = PTR_ERR(fr);
1040 if (IS_ERR(fr))
1041 goto err_write_pipe;
1042
1043 error = get_unused_fd_flags(flags);
1044 if (error < 0)
1045 goto err_read_pipe;
1046 fdr = error;
1047
1048 error = get_unused_fd_flags(flags);
1049 if (error < 0)
1050 goto err_fdr;
1051 fdw = error;
1052
1053 audit_fd_pair(fdr, fdw);
1054 fd_install(fdr, fr);
1055 fd_install(fdw, fw);
1056 fd[0] = fdr;
1057 fd[1] = fdw;
1058
1059 return 0;
1060
1061 err_fdr:
1062 put_unused_fd(fdr);
1063 err_read_pipe:
1064 path_put(&fr->f_path);
1065 put_filp(fr);
1066 err_write_pipe:
1067 free_write_pipe(fw);
1068 return error;
1069 }
1070
1071 /*
1072 * sys_pipe() is the normal C calling standard for creating
1073 * a pipe. It's not the way Unix traditionally does this, though.
1074 */
1075 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1076 {
1077 int fd[2];
1078 int error;
1079
1080 error = do_pipe_flags(fd, flags);
1081 if (!error) {
1082 if (copy_to_user(fildes, fd, sizeof(fd))) {
1083 sys_close(fd[0]);
1084 sys_close(fd[1]);
1085 error = -EFAULT;
1086 }
1087 }
1088 return error;
1089 }
1090
1091 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1092 {
1093 return sys_pipe2(fildes, 0);
1094 }
1095
1096 /*
1097 * pipefs should _never_ be mounted by userland - too much of security hassle,
1098 * no real gain from having the whole whorehouse mounted. So we don't need
1099 * any operations on the root directory. However, we need a non-trivial
1100 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1101 */
1102 static int pipefs_get_sb(struct file_system_type *fs_type,
1103 int flags, const char *dev_name, void *data,
1104 struct vfsmount *mnt)
1105 {
1106 return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1107 }
1108
1109 static struct file_system_type pipe_fs_type = {
1110 .name = "pipefs",
1111 .get_sb = pipefs_get_sb,
1112 .kill_sb = kill_anon_super,
1113 };
1114
1115 static int __init init_pipe_fs(void)
1116 {
1117 int err = register_filesystem(&pipe_fs_type);
1118
1119 if (!err) {
1120 pipe_mnt = kern_mount(&pipe_fs_type);
1121 if (IS_ERR(pipe_mnt)) {
1122 err = PTR_ERR(pipe_mnt);
1123 unregister_filesystem(&pipe_fs_type);
1124 }
1125 }
1126 return err;
1127 }
1128
1129 static void __exit exit_pipe_fs(void)
1130 {
1131 unregister_filesystem(&pipe_fs_type);
1132 mntput(pipe_mnt);
1133 }
1134
1135 fs_initcall(init_pipe_fs);
1136 module_exit(exit_pipe_fs);
This page took 0.062284 seconds and 5 git commands to generate.