pipe: change the privilege required for growing a pipe beyond system max
[deliverable/linux.git] / fs / pipe.c
1 /*
2 * linux/fs/pipe.c
3 *
4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/pipe_fs_i.h>
17 #include <linux/uio.h>
18 #include <linux/highmem.h>
19 #include <linux/pagemap.h>
20 #include <linux/audit.h>
21 #include <linux/syscalls.h>
22 #include <linux/fcntl.h>
23
24 #include <asm/uaccess.h>
25 #include <asm/ioctls.h>
26
27 /*
28 * The max size that a non-root user is allowed to grow the pipe. Can
29 * be set by root in /proc/sys/fs/pipe-max-pages
30 */
31 unsigned int pipe_max_pages = PIPE_DEF_BUFFERS * 16;
32
33 /*
34 * We use a start+len construction, which provides full use of the
35 * allocated memory.
36 * -- Florian Coosmann (FGC)
37 *
38 * Reads with count = 0 should always return 0.
39 * -- Julian Bradfield 1999-06-07.
40 *
41 * FIFOs and Pipes now generate SIGIO for both readers and writers.
42 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
43 *
44 * pipe_read & write cleanup
45 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
46 */
47
48 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
49 {
50 if (pipe->inode)
51 mutex_lock_nested(&pipe->inode->i_mutex, subclass);
52 }
53
54 void pipe_lock(struct pipe_inode_info *pipe)
55 {
56 /*
57 * pipe_lock() nests non-pipe inode locks (for writing to a file)
58 */
59 pipe_lock_nested(pipe, I_MUTEX_PARENT);
60 }
61 EXPORT_SYMBOL(pipe_lock);
62
63 void pipe_unlock(struct pipe_inode_info *pipe)
64 {
65 if (pipe->inode)
66 mutex_unlock(&pipe->inode->i_mutex);
67 }
68 EXPORT_SYMBOL(pipe_unlock);
69
70 void pipe_double_lock(struct pipe_inode_info *pipe1,
71 struct pipe_inode_info *pipe2)
72 {
73 BUG_ON(pipe1 == pipe2);
74
75 if (pipe1 < pipe2) {
76 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
77 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
78 } else {
79 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
80 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
81 }
82 }
83
84 /* Drop the inode semaphore and wait for a pipe event, atomically */
85 void pipe_wait(struct pipe_inode_info *pipe)
86 {
87 DEFINE_WAIT(wait);
88
89 /*
90 * Pipes are system-local resources, so sleeping on them
91 * is considered a noninteractive wait:
92 */
93 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
94 pipe_unlock(pipe);
95 schedule();
96 finish_wait(&pipe->wait, &wait);
97 pipe_lock(pipe);
98 }
99
100 static int
101 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
102 int atomic)
103 {
104 unsigned long copy;
105
106 while (len > 0) {
107 while (!iov->iov_len)
108 iov++;
109 copy = min_t(unsigned long, len, iov->iov_len);
110
111 if (atomic) {
112 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
113 return -EFAULT;
114 } else {
115 if (copy_from_user(to, iov->iov_base, copy))
116 return -EFAULT;
117 }
118 to += copy;
119 len -= copy;
120 iov->iov_base += copy;
121 iov->iov_len -= copy;
122 }
123 return 0;
124 }
125
126 static int
127 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
128 int atomic)
129 {
130 unsigned long copy;
131
132 while (len > 0) {
133 while (!iov->iov_len)
134 iov++;
135 copy = min_t(unsigned long, len, iov->iov_len);
136
137 if (atomic) {
138 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
139 return -EFAULT;
140 } else {
141 if (copy_to_user(iov->iov_base, from, copy))
142 return -EFAULT;
143 }
144 from += copy;
145 len -= copy;
146 iov->iov_base += copy;
147 iov->iov_len -= copy;
148 }
149 return 0;
150 }
151
152 /*
153 * Attempt to pre-fault in the user memory, so we can use atomic copies.
154 * Returns the number of bytes not faulted in.
155 */
156 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
157 {
158 while (!iov->iov_len)
159 iov++;
160
161 while (len > 0) {
162 unsigned long this_len;
163
164 this_len = min_t(unsigned long, len, iov->iov_len);
165 if (fault_in_pages_writeable(iov->iov_base, this_len))
166 break;
167
168 len -= this_len;
169 iov++;
170 }
171
172 return len;
173 }
174
175 /*
176 * Pre-fault in the user memory, so we can use atomic copies.
177 */
178 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
179 {
180 while (!iov->iov_len)
181 iov++;
182
183 while (len > 0) {
184 unsigned long this_len;
185
186 this_len = min_t(unsigned long, len, iov->iov_len);
187 fault_in_pages_readable(iov->iov_base, this_len);
188 len -= this_len;
189 iov++;
190 }
191 }
192
193 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
194 struct pipe_buffer *buf)
195 {
196 struct page *page = buf->page;
197
198 /*
199 * If nobody else uses this page, and we don't already have a
200 * temporary page, let's keep track of it as a one-deep
201 * allocation cache. (Otherwise just release our reference to it)
202 */
203 if (page_count(page) == 1 && !pipe->tmp_page)
204 pipe->tmp_page = page;
205 else
206 page_cache_release(page);
207 }
208
209 /**
210 * generic_pipe_buf_map - virtually map a pipe buffer
211 * @pipe: the pipe that the buffer belongs to
212 * @buf: the buffer that should be mapped
213 * @atomic: whether to use an atomic map
214 *
215 * Description:
216 * This function returns a kernel virtual address mapping for the
217 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
218 * and the caller has to be careful not to fault before calling
219 * the unmap function.
220 *
221 * Note that this function occupies KM_USER0 if @atomic != 0.
222 */
223 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
224 struct pipe_buffer *buf, int atomic)
225 {
226 if (atomic) {
227 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
228 return kmap_atomic(buf->page, KM_USER0);
229 }
230
231 return kmap(buf->page);
232 }
233 EXPORT_SYMBOL(generic_pipe_buf_map);
234
235 /**
236 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
237 * @pipe: the pipe that the buffer belongs to
238 * @buf: the buffer that should be unmapped
239 * @map_data: the data that the mapping function returned
240 *
241 * Description:
242 * This function undoes the mapping that ->map() provided.
243 */
244 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
245 struct pipe_buffer *buf, void *map_data)
246 {
247 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
248 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
249 kunmap_atomic(map_data, KM_USER0);
250 } else
251 kunmap(buf->page);
252 }
253 EXPORT_SYMBOL(generic_pipe_buf_unmap);
254
255 /**
256 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
257 * @pipe: the pipe that the buffer belongs to
258 * @buf: the buffer to attempt to steal
259 *
260 * Description:
261 * This function attempts to steal the &struct page attached to
262 * @buf. If successful, this function returns 0 and returns with
263 * the page locked. The caller may then reuse the page for whatever
264 * he wishes; the typical use is insertion into a different file
265 * page cache.
266 */
267 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
268 struct pipe_buffer *buf)
269 {
270 struct page *page = buf->page;
271
272 /*
273 * A reference of one is golden, that means that the owner of this
274 * page is the only one holding a reference to it. lock the page
275 * and return OK.
276 */
277 if (page_count(page) == 1) {
278 lock_page(page);
279 return 0;
280 }
281
282 return 1;
283 }
284 EXPORT_SYMBOL(generic_pipe_buf_steal);
285
286 /**
287 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
288 * @pipe: the pipe that the buffer belongs to
289 * @buf: the buffer to get a reference to
290 *
291 * Description:
292 * This function grabs an extra reference to @buf. It's used in
293 * in the tee() system call, when we duplicate the buffers in one
294 * pipe into another.
295 */
296 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
297 {
298 page_cache_get(buf->page);
299 }
300 EXPORT_SYMBOL(generic_pipe_buf_get);
301
302 /**
303 * generic_pipe_buf_confirm - verify contents of the pipe buffer
304 * @info: the pipe that the buffer belongs to
305 * @buf: the buffer to confirm
306 *
307 * Description:
308 * This function does nothing, because the generic pipe code uses
309 * pages that are always good when inserted into the pipe.
310 */
311 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
312 struct pipe_buffer *buf)
313 {
314 return 0;
315 }
316 EXPORT_SYMBOL(generic_pipe_buf_confirm);
317
318 /**
319 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
320 * @pipe: the pipe that the buffer belongs to
321 * @buf: the buffer to put a reference to
322 *
323 * Description:
324 * This function releases a reference to @buf.
325 */
326 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
327 struct pipe_buffer *buf)
328 {
329 page_cache_release(buf->page);
330 }
331 EXPORT_SYMBOL(generic_pipe_buf_release);
332
333 static const struct pipe_buf_operations anon_pipe_buf_ops = {
334 .can_merge = 1,
335 .map = generic_pipe_buf_map,
336 .unmap = generic_pipe_buf_unmap,
337 .confirm = generic_pipe_buf_confirm,
338 .release = anon_pipe_buf_release,
339 .steal = generic_pipe_buf_steal,
340 .get = generic_pipe_buf_get,
341 };
342
343 static ssize_t
344 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
345 unsigned long nr_segs, loff_t pos)
346 {
347 struct file *filp = iocb->ki_filp;
348 struct inode *inode = filp->f_path.dentry->d_inode;
349 struct pipe_inode_info *pipe;
350 int do_wakeup;
351 ssize_t ret;
352 struct iovec *iov = (struct iovec *)_iov;
353 size_t total_len;
354
355 total_len = iov_length(iov, nr_segs);
356 /* Null read succeeds. */
357 if (unlikely(total_len == 0))
358 return 0;
359
360 do_wakeup = 0;
361 ret = 0;
362 mutex_lock(&inode->i_mutex);
363 pipe = inode->i_pipe;
364 for (;;) {
365 int bufs = pipe->nrbufs;
366 if (bufs) {
367 int curbuf = pipe->curbuf;
368 struct pipe_buffer *buf = pipe->bufs + curbuf;
369 const struct pipe_buf_operations *ops = buf->ops;
370 void *addr;
371 size_t chars = buf->len;
372 int error, atomic;
373
374 if (chars > total_len)
375 chars = total_len;
376
377 error = ops->confirm(pipe, buf);
378 if (error) {
379 if (!ret)
380 error = ret;
381 break;
382 }
383
384 atomic = !iov_fault_in_pages_write(iov, chars);
385 redo:
386 addr = ops->map(pipe, buf, atomic);
387 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
388 ops->unmap(pipe, buf, addr);
389 if (unlikely(error)) {
390 /*
391 * Just retry with the slow path if we failed.
392 */
393 if (atomic) {
394 atomic = 0;
395 goto redo;
396 }
397 if (!ret)
398 ret = error;
399 break;
400 }
401 ret += chars;
402 buf->offset += chars;
403 buf->len -= chars;
404 if (!buf->len) {
405 buf->ops = NULL;
406 ops->release(pipe, buf);
407 curbuf = (curbuf + 1) & (pipe->buffers - 1);
408 pipe->curbuf = curbuf;
409 pipe->nrbufs = --bufs;
410 do_wakeup = 1;
411 }
412 total_len -= chars;
413 if (!total_len)
414 break; /* common path: read succeeded */
415 }
416 if (bufs) /* More to do? */
417 continue;
418 if (!pipe->writers)
419 break;
420 if (!pipe->waiting_writers) {
421 /* syscall merging: Usually we must not sleep
422 * if O_NONBLOCK is set, or if we got some data.
423 * But if a writer sleeps in kernel space, then
424 * we can wait for that data without violating POSIX.
425 */
426 if (ret)
427 break;
428 if (filp->f_flags & O_NONBLOCK) {
429 ret = -EAGAIN;
430 break;
431 }
432 }
433 if (signal_pending(current)) {
434 if (!ret)
435 ret = -ERESTARTSYS;
436 break;
437 }
438 if (do_wakeup) {
439 wake_up_interruptible_sync(&pipe->wait);
440 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
441 }
442 pipe_wait(pipe);
443 }
444 mutex_unlock(&inode->i_mutex);
445
446 /* Signal writers asynchronously that there is more room. */
447 if (do_wakeup) {
448 wake_up_interruptible_sync(&pipe->wait);
449 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
450 }
451 if (ret > 0)
452 file_accessed(filp);
453 return ret;
454 }
455
456 static ssize_t
457 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
458 unsigned long nr_segs, loff_t ppos)
459 {
460 struct file *filp = iocb->ki_filp;
461 struct inode *inode = filp->f_path.dentry->d_inode;
462 struct pipe_inode_info *pipe;
463 ssize_t ret;
464 int do_wakeup;
465 struct iovec *iov = (struct iovec *)_iov;
466 size_t total_len;
467 ssize_t chars;
468
469 total_len = iov_length(iov, nr_segs);
470 /* Null write succeeds. */
471 if (unlikely(total_len == 0))
472 return 0;
473
474 do_wakeup = 0;
475 ret = 0;
476 mutex_lock(&inode->i_mutex);
477 pipe = inode->i_pipe;
478
479 if (!pipe->readers) {
480 send_sig(SIGPIPE, current, 0);
481 ret = -EPIPE;
482 goto out;
483 }
484
485 /* We try to merge small writes */
486 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
487 if (pipe->nrbufs && chars != 0) {
488 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
489 (pipe->buffers - 1);
490 struct pipe_buffer *buf = pipe->bufs + lastbuf;
491 const struct pipe_buf_operations *ops = buf->ops;
492 int offset = buf->offset + buf->len;
493
494 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
495 int error, atomic = 1;
496 void *addr;
497
498 error = ops->confirm(pipe, buf);
499 if (error)
500 goto out;
501
502 iov_fault_in_pages_read(iov, chars);
503 redo1:
504 addr = ops->map(pipe, buf, atomic);
505 error = pipe_iov_copy_from_user(offset + addr, iov,
506 chars, atomic);
507 ops->unmap(pipe, buf, addr);
508 ret = error;
509 do_wakeup = 1;
510 if (error) {
511 if (atomic) {
512 atomic = 0;
513 goto redo1;
514 }
515 goto out;
516 }
517 buf->len += chars;
518 total_len -= chars;
519 ret = chars;
520 if (!total_len)
521 goto out;
522 }
523 }
524
525 for (;;) {
526 int bufs;
527
528 if (!pipe->readers) {
529 send_sig(SIGPIPE, current, 0);
530 if (!ret)
531 ret = -EPIPE;
532 break;
533 }
534 bufs = pipe->nrbufs;
535 if (bufs < pipe->buffers) {
536 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
537 struct pipe_buffer *buf = pipe->bufs + newbuf;
538 struct page *page = pipe->tmp_page;
539 char *src;
540 int error, atomic = 1;
541
542 if (!page) {
543 page = alloc_page(GFP_HIGHUSER);
544 if (unlikely(!page)) {
545 ret = ret ? : -ENOMEM;
546 break;
547 }
548 pipe->tmp_page = page;
549 }
550 /* Always wake up, even if the copy fails. Otherwise
551 * we lock up (O_NONBLOCK-)readers that sleep due to
552 * syscall merging.
553 * FIXME! Is this really true?
554 */
555 do_wakeup = 1;
556 chars = PAGE_SIZE;
557 if (chars > total_len)
558 chars = total_len;
559
560 iov_fault_in_pages_read(iov, chars);
561 redo2:
562 if (atomic)
563 src = kmap_atomic(page, KM_USER0);
564 else
565 src = kmap(page);
566
567 error = pipe_iov_copy_from_user(src, iov, chars,
568 atomic);
569 if (atomic)
570 kunmap_atomic(src, KM_USER0);
571 else
572 kunmap(page);
573
574 if (unlikely(error)) {
575 if (atomic) {
576 atomic = 0;
577 goto redo2;
578 }
579 if (!ret)
580 ret = error;
581 break;
582 }
583 ret += chars;
584
585 /* Insert it into the buffer array */
586 buf->page = page;
587 buf->ops = &anon_pipe_buf_ops;
588 buf->offset = 0;
589 buf->len = chars;
590 pipe->nrbufs = ++bufs;
591 pipe->tmp_page = NULL;
592
593 total_len -= chars;
594 if (!total_len)
595 break;
596 }
597 if (bufs < pipe->buffers)
598 continue;
599 if (filp->f_flags & O_NONBLOCK) {
600 if (!ret)
601 ret = -EAGAIN;
602 break;
603 }
604 if (signal_pending(current)) {
605 if (!ret)
606 ret = -ERESTARTSYS;
607 break;
608 }
609 if (do_wakeup) {
610 wake_up_interruptible_sync(&pipe->wait);
611 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
612 do_wakeup = 0;
613 }
614 pipe->waiting_writers++;
615 pipe_wait(pipe);
616 pipe->waiting_writers--;
617 }
618 out:
619 mutex_unlock(&inode->i_mutex);
620 if (do_wakeup) {
621 wake_up_interruptible_sync(&pipe->wait);
622 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
623 }
624 if (ret > 0)
625 file_update_time(filp);
626 return ret;
627 }
628
629 static ssize_t
630 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
631 {
632 return -EBADF;
633 }
634
635 static ssize_t
636 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
637 loff_t *ppos)
638 {
639 return -EBADF;
640 }
641
642 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
643 {
644 struct inode *inode = filp->f_path.dentry->d_inode;
645 struct pipe_inode_info *pipe;
646 int count, buf, nrbufs;
647
648 switch (cmd) {
649 case FIONREAD:
650 mutex_lock(&inode->i_mutex);
651 pipe = inode->i_pipe;
652 count = 0;
653 buf = pipe->curbuf;
654 nrbufs = pipe->nrbufs;
655 while (--nrbufs >= 0) {
656 count += pipe->bufs[buf].len;
657 buf = (buf+1) & (pipe->buffers - 1);
658 }
659 mutex_unlock(&inode->i_mutex);
660
661 return put_user(count, (int __user *)arg);
662 default:
663 return -EINVAL;
664 }
665 }
666
667 /* No kernel lock held - fine */
668 static unsigned int
669 pipe_poll(struct file *filp, poll_table *wait)
670 {
671 unsigned int mask;
672 struct inode *inode = filp->f_path.dentry->d_inode;
673 struct pipe_inode_info *pipe = inode->i_pipe;
674 int nrbufs;
675
676 poll_wait(filp, &pipe->wait, wait);
677
678 /* Reading only -- no need for acquiring the semaphore. */
679 nrbufs = pipe->nrbufs;
680 mask = 0;
681 if (filp->f_mode & FMODE_READ) {
682 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
683 if (!pipe->writers && filp->f_version != pipe->w_counter)
684 mask |= POLLHUP;
685 }
686
687 if (filp->f_mode & FMODE_WRITE) {
688 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
689 /*
690 * Most Unices do not set POLLERR for FIFOs but on Linux they
691 * behave exactly like pipes for poll().
692 */
693 if (!pipe->readers)
694 mask |= POLLERR;
695 }
696
697 return mask;
698 }
699
700 static int
701 pipe_release(struct inode *inode, int decr, int decw)
702 {
703 struct pipe_inode_info *pipe;
704
705 mutex_lock(&inode->i_mutex);
706 pipe = inode->i_pipe;
707 pipe->readers -= decr;
708 pipe->writers -= decw;
709
710 if (!pipe->readers && !pipe->writers) {
711 free_pipe_info(inode);
712 } else {
713 wake_up_interruptible_sync(&pipe->wait);
714 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
715 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
716 }
717 mutex_unlock(&inode->i_mutex);
718
719 return 0;
720 }
721
722 static int
723 pipe_read_fasync(int fd, struct file *filp, int on)
724 {
725 struct inode *inode = filp->f_path.dentry->d_inode;
726 int retval;
727
728 mutex_lock(&inode->i_mutex);
729 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
730 mutex_unlock(&inode->i_mutex);
731
732 return retval;
733 }
734
735
736 static int
737 pipe_write_fasync(int fd, struct file *filp, int on)
738 {
739 struct inode *inode = filp->f_path.dentry->d_inode;
740 int retval;
741
742 mutex_lock(&inode->i_mutex);
743 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
744 mutex_unlock(&inode->i_mutex);
745
746 return retval;
747 }
748
749
750 static int
751 pipe_rdwr_fasync(int fd, struct file *filp, int on)
752 {
753 struct inode *inode = filp->f_path.dentry->d_inode;
754 struct pipe_inode_info *pipe = inode->i_pipe;
755 int retval;
756
757 mutex_lock(&inode->i_mutex);
758 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
759 if (retval >= 0) {
760 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
761 if (retval < 0) /* this can happen only if on == T */
762 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
763 }
764 mutex_unlock(&inode->i_mutex);
765 return retval;
766 }
767
768
769 static int
770 pipe_read_release(struct inode *inode, struct file *filp)
771 {
772 return pipe_release(inode, 1, 0);
773 }
774
775 static int
776 pipe_write_release(struct inode *inode, struct file *filp)
777 {
778 return pipe_release(inode, 0, 1);
779 }
780
781 static int
782 pipe_rdwr_release(struct inode *inode, struct file *filp)
783 {
784 int decr, decw;
785
786 decr = (filp->f_mode & FMODE_READ) != 0;
787 decw = (filp->f_mode & FMODE_WRITE) != 0;
788 return pipe_release(inode, decr, decw);
789 }
790
791 static int
792 pipe_read_open(struct inode *inode, struct file *filp)
793 {
794 int ret = -ENOENT;
795
796 mutex_lock(&inode->i_mutex);
797
798 if (inode->i_pipe) {
799 ret = 0;
800 inode->i_pipe->readers++;
801 }
802
803 mutex_unlock(&inode->i_mutex);
804
805 return ret;
806 }
807
808 static int
809 pipe_write_open(struct inode *inode, struct file *filp)
810 {
811 int ret = -ENOENT;
812
813 mutex_lock(&inode->i_mutex);
814
815 if (inode->i_pipe) {
816 ret = 0;
817 inode->i_pipe->writers++;
818 }
819
820 mutex_unlock(&inode->i_mutex);
821
822 return ret;
823 }
824
825 static int
826 pipe_rdwr_open(struct inode *inode, struct file *filp)
827 {
828 int ret = -ENOENT;
829
830 mutex_lock(&inode->i_mutex);
831
832 if (inode->i_pipe) {
833 ret = 0;
834 if (filp->f_mode & FMODE_READ)
835 inode->i_pipe->readers++;
836 if (filp->f_mode & FMODE_WRITE)
837 inode->i_pipe->writers++;
838 }
839
840 mutex_unlock(&inode->i_mutex);
841
842 return ret;
843 }
844
845 /*
846 * The file_operations structs are not static because they
847 * are also used in linux/fs/fifo.c to do operations on FIFOs.
848 *
849 * Pipes reuse fifos' file_operations structs.
850 */
851 const struct file_operations read_pipefifo_fops = {
852 .llseek = no_llseek,
853 .read = do_sync_read,
854 .aio_read = pipe_read,
855 .write = bad_pipe_w,
856 .poll = pipe_poll,
857 .unlocked_ioctl = pipe_ioctl,
858 .open = pipe_read_open,
859 .release = pipe_read_release,
860 .fasync = pipe_read_fasync,
861 };
862
863 const struct file_operations write_pipefifo_fops = {
864 .llseek = no_llseek,
865 .read = bad_pipe_r,
866 .write = do_sync_write,
867 .aio_write = pipe_write,
868 .poll = pipe_poll,
869 .unlocked_ioctl = pipe_ioctl,
870 .open = pipe_write_open,
871 .release = pipe_write_release,
872 .fasync = pipe_write_fasync,
873 };
874
875 const struct file_operations rdwr_pipefifo_fops = {
876 .llseek = no_llseek,
877 .read = do_sync_read,
878 .aio_read = pipe_read,
879 .write = do_sync_write,
880 .aio_write = pipe_write,
881 .poll = pipe_poll,
882 .unlocked_ioctl = pipe_ioctl,
883 .open = pipe_rdwr_open,
884 .release = pipe_rdwr_release,
885 .fasync = pipe_rdwr_fasync,
886 };
887
888 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
889 {
890 struct pipe_inode_info *pipe;
891
892 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
893 if (pipe) {
894 pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
895 if (pipe->bufs) {
896 init_waitqueue_head(&pipe->wait);
897 pipe->r_counter = pipe->w_counter = 1;
898 pipe->inode = inode;
899 pipe->buffers = PIPE_DEF_BUFFERS;
900 return pipe;
901 }
902 kfree(pipe);
903 }
904
905 return NULL;
906 }
907
908 void __free_pipe_info(struct pipe_inode_info *pipe)
909 {
910 int i;
911
912 for (i = 0; i < pipe->buffers; i++) {
913 struct pipe_buffer *buf = pipe->bufs + i;
914 if (buf->ops)
915 buf->ops->release(pipe, buf);
916 }
917 if (pipe->tmp_page)
918 __free_page(pipe->tmp_page);
919 kfree(pipe->bufs);
920 kfree(pipe);
921 }
922
923 void free_pipe_info(struct inode *inode)
924 {
925 __free_pipe_info(inode->i_pipe);
926 inode->i_pipe = NULL;
927 }
928
929 static struct vfsmount *pipe_mnt __read_mostly;
930
931 /*
932 * pipefs_dname() is called from d_path().
933 */
934 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
935 {
936 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
937 dentry->d_inode->i_ino);
938 }
939
940 static const struct dentry_operations pipefs_dentry_operations = {
941 .d_dname = pipefs_dname,
942 };
943
944 static struct inode * get_pipe_inode(void)
945 {
946 struct inode *inode = new_inode(pipe_mnt->mnt_sb);
947 struct pipe_inode_info *pipe;
948
949 if (!inode)
950 goto fail_inode;
951
952 pipe = alloc_pipe_info(inode);
953 if (!pipe)
954 goto fail_iput;
955 inode->i_pipe = pipe;
956
957 pipe->readers = pipe->writers = 1;
958 inode->i_fop = &rdwr_pipefifo_fops;
959
960 /*
961 * Mark the inode dirty from the very beginning,
962 * that way it will never be moved to the dirty
963 * list because "mark_inode_dirty()" will think
964 * that it already _is_ on the dirty list.
965 */
966 inode->i_state = I_DIRTY;
967 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
968 inode->i_uid = current_fsuid();
969 inode->i_gid = current_fsgid();
970 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
971
972 return inode;
973
974 fail_iput:
975 iput(inode);
976
977 fail_inode:
978 return NULL;
979 }
980
981 struct file *create_write_pipe(int flags)
982 {
983 int err;
984 struct inode *inode;
985 struct file *f;
986 struct path path;
987 struct qstr name = { .name = "" };
988
989 err = -ENFILE;
990 inode = get_pipe_inode();
991 if (!inode)
992 goto err;
993
994 err = -ENOMEM;
995 path.dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
996 if (!path.dentry)
997 goto err_inode;
998 path.mnt = mntget(pipe_mnt);
999
1000 path.dentry->d_op = &pipefs_dentry_operations;
1001 d_instantiate(path.dentry, inode);
1002
1003 err = -ENFILE;
1004 f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1005 if (!f)
1006 goto err_dentry;
1007 f->f_mapping = inode->i_mapping;
1008
1009 f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
1010 f->f_version = 0;
1011
1012 return f;
1013
1014 err_dentry:
1015 free_pipe_info(inode);
1016 path_put(&path);
1017 return ERR_PTR(err);
1018
1019 err_inode:
1020 free_pipe_info(inode);
1021 iput(inode);
1022 err:
1023 return ERR_PTR(err);
1024 }
1025
1026 void free_write_pipe(struct file *f)
1027 {
1028 free_pipe_info(f->f_dentry->d_inode);
1029 path_put(&f->f_path);
1030 put_filp(f);
1031 }
1032
1033 struct file *create_read_pipe(struct file *wrf, int flags)
1034 {
1035 /* Grab pipe from the writer */
1036 struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1037 &read_pipefifo_fops);
1038 if (!f)
1039 return ERR_PTR(-ENFILE);
1040
1041 path_get(&wrf->f_path);
1042 f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1043
1044 return f;
1045 }
1046
1047 int do_pipe_flags(int *fd, int flags)
1048 {
1049 struct file *fw, *fr;
1050 int error;
1051 int fdw, fdr;
1052
1053 if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1054 return -EINVAL;
1055
1056 fw = create_write_pipe(flags);
1057 if (IS_ERR(fw))
1058 return PTR_ERR(fw);
1059 fr = create_read_pipe(fw, flags);
1060 error = PTR_ERR(fr);
1061 if (IS_ERR(fr))
1062 goto err_write_pipe;
1063
1064 error = get_unused_fd_flags(flags);
1065 if (error < 0)
1066 goto err_read_pipe;
1067 fdr = error;
1068
1069 error = get_unused_fd_flags(flags);
1070 if (error < 0)
1071 goto err_fdr;
1072 fdw = error;
1073
1074 audit_fd_pair(fdr, fdw);
1075 fd_install(fdr, fr);
1076 fd_install(fdw, fw);
1077 fd[0] = fdr;
1078 fd[1] = fdw;
1079
1080 return 0;
1081
1082 err_fdr:
1083 put_unused_fd(fdr);
1084 err_read_pipe:
1085 path_put(&fr->f_path);
1086 put_filp(fr);
1087 err_write_pipe:
1088 free_write_pipe(fw);
1089 return error;
1090 }
1091
1092 /*
1093 * sys_pipe() is the normal C calling standard for creating
1094 * a pipe. It's not the way Unix traditionally does this, though.
1095 */
1096 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1097 {
1098 int fd[2];
1099 int error;
1100
1101 error = do_pipe_flags(fd, flags);
1102 if (!error) {
1103 if (copy_to_user(fildes, fd, sizeof(fd))) {
1104 sys_close(fd[0]);
1105 sys_close(fd[1]);
1106 error = -EFAULT;
1107 }
1108 }
1109 return error;
1110 }
1111
1112 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1113 {
1114 return sys_pipe2(fildes, 0);
1115 }
1116
1117 /*
1118 * Allocate a new array of pipe buffers and copy the info over. Returns the
1119 * pipe size if successful, or return -ERROR on error.
1120 */
1121 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1122 {
1123 struct pipe_buffer *bufs;
1124
1125 /*
1126 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1127 * expect a lot of shrink+grow operations, just free and allocate
1128 * again like we would do for growing. If the pipe currently
1129 * contains more buffers than arg, then return busy.
1130 */
1131 if (nr_pages < pipe->nrbufs)
1132 return -EBUSY;
1133
1134 bufs = kcalloc(nr_pages, sizeof(struct pipe_buffer), GFP_KERNEL);
1135 if (unlikely(!bufs))
1136 return -ENOMEM;
1137
1138 /*
1139 * The pipe array wraps around, so just start the new one at zero
1140 * and adjust the indexes.
1141 */
1142 if (pipe->nrbufs) {
1143 const unsigned int tail = pipe->nrbufs & (pipe->buffers - 1);
1144 const unsigned int head = pipe->nrbufs - tail;
1145
1146 if (head)
1147 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1148 if (tail)
1149 memcpy(bufs + head, pipe->bufs + pipe->curbuf, tail * sizeof(struct pipe_buffer));
1150 }
1151
1152 pipe->curbuf = 0;
1153 kfree(pipe->bufs);
1154 pipe->bufs = bufs;
1155 pipe->buffers = nr_pages;
1156 return nr_pages * PAGE_SIZE;
1157 }
1158
1159 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1160 {
1161 struct pipe_inode_info *pipe;
1162 long ret;
1163
1164 pipe = file->f_path.dentry->d_inode->i_pipe;
1165 if (!pipe)
1166 return -EBADF;
1167
1168 mutex_lock(&pipe->inode->i_mutex);
1169
1170 switch (cmd) {
1171 case F_SETPIPE_SZ: {
1172 unsigned long nr_pages;
1173
1174 /*
1175 * Currently the array must be a power-of-2 size, so adjust
1176 * upwards if needed.
1177 */
1178 nr_pages = (arg + PAGE_SIZE - 1) >> PAGE_SHIFT;
1179 nr_pages = roundup_pow_of_two(nr_pages);
1180
1181 if (!capable(CAP_SYS_RESOURCE) && nr_pages > pipe_max_pages) {
1182 ret = -EPERM;
1183 goto out;
1184 } else if (nr_pages < 1) {
1185 ret = -EINVAL;
1186 goto out;
1187 }
1188 ret = pipe_set_size(pipe, arg);
1189 break;
1190 }
1191 case F_GETPIPE_SZ:
1192 ret = pipe->buffers * PAGE_SIZE;
1193 break;
1194 default:
1195 ret = -EINVAL;
1196 break;
1197 }
1198
1199 out:
1200 mutex_unlock(&pipe->inode->i_mutex);
1201 return ret;
1202 }
1203
1204 /*
1205 * pipefs should _never_ be mounted by userland - too much of security hassle,
1206 * no real gain from having the whole whorehouse mounted. So we don't need
1207 * any operations on the root directory. However, we need a non-trivial
1208 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1209 */
1210 static int pipefs_get_sb(struct file_system_type *fs_type,
1211 int flags, const char *dev_name, void *data,
1212 struct vfsmount *mnt)
1213 {
1214 return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1215 }
1216
1217 static struct file_system_type pipe_fs_type = {
1218 .name = "pipefs",
1219 .get_sb = pipefs_get_sb,
1220 .kill_sb = kill_anon_super,
1221 };
1222
1223 static int __init init_pipe_fs(void)
1224 {
1225 int err = register_filesystem(&pipe_fs_type);
1226
1227 if (!err) {
1228 pipe_mnt = kern_mount(&pipe_fs_type);
1229 if (IS_ERR(pipe_mnt)) {
1230 err = PTR_ERR(pipe_mnt);
1231 unregister_filesystem(&pipe_fs_type);
1232 }
1233 }
1234 return err;
1235 }
1236
1237 static void __exit exit_pipe_fs(void)
1238 {
1239 unregister_filesystem(&pipe_fs_type);
1240 mntput(pipe_mnt);
1241 }
1242
1243 fs_initcall(init_pipe_fs);
1244 module_exit(exit_pipe_fs);
This page took 0.065032 seconds and 6 git commands to generate.