make get_file() return its argument
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93 #include "fd.h"
94
95 /* NOTE:
96 * Implementing inode permission operations in /proc is almost
97 * certainly an error. Permission checks need to happen during
98 * each system call not at open time. The reason is that most of
99 * what we wish to check for permissions in /proc varies at runtime.
100 *
101 * The classic example of a problem is opening file descriptors
102 * in /proc for a task before it execs a suid executable.
103 */
104
105 struct pid_entry {
106 char *name;
107 int len;
108 umode_t mode;
109 const struct inode_operations *iop;
110 const struct file_operations *fop;
111 union proc_op op;
112 };
113
114 #define NOD(NAME, MODE, IOP, FOP, OP) { \
115 .name = (NAME), \
116 .len = sizeof(NAME) - 1, \
117 .mode = MODE, \
118 .iop = IOP, \
119 .fop = FOP, \
120 .op = OP, \
121 }
122
123 #define DIR(NAME, MODE, iops, fops) \
124 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
125 #define LNK(NAME, get_link) \
126 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
127 &proc_pid_link_inode_operations, NULL, \
128 { .proc_get_link = get_link } )
129 #define REG(NAME, MODE, fops) \
130 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
131 #define INF(NAME, MODE, read) \
132 NOD(NAME, (S_IFREG|(MODE)), \
133 NULL, &proc_info_file_operations, \
134 { .proc_read = read } )
135 #define ONE(NAME, MODE, show) \
136 NOD(NAME, (S_IFREG|(MODE)), \
137 NULL, &proc_single_file_operations, \
138 { .proc_show = show } )
139
140 /*
141 * Count the number of hardlinks for the pid_entry table, excluding the .
142 * and .. links.
143 */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 unsigned int n)
146 {
147 unsigned int i;
148 unsigned int count;
149
150 count = 0;
151 for (i = 0; i < n; ++i) {
152 if (S_ISDIR(entries[i].mode))
153 ++count;
154 }
155
156 return count;
157 }
158
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 int result = -ENOENT;
162
163 task_lock(task);
164 if (task->fs) {
165 get_fs_root(task->fs, root);
166 result = 0;
167 }
168 task_unlock(task);
169 return result;
170 }
171
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 struct task_struct *task = get_proc_task(dentry->d_inode);
175 int result = -ENOENT;
176
177 if (task) {
178 task_lock(task);
179 if (task->fs) {
180 get_fs_pwd(task->fs, path);
181 result = 0;
182 }
183 task_unlock(task);
184 put_task_struct(task);
185 }
186 return result;
187 }
188
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 struct task_struct *task = get_proc_task(dentry->d_inode);
192 int result = -ENOENT;
193
194 if (task) {
195 result = get_task_root(task, path);
196 put_task_struct(task);
197 }
198 return result;
199 }
200
201 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
202 {
203 int res = 0;
204 unsigned int len;
205 struct mm_struct *mm = get_task_mm(task);
206 if (!mm)
207 goto out;
208 if (!mm->arg_end)
209 goto out_mm; /* Shh! No looking before we're done */
210
211 len = mm->arg_end - mm->arg_start;
212
213 if (len > PAGE_SIZE)
214 len = PAGE_SIZE;
215
216 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
217
218 // If the nul at the end of args has been overwritten, then
219 // assume application is using setproctitle(3).
220 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
221 len = strnlen(buffer, res);
222 if (len < res) {
223 res = len;
224 } else {
225 len = mm->env_end - mm->env_start;
226 if (len > PAGE_SIZE - res)
227 len = PAGE_SIZE - res;
228 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
229 res = strnlen(buffer, res);
230 }
231 }
232 out_mm:
233 mmput(mm);
234 out:
235 return res;
236 }
237
238 static int proc_pid_auxv(struct task_struct *task, char *buffer)
239 {
240 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
241 int res = PTR_ERR(mm);
242 if (mm && !IS_ERR(mm)) {
243 unsigned int nwords = 0;
244 do {
245 nwords += 2;
246 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
247 res = nwords * sizeof(mm->saved_auxv[0]);
248 if (res > PAGE_SIZE)
249 res = PAGE_SIZE;
250 memcpy(buffer, mm->saved_auxv, res);
251 mmput(mm);
252 }
253 return res;
254 }
255
256
257 #ifdef CONFIG_KALLSYMS
258 /*
259 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
260 * Returns the resolved symbol. If that fails, simply return the address.
261 */
262 static int proc_pid_wchan(struct task_struct *task, char *buffer)
263 {
264 unsigned long wchan;
265 char symname[KSYM_NAME_LEN];
266
267 wchan = get_wchan(task);
268
269 if (lookup_symbol_name(wchan, symname) < 0)
270 if (!ptrace_may_access(task, PTRACE_MODE_READ))
271 return 0;
272 else
273 return sprintf(buffer, "%lu", wchan);
274 else
275 return sprintf(buffer, "%s", symname);
276 }
277 #endif /* CONFIG_KALLSYMS */
278
279 static int lock_trace(struct task_struct *task)
280 {
281 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
282 if (err)
283 return err;
284 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
285 mutex_unlock(&task->signal->cred_guard_mutex);
286 return -EPERM;
287 }
288 return 0;
289 }
290
291 static void unlock_trace(struct task_struct *task)
292 {
293 mutex_unlock(&task->signal->cred_guard_mutex);
294 }
295
296 #ifdef CONFIG_STACKTRACE
297
298 #define MAX_STACK_TRACE_DEPTH 64
299
300 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
301 struct pid *pid, struct task_struct *task)
302 {
303 struct stack_trace trace;
304 unsigned long *entries;
305 int err;
306 int i;
307
308 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
309 if (!entries)
310 return -ENOMEM;
311
312 trace.nr_entries = 0;
313 trace.max_entries = MAX_STACK_TRACE_DEPTH;
314 trace.entries = entries;
315 trace.skip = 0;
316
317 err = lock_trace(task);
318 if (!err) {
319 save_stack_trace_tsk(task, &trace);
320
321 for (i = 0; i < trace.nr_entries; i++) {
322 seq_printf(m, "[<%pK>] %pS\n",
323 (void *)entries[i], (void *)entries[i]);
324 }
325 unlock_trace(task);
326 }
327 kfree(entries);
328
329 return err;
330 }
331 #endif
332
333 #ifdef CONFIG_SCHEDSTATS
334 /*
335 * Provides /proc/PID/schedstat
336 */
337 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
338 {
339 return sprintf(buffer, "%llu %llu %lu\n",
340 (unsigned long long)task->se.sum_exec_runtime,
341 (unsigned long long)task->sched_info.run_delay,
342 task->sched_info.pcount);
343 }
344 #endif
345
346 #ifdef CONFIG_LATENCYTOP
347 static int lstats_show_proc(struct seq_file *m, void *v)
348 {
349 int i;
350 struct inode *inode = m->private;
351 struct task_struct *task = get_proc_task(inode);
352
353 if (!task)
354 return -ESRCH;
355 seq_puts(m, "Latency Top version : v0.1\n");
356 for (i = 0; i < 32; i++) {
357 struct latency_record *lr = &task->latency_record[i];
358 if (lr->backtrace[0]) {
359 int q;
360 seq_printf(m, "%i %li %li",
361 lr->count, lr->time, lr->max);
362 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
363 unsigned long bt = lr->backtrace[q];
364 if (!bt)
365 break;
366 if (bt == ULONG_MAX)
367 break;
368 seq_printf(m, " %ps", (void *)bt);
369 }
370 seq_putc(m, '\n');
371 }
372
373 }
374 put_task_struct(task);
375 return 0;
376 }
377
378 static int lstats_open(struct inode *inode, struct file *file)
379 {
380 return single_open(file, lstats_show_proc, inode);
381 }
382
383 static ssize_t lstats_write(struct file *file, const char __user *buf,
384 size_t count, loff_t *offs)
385 {
386 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
387
388 if (!task)
389 return -ESRCH;
390 clear_all_latency_tracing(task);
391 put_task_struct(task);
392
393 return count;
394 }
395
396 static const struct file_operations proc_lstats_operations = {
397 .open = lstats_open,
398 .read = seq_read,
399 .write = lstats_write,
400 .llseek = seq_lseek,
401 .release = single_release,
402 };
403
404 #endif
405
406 static int proc_oom_score(struct task_struct *task, char *buffer)
407 {
408 unsigned long totalpages = totalram_pages + total_swap_pages;
409 unsigned long points = 0;
410
411 read_lock(&tasklist_lock);
412 if (pid_alive(task))
413 points = oom_badness(task, NULL, NULL, totalpages) *
414 1000 / totalpages;
415 read_unlock(&tasklist_lock);
416 return sprintf(buffer, "%lu\n", points);
417 }
418
419 struct limit_names {
420 char *name;
421 char *unit;
422 };
423
424 static const struct limit_names lnames[RLIM_NLIMITS] = {
425 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
426 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
427 [RLIMIT_DATA] = {"Max data size", "bytes"},
428 [RLIMIT_STACK] = {"Max stack size", "bytes"},
429 [RLIMIT_CORE] = {"Max core file size", "bytes"},
430 [RLIMIT_RSS] = {"Max resident set", "bytes"},
431 [RLIMIT_NPROC] = {"Max processes", "processes"},
432 [RLIMIT_NOFILE] = {"Max open files", "files"},
433 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
434 [RLIMIT_AS] = {"Max address space", "bytes"},
435 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
436 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
437 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
438 [RLIMIT_NICE] = {"Max nice priority", NULL},
439 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
440 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
441 };
442
443 /* Display limits for a process */
444 static int proc_pid_limits(struct task_struct *task, char *buffer)
445 {
446 unsigned int i;
447 int count = 0;
448 unsigned long flags;
449 char *bufptr = buffer;
450
451 struct rlimit rlim[RLIM_NLIMITS];
452
453 if (!lock_task_sighand(task, &flags))
454 return 0;
455 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
456 unlock_task_sighand(task, &flags);
457
458 /*
459 * print the file header
460 */
461 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
462 "Limit", "Soft Limit", "Hard Limit", "Units");
463
464 for (i = 0; i < RLIM_NLIMITS; i++) {
465 if (rlim[i].rlim_cur == RLIM_INFINITY)
466 count += sprintf(&bufptr[count], "%-25s %-20s ",
467 lnames[i].name, "unlimited");
468 else
469 count += sprintf(&bufptr[count], "%-25s %-20lu ",
470 lnames[i].name, rlim[i].rlim_cur);
471
472 if (rlim[i].rlim_max == RLIM_INFINITY)
473 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
474 else
475 count += sprintf(&bufptr[count], "%-20lu ",
476 rlim[i].rlim_max);
477
478 if (lnames[i].unit)
479 count += sprintf(&bufptr[count], "%-10s\n",
480 lnames[i].unit);
481 else
482 count += sprintf(&bufptr[count], "\n");
483 }
484
485 return count;
486 }
487
488 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
489 static int proc_pid_syscall(struct task_struct *task, char *buffer)
490 {
491 long nr;
492 unsigned long args[6], sp, pc;
493 int res = lock_trace(task);
494 if (res)
495 return res;
496
497 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
498 res = sprintf(buffer, "running\n");
499 else if (nr < 0)
500 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
501 else
502 res = sprintf(buffer,
503 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
504 nr,
505 args[0], args[1], args[2], args[3], args[4], args[5],
506 sp, pc);
507 unlock_trace(task);
508 return res;
509 }
510 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
511
512 /************************************************************************/
513 /* Here the fs part begins */
514 /************************************************************************/
515
516 /* permission checks */
517 static int proc_fd_access_allowed(struct inode *inode)
518 {
519 struct task_struct *task;
520 int allowed = 0;
521 /* Allow access to a task's file descriptors if it is us or we
522 * may use ptrace attach to the process and find out that
523 * information.
524 */
525 task = get_proc_task(inode);
526 if (task) {
527 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
528 put_task_struct(task);
529 }
530 return allowed;
531 }
532
533 int proc_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535 int error;
536 struct inode *inode = dentry->d_inode;
537
538 if (attr->ia_valid & ATTR_MODE)
539 return -EPERM;
540
541 error = inode_change_ok(inode, attr);
542 if (error)
543 return error;
544
545 if ((attr->ia_valid & ATTR_SIZE) &&
546 attr->ia_size != i_size_read(inode)) {
547 error = vmtruncate(inode, attr->ia_size);
548 if (error)
549 return error;
550 }
551
552 setattr_copy(inode, attr);
553 mark_inode_dirty(inode);
554 return 0;
555 }
556
557 /*
558 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
559 * or euid/egid (for hide_pid_min=2)?
560 */
561 static bool has_pid_permissions(struct pid_namespace *pid,
562 struct task_struct *task,
563 int hide_pid_min)
564 {
565 if (pid->hide_pid < hide_pid_min)
566 return true;
567 if (in_group_p(pid->pid_gid))
568 return true;
569 return ptrace_may_access(task, PTRACE_MODE_READ);
570 }
571
572
573 static int proc_pid_permission(struct inode *inode, int mask)
574 {
575 struct pid_namespace *pid = inode->i_sb->s_fs_info;
576 struct task_struct *task;
577 bool has_perms;
578
579 task = get_proc_task(inode);
580 if (!task)
581 return -ESRCH;
582 has_perms = has_pid_permissions(pid, task, 1);
583 put_task_struct(task);
584
585 if (!has_perms) {
586 if (pid->hide_pid == 2) {
587 /*
588 * Let's make getdents(), stat(), and open()
589 * consistent with each other. If a process
590 * may not stat() a file, it shouldn't be seen
591 * in procfs at all.
592 */
593 return -ENOENT;
594 }
595
596 return -EPERM;
597 }
598 return generic_permission(inode, mask);
599 }
600
601
602
603 static const struct inode_operations proc_def_inode_operations = {
604 .setattr = proc_setattr,
605 };
606
607 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
608
609 static ssize_t proc_info_read(struct file * file, char __user * buf,
610 size_t count, loff_t *ppos)
611 {
612 struct inode * inode = file->f_path.dentry->d_inode;
613 unsigned long page;
614 ssize_t length;
615 struct task_struct *task = get_proc_task(inode);
616
617 length = -ESRCH;
618 if (!task)
619 goto out_no_task;
620
621 if (count > PROC_BLOCK_SIZE)
622 count = PROC_BLOCK_SIZE;
623
624 length = -ENOMEM;
625 if (!(page = __get_free_page(GFP_TEMPORARY)))
626 goto out;
627
628 length = PROC_I(inode)->op.proc_read(task, (char*)page);
629
630 if (length >= 0)
631 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
632 free_page(page);
633 out:
634 put_task_struct(task);
635 out_no_task:
636 return length;
637 }
638
639 static const struct file_operations proc_info_file_operations = {
640 .read = proc_info_read,
641 .llseek = generic_file_llseek,
642 };
643
644 static int proc_single_show(struct seq_file *m, void *v)
645 {
646 struct inode *inode = m->private;
647 struct pid_namespace *ns;
648 struct pid *pid;
649 struct task_struct *task;
650 int ret;
651
652 ns = inode->i_sb->s_fs_info;
653 pid = proc_pid(inode);
654 task = get_pid_task(pid, PIDTYPE_PID);
655 if (!task)
656 return -ESRCH;
657
658 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
659
660 put_task_struct(task);
661 return ret;
662 }
663
664 static int proc_single_open(struct inode *inode, struct file *filp)
665 {
666 return single_open(filp, proc_single_show, inode);
667 }
668
669 static const struct file_operations proc_single_file_operations = {
670 .open = proc_single_open,
671 .read = seq_read,
672 .llseek = seq_lseek,
673 .release = single_release,
674 };
675
676 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
677 {
678 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
679 struct mm_struct *mm;
680
681 if (!task)
682 return -ESRCH;
683
684 mm = mm_access(task, mode);
685 put_task_struct(task);
686
687 if (IS_ERR(mm))
688 return PTR_ERR(mm);
689
690 if (mm) {
691 /* ensure this mm_struct can't be freed */
692 atomic_inc(&mm->mm_count);
693 /* but do not pin its memory */
694 mmput(mm);
695 }
696
697 file->private_data = mm;
698
699 return 0;
700 }
701
702 static int mem_open(struct inode *inode, struct file *file)
703 {
704 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
705
706 /* OK to pass negative loff_t, we can catch out-of-range */
707 file->f_mode |= FMODE_UNSIGNED_OFFSET;
708
709 return ret;
710 }
711
712 static ssize_t mem_rw(struct file *file, char __user *buf,
713 size_t count, loff_t *ppos, int write)
714 {
715 struct mm_struct *mm = file->private_data;
716 unsigned long addr = *ppos;
717 ssize_t copied;
718 char *page;
719
720 if (!mm)
721 return 0;
722
723 page = (char *)__get_free_page(GFP_TEMPORARY);
724 if (!page)
725 return -ENOMEM;
726
727 copied = 0;
728 if (!atomic_inc_not_zero(&mm->mm_users))
729 goto free;
730
731 while (count > 0) {
732 int this_len = min_t(int, count, PAGE_SIZE);
733
734 if (write && copy_from_user(page, buf, this_len)) {
735 copied = -EFAULT;
736 break;
737 }
738
739 this_len = access_remote_vm(mm, addr, page, this_len, write);
740 if (!this_len) {
741 if (!copied)
742 copied = -EIO;
743 break;
744 }
745
746 if (!write && copy_to_user(buf, page, this_len)) {
747 copied = -EFAULT;
748 break;
749 }
750
751 buf += this_len;
752 addr += this_len;
753 copied += this_len;
754 count -= this_len;
755 }
756 *ppos = addr;
757
758 mmput(mm);
759 free:
760 free_page((unsigned long) page);
761 return copied;
762 }
763
764 static ssize_t mem_read(struct file *file, char __user *buf,
765 size_t count, loff_t *ppos)
766 {
767 return mem_rw(file, buf, count, ppos, 0);
768 }
769
770 static ssize_t mem_write(struct file *file, const char __user *buf,
771 size_t count, loff_t *ppos)
772 {
773 return mem_rw(file, (char __user*)buf, count, ppos, 1);
774 }
775
776 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
777 {
778 switch (orig) {
779 case 0:
780 file->f_pos = offset;
781 break;
782 case 1:
783 file->f_pos += offset;
784 break;
785 default:
786 return -EINVAL;
787 }
788 force_successful_syscall_return();
789 return file->f_pos;
790 }
791
792 static int mem_release(struct inode *inode, struct file *file)
793 {
794 struct mm_struct *mm = file->private_data;
795 if (mm)
796 mmdrop(mm);
797 return 0;
798 }
799
800 static const struct file_operations proc_mem_operations = {
801 .llseek = mem_lseek,
802 .read = mem_read,
803 .write = mem_write,
804 .open = mem_open,
805 .release = mem_release,
806 };
807
808 static int environ_open(struct inode *inode, struct file *file)
809 {
810 return __mem_open(inode, file, PTRACE_MODE_READ);
811 }
812
813 static ssize_t environ_read(struct file *file, char __user *buf,
814 size_t count, loff_t *ppos)
815 {
816 char *page;
817 unsigned long src = *ppos;
818 int ret = 0;
819 struct mm_struct *mm = file->private_data;
820
821 if (!mm)
822 return 0;
823
824 page = (char *)__get_free_page(GFP_TEMPORARY);
825 if (!page)
826 return -ENOMEM;
827
828 ret = 0;
829 if (!atomic_inc_not_zero(&mm->mm_users))
830 goto free;
831 while (count > 0) {
832 size_t this_len, max_len;
833 int retval;
834
835 if (src >= (mm->env_end - mm->env_start))
836 break;
837
838 this_len = mm->env_end - (mm->env_start + src);
839
840 max_len = min_t(size_t, PAGE_SIZE, count);
841 this_len = min(max_len, this_len);
842
843 retval = access_remote_vm(mm, (mm->env_start + src),
844 page, this_len, 0);
845
846 if (retval <= 0) {
847 ret = retval;
848 break;
849 }
850
851 if (copy_to_user(buf, page, retval)) {
852 ret = -EFAULT;
853 break;
854 }
855
856 ret += retval;
857 src += retval;
858 buf += retval;
859 count -= retval;
860 }
861 *ppos = src;
862 mmput(mm);
863
864 free:
865 free_page((unsigned long) page);
866 return ret;
867 }
868
869 static const struct file_operations proc_environ_operations = {
870 .open = environ_open,
871 .read = environ_read,
872 .llseek = generic_file_llseek,
873 .release = mem_release,
874 };
875
876 static ssize_t oom_adjust_read(struct file *file, char __user *buf,
877 size_t count, loff_t *ppos)
878 {
879 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
880 char buffer[PROC_NUMBUF];
881 size_t len;
882 int oom_adjust = OOM_DISABLE;
883 unsigned long flags;
884
885 if (!task)
886 return -ESRCH;
887
888 if (lock_task_sighand(task, &flags)) {
889 oom_adjust = task->signal->oom_adj;
890 unlock_task_sighand(task, &flags);
891 }
892
893 put_task_struct(task);
894
895 len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
896
897 return simple_read_from_buffer(buf, count, ppos, buffer, len);
898 }
899
900 static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
901 size_t count, loff_t *ppos)
902 {
903 struct task_struct *task;
904 char buffer[PROC_NUMBUF];
905 int oom_adjust;
906 unsigned long flags;
907 int err;
908
909 memset(buffer, 0, sizeof(buffer));
910 if (count > sizeof(buffer) - 1)
911 count = sizeof(buffer) - 1;
912 if (copy_from_user(buffer, buf, count)) {
913 err = -EFAULT;
914 goto out;
915 }
916
917 err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
918 if (err)
919 goto out;
920 if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
921 oom_adjust != OOM_DISABLE) {
922 err = -EINVAL;
923 goto out;
924 }
925
926 task = get_proc_task(file->f_path.dentry->d_inode);
927 if (!task) {
928 err = -ESRCH;
929 goto out;
930 }
931
932 task_lock(task);
933 if (!task->mm) {
934 err = -EINVAL;
935 goto err_task_lock;
936 }
937
938 if (!lock_task_sighand(task, &flags)) {
939 err = -ESRCH;
940 goto err_task_lock;
941 }
942
943 if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
944 err = -EACCES;
945 goto err_sighand;
946 }
947
948 /*
949 * Warn that /proc/pid/oom_adj is deprecated, see
950 * Documentation/feature-removal-schedule.txt.
951 */
952 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
953 current->comm, task_pid_nr(current), task_pid_nr(task),
954 task_pid_nr(task));
955 task->signal->oom_adj = oom_adjust;
956 /*
957 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
958 * value is always attainable.
959 */
960 if (task->signal->oom_adj == OOM_ADJUST_MAX)
961 task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
962 else
963 task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
964 -OOM_DISABLE;
965 trace_oom_score_adj_update(task);
966 err_sighand:
967 unlock_task_sighand(task, &flags);
968 err_task_lock:
969 task_unlock(task);
970 put_task_struct(task);
971 out:
972 return err < 0 ? err : count;
973 }
974
975 static const struct file_operations proc_oom_adjust_operations = {
976 .read = oom_adjust_read,
977 .write = oom_adjust_write,
978 .llseek = generic_file_llseek,
979 };
980
981 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
982 size_t count, loff_t *ppos)
983 {
984 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
985 char buffer[PROC_NUMBUF];
986 int oom_score_adj = OOM_SCORE_ADJ_MIN;
987 unsigned long flags;
988 size_t len;
989
990 if (!task)
991 return -ESRCH;
992 if (lock_task_sighand(task, &flags)) {
993 oom_score_adj = task->signal->oom_score_adj;
994 unlock_task_sighand(task, &flags);
995 }
996 put_task_struct(task);
997 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
998 return simple_read_from_buffer(buf, count, ppos, buffer, len);
999 }
1000
1001 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1002 size_t count, loff_t *ppos)
1003 {
1004 struct task_struct *task;
1005 char buffer[PROC_NUMBUF];
1006 unsigned long flags;
1007 int oom_score_adj;
1008 int err;
1009
1010 memset(buffer, 0, sizeof(buffer));
1011 if (count > sizeof(buffer) - 1)
1012 count = sizeof(buffer) - 1;
1013 if (copy_from_user(buffer, buf, count)) {
1014 err = -EFAULT;
1015 goto out;
1016 }
1017
1018 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1019 if (err)
1020 goto out;
1021 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1022 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1023 err = -EINVAL;
1024 goto out;
1025 }
1026
1027 task = get_proc_task(file->f_path.dentry->d_inode);
1028 if (!task) {
1029 err = -ESRCH;
1030 goto out;
1031 }
1032
1033 task_lock(task);
1034 if (!task->mm) {
1035 err = -EINVAL;
1036 goto err_task_lock;
1037 }
1038
1039 if (!lock_task_sighand(task, &flags)) {
1040 err = -ESRCH;
1041 goto err_task_lock;
1042 }
1043
1044 if (oom_score_adj < task->signal->oom_score_adj_min &&
1045 !capable(CAP_SYS_RESOURCE)) {
1046 err = -EACCES;
1047 goto err_sighand;
1048 }
1049
1050 task->signal->oom_score_adj = oom_score_adj;
1051 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1052 task->signal->oom_score_adj_min = oom_score_adj;
1053 trace_oom_score_adj_update(task);
1054 /*
1055 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1056 * always attainable.
1057 */
1058 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1059 task->signal->oom_adj = OOM_DISABLE;
1060 else
1061 task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1062 OOM_SCORE_ADJ_MAX;
1063 err_sighand:
1064 unlock_task_sighand(task, &flags);
1065 err_task_lock:
1066 task_unlock(task);
1067 put_task_struct(task);
1068 out:
1069 return err < 0 ? err : count;
1070 }
1071
1072 static const struct file_operations proc_oom_score_adj_operations = {
1073 .read = oom_score_adj_read,
1074 .write = oom_score_adj_write,
1075 .llseek = default_llseek,
1076 };
1077
1078 #ifdef CONFIG_AUDITSYSCALL
1079 #define TMPBUFLEN 21
1080 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1081 size_t count, loff_t *ppos)
1082 {
1083 struct inode * inode = file->f_path.dentry->d_inode;
1084 struct task_struct *task = get_proc_task(inode);
1085 ssize_t length;
1086 char tmpbuf[TMPBUFLEN];
1087
1088 if (!task)
1089 return -ESRCH;
1090 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1091 audit_get_loginuid(task));
1092 put_task_struct(task);
1093 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1094 }
1095
1096 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1097 size_t count, loff_t *ppos)
1098 {
1099 struct inode * inode = file->f_path.dentry->d_inode;
1100 char *page, *tmp;
1101 ssize_t length;
1102 uid_t loginuid;
1103
1104 rcu_read_lock();
1105 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1106 rcu_read_unlock();
1107 return -EPERM;
1108 }
1109 rcu_read_unlock();
1110
1111 if (count >= PAGE_SIZE)
1112 count = PAGE_SIZE - 1;
1113
1114 if (*ppos != 0) {
1115 /* No partial writes. */
1116 return -EINVAL;
1117 }
1118 page = (char*)__get_free_page(GFP_TEMPORARY);
1119 if (!page)
1120 return -ENOMEM;
1121 length = -EFAULT;
1122 if (copy_from_user(page, buf, count))
1123 goto out_free_page;
1124
1125 page[count] = '\0';
1126 loginuid = simple_strtoul(page, &tmp, 10);
1127 if (tmp == page) {
1128 length = -EINVAL;
1129 goto out_free_page;
1130
1131 }
1132 length = audit_set_loginuid(loginuid);
1133 if (likely(length == 0))
1134 length = count;
1135
1136 out_free_page:
1137 free_page((unsigned long) page);
1138 return length;
1139 }
1140
1141 static const struct file_operations proc_loginuid_operations = {
1142 .read = proc_loginuid_read,
1143 .write = proc_loginuid_write,
1144 .llseek = generic_file_llseek,
1145 };
1146
1147 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1148 size_t count, loff_t *ppos)
1149 {
1150 struct inode * inode = file->f_path.dentry->d_inode;
1151 struct task_struct *task = get_proc_task(inode);
1152 ssize_t length;
1153 char tmpbuf[TMPBUFLEN];
1154
1155 if (!task)
1156 return -ESRCH;
1157 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1158 audit_get_sessionid(task));
1159 put_task_struct(task);
1160 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1161 }
1162
1163 static const struct file_operations proc_sessionid_operations = {
1164 .read = proc_sessionid_read,
1165 .llseek = generic_file_llseek,
1166 };
1167 #endif
1168
1169 #ifdef CONFIG_FAULT_INJECTION
1170 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1171 size_t count, loff_t *ppos)
1172 {
1173 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1174 char buffer[PROC_NUMBUF];
1175 size_t len;
1176 int make_it_fail;
1177
1178 if (!task)
1179 return -ESRCH;
1180 make_it_fail = task->make_it_fail;
1181 put_task_struct(task);
1182
1183 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1184
1185 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1186 }
1187
1188 static ssize_t proc_fault_inject_write(struct file * file,
1189 const char __user * buf, size_t count, loff_t *ppos)
1190 {
1191 struct task_struct *task;
1192 char buffer[PROC_NUMBUF], *end;
1193 int make_it_fail;
1194
1195 if (!capable(CAP_SYS_RESOURCE))
1196 return -EPERM;
1197 memset(buffer, 0, sizeof(buffer));
1198 if (count > sizeof(buffer) - 1)
1199 count = sizeof(buffer) - 1;
1200 if (copy_from_user(buffer, buf, count))
1201 return -EFAULT;
1202 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1203 if (*end)
1204 return -EINVAL;
1205 task = get_proc_task(file->f_dentry->d_inode);
1206 if (!task)
1207 return -ESRCH;
1208 task->make_it_fail = make_it_fail;
1209 put_task_struct(task);
1210
1211 return count;
1212 }
1213
1214 static const struct file_operations proc_fault_inject_operations = {
1215 .read = proc_fault_inject_read,
1216 .write = proc_fault_inject_write,
1217 .llseek = generic_file_llseek,
1218 };
1219 #endif
1220
1221
1222 #ifdef CONFIG_SCHED_DEBUG
1223 /*
1224 * Print out various scheduling related per-task fields:
1225 */
1226 static int sched_show(struct seq_file *m, void *v)
1227 {
1228 struct inode *inode = m->private;
1229 struct task_struct *p;
1230
1231 p = get_proc_task(inode);
1232 if (!p)
1233 return -ESRCH;
1234 proc_sched_show_task(p, m);
1235
1236 put_task_struct(p);
1237
1238 return 0;
1239 }
1240
1241 static ssize_t
1242 sched_write(struct file *file, const char __user *buf,
1243 size_t count, loff_t *offset)
1244 {
1245 struct inode *inode = file->f_path.dentry->d_inode;
1246 struct task_struct *p;
1247
1248 p = get_proc_task(inode);
1249 if (!p)
1250 return -ESRCH;
1251 proc_sched_set_task(p);
1252
1253 put_task_struct(p);
1254
1255 return count;
1256 }
1257
1258 static int sched_open(struct inode *inode, struct file *filp)
1259 {
1260 return single_open(filp, sched_show, inode);
1261 }
1262
1263 static const struct file_operations proc_pid_sched_operations = {
1264 .open = sched_open,
1265 .read = seq_read,
1266 .write = sched_write,
1267 .llseek = seq_lseek,
1268 .release = single_release,
1269 };
1270
1271 #endif
1272
1273 #ifdef CONFIG_SCHED_AUTOGROUP
1274 /*
1275 * Print out autogroup related information:
1276 */
1277 static int sched_autogroup_show(struct seq_file *m, void *v)
1278 {
1279 struct inode *inode = m->private;
1280 struct task_struct *p;
1281
1282 p = get_proc_task(inode);
1283 if (!p)
1284 return -ESRCH;
1285 proc_sched_autogroup_show_task(p, m);
1286
1287 put_task_struct(p);
1288
1289 return 0;
1290 }
1291
1292 static ssize_t
1293 sched_autogroup_write(struct file *file, const char __user *buf,
1294 size_t count, loff_t *offset)
1295 {
1296 struct inode *inode = file->f_path.dentry->d_inode;
1297 struct task_struct *p;
1298 char buffer[PROC_NUMBUF];
1299 int nice;
1300 int err;
1301
1302 memset(buffer, 0, sizeof(buffer));
1303 if (count > sizeof(buffer) - 1)
1304 count = sizeof(buffer) - 1;
1305 if (copy_from_user(buffer, buf, count))
1306 return -EFAULT;
1307
1308 err = kstrtoint(strstrip(buffer), 0, &nice);
1309 if (err < 0)
1310 return err;
1311
1312 p = get_proc_task(inode);
1313 if (!p)
1314 return -ESRCH;
1315
1316 err = proc_sched_autogroup_set_nice(p, nice);
1317 if (err)
1318 count = err;
1319
1320 put_task_struct(p);
1321
1322 return count;
1323 }
1324
1325 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1326 {
1327 int ret;
1328
1329 ret = single_open(filp, sched_autogroup_show, NULL);
1330 if (!ret) {
1331 struct seq_file *m = filp->private_data;
1332
1333 m->private = inode;
1334 }
1335 return ret;
1336 }
1337
1338 static const struct file_operations proc_pid_sched_autogroup_operations = {
1339 .open = sched_autogroup_open,
1340 .read = seq_read,
1341 .write = sched_autogroup_write,
1342 .llseek = seq_lseek,
1343 .release = single_release,
1344 };
1345
1346 #endif /* CONFIG_SCHED_AUTOGROUP */
1347
1348 static ssize_t comm_write(struct file *file, const char __user *buf,
1349 size_t count, loff_t *offset)
1350 {
1351 struct inode *inode = file->f_path.dentry->d_inode;
1352 struct task_struct *p;
1353 char buffer[TASK_COMM_LEN];
1354
1355 memset(buffer, 0, sizeof(buffer));
1356 if (count > sizeof(buffer) - 1)
1357 count = sizeof(buffer) - 1;
1358 if (copy_from_user(buffer, buf, count))
1359 return -EFAULT;
1360
1361 p = get_proc_task(inode);
1362 if (!p)
1363 return -ESRCH;
1364
1365 if (same_thread_group(current, p))
1366 set_task_comm(p, buffer);
1367 else
1368 count = -EINVAL;
1369
1370 put_task_struct(p);
1371
1372 return count;
1373 }
1374
1375 static int comm_show(struct seq_file *m, void *v)
1376 {
1377 struct inode *inode = m->private;
1378 struct task_struct *p;
1379
1380 p = get_proc_task(inode);
1381 if (!p)
1382 return -ESRCH;
1383
1384 task_lock(p);
1385 seq_printf(m, "%s\n", p->comm);
1386 task_unlock(p);
1387
1388 put_task_struct(p);
1389
1390 return 0;
1391 }
1392
1393 static int comm_open(struct inode *inode, struct file *filp)
1394 {
1395 return single_open(filp, comm_show, inode);
1396 }
1397
1398 static const struct file_operations proc_pid_set_comm_operations = {
1399 .open = comm_open,
1400 .read = seq_read,
1401 .write = comm_write,
1402 .llseek = seq_lseek,
1403 .release = single_release,
1404 };
1405
1406 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1407 {
1408 struct task_struct *task;
1409 struct mm_struct *mm;
1410 struct file *exe_file;
1411
1412 task = get_proc_task(dentry->d_inode);
1413 if (!task)
1414 return -ENOENT;
1415 mm = get_task_mm(task);
1416 put_task_struct(task);
1417 if (!mm)
1418 return -ENOENT;
1419 exe_file = get_mm_exe_file(mm);
1420 mmput(mm);
1421 if (exe_file) {
1422 *exe_path = exe_file->f_path;
1423 path_get(&exe_file->f_path);
1424 fput(exe_file);
1425 return 0;
1426 } else
1427 return -ENOENT;
1428 }
1429
1430 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1431 {
1432 struct inode *inode = dentry->d_inode;
1433 struct path path;
1434 int error = -EACCES;
1435
1436 /* Are we allowed to snoop on the tasks file descriptors? */
1437 if (!proc_fd_access_allowed(inode))
1438 goto out;
1439
1440 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1441 if (error)
1442 goto out;
1443
1444 nd_jump_link(nd, &path);
1445 return NULL;
1446 out:
1447 return ERR_PTR(error);
1448 }
1449
1450 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1451 {
1452 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1453 char *pathname;
1454 int len;
1455
1456 if (!tmp)
1457 return -ENOMEM;
1458
1459 pathname = d_path(path, tmp, PAGE_SIZE);
1460 len = PTR_ERR(pathname);
1461 if (IS_ERR(pathname))
1462 goto out;
1463 len = tmp + PAGE_SIZE - 1 - pathname;
1464
1465 if (len > buflen)
1466 len = buflen;
1467 if (copy_to_user(buffer, pathname, len))
1468 len = -EFAULT;
1469 out:
1470 free_page((unsigned long)tmp);
1471 return len;
1472 }
1473
1474 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1475 {
1476 int error = -EACCES;
1477 struct inode *inode = dentry->d_inode;
1478 struct path path;
1479
1480 /* Are we allowed to snoop on the tasks file descriptors? */
1481 if (!proc_fd_access_allowed(inode))
1482 goto out;
1483
1484 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1485 if (error)
1486 goto out;
1487
1488 error = do_proc_readlink(&path, buffer, buflen);
1489 path_put(&path);
1490 out:
1491 return error;
1492 }
1493
1494 const struct inode_operations proc_pid_link_inode_operations = {
1495 .readlink = proc_pid_readlink,
1496 .follow_link = proc_pid_follow_link,
1497 .setattr = proc_setattr,
1498 };
1499
1500
1501 /* building an inode */
1502
1503 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1504 {
1505 struct inode * inode;
1506 struct proc_inode *ei;
1507 const struct cred *cred;
1508
1509 /* We need a new inode */
1510
1511 inode = new_inode(sb);
1512 if (!inode)
1513 goto out;
1514
1515 /* Common stuff */
1516 ei = PROC_I(inode);
1517 inode->i_ino = get_next_ino();
1518 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1519 inode->i_op = &proc_def_inode_operations;
1520
1521 /*
1522 * grab the reference to task.
1523 */
1524 ei->pid = get_task_pid(task, PIDTYPE_PID);
1525 if (!ei->pid)
1526 goto out_unlock;
1527
1528 if (task_dumpable(task)) {
1529 rcu_read_lock();
1530 cred = __task_cred(task);
1531 inode->i_uid = cred->euid;
1532 inode->i_gid = cred->egid;
1533 rcu_read_unlock();
1534 }
1535 security_task_to_inode(task, inode);
1536
1537 out:
1538 return inode;
1539
1540 out_unlock:
1541 iput(inode);
1542 return NULL;
1543 }
1544
1545 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1546 {
1547 struct inode *inode = dentry->d_inode;
1548 struct task_struct *task;
1549 const struct cred *cred;
1550 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1551
1552 generic_fillattr(inode, stat);
1553
1554 rcu_read_lock();
1555 stat->uid = GLOBAL_ROOT_UID;
1556 stat->gid = GLOBAL_ROOT_GID;
1557 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1558 if (task) {
1559 if (!has_pid_permissions(pid, task, 2)) {
1560 rcu_read_unlock();
1561 /*
1562 * This doesn't prevent learning whether PID exists,
1563 * it only makes getattr() consistent with readdir().
1564 */
1565 return -ENOENT;
1566 }
1567 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1568 task_dumpable(task)) {
1569 cred = __task_cred(task);
1570 stat->uid = cred->euid;
1571 stat->gid = cred->egid;
1572 }
1573 }
1574 rcu_read_unlock();
1575 return 0;
1576 }
1577
1578 /* dentry stuff */
1579
1580 /*
1581 * Exceptional case: normally we are not allowed to unhash a busy
1582 * directory. In this case, however, we can do it - no aliasing problems
1583 * due to the way we treat inodes.
1584 *
1585 * Rewrite the inode's ownerships here because the owning task may have
1586 * performed a setuid(), etc.
1587 *
1588 * Before the /proc/pid/status file was created the only way to read
1589 * the effective uid of a /process was to stat /proc/pid. Reading
1590 * /proc/pid/status is slow enough that procps and other packages
1591 * kept stating /proc/pid. To keep the rules in /proc simple I have
1592 * made this apply to all per process world readable and executable
1593 * directories.
1594 */
1595 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1596 {
1597 struct inode *inode;
1598 struct task_struct *task;
1599 const struct cred *cred;
1600
1601 if (flags & LOOKUP_RCU)
1602 return -ECHILD;
1603
1604 inode = dentry->d_inode;
1605 task = get_proc_task(inode);
1606
1607 if (task) {
1608 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1609 task_dumpable(task)) {
1610 rcu_read_lock();
1611 cred = __task_cred(task);
1612 inode->i_uid = cred->euid;
1613 inode->i_gid = cred->egid;
1614 rcu_read_unlock();
1615 } else {
1616 inode->i_uid = GLOBAL_ROOT_UID;
1617 inode->i_gid = GLOBAL_ROOT_GID;
1618 }
1619 inode->i_mode &= ~(S_ISUID | S_ISGID);
1620 security_task_to_inode(task, inode);
1621 put_task_struct(task);
1622 return 1;
1623 }
1624 d_drop(dentry);
1625 return 0;
1626 }
1627
1628 const struct dentry_operations pid_dentry_operations =
1629 {
1630 .d_revalidate = pid_revalidate,
1631 .d_delete = pid_delete_dentry,
1632 };
1633
1634 /* Lookups */
1635
1636 /*
1637 * Fill a directory entry.
1638 *
1639 * If possible create the dcache entry and derive our inode number and
1640 * file type from dcache entry.
1641 *
1642 * Since all of the proc inode numbers are dynamically generated, the inode
1643 * numbers do not exist until the inode is cache. This means creating the
1644 * the dcache entry in readdir is necessary to keep the inode numbers
1645 * reported by readdir in sync with the inode numbers reported
1646 * by stat.
1647 */
1648 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1649 const char *name, int len,
1650 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1651 {
1652 struct dentry *child, *dir = filp->f_path.dentry;
1653 struct inode *inode;
1654 struct qstr qname;
1655 ino_t ino = 0;
1656 unsigned type = DT_UNKNOWN;
1657
1658 qname.name = name;
1659 qname.len = len;
1660 qname.hash = full_name_hash(name, len);
1661
1662 child = d_lookup(dir, &qname);
1663 if (!child) {
1664 struct dentry *new;
1665 new = d_alloc(dir, &qname);
1666 if (new) {
1667 child = instantiate(dir->d_inode, new, task, ptr);
1668 if (child)
1669 dput(new);
1670 else
1671 child = new;
1672 }
1673 }
1674 if (!child || IS_ERR(child) || !child->d_inode)
1675 goto end_instantiate;
1676 inode = child->d_inode;
1677 if (inode) {
1678 ino = inode->i_ino;
1679 type = inode->i_mode >> 12;
1680 }
1681 dput(child);
1682 end_instantiate:
1683 if (!ino)
1684 ino = find_inode_number(dir, &qname);
1685 if (!ino)
1686 ino = 1;
1687 return filldir(dirent, name, len, filp->f_pos, ino, type);
1688 }
1689
1690 #ifdef CONFIG_CHECKPOINT_RESTORE
1691
1692 /*
1693 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1694 * which represent vma start and end addresses.
1695 */
1696 static int dname_to_vma_addr(struct dentry *dentry,
1697 unsigned long *start, unsigned long *end)
1698 {
1699 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1700 return -EINVAL;
1701
1702 return 0;
1703 }
1704
1705 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1706 {
1707 unsigned long vm_start, vm_end;
1708 bool exact_vma_exists = false;
1709 struct mm_struct *mm = NULL;
1710 struct task_struct *task;
1711 const struct cred *cred;
1712 struct inode *inode;
1713 int status = 0;
1714
1715 if (flags & LOOKUP_RCU)
1716 return -ECHILD;
1717
1718 if (!capable(CAP_SYS_ADMIN)) {
1719 status = -EACCES;
1720 goto out_notask;
1721 }
1722
1723 inode = dentry->d_inode;
1724 task = get_proc_task(inode);
1725 if (!task)
1726 goto out_notask;
1727
1728 mm = mm_access(task, PTRACE_MODE_READ);
1729 if (IS_ERR_OR_NULL(mm))
1730 goto out;
1731
1732 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1733 down_read(&mm->mmap_sem);
1734 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1735 up_read(&mm->mmap_sem);
1736 }
1737
1738 mmput(mm);
1739
1740 if (exact_vma_exists) {
1741 if (task_dumpable(task)) {
1742 rcu_read_lock();
1743 cred = __task_cred(task);
1744 inode->i_uid = cred->euid;
1745 inode->i_gid = cred->egid;
1746 rcu_read_unlock();
1747 } else {
1748 inode->i_uid = GLOBAL_ROOT_UID;
1749 inode->i_gid = GLOBAL_ROOT_GID;
1750 }
1751 security_task_to_inode(task, inode);
1752 status = 1;
1753 }
1754
1755 out:
1756 put_task_struct(task);
1757
1758 out_notask:
1759 if (status <= 0)
1760 d_drop(dentry);
1761
1762 return status;
1763 }
1764
1765 static const struct dentry_operations tid_map_files_dentry_operations = {
1766 .d_revalidate = map_files_d_revalidate,
1767 .d_delete = pid_delete_dentry,
1768 };
1769
1770 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1771 {
1772 unsigned long vm_start, vm_end;
1773 struct vm_area_struct *vma;
1774 struct task_struct *task;
1775 struct mm_struct *mm;
1776 int rc;
1777
1778 rc = -ENOENT;
1779 task = get_proc_task(dentry->d_inode);
1780 if (!task)
1781 goto out;
1782
1783 mm = get_task_mm(task);
1784 put_task_struct(task);
1785 if (!mm)
1786 goto out;
1787
1788 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1789 if (rc)
1790 goto out_mmput;
1791
1792 down_read(&mm->mmap_sem);
1793 vma = find_exact_vma(mm, vm_start, vm_end);
1794 if (vma && vma->vm_file) {
1795 *path = vma->vm_file->f_path;
1796 path_get(path);
1797 rc = 0;
1798 }
1799 up_read(&mm->mmap_sem);
1800
1801 out_mmput:
1802 mmput(mm);
1803 out:
1804 return rc;
1805 }
1806
1807 struct map_files_info {
1808 struct file *file;
1809 unsigned long len;
1810 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1811 };
1812
1813 static struct dentry *
1814 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1815 struct task_struct *task, const void *ptr)
1816 {
1817 const struct file *file = ptr;
1818 struct proc_inode *ei;
1819 struct inode *inode;
1820
1821 if (!file)
1822 return ERR_PTR(-ENOENT);
1823
1824 inode = proc_pid_make_inode(dir->i_sb, task);
1825 if (!inode)
1826 return ERR_PTR(-ENOENT);
1827
1828 ei = PROC_I(inode);
1829 ei->op.proc_get_link = proc_map_files_get_link;
1830
1831 inode->i_op = &proc_pid_link_inode_operations;
1832 inode->i_size = 64;
1833 inode->i_mode = S_IFLNK;
1834
1835 if (file->f_mode & FMODE_READ)
1836 inode->i_mode |= S_IRUSR;
1837 if (file->f_mode & FMODE_WRITE)
1838 inode->i_mode |= S_IWUSR;
1839
1840 d_set_d_op(dentry, &tid_map_files_dentry_operations);
1841 d_add(dentry, inode);
1842
1843 return NULL;
1844 }
1845
1846 static struct dentry *proc_map_files_lookup(struct inode *dir,
1847 struct dentry *dentry, unsigned int flags)
1848 {
1849 unsigned long vm_start, vm_end;
1850 struct vm_area_struct *vma;
1851 struct task_struct *task;
1852 struct dentry *result;
1853 struct mm_struct *mm;
1854
1855 result = ERR_PTR(-EACCES);
1856 if (!capable(CAP_SYS_ADMIN))
1857 goto out;
1858
1859 result = ERR_PTR(-ENOENT);
1860 task = get_proc_task(dir);
1861 if (!task)
1862 goto out;
1863
1864 result = ERR_PTR(-EACCES);
1865 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1866 goto out_put_task;
1867
1868 result = ERR_PTR(-ENOENT);
1869 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1870 goto out_put_task;
1871
1872 mm = get_task_mm(task);
1873 if (!mm)
1874 goto out_put_task;
1875
1876 down_read(&mm->mmap_sem);
1877 vma = find_exact_vma(mm, vm_start, vm_end);
1878 if (!vma)
1879 goto out_no_vma;
1880
1881 result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
1882
1883 out_no_vma:
1884 up_read(&mm->mmap_sem);
1885 mmput(mm);
1886 out_put_task:
1887 put_task_struct(task);
1888 out:
1889 return result;
1890 }
1891
1892 static const struct inode_operations proc_map_files_inode_operations = {
1893 .lookup = proc_map_files_lookup,
1894 .permission = proc_fd_permission,
1895 .setattr = proc_setattr,
1896 };
1897
1898 static int
1899 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1900 {
1901 struct dentry *dentry = filp->f_path.dentry;
1902 struct inode *inode = dentry->d_inode;
1903 struct vm_area_struct *vma;
1904 struct task_struct *task;
1905 struct mm_struct *mm;
1906 ino_t ino;
1907 int ret;
1908
1909 ret = -EACCES;
1910 if (!capable(CAP_SYS_ADMIN))
1911 goto out;
1912
1913 ret = -ENOENT;
1914 task = get_proc_task(inode);
1915 if (!task)
1916 goto out;
1917
1918 ret = -EACCES;
1919 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1920 goto out_put_task;
1921
1922 ret = 0;
1923 switch (filp->f_pos) {
1924 case 0:
1925 ino = inode->i_ino;
1926 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1927 goto out_put_task;
1928 filp->f_pos++;
1929 case 1:
1930 ino = parent_ino(dentry);
1931 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1932 goto out_put_task;
1933 filp->f_pos++;
1934 default:
1935 {
1936 unsigned long nr_files, pos, i;
1937 struct flex_array *fa = NULL;
1938 struct map_files_info info;
1939 struct map_files_info *p;
1940
1941 mm = get_task_mm(task);
1942 if (!mm)
1943 goto out_put_task;
1944 down_read(&mm->mmap_sem);
1945
1946 nr_files = 0;
1947
1948 /*
1949 * We need two passes here:
1950 *
1951 * 1) Collect vmas of mapped files with mmap_sem taken
1952 * 2) Release mmap_sem and instantiate entries
1953 *
1954 * otherwise we get lockdep complained, since filldir()
1955 * routine might require mmap_sem taken in might_fault().
1956 */
1957
1958 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1959 if (vma->vm_file && ++pos > filp->f_pos)
1960 nr_files++;
1961 }
1962
1963 if (nr_files) {
1964 fa = flex_array_alloc(sizeof(info), nr_files,
1965 GFP_KERNEL);
1966 if (!fa || flex_array_prealloc(fa, 0, nr_files,
1967 GFP_KERNEL)) {
1968 ret = -ENOMEM;
1969 if (fa)
1970 flex_array_free(fa);
1971 up_read(&mm->mmap_sem);
1972 mmput(mm);
1973 goto out_put_task;
1974 }
1975 for (i = 0, vma = mm->mmap, pos = 2; vma;
1976 vma = vma->vm_next) {
1977 if (!vma->vm_file)
1978 continue;
1979 if (++pos <= filp->f_pos)
1980 continue;
1981
1982 info.file = get_file(vma->vm_file);
1983 info.len = snprintf(info.name,
1984 sizeof(info.name), "%lx-%lx",
1985 vma->vm_start, vma->vm_end);
1986 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1987 BUG();
1988 }
1989 }
1990 up_read(&mm->mmap_sem);
1991
1992 for (i = 0; i < nr_files; i++) {
1993 p = flex_array_get(fa, i);
1994 ret = proc_fill_cache(filp, dirent, filldir,
1995 p->name, p->len,
1996 proc_map_files_instantiate,
1997 task, p->file);
1998 if (ret)
1999 break;
2000 filp->f_pos++;
2001 fput(p->file);
2002 }
2003 for (; i < nr_files; i++) {
2004 /*
2005 * In case of error don't forget
2006 * to put rest of file refs.
2007 */
2008 p = flex_array_get(fa, i);
2009 fput(p->file);
2010 }
2011 if (fa)
2012 flex_array_free(fa);
2013 mmput(mm);
2014 }
2015 }
2016
2017 out_put_task:
2018 put_task_struct(task);
2019 out:
2020 return ret;
2021 }
2022
2023 static const struct file_operations proc_map_files_operations = {
2024 .read = generic_read_dir,
2025 .readdir = proc_map_files_readdir,
2026 .llseek = default_llseek,
2027 };
2028
2029 #endif /* CONFIG_CHECKPOINT_RESTORE */
2030
2031 static struct dentry *proc_pident_instantiate(struct inode *dir,
2032 struct dentry *dentry, struct task_struct *task, const void *ptr)
2033 {
2034 const struct pid_entry *p = ptr;
2035 struct inode *inode;
2036 struct proc_inode *ei;
2037 struct dentry *error = ERR_PTR(-ENOENT);
2038
2039 inode = proc_pid_make_inode(dir->i_sb, task);
2040 if (!inode)
2041 goto out;
2042
2043 ei = PROC_I(inode);
2044 inode->i_mode = p->mode;
2045 if (S_ISDIR(inode->i_mode))
2046 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2047 if (p->iop)
2048 inode->i_op = p->iop;
2049 if (p->fop)
2050 inode->i_fop = p->fop;
2051 ei->op = p->op;
2052 d_set_d_op(dentry, &pid_dentry_operations);
2053 d_add(dentry, inode);
2054 /* Close the race of the process dying before we return the dentry */
2055 if (pid_revalidate(dentry, 0))
2056 error = NULL;
2057 out:
2058 return error;
2059 }
2060
2061 static struct dentry *proc_pident_lookup(struct inode *dir,
2062 struct dentry *dentry,
2063 const struct pid_entry *ents,
2064 unsigned int nents)
2065 {
2066 struct dentry *error;
2067 struct task_struct *task = get_proc_task(dir);
2068 const struct pid_entry *p, *last;
2069
2070 error = ERR_PTR(-ENOENT);
2071
2072 if (!task)
2073 goto out_no_task;
2074
2075 /*
2076 * Yes, it does not scale. And it should not. Don't add
2077 * new entries into /proc/<tgid>/ without very good reasons.
2078 */
2079 last = &ents[nents - 1];
2080 for (p = ents; p <= last; p++) {
2081 if (p->len != dentry->d_name.len)
2082 continue;
2083 if (!memcmp(dentry->d_name.name, p->name, p->len))
2084 break;
2085 }
2086 if (p > last)
2087 goto out;
2088
2089 error = proc_pident_instantiate(dir, dentry, task, p);
2090 out:
2091 put_task_struct(task);
2092 out_no_task:
2093 return error;
2094 }
2095
2096 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2097 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2098 {
2099 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2100 proc_pident_instantiate, task, p);
2101 }
2102
2103 static int proc_pident_readdir(struct file *filp,
2104 void *dirent, filldir_t filldir,
2105 const struct pid_entry *ents, unsigned int nents)
2106 {
2107 int i;
2108 struct dentry *dentry = filp->f_path.dentry;
2109 struct inode *inode = dentry->d_inode;
2110 struct task_struct *task = get_proc_task(inode);
2111 const struct pid_entry *p, *last;
2112 ino_t ino;
2113 int ret;
2114
2115 ret = -ENOENT;
2116 if (!task)
2117 goto out_no_task;
2118
2119 ret = 0;
2120 i = filp->f_pos;
2121 switch (i) {
2122 case 0:
2123 ino = inode->i_ino;
2124 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2125 goto out;
2126 i++;
2127 filp->f_pos++;
2128 /* fall through */
2129 case 1:
2130 ino = parent_ino(dentry);
2131 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2132 goto out;
2133 i++;
2134 filp->f_pos++;
2135 /* fall through */
2136 default:
2137 i -= 2;
2138 if (i >= nents) {
2139 ret = 1;
2140 goto out;
2141 }
2142 p = ents + i;
2143 last = &ents[nents - 1];
2144 while (p <= last) {
2145 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2146 goto out;
2147 filp->f_pos++;
2148 p++;
2149 }
2150 }
2151
2152 ret = 1;
2153 out:
2154 put_task_struct(task);
2155 out_no_task:
2156 return ret;
2157 }
2158
2159 #ifdef CONFIG_SECURITY
2160 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2161 size_t count, loff_t *ppos)
2162 {
2163 struct inode * inode = file->f_path.dentry->d_inode;
2164 char *p = NULL;
2165 ssize_t length;
2166 struct task_struct *task = get_proc_task(inode);
2167
2168 if (!task)
2169 return -ESRCH;
2170
2171 length = security_getprocattr(task,
2172 (char*)file->f_path.dentry->d_name.name,
2173 &p);
2174 put_task_struct(task);
2175 if (length > 0)
2176 length = simple_read_from_buffer(buf, count, ppos, p, length);
2177 kfree(p);
2178 return length;
2179 }
2180
2181 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2182 size_t count, loff_t *ppos)
2183 {
2184 struct inode * inode = file->f_path.dentry->d_inode;
2185 char *page;
2186 ssize_t length;
2187 struct task_struct *task = get_proc_task(inode);
2188
2189 length = -ESRCH;
2190 if (!task)
2191 goto out_no_task;
2192 if (count > PAGE_SIZE)
2193 count = PAGE_SIZE;
2194
2195 /* No partial writes. */
2196 length = -EINVAL;
2197 if (*ppos != 0)
2198 goto out;
2199
2200 length = -ENOMEM;
2201 page = (char*)__get_free_page(GFP_TEMPORARY);
2202 if (!page)
2203 goto out;
2204
2205 length = -EFAULT;
2206 if (copy_from_user(page, buf, count))
2207 goto out_free;
2208
2209 /* Guard against adverse ptrace interaction */
2210 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2211 if (length < 0)
2212 goto out_free;
2213
2214 length = security_setprocattr(task,
2215 (char*)file->f_path.dentry->d_name.name,
2216 (void*)page, count);
2217 mutex_unlock(&task->signal->cred_guard_mutex);
2218 out_free:
2219 free_page((unsigned long) page);
2220 out:
2221 put_task_struct(task);
2222 out_no_task:
2223 return length;
2224 }
2225
2226 static const struct file_operations proc_pid_attr_operations = {
2227 .read = proc_pid_attr_read,
2228 .write = proc_pid_attr_write,
2229 .llseek = generic_file_llseek,
2230 };
2231
2232 static const struct pid_entry attr_dir_stuff[] = {
2233 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2234 REG("prev", S_IRUGO, proc_pid_attr_operations),
2235 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2236 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2237 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2238 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2239 };
2240
2241 static int proc_attr_dir_readdir(struct file * filp,
2242 void * dirent, filldir_t filldir)
2243 {
2244 return proc_pident_readdir(filp,dirent,filldir,
2245 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2246 }
2247
2248 static const struct file_operations proc_attr_dir_operations = {
2249 .read = generic_read_dir,
2250 .readdir = proc_attr_dir_readdir,
2251 .llseek = default_llseek,
2252 };
2253
2254 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2255 struct dentry *dentry, unsigned int flags)
2256 {
2257 return proc_pident_lookup(dir, dentry,
2258 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2259 }
2260
2261 static const struct inode_operations proc_attr_dir_inode_operations = {
2262 .lookup = proc_attr_dir_lookup,
2263 .getattr = pid_getattr,
2264 .setattr = proc_setattr,
2265 };
2266
2267 #endif
2268
2269 #ifdef CONFIG_ELF_CORE
2270 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2271 size_t count, loff_t *ppos)
2272 {
2273 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2274 struct mm_struct *mm;
2275 char buffer[PROC_NUMBUF];
2276 size_t len;
2277 int ret;
2278
2279 if (!task)
2280 return -ESRCH;
2281
2282 ret = 0;
2283 mm = get_task_mm(task);
2284 if (mm) {
2285 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2286 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2287 MMF_DUMP_FILTER_SHIFT));
2288 mmput(mm);
2289 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2290 }
2291
2292 put_task_struct(task);
2293
2294 return ret;
2295 }
2296
2297 static ssize_t proc_coredump_filter_write(struct file *file,
2298 const char __user *buf,
2299 size_t count,
2300 loff_t *ppos)
2301 {
2302 struct task_struct *task;
2303 struct mm_struct *mm;
2304 char buffer[PROC_NUMBUF], *end;
2305 unsigned int val;
2306 int ret;
2307 int i;
2308 unsigned long mask;
2309
2310 ret = -EFAULT;
2311 memset(buffer, 0, sizeof(buffer));
2312 if (count > sizeof(buffer) - 1)
2313 count = sizeof(buffer) - 1;
2314 if (copy_from_user(buffer, buf, count))
2315 goto out_no_task;
2316
2317 ret = -EINVAL;
2318 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2319 if (*end == '\n')
2320 end++;
2321 if (end - buffer == 0)
2322 goto out_no_task;
2323
2324 ret = -ESRCH;
2325 task = get_proc_task(file->f_dentry->d_inode);
2326 if (!task)
2327 goto out_no_task;
2328
2329 ret = end - buffer;
2330 mm = get_task_mm(task);
2331 if (!mm)
2332 goto out_no_mm;
2333
2334 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2335 if (val & mask)
2336 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2337 else
2338 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2339 }
2340
2341 mmput(mm);
2342 out_no_mm:
2343 put_task_struct(task);
2344 out_no_task:
2345 return ret;
2346 }
2347
2348 static const struct file_operations proc_coredump_filter_operations = {
2349 .read = proc_coredump_filter_read,
2350 .write = proc_coredump_filter_write,
2351 .llseek = generic_file_llseek,
2352 };
2353 #endif
2354
2355 /*
2356 * /proc/self:
2357 */
2358 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2359 int buflen)
2360 {
2361 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2362 pid_t tgid = task_tgid_nr_ns(current, ns);
2363 char tmp[PROC_NUMBUF];
2364 if (!tgid)
2365 return -ENOENT;
2366 sprintf(tmp, "%d", tgid);
2367 return vfs_readlink(dentry,buffer,buflen,tmp);
2368 }
2369
2370 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2371 {
2372 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2373 pid_t tgid = task_tgid_nr_ns(current, ns);
2374 char *name = ERR_PTR(-ENOENT);
2375 if (tgid) {
2376 name = __getname();
2377 if (!name)
2378 name = ERR_PTR(-ENOMEM);
2379 else
2380 sprintf(name, "%d", tgid);
2381 }
2382 nd_set_link(nd, name);
2383 return NULL;
2384 }
2385
2386 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2387 void *cookie)
2388 {
2389 char *s = nd_get_link(nd);
2390 if (!IS_ERR(s))
2391 __putname(s);
2392 }
2393
2394 static const struct inode_operations proc_self_inode_operations = {
2395 .readlink = proc_self_readlink,
2396 .follow_link = proc_self_follow_link,
2397 .put_link = proc_self_put_link,
2398 };
2399
2400 /*
2401 * proc base
2402 *
2403 * These are the directory entries in the root directory of /proc
2404 * that properly belong to the /proc filesystem, as they describe
2405 * describe something that is process related.
2406 */
2407 static const struct pid_entry proc_base_stuff[] = {
2408 NOD("self", S_IFLNK|S_IRWXUGO,
2409 &proc_self_inode_operations, NULL, {}),
2410 };
2411
2412 static struct dentry *proc_base_instantiate(struct inode *dir,
2413 struct dentry *dentry, struct task_struct *task, const void *ptr)
2414 {
2415 const struct pid_entry *p = ptr;
2416 struct inode *inode;
2417 struct proc_inode *ei;
2418 struct dentry *error;
2419
2420 /* Allocate the inode */
2421 error = ERR_PTR(-ENOMEM);
2422 inode = new_inode(dir->i_sb);
2423 if (!inode)
2424 goto out;
2425
2426 /* Initialize the inode */
2427 ei = PROC_I(inode);
2428 inode->i_ino = get_next_ino();
2429 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2430
2431 /*
2432 * grab the reference to the task.
2433 */
2434 ei->pid = get_task_pid(task, PIDTYPE_PID);
2435 if (!ei->pid)
2436 goto out_iput;
2437
2438 inode->i_mode = p->mode;
2439 if (S_ISDIR(inode->i_mode))
2440 set_nlink(inode, 2);
2441 if (S_ISLNK(inode->i_mode))
2442 inode->i_size = 64;
2443 if (p->iop)
2444 inode->i_op = p->iop;
2445 if (p->fop)
2446 inode->i_fop = p->fop;
2447 ei->op = p->op;
2448 d_add(dentry, inode);
2449 error = NULL;
2450 out:
2451 return error;
2452 out_iput:
2453 iput(inode);
2454 goto out;
2455 }
2456
2457 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2458 {
2459 struct dentry *error;
2460 struct task_struct *task = get_proc_task(dir);
2461 const struct pid_entry *p, *last;
2462
2463 error = ERR_PTR(-ENOENT);
2464
2465 if (!task)
2466 goto out_no_task;
2467
2468 /* Lookup the directory entry */
2469 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2470 for (p = proc_base_stuff; p <= last; p++) {
2471 if (p->len != dentry->d_name.len)
2472 continue;
2473 if (!memcmp(dentry->d_name.name, p->name, p->len))
2474 break;
2475 }
2476 if (p > last)
2477 goto out;
2478
2479 error = proc_base_instantiate(dir, dentry, task, p);
2480
2481 out:
2482 put_task_struct(task);
2483 out_no_task:
2484 return error;
2485 }
2486
2487 static int proc_base_fill_cache(struct file *filp, void *dirent,
2488 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2489 {
2490 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2491 proc_base_instantiate, task, p);
2492 }
2493
2494 #ifdef CONFIG_TASK_IO_ACCOUNTING
2495 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2496 {
2497 struct task_io_accounting acct = task->ioac;
2498 unsigned long flags;
2499 int result;
2500
2501 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2502 if (result)
2503 return result;
2504
2505 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2506 result = -EACCES;
2507 goto out_unlock;
2508 }
2509
2510 if (whole && lock_task_sighand(task, &flags)) {
2511 struct task_struct *t = task;
2512
2513 task_io_accounting_add(&acct, &task->signal->ioac);
2514 while_each_thread(task, t)
2515 task_io_accounting_add(&acct, &t->ioac);
2516
2517 unlock_task_sighand(task, &flags);
2518 }
2519 result = sprintf(buffer,
2520 "rchar: %llu\n"
2521 "wchar: %llu\n"
2522 "syscr: %llu\n"
2523 "syscw: %llu\n"
2524 "read_bytes: %llu\n"
2525 "write_bytes: %llu\n"
2526 "cancelled_write_bytes: %llu\n",
2527 (unsigned long long)acct.rchar,
2528 (unsigned long long)acct.wchar,
2529 (unsigned long long)acct.syscr,
2530 (unsigned long long)acct.syscw,
2531 (unsigned long long)acct.read_bytes,
2532 (unsigned long long)acct.write_bytes,
2533 (unsigned long long)acct.cancelled_write_bytes);
2534 out_unlock:
2535 mutex_unlock(&task->signal->cred_guard_mutex);
2536 return result;
2537 }
2538
2539 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2540 {
2541 return do_io_accounting(task, buffer, 0);
2542 }
2543
2544 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2545 {
2546 return do_io_accounting(task, buffer, 1);
2547 }
2548 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2549
2550 #ifdef CONFIG_USER_NS
2551 static int proc_id_map_open(struct inode *inode, struct file *file,
2552 struct seq_operations *seq_ops)
2553 {
2554 struct user_namespace *ns = NULL;
2555 struct task_struct *task;
2556 struct seq_file *seq;
2557 int ret = -EINVAL;
2558
2559 task = get_proc_task(inode);
2560 if (task) {
2561 rcu_read_lock();
2562 ns = get_user_ns(task_cred_xxx(task, user_ns));
2563 rcu_read_unlock();
2564 put_task_struct(task);
2565 }
2566 if (!ns)
2567 goto err;
2568
2569 ret = seq_open(file, seq_ops);
2570 if (ret)
2571 goto err_put_ns;
2572
2573 seq = file->private_data;
2574 seq->private = ns;
2575
2576 return 0;
2577 err_put_ns:
2578 put_user_ns(ns);
2579 err:
2580 return ret;
2581 }
2582
2583 static int proc_id_map_release(struct inode *inode, struct file *file)
2584 {
2585 struct seq_file *seq = file->private_data;
2586 struct user_namespace *ns = seq->private;
2587 put_user_ns(ns);
2588 return seq_release(inode, file);
2589 }
2590
2591 static int proc_uid_map_open(struct inode *inode, struct file *file)
2592 {
2593 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2594 }
2595
2596 static int proc_gid_map_open(struct inode *inode, struct file *file)
2597 {
2598 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2599 }
2600
2601 static const struct file_operations proc_uid_map_operations = {
2602 .open = proc_uid_map_open,
2603 .write = proc_uid_map_write,
2604 .read = seq_read,
2605 .llseek = seq_lseek,
2606 .release = proc_id_map_release,
2607 };
2608
2609 static const struct file_operations proc_gid_map_operations = {
2610 .open = proc_gid_map_open,
2611 .write = proc_gid_map_write,
2612 .read = seq_read,
2613 .llseek = seq_lseek,
2614 .release = proc_id_map_release,
2615 };
2616 #endif /* CONFIG_USER_NS */
2617
2618 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2619 struct pid *pid, struct task_struct *task)
2620 {
2621 int err = lock_trace(task);
2622 if (!err) {
2623 seq_printf(m, "%08x\n", task->personality);
2624 unlock_trace(task);
2625 }
2626 return err;
2627 }
2628
2629 /*
2630 * Thread groups
2631 */
2632 static const struct file_operations proc_task_operations;
2633 static const struct inode_operations proc_task_inode_operations;
2634
2635 static const struct pid_entry tgid_base_stuff[] = {
2636 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2637 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2638 #ifdef CONFIG_CHECKPOINT_RESTORE
2639 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2640 #endif
2641 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2642 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2643 #ifdef CONFIG_NET
2644 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2645 #endif
2646 REG("environ", S_IRUSR, proc_environ_operations),
2647 INF("auxv", S_IRUSR, proc_pid_auxv),
2648 ONE("status", S_IRUGO, proc_pid_status),
2649 ONE("personality", S_IRUGO, proc_pid_personality),
2650 INF("limits", S_IRUGO, proc_pid_limits),
2651 #ifdef CONFIG_SCHED_DEBUG
2652 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2653 #endif
2654 #ifdef CONFIG_SCHED_AUTOGROUP
2655 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2656 #endif
2657 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2658 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2659 INF("syscall", S_IRUGO, proc_pid_syscall),
2660 #endif
2661 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2662 ONE("stat", S_IRUGO, proc_tgid_stat),
2663 ONE("statm", S_IRUGO, proc_pid_statm),
2664 REG("maps", S_IRUGO, proc_pid_maps_operations),
2665 #ifdef CONFIG_NUMA
2666 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2667 #endif
2668 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2669 LNK("cwd", proc_cwd_link),
2670 LNK("root", proc_root_link),
2671 LNK("exe", proc_exe_link),
2672 REG("mounts", S_IRUGO, proc_mounts_operations),
2673 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2674 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2675 #ifdef CONFIG_PROC_PAGE_MONITOR
2676 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2677 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2678 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2679 #endif
2680 #ifdef CONFIG_SECURITY
2681 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2682 #endif
2683 #ifdef CONFIG_KALLSYMS
2684 INF("wchan", S_IRUGO, proc_pid_wchan),
2685 #endif
2686 #ifdef CONFIG_STACKTRACE
2687 ONE("stack", S_IRUGO, proc_pid_stack),
2688 #endif
2689 #ifdef CONFIG_SCHEDSTATS
2690 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2691 #endif
2692 #ifdef CONFIG_LATENCYTOP
2693 REG("latency", S_IRUGO, proc_lstats_operations),
2694 #endif
2695 #ifdef CONFIG_PROC_PID_CPUSET
2696 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2697 #endif
2698 #ifdef CONFIG_CGROUPS
2699 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2700 #endif
2701 INF("oom_score", S_IRUGO, proc_oom_score),
2702 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
2703 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2704 #ifdef CONFIG_AUDITSYSCALL
2705 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2706 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2707 #endif
2708 #ifdef CONFIG_FAULT_INJECTION
2709 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2710 #endif
2711 #ifdef CONFIG_ELF_CORE
2712 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2713 #endif
2714 #ifdef CONFIG_TASK_IO_ACCOUNTING
2715 INF("io", S_IRUSR, proc_tgid_io_accounting),
2716 #endif
2717 #ifdef CONFIG_HARDWALL
2718 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2719 #endif
2720 #ifdef CONFIG_USER_NS
2721 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2722 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2723 #endif
2724 };
2725
2726 static int proc_tgid_base_readdir(struct file * filp,
2727 void * dirent, filldir_t filldir)
2728 {
2729 return proc_pident_readdir(filp,dirent,filldir,
2730 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2731 }
2732
2733 static const struct file_operations proc_tgid_base_operations = {
2734 .read = generic_read_dir,
2735 .readdir = proc_tgid_base_readdir,
2736 .llseek = default_llseek,
2737 };
2738
2739 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2740 {
2741 return proc_pident_lookup(dir, dentry,
2742 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2743 }
2744
2745 static const struct inode_operations proc_tgid_base_inode_operations = {
2746 .lookup = proc_tgid_base_lookup,
2747 .getattr = pid_getattr,
2748 .setattr = proc_setattr,
2749 .permission = proc_pid_permission,
2750 };
2751
2752 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2753 {
2754 struct dentry *dentry, *leader, *dir;
2755 char buf[PROC_NUMBUF];
2756 struct qstr name;
2757
2758 name.name = buf;
2759 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2760 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2761 if (dentry) {
2762 shrink_dcache_parent(dentry);
2763 d_drop(dentry);
2764 dput(dentry);
2765 }
2766
2767 name.name = buf;
2768 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2769 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2770 if (!leader)
2771 goto out;
2772
2773 name.name = "task";
2774 name.len = strlen(name.name);
2775 dir = d_hash_and_lookup(leader, &name);
2776 if (!dir)
2777 goto out_put_leader;
2778
2779 name.name = buf;
2780 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2781 dentry = d_hash_and_lookup(dir, &name);
2782 if (dentry) {
2783 shrink_dcache_parent(dentry);
2784 d_drop(dentry);
2785 dput(dentry);
2786 }
2787
2788 dput(dir);
2789 out_put_leader:
2790 dput(leader);
2791 out:
2792 return;
2793 }
2794
2795 /**
2796 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2797 * @task: task that should be flushed.
2798 *
2799 * When flushing dentries from proc, one needs to flush them from global
2800 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2801 * in. This call is supposed to do all of this job.
2802 *
2803 * Looks in the dcache for
2804 * /proc/@pid
2805 * /proc/@tgid/task/@pid
2806 * if either directory is present flushes it and all of it'ts children
2807 * from the dcache.
2808 *
2809 * It is safe and reasonable to cache /proc entries for a task until
2810 * that task exits. After that they just clog up the dcache with
2811 * useless entries, possibly causing useful dcache entries to be
2812 * flushed instead. This routine is proved to flush those useless
2813 * dcache entries at process exit time.
2814 *
2815 * NOTE: This routine is just an optimization so it does not guarantee
2816 * that no dcache entries will exist at process exit time it
2817 * just makes it very unlikely that any will persist.
2818 */
2819
2820 void proc_flush_task(struct task_struct *task)
2821 {
2822 int i;
2823 struct pid *pid, *tgid;
2824 struct upid *upid;
2825
2826 pid = task_pid(task);
2827 tgid = task_tgid(task);
2828
2829 for (i = 0; i <= pid->level; i++) {
2830 upid = &pid->numbers[i];
2831 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2832 tgid->numbers[i].nr);
2833 }
2834
2835 upid = &pid->numbers[pid->level];
2836 if (upid->nr == 1)
2837 pid_ns_release_proc(upid->ns);
2838 }
2839
2840 static struct dentry *proc_pid_instantiate(struct inode *dir,
2841 struct dentry * dentry,
2842 struct task_struct *task, const void *ptr)
2843 {
2844 struct dentry *error = ERR_PTR(-ENOENT);
2845 struct inode *inode;
2846
2847 inode = proc_pid_make_inode(dir->i_sb, task);
2848 if (!inode)
2849 goto out;
2850
2851 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2852 inode->i_op = &proc_tgid_base_inode_operations;
2853 inode->i_fop = &proc_tgid_base_operations;
2854 inode->i_flags|=S_IMMUTABLE;
2855
2856 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2857 ARRAY_SIZE(tgid_base_stuff)));
2858
2859 d_set_d_op(dentry, &pid_dentry_operations);
2860
2861 d_add(dentry, inode);
2862 /* Close the race of the process dying before we return the dentry */
2863 if (pid_revalidate(dentry, 0))
2864 error = NULL;
2865 out:
2866 return error;
2867 }
2868
2869 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2870 {
2871 struct dentry *result;
2872 struct task_struct *task;
2873 unsigned tgid;
2874 struct pid_namespace *ns;
2875
2876 result = proc_base_lookup(dir, dentry);
2877 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2878 goto out;
2879
2880 tgid = name_to_int(dentry);
2881 if (tgid == ~0U)
2882 goto out;
2883
2884 ns = dentry->d_sb->s_fs_info;
2885 rcu_read_lock();
2886 task = find_task_by_pid_ns(tgid, ns);
2887 if (task)
2888 get_task_struct(task);
2889 rcu_read_unlock();
2890 if (!task)
2891 goto out;
2892
2893 result = proc_pid_instantiate(dir, dentry, task, NULL);
2894 put_task_struct(task);
2895 out:
2896 return result;
2897 }
2898
2899 /*
2900 * Find the first task with tgid >= tgid
2901 *
2902 */
2903 struct tgid_iter {
2904 unsigned int tgid;
2905 struct task_struct *task;
2906 };
2907 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2908 {
2909 struct pid *pid;
2910
2911 if (iter.task)
2912 put_task_struct(iter.task);
2913 rcu_read_lock();
2914 retry:
2915 iter.task = NULL;
2916 pid = find_ge_pid(iter.tgid, ns);
2917 if (pid) {
2918 iter.tgid = pid_nr_ns(pid, ns);
2919 iter.task = pid_task(pid, PIDTYPE_PID);
2920 /* What we to know is if the pid we have find is the
2921 * pid of a thread_group_leader. Testing for task
2922 * being a thread_group_leader is the obvious thing
2923 * todo but there is a window when it fails, due to
2924 * the pid transfer logic in de_thread.
2925 *
2926 * So we perform the straight forward test of seeing
2927 * if the pid we have found is the pid of a thread
2928 * group leader, and don't worry if the task we have
2929 * found doesn't happen to be a thread group leader.
2930 * As we don't care in the case of readdir.
2931 */
2932 if (!iter.task || !has_group_leader_pid(iter.task)) {
2933 iter.tgid += 1;
2934 goto retry;
2935 }
2936 get_task_struct(iter.task);
2937 }
2938 rcu_read_unlock();
2939 return iter;
2940 }
2941
2942 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2943
2944 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2945 struct tgid_iter iter)
2946 {
2947 char name[PROC_NUMBUF];
2948 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2949 return proc_fill_cache(filp, dirent, filldir, name, len,
2950 proc_pid_instantiate, iter.task, NULL);
2951 }
2952
2953 static int fake_filldir(void *buf, const char *name, int namelen,
2954 loff_t offset, u64 ino, unsigned d_type)
2955 {
2956 return 0;
2957 }
2958
2959 /* for the /proc/ directory itself, after non-process stuff has been done */
2960 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2961 {
2962 unsigned int nr;
2963 struct task_struct *reaper;
2964 struct tgid_iter iter;
2965 struct pid_namespace *ns;
2966 filldir_t __filldir;
2967
2968 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2969 goto out_no_task;
2970 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2971
2972 reaper = get_proc_task(filp->f_path.dentry->d_inode);
2973 if (!reaper)
2974 goto out_no_task;
2975
2976 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2977 const struct pid_entry *p = &proc_base_stuff[nr];
2978 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2979 goto out;
2980 }
2981
2982 ns = filp->f_dentry->d_sb->s_fs_info;
2983 iter.task = NULL;
2984 iter.tgid = filp->f_pos - TGID_OFFSET;
2985 for (iter = next_tgid(ns, iter);
2986 iter.task;
2987 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2988 if (has_pid_permissions(ns, iter.task, 2))
2989 __filldir = filldir;
2990 else
2991 __filldir = fake_filldir;
2992
2993 filp->f_pos = iter.tgid + TGID_OFFSET;
2994 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2995 put_task_struct(iter.task);
2996 goto out;
2997 }
2998 }
2999 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3000 out:
3001 put_task_struct(reaper);
3002 out_no_task:
3003 return 0;
3004 }
3005
3006 /*
3007 * Tasks
3008 */
3009 static const struct pid_entry tid_base_stuff[] = {
3010 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3011 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3012 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3013 REG("environ", S_IRUSR, proc_environ_operations),
3014 INF("auxv", S_IRUSR, proc_pid_auxv),
3015 ONE("status", S_IRUGO, proc_pid_status),
3016 ONE("personality", S_IRUGO, proc_pid_personality),
3017 INF("limits", S_IRUGO, proc_pid_limits),
3018 #ifdef CONFIG_SCHED_DEBUG
3019 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3020 #endif
3021 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3022 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3023 INF("syscall", S_IRUGO, proc_pid_syscall),
3024 #endif
3025 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3026 ONE("stat", S_IRUGO, proc_tid_stat),
3027 ONE("statm", S_IRUGO, proc_pid_statm),
3028 REG("maps", S_IRUGO, proc_tid_maps_operations),
3029 #ifdef CONFIG_CHECKPOINT_RESTORE
3030 REG("children", S_IRUGO, proc_tid_children_operations),
3031 #endif
3032 #ifdef CONFIG_NUMA
3033 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3034 #endif
3035 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3036 LNK("cwd", proc_cwd_link),
3037 LNK("root", proc_root_link),
3038 LNK("exe", proc_exe_link),
3039 REG("mounts", S_IRUGO, proc_mounts_operations),
3040 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3041 #ifdef CONFIG_PROC_PAGE_MONITOR
3042 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3043 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3044 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3045 #endif
3046 #ifdef CONFIG_SECURITY
3047 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3048 #endif
3049 #ifdef CONFIG_KALLSYMS
3050 INF("wchan", S_IRUGO, proc_pid_wchan),
3051 #endif
3052 #ifdef CONFIG_STACKTRACE
3053 ONE("stack", S_IRUGO, proc_pid_stack),
3054 #endif
3055 #ifdef CONFIG_SCHEDSTATS
3056 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3057 #endif
3058 #ifdef CONFIG_LATENCYTOP
3059 REG("latency", S_IRUGO, proc_lstats_operations),
3060 #endif
3061 #ifdef CONFIG_PROC_PID_CPUSET
3062 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3063 #endif
3064 #ifdef CONFIG_CGROUPS
3065 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3066 #endif
3067 INF("oom_score", S_IRUGO, proc_oom_score),
3068 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3069 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3070 #ifdef CONFIG_AUDITSYSCALL
3071 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3072 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3073 #endif
3074 #ifdef CONFIG_FAULT_INJECTION
3075 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3076 #endif
3077 #ifdef CONFIG_TASK_IO_ACCOUNTING
3078 INF("io", S_IRUSR, proc_tid_io_accounting),
3079 #endif
3080 #ifdef CONFIG_HARDWALL
3081 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3082 #endif
3083 #ifdef CONFIG_USER_NS
3084 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3085 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3086 #endif
3087 };
3088
3089 static int proc_tid_base_readdir(struct file * filp,
3090 void * dirent, filldir_t filldir)
3091 {
3092 return proc_pident_readdir(filp,dirent,filldir,
3093 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3094 }
3095
3096 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3097 {
3098 return proc_pident_lookup(dir, dentry,
3099 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3100 }
3101
3102 static const struct file_operations proc_tid_base_operations = {
3103 .read = generic_read_dir,
3104 .readdir = proc_tid_base_readdir,
3105 .llseek = default_llseek,
3106 };
3107
3108 static const struct inode_operations proc_tid_base_inode_operations = {
3109 .lookup = proc_tid_base_lookup,
3110 .getattr = pid_getattr,
3111 .setattr = proc_setattr,
3112 };
3113
3114 static struct dentry *proc_task_instantiate(struct inode *dir,
3115 struct dentry *dentry, struct task_struct *task, const void *ptr)
3116 {
3117 struct dentry *error = ERR_PTR(-ENOENT);
3118 struct inode *inode;
3119 inode = proc_pid_make_inode(dir->i_sb, task);
3120
3121 if (!inode)
3122 goto out;
3123 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3124 inode->i_op = &proc_tid_base_inode_operations;
3125 inode->i_fop = &proc_tid_base_operations;
3126 inode->i_flags|=S_IMMUTABLE;
3127
3128 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3129 ARRAY_SIZE(tid_base_stuff)));
3130
3131 d_set_d_op(dentry, &pid_dentry_operations);
3132
3133 d_add(dentry, inode);
3134 /* Close the race of the process dying before we return the dentry */
3135 if (pid_revalidate(dentry, 0))
3136 error = NULL;
3137 out:
3138 return error;
3139 }
3140
3141 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3142 {
3143 struct dentry *result = ERR_PTR(-ENOENT);
3144 struct task_struct *task;
3145 struct task_struct *leader = get_proc_task(dir);
3146 unsigned tid;
3147 struct pid_namespace *ns;
3148
3149 if (!leader)
3150 goto out_no_task;
3151
3152 tid = name_to_int(dentry);
3153 if (tid == ~0U)
3154 goto out;
3155
3156 ns = dentry->d_sb->s_fs_info;
3157 rcu_read_lock();
3158 task = find_task_by_pid_ns(tid, ns);
3159 if (task)
3160 get_task_struct(task);
3161 rcu_read_unlock();
3162 if (!task)
3163 goto out;
3164 if (!same_thread_group(leader, task))
3165 goto out_drop_task;
3166
3167 result = proc_task_instantiate(dir, dentry, task, NULL);
3168 out_drop_task:
3169 put_task_struct(task);
3170 out:
3171 put_task_struct(leader);
3172 out_no_task:
3173 return result;
3174 }
3175
3176 /*
3177 * Find the first tid of a thread group to return to user space.
3178 *
3179 * Usually this is just the thread group leader, but if the users
3180 * buffer was too small or there was a seek into the middle of the
3181 * directory we have more work todo.
3182 *
3183 * In the case of a short read we start with find_task_by_pid.
3184 *
3185 * In the case of a seek we start with the leader and walk nr
3186 * threads past it.
3187 */
3188 static struct task_struct *first_tid(struct task_struct *leader,
3189 int tid, int nr, struct pid_namespace *ns)
3190 {
3191 struct task_struct *pos;
3192
3193 rcu_read_lock();
3194 /* Attempt to start with the pid of a thread */
3195 if (tid && (nr > 0)) {
3196 pos = find_task_by_pid_ns(tid, ns);
3197 if (pos && (pos->group_leader == leader))
3198 goto found;
3199 }
3200
3201 /* If nr exceeds the number of threads there is nothing todo */
3202 pos = NULL;
3203 if (nr && nr >= get_nr_threads(leader))
3204 goto out;
3205
3206 /* If we haven't found our starting place yet start
3207 * with the leader and walk nr threads forward.
3208 */
3209 for (pos = leader; nr > 0; --nr) {
3210 pos = next_thread(pos);
3211 if (pos == leader) {
3212 pos = NULL;
3213 goto out;
3214 }
3215 }
3216 found:
3217 get_task_struct(pos);
3218 out:
3219 rcu_read_unlock();
3220 return pos;
3221 }
3222
3223 /*
3224 * Find the next thread in the thread list.
3225 * Return NULL if there is an error or no next thread.
3226 *
3227 * The reference to the input task_struct is released.
3228 */
3229 static struct task_struct *next_tid(struct task_struct *start)
3230 {
3231 struct task_struct *pos = NULL;
3232 rcu_read_lock();
3233 if (pid_alive(start)) {
3234 pos = next_thread(start);
3235 if (thread_group_leader(pos))
3236 pos = NULL;
3237 else
3238 get_task_struct(pos);
3239 }
3240 rcu_read_unlock();
3241 put_task_struct(start);
3242 return pos;
3243 }
3244
3245 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3246 struct task_struct *task, int tid)
3247 {
3248 char name[PROC_NUMBUF];
3249 int len = snprintf(name, sizeof(name), "%d", tid);
3250 return proc_fill_cache(filp, dirent, filldir, name, len,
3251 proc_task_instantiate, task, NULL);
3252 }
3253
3254 /* for the /proc/TGID/task/ directories */
3255 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3256 {
3257 struct dentry *dentry = filp->f_path.dentry;
3258 struct inode *inode = dentry->d_inode;
3259 struct task_struct *leader = NULL;
3260 struct task_struct *task;
3261 int retval = -ENOENT;
3262 ino_t ino;
3263 int tid;
3264 struct pid_namespace *ns;
3265
3266 task = get_proc_task(inode);
3267 if (!task)
3268 goto out_no_task;
3269 rcu_read_lock();
3270 if (pid_alive(task)) {
3271 leader = task->group_leader;
3272 get_task_struct(leader);
3273 }
3274 rcu_read_unlock();
3275 put_task_struct(task);
3276 if (!leader)
3277 goto out_no_task;
3278 retval = 0;
3279
3280 switch ((unsigned long)filp->f_pos) {
3281 case 0:
3282 ino = inode->i_ino;
3283 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3284 goto out;
3285 filp->f_pos++;
3286 /* fall through */
3287 case 1:
3288 ino = parent_ino(dentry);
3289 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3290 goto out;
3291 filp->f_pos++;
3292 /* fall through */
3293 }
3294
3295 /* f_version caches the tgid value that the last readdir call couldn't
3296 * return. lseek aka telldir automagically resets f_version to 0.
3297 */
3298 ns = filp->f_dentry->d_sb->s_fs_info;
3299 tid = (int)filp->f_version;
3300 filp->f_version = 0;
3301 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3302 task;
3303 task = next_tid(task), filp->f_pos++) {
3304 tid = task_pid_nr_ns(task, ns);
3305 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3306 /* returning this tgid failed, save it as the first
3307 * pid for the next readir call */
3308 filp->f_version = (u64)tid;
3309 put_task_struct(task);
3310 break;
3311 }
3312 }
3313 out:
3314 put_task_struct(leader);
3315 out_no_task:
3316 return retval;
3317 }
3318
3319 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3320 {
3321 struct inode *inode = dentry->d_inode;
3322 struct task_struct *p = get_proc_task(inode);
3323 generic_fillattr(inode, stat);
3324
3325 if (p) {
3326 stat->nlink += get_nr_threads(p);
3327 put_task_struct(p);
3328 }
3329
3330 return 0;
3331 }
3332
3333 static const struct inode_operations proc_task_inode_operations = {
3334 .lookup = proc_task_lookup,
3335 .getattr = proc_task_getattr,
3336 .setattr = proc_setattr,
3337 .permission = proc_pid_permission,
3338 };
3339
3340 static const struct file_operations proc_task_operations = {
3341 .read = generic_read_dir,
3342 .readdir = proc_task_readdir,
3343 .llseek = default_llseek,
3344 };
This page took 0.201481 seconds and 5 git commands to generate.