Merge tag 'kvm-3.7-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93 #include "fd.h"
94
95 /* NOTE:
96 * Implementing inode permission operations in /proc is almost
97 * certainly an error. Permission checks need to happen during
98 * each system call not at open time. The reason is that most of
99 * what we wish to check for permissions in /proc varies at runtime.
100 *
101 * The classic example of a problem is opening file descriptors
102 * in /proc for a task before it execs a suid executable.
103 */
104
105 struct pid_entry {
106 char *name;
107 int len;
108 umode_t mode;
109 const struct inode_operations *iop;
110 const struct file_operations *fop;
111 union proc_op op;
112 };
113
114 #define NOD(NAME, MODE, IOP, FOP, OP) { \
115 .name = (NAME), \
116 .len = sizeof(NAME) - 1, \
117 .mode = MODE, \
118 .iop = IOP, \
119 .fop = FOP, \
120 .op = OP, \
121 }
122
123 #define DIR(NAME, MODE, iops, fops) \
124 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
125 #define LNK(NAME, get_link) \
126 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
127 &proc_pid_link_inode_operations, NULL, \
128 { .proc_get_link = get_link } )
129 #define REG(NAME, MODE, fops) \
130 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
131 #define INF(NAME, MODE, read) \
132 NOD(NAME, (S_IFREG|(MODE)), \
133 NULL, &proc_info_file_operations, \
134 { .proc_read = read } )
135 #define ONE(NAME, MODE, show) \
136 NOD(NAME, (S_IFREG|(MODE)), \
137 NULL, &proc_single_file_operations, \
138 { .proc_show = show } )
139
140 /*
141 * Count the number of hardlinks for the pid_entry table, excluding the .
142 * and .. links.
143 */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 unsigned int n)
146 {
147 unsigned int i;
148 unsigned int count;
149
150 count = 0;
151 for (i = 0; i < n; ++i) {
152 if (S_ISDIR(entries[i].mode))
153 ++count;
154 }
155
156 return count;
157 }
158
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 int result = -ENOENT;
162
163 task_lock(task);
164 if (task->fs) {
165 get_fs_root(task->fs, root);
166 result = 0;
167 }
168 task_unlock(task);
169 return result;
170 }
171
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 struct task_struct *task = get_proc_task(dentry->d_inode);
175 int result = -ENOENT;
176
177 if (task) {
178 task_lock(task);
179 if (task->fs) {
180 get_fs_pwd(task->fs, path);
181 result = 0;
182 }
183 task_unlock(task);
184 put_task_struct(task);
185 }
186 return result;
187 }
188
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 struct task_struct *task = get_proc_task(dentry->d_inode);
192 int result = -ENOENT;
193
194 if (task) {
195 result = get_task_root(task, path);
196 put_task_struct(task);
197 }
198 return result;
199 }
200
201 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
202 {
203 int res = 0;
204 unsigned int len;
205 struct mm_struct *mm = get_task_mm(task);
206 if (!mm)
207 goto out;
208 if (!mm->arg_end)
209 goto out_mm; /* Shh! No looking before we're done */
210
211 len = mm->arg_end - mm->arg_start;
212
213 if (len > PAGE_SIZE)
214 len = PAGE_SIZE;
215
216 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
217
218 // If the nul at the end of args has been overwritten, then
219 // assume application is using setproctitle(3).
220 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
221 len = strnlen(buffer, res);
222 if (len < res) {
223 res = len;
224 } else {
225 len = mm->env_end - mm->env_start;
226 if (len > PAGE_SIZE - res)
227 len = PAGE_SIZE - res;
228 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
229 res = strnlen(buffer, res);
230 }
231 }
232 out_mm:
233 mmput(mm);
234 out:
235 return res;
236 }
237
238 static int proc_pid_auxv(struct task_struct *task, char *buffer)
239 {
240 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
241 int res = PTR_ERR(mm);
242 if (mm && !IS_ERR(mm)) {
243 unsigned int nwords = 0;
244 do {
245 nwords += 2;
246 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
247 res = nwords * sizeof(mm->saved_auxv[0]);
248 if (res > PAGE_SIZE)
249 res = PAGE_SIZE;
250 memcpy(buffer, mm->saved_auxv, res);
251 mmput(mm);
252 }
253 return res;
254 }
255
256
257 #ifdef CONFIG_KALLSYMS
258 /*
259 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
260 * Returns the resolved symbol. If that fails, simply return the address.
261 */
262 static int proc_pid_wchan(struct task_struct *task, char *buffer)
263 {
264 unsigned long wchan;
265 char symname[KSYM_NAME_LEN];
266
267 wchan = get_wchan(task);
268
269 if (lookup_symbol_name(wchan, symname) < 0)
270 if (!ptrace_may_access(task, PTRACE_MODE_READ))
271 return 0;
272 else
273 return sprintf(buffer, "%lu", wchan);
274 else
275 return sprintf(buffer, "%s", symname);
276 }
277 #endif /* CONFIG_KALLSYMS */
278
279 static int lock_trace(struct task_struct *task)
280 {
281 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
282 if (err)
283 return err;
284 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
285 mutex_unlock(&task->signal->cred_guard_mutex);
286 return -EPERM;
287 }
288 return 0;
289 }
290
291 static void unlock_trace(struct task_struct *task)
292 {
293 mutex_unlock(&task->signal->cred_guard_mutex);
294 }
295
296 #ifdef CONFIG_STACKTRACE
297
298 #define MAX_STACK_TRACE_DEPTH 64
299
300 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
301 struct pid *pid, struct task_struct *task)
302 {
303 struct stack_trace trace;
304 unsigned long *entries;
305 int err;
306 int i;
307
308 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
309 if (!entries)
310 return -ENOMEM;
311
312 trace.nr_entries = 0;
313 trace.max_entries = MAX_STACK_TRACE_DEPTH;
314 trace.entries = entries;
315 trace.skip = 0;
316
317 err = lock_trace(task);
318 if (!err) {
319 save_stack_trace_tsk(task, &trace);
320
321 for (i = 0; i < trace.nr_entries; i++) {
322 seq_printf(m, "[<%pK>] %pS\n",
323 (void *)entries[i], (void *)entries[i]);
324 }
325 unlock_trace(task);
326 }
327 kfree(entries);
328
329 return err;
330 }
331 #endif
332
333 #ifdef CONFIG_SCHEDSTATS
334 /*
335 * Provides /proc/PID/schedstat
336 */
337 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
338 {
339 return sprintf(buffer, "%llu %llu %lu\n",
340 (unsigned long long)task->se.sum_exec_runtime,
341 (unsigned long long)task->sched_info.run_delay,
342 task->sched_info.pcount);
343 }
344 #endif
345
346 #ifdef CONFIG_LATENCYTOP
347 static int lstats_show_proc(struct seq_file *m, void *v)
348 {
349 int i;
350 struct inode *inode = m->private;
351 struct task_struct *task = get_proc_task(inode);
352
353 if (!task)
354 return -ESRCH;
355 seq_puts(m, "Latency Top version : v0.1\n");
356 for (i = 0; i < 32; i++) {
357 struct latency_record *lr = &task->latency_record[i];
358 if (lr->backtrace[0]) {
359 int q;
360 seq_printf(m, "%i %li %li",
361 lr->count, lr->time, lr->max);
362 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
363 unsigned long bt = lr->backtrace[q];
364 if (!bt)
365 break;
366 if (bt == ULONG_MAX)
367 break;
368 seq_printf(m, " %ps", (void *)bt);
369 }
370 seq_putc(m, '\n');
371 }
372
373 }
374 put_task_struct(task);
375 return 0;
376 }
377
378 static int lstats_open(struct inode *inode, struct file *file)
379 {
380 return single_open(file, lstats_show_proc, inode);
381 }
382
383 static ssize_t lstats_write(struct file *file, const char __user *buf,
384 size_t count, loff_t *offs)
385 {
386 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
387
388 if (!task)
389 return -ESRCH;
390 clear_all_latency_tracing(task);
391 put_task_struct(task);
392
393 return count;
394 }
395
396 static const struct file_operations proc_lstats_operations = {
397 .open = lstats_open,
398 .read = seq_read,
399 .write = lstats_write,
400 .llseek = seq_lseek,
401 .release = single_release,
402 };
403
404 #endif
405
406 static int proc_oom_score(struct task_struct *task, char *buffer)
407 {
408 unsigned long totalpages = totalram_pages + total_swap_pages;
409 unsigned long points = 0;
410
411 read_lock(&tasklist_lock);
412 if (pid_alive(task))
413 points = oom_badness(task, NULL, NULL, totalpages) *
414 1000 / totalpages;
415 read_unlock(&tasklist_lock);
416 return sprintf(buffer, "%lu\n", points);
417 }
418
419 struct limit_names {
420 char *name;
421 char *unit;
422 };
423
424 static const struct limit_names lnames[RLIM_NLIMITS] = {
425 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
426 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
427 [RLIMIT_DATA] = {"Max data size", "bytes"},
428 [RLIMIT_STACK] = {"Max stack size", "bytes"},
429 [RLIMIT_CORE] = {"Max core file size", "bytes"},
430 [RLIMIT_RSS] = {"Max resident set", "bytes"},
431 [RLIMIT_NPROC] = {"Max processes", "processes"},
432 [RLIMIT_NOFILE] = {"Max open files", "files"},
433 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
434 [RLIMIT_AS] = {"Max address space", "bytes"},
435 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
436 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
437 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
438 [RLIMIT_NICE] = {"Max nice priority", NULL},
439 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
440 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
441 };
442
443 /* Display limits for a process */
444 static int proc_pid_limits(struct task_struct *task, char *buffer)
445 {
446 unsigned int i;
447 int count = 0;
448 unsigned long flags;
449 char *bufptr = buffer;
450
451 struct rlimit rlim[RLIM_NLIMITS];
452
453 if (!lock_task_sighand(task, &flags))
454 return 0;
455 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
456 unlock_task_sighand(task, &flags);
457
458 /*
459 * print the file header
460 */
461 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
462 "Limit", "Soft Limit", "Hard Limit", "Units");
463
464 for (i = 0; i < RLIM_NLIMITS; i++) {
465 if (rlim[i].rlim_cur == RLIM_INFINITY)
466 count += sprintf(&bufptr[count], "%-25s %-20s ",
467 lnames[i].name, "unlimited");
468 else
469 count += sprintf(&bufptr[count], "%-25s %-20lu ",
470 lnames[i].name, rlim[i].rlim_cur);
471
472 if (rlim[i].rlim_max == RLIM_INFINITY)
473 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
474 else
475 count += sprintf(&bufptr[count], "%-20lu ",
476 rlim[i].rlim_max);
477
478 if (lnames[i].unit)
479 count += sprintf(&bufptr[count], "%-10s\n",
480 lnames[i].unit);
481 else
482 count += sprintf(&bufptr[count], "\n");
483 }
484
485 return count;
486 }
487
488 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
489 static int proc_pid_syscall(struct task_struct *task, char *buffer)
490 {
491 long nr;
492 unsigned long args[6], sp, pc;
493 int res = lock_trace(task);
494 if (res)
495 return res;
496
497 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
498 res = sprintf(buffer, "running\n");
499 else if (nr < 0)
500 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
501 else
502 res = sprintf(buffer,
503 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
504 nr,
505 args[0], args[1], args[2], args[3], args[4], args[5],
506 sp, pc);
507 unlock_trace(task);
508 return res;
509 }
510 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
511
512 /************************************************************************/
513 /* Here the fs part begins */
514 /************************************************************************/
515
516 /* permission checks */
517 static int proc_fd_access_allowed(struct inode *inode)
518 {
519 struct task_struct *task;
520 int allowed = 0;
521 /* Allow access to a task's file descriptors if it is us or we
522 * may use ptrace attach to the process and find out that
523 * information.
524 */
525 task = get_proc_task(inode);
526 if (task) {
527 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
528 put_task_struct(task);
529 }
530 return allowed;
531 }
532
533 int proc_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535 int error;
536 struct inode *inode = dentry->d_inode;
537
538 if (attr->ia_valid & ATTR_MODE)
539 return -EPERM;
540
541 error = inode_change_ok(inode, attr);
542 if (error)
543 return error;
544
545 if ((attr->ia_valid & ATTR_SIZE) &&
546 attr->ia_size != i_size_read(inode)) {
547 error = vmtruncate(inode, attr->ia_size);
548 if (error)
549 return error;
550 }
551
552 setattr_copy(inode, attr);
553 mark_inode_dirty(inode);
554 return 0;
555 }
556
557 /*
558 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
559 * or euid/egid (for hide_pid_min=2)?
560 */
561 static bool has_pid_permissions(struct pid_namespace *pid,
562 struct task_struct *task,
563 int hide_pid_min)
564 {
565 if (pid->hide_pid < hide_pid_min)
566 return true;
567 if (in_group_p(pid->pid_gid))
568 return true;
569 return ptrace_may_access(task, PTRACE_MODE_READ);
570 }
571
572
573 static int proc_pid_permission(struct inode *inode, int mask)
574 {
575 struct pid_namespace *pid = inode->i_sb->s_fs_info;
576 struct task_struct *task;
577 bool has_perms;
578
579 task = get_proc_task(inode);
580 if (!task)
581 return -ESRCH;
582 has_perms = has_pid_permissions(pid, task, 1);
583 put_task_struct(task);
584
585 if (!has_perms) {
586 if (pid->hide_pid == 2) {
587 /*
588 * Let's make getdents(), stat(), and open()
589 * consistent with each other. If a process
590 * may not stat() a file, it shouldn't be seen
591 * in procfs at all.
592 */
593 return -ENOENT;
594 }
595
596 return -EPERM;
597 }
598 return generic_permission(inode, mask);
599 }
600
601
602
603 static const struct inode_operations proc_def_inode_operations = {
604 .setattr = proc_setattr,
605 };
606
607 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
608
609 static ssize_t proc_info_read(struct file * file, char __user * buf,
610 size_t count, loff_t *ppos)
611 {
612 struct inode * inode = file->f_path.dentry->d_inode;
613 unsigned long page;
614 ssize_t length;
615 struct task_struct *task = get_proc_task(inode);
616
617 length = -ESRCH;
618 if (!task)
619 goto out_no_task;
620
621 if (count > PROC_BLOCK_SIZE)
622 count = PROC_BLOCK_SIZE;
623
624 length = -ENOMEM;
625 if (!(page = __get_free_page(GFP_TEMPORARY)))
626 goto out;
627
628 length = PROC_I(inode)->op.proc_read(task, (char*)page);
629
630 if (length >= 0)
631 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
632 free_page(page);
633 out:
634 put_task_struct(task);
635 out_no_task:
636 return length;
637 }
638
639 static const struct file_operations proc_info_file_operations = {
640 .read = proc_info_read,
641 .llseek = generic_file_llseek,
642 };
643
644 static int proc_single_show(struct seq_file *m, void *v)
645 {
646 struct inode *inode = m->private;
647 struct pid_namespace *ns;
648 struct pid *pid;
649 struct task_struct *task;
650 int ret;
651
652 ns = inode->i_sb->s_fs_info;
653 pid = proc_pid(inode);
654 task = get_pid_task(pid, PIDTYPE_PID);
655 if (!task)
656 return -ESRCH;
657
658 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
659
660 put_task_struct(task);
661 return ret;
662 }
663
664 static int proc_single_open(struct inode *inode, struct file *filp)
665 {
666 return single_open(filp, proc_single_show, inode);
667 }
668
669 static const struct file_operations proc_single_file_operations = {
670 .open = proc_single_open,
671 .read = seq_read,
672 .llseek = seq_lseek,
673 .release = single_release,
674 };
675
676 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
677 {
678 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
679 struct mm_struct *mm;
680
681 if (!task)
682 return -ESRCH;
683
684 mm = mm_access(task, mode);
685 put_task_struct(task);
686
687 if (IS_ERR(mm))
688 return PTR_ERR(mm);
689
690 if (mm) {
691 /* ensure this mm_struct can't be freed */
692 atomic_inc(&mm->mm_count);
693 /* but do not pin its memory */
694 mmput(mm);
695 }
696
697 file->private_data = mm;
698
699 return 0;
700 }
701
702 static int mem_open(struct inode *inode, struct file *file)
703 {
704 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
705
706 /* OK to pass negative loff_t, we can catch out-of-range */
707 file->f_mode |= FMODE_UNSIGNED_OFFSET;
708
709 return ret;
710 }
711
712 static ssize_t mem_rw(struct file *file, char __user *buf,
713 size_t count, loff_t *ppos, int write)
714 {
715 struct mm_struct *mm = file->private_data;
716 unsigned long addr = *ppos;
717 ssize_t copied;
718 char *page;
719
720 if (!mm)
721 return 0;
722
723 page = (char *)__get_free_page(GFP_TEMPORARY);
724 if (!page)
725 return -ENOMEM;
726
727 copied = 0;
728 if (!atomic_inc_not_zero(&mm->mm_users))
729 goto free;
730
731 while (count > 0) {
732 int this_len = min_t(int, count, PAGE_SIZE);
733
734 if (write && copy_from_user(page, buf, this_len)) {
735 copied = -EFAULT;
736 break;
737 }
738
739 this_len = access_remote_vm(mm, addr, page, this_len, write);
740 if (!this_len) {
741 if (!copied)
742 copied = -EIO;
743 break;
744 }
745
746 if (!write && copy_to_user(buf, page, this_len)) {
747 copied = -EFAULT;
748 break;
749 }
750
751 buf += this_len;
752 addr += this_len;
753 copied += this_len;
754 count -= this_len;
755 }
756 *ppos = addr;
757
758 mmput(mm);
759 free:
760 free_page((unsigned long) page);
761 return copied;
762 }
763
764 static ssize_t mem_read(struct file *file, char __user *buf,
765 size_t count, loff_t *ppos)
766 {
767 return mem_rw(file, buf, count, ppos, 0);
768 }
769
770 static ssize_t mem_write(struct file *file, const char __user *buf,
771 size_t count, loff_t *ppos)
772 {
773 return mem_rw(file, (char __user*)buf, count, ppos, 1);
774 }
775
776 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
777 {
778 switch (orig) {
779 case 0:
780 file->f_pos = offset;
781 break;
782 case 1:
783 file->f_pos += offset;
784 break;
785 default:
786 return -EINVAL;
787 }
788 force_successful_syscall_return();
789 return file->f_pos;
790 }
791
792 static int mem_release(struct inode *inode, struct file *file)
793 {
794 struct mm_struct *mm = file->private_data;
795 if (mm)
796 mmdrop(mm);
797 return 0;
798 }
799
800 static const struct file_operations proc_mem_operations = {
801 .llseek = mem_lseek,
802 .read = mem_read,
803 .write = mem_write,
804 .open = mem_open,
805 .release = mem_release,
806 };
807
808 static int environ_open(struct inode *inode, struct file *file)
809 {
810 return __mem_open(inode, file, PTRACE_MODE_READ);
811 }
812
813 static ssize_t environ_read(struct file *file, char __user *buf,
814 size_t count, loff_t *ppos)
815 {
816 char *page;
817 unsigned long src = *ppos;
818 int ret = 0;
819 struct mm_struct *mm = file->private_data;
820
821 if (!mm)
822 return 0;
823
824 page = (char *)__get_free_page(GFP_TEMPORARY);
825 if (!page)
826 return -ENOMEM;
827
828 ret = 0;
829 if (!atomic_inc_not_zero(&mm->mm_users))
830 goto free;
831 while (count > 0) {
832 size_t this_len, max_len;
833 int retval;
834
835 if (src >= (mm->env_end - mm->env_start))
836 break;
837
838 this_len = mm->env_end - (mm->env_start + src);
839
840 max_len = min_t(size_t, PAGE_SIZE, count);
841 this_len = min(max_len, this_len);
842
843 retval = access_remote_vm(mm, (mm->env_start + src),
844 page, this_len, 0);
845
846 if (retval <= 0) {
847 ret = retval;
848 break;
849 }
850
851 if (copy_to_user(buf, page, retval)) {
852 ret = -EFAULT;
853 break;
854 }
855
856 ret += retval;
857 src += retval;
858 buf += retval;
859 count -= retval;
860 }
861 *ppos = src;
862 mmput(mm);
863
864 free:
865 free_page((unsigned long) page);
866 return ret;
867 }
868
869 static const struct file_operations proc_environ_operations = {
870 .open = environ_open,
871 .read = environ_read,
872 .llseek = generic_file_llseek,
873 .release = mem_release,
874 };
875
876 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
877 size_t count, loff_t *ppos)
878 {
879 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
880 char buffer[PROC_NUMBUF];
881 int oom_score_adj = OOM_SCORE_ADJ_MIN;
882 unsigned long flags;
883 size_t len;
884
885 if (!task)
886 return -ESRCH;
887 if (lock_task_sighand(task, &flags)) {
888 oom_score_adj = task->signal->oom_score_adj;
889 unlock_task_sighand(task, &flags);
890 }
891 put_task_struct(task);
892 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
893 return simple_read_from_buffer(buf, count, ppos, buffer, len);
894 }
895
896 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
897 size_t count, loff_t *ppos)
898 {
899 struct task_struct *task;
900 char buffer[PROC_NUMBUF];
901 unsigned long flags;
902 int oom_score_adj;
903 int err;
904
905 memset(buffer, 0, sizeof(buffer));
906 if (count > sizeof(buffer) - 1)
907 count = sizeof(buffer) - 1;
908 if (copy_from_user(buffer, buf, count)) {
909 err = -EFAULT;
910 goto out;
911 }
912
913 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
914 if (err)
915 goto out;
916 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
917 oom_score_adj > OOM_SCORE_ADJ_MAX) {
918 err = -EINVAL;
919 goto out;
920 }
921
922 task = get_proc_task(file->f_path.dentry->d_inode);
923 if (!task) {
924 err = -ESRCH;
925 goto out;
926 }
927
928 task_lock(task);
929 if (!task->mm) {
930 err = -EINVAL;
931 goto err_task_lock;
932 }
933
934 if (!lock_task_sighand(task, &flags)) {
935 err = -ESRCH;
936 goto err_task_lock;
937 }
938
939 if (oom_score_adj < task->signal->oom_score_adj_min &&
940 !capable(CAP_SYS_RESOURCE)) {
941 err = -EACCES;
942 goto err_sighand;
943 }
944
945 task->signal->oom_score_adj = oom_score_adj;
946 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
947 task->signal->oom_score_adj_min = oom_score_adj;
948 trace_oom_score_adj_update(task);
949
950 err_sighand:
951 unlock_task_sighand(task, &flags);
952 err_task_lock:
953 task_unlock(task);
954 put_task_struct(task);
955 out:
956 return err < 0 ? err : count;
957 }
958
959 static const struct file_operations proc_oom_score_adj_operations = {
960 .read = oom_score_adj_read,
961 .write = oom_score_adj_write,
962 .llseek = default_llseek,
963 };
964
965 #ifdef CONFIG_AUDITSYSCALL
966 #define TMPBUFLEN 21
967 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
968 size_t count, loff_t *ppos)
969 {
970 struct inode * inode = file->f_path.dentry->d_inode;
971 struct task_struct *task = get_proc_task(inode);
972 ssize_t length;
973 char tmpbuf[TMPBUFLEN];
974
975 if (!task)
976 return -ESRCH;
977 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
978 from_kuid(file->f_cred->user_ns,
979 audit_get_loginuid(task)));
980 put_task_struct(task);
981 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
982 }
983
984 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
985 size_t count, loff_t *ppos)
986 {
987 struct inode * inode = file->f_path.dentry->d_inode;
988 char *page, *tmp;
989 ssize_t length;
990 uid_t loginuid;
991 kuid_t kloginuid;
992
993 rcu_read_lock();
994 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
995 rcu_read_unlock();
996 return -EPERM;
997 }
998 rcu_read_unlock();
999
1000 if (count >= PAGE_SIZE)
1001 count = PAGE_SIZE - 1;
1002
1003 if (*ppos != 0) {
1004 /* No partial writes. */
1005 return -EINVAL;
1006 }
1007 page = (char*)__get_free_page(GFP_TEMPORARY);
1008 if (!page)
1009 return -ENOMEM;
1010 length = -EFAULT;
1011 if (copy_from_user(page, buf, count))
1012 goto out_free_page;
1013
1014 page[count] = '\0';
1015 loginuid = simple_strtoul(page, &tmp, 10);
1016 if (tmp == page) {
1017 length = -EINVAL;
1018 goto out_free_page;
1019
1020 }
1021 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1022 if (!uid_valid(kloginuid)) {
1023 length = -EINVAL;
1024 goto out_free_page;
1025 }
1026
1027 length = audit_set_loginuid(kloginuid);
1028 if (likely(length == 0))
1029 length = count;
1030
1031 out_free_page:
1032 free_page((unsigned long) page);
1033 return length;
1034 }
1035
1036 static const struct file_operations proc_loginuid_operations = {
1037 .read = proc_loginuid_read,
1038 .write = proc_loginuid_write,
1039 .llseek = generic_file_llseek,
1040 };
1041
1042 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1043 size_t count, loff_t *ppos)
1044 {
1045 struct inode * inode = file->f_path.dentry->d_inode;
1046 struct task_struct *task = get_proc_task(inode);
1047 ssize_t length;
1048 char tmpbuf[TMPBUFLEN];
1049
1050 if (!task)
1051 return -ESRCH;
1052 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1053 audit_get_sessionid(task));
1054 put_task_struct(task);
1055 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1056 }
1057
1058 static const struct file_operations proc_sessionid_operations = {
1059 .read = proc_sessionid_read,
1060 .llseek = generic_file_llseek,
1061 };
1062 #endif
1063
1064 #ifdef CONFIG_FAULT_INJECTION
1065 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1066 size_t count, loff_t *ppos)
1067 {
1068 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1069 char buffer[PROC_NUMBUF];
1070 size_t len;
1071 int make_it_fail;
1072
1073 if (!task)
1074 return -ESRCH;
1075 make_it_fail = task->make_it_fail;
1076 put_task_struct(task);
1077
1078 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1079
1080 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1081 }
1082
1083 static ssize_t proc_fault_inject_write(struct file * file,
1084 const char __user * buf, size_t count, loff_t *ppos)
1085 {
1086 struct task_struct *task;
1087 char buffer[PROC_NUMBUF], *end;
1088 int make_it_fail;
1089
1090 if (!capable(CAP_SYS_RESOURCE))
1091 return -EPERM;
1092 memset(buffer, 0, sizeof(buffer));
1093 if (count > sizeof(buffer) - 1)
1094 count = sizeof(buffer) - 1;
1095 if (copy_from_user(buffer, buf, count))
1096 return -EFAULT;
1097 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1098 if (*end)
1099 return -EINVAL;
1100 task = get_proc_task(file->f_dentry->d_inode);
1101 if (!task)
1102 return -ESRCH;
1103 task->make_it_fail = make_it_fail;
1104 put_task_struct(task);
1105
1106 return count;
1107 }
1108
1109 static const struct file_operations proc_fault_inject_operations = {
1110 .read = proc_fault_inject_read,
1111 .write = proc_fault_inject_write,
1112 .llseek = generic_file_llseek,
1113 };
1114 #endif
1115
1116
1117 #ifdef CONFIG_SCHED_DEBUG
1118 /*
1119 * Print out various scheduling related per-task fields:
1120 */
1121 static int sched_show(struct seq_file *m, void *v)
1122 {
1123 struct inode *inode = m->private;
1124 struct task_struct *p;
1125
1126 p = get_proc_task(inode);
1127 if (!p)
1128 return -ESRCH;
1129 proc_sched_show_task(p, m);
1130
1131 put_task_struct(p);
1132
1133 return 0;
1134 }
1135
1136 static ssize_t
1137 sched_write(struct file *file, const char __user *buf,
1138 size_t count, loff_t *offset)
1139 {
1140 struct inode *inode = file->f_path.dentry->d_inode;
1141 struct task_struct *p;
1142
1143 p = get_proc_task(inode);
1144 if (!p)
1145 return -ESRCH;
1146 proc_sched_set_task(p);
1147
1148 put_task_struct(p);
1149
1150 return count;
1151 }
1152
1153 static int sched_open(struct inode *inode, struct file *filp)
1154 {
1155 return single_open(filp, sched_show, inode);
1156 }
1157
1158 static const struct file_operations proc_pid_sched_operations = {
1159 .open = sched_open,
1160 .read = seq_read,
1161 .write = sched_write,
1162 .llseek = seq_lseek,
1163 .release = single_release,
1164 };
1165
1166 #endif
1167
1168 #ifdef CONFIG_SCHED_AUTOGROUP
1169 /*
1170 * Print out autogroup related information:
1171 */
1172 static int sched_autogroup_show(struct seq_file *m, void *v)
1173 {
1174 struct inode *inode = m->private;
1175 struct task_struct *p;
1176
1177 p = get_proc_task(inode);
1178 if (!p)
1179 return -ESRCH;
1180 proc_sched_autogroup_show_task(p, m);
1181
1182 put_task_struct(p);
1183
1184 return 0;
1185 }
1186
1187 static ssize_t
1188 sched_autogroup_write(struct file *file, const char __user *buf,
1189 size_t count, loff_t *offset)
1190 {
1191 struct inode *inode = file->f_path.dentry->d_inode;
1192 struct task_struct *p;
1193 char buffer[PROC_NUMBUF];
1194 int nice;
1195 int err;
1196
1197 memset(buffer, 0, sizeof(buffer));
1198 if (count > sizeof(buffer) - 1)
1199 count = sizeof(buffer) - 1;
1200 if (copy_from_user(buffer, buf, count))
1201 return -EFAULT;
1202
1203 err = kstrtoint(strstrip(buffer), 0, &nice);
1204 if (err < 0)
1205 return err;
1206
1207 p = get_proc_task(inode);
1208 if (!p)
1209 return -ESRCH;
1210
1211 err = proc_sched_autogroup_set_nice(p, nice);
1212 if (err)
1213 count = err;
1214
1215 put_task_struct(p);
1216
1217 return count;
1218 }
1219
1220 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1221 {
1222 int ret;
1223
1224 ret = single_open(filp, sched_autogroup_show, NULL);
1225 if (!ret) {
1226 struct seq_file *m = filp->private_data;
1227
1228 m->private = inode;
1229 }
1230 return ret;
1231 }
1232
1233 static const struct file_operations proc_pid_sched_autogroup_operations = {
1234 .open = sched_autogroup_open,
1235 .read = seq_read,
1236 .write = sched_autogroup_write,
1237 .llseek = seq_lseek,
1238 .release = single_release,
1239 };
1240
1241 #endif /* CONFIG_SCHED_AUTOGROUP */
1242
1243 static ssize_t comm_write(struct file *file, const char __user *buf,
1244 size_t count, loff_t *offset)
1245 {
1246 struct inode *inode = file->f_path.dentry->d_inode;
1247 struct task_struct *p;
1248 char buffer[TASK_COMM_LEN];
1249
1250 memset(buffer, 0, sizeof(buffer));
1251 if (count > sizeof(buffer) - 1)
1252 count = sizeof(buffer) - 1;
1253 if (copy_from_user(buffer, buf, count))
1254 return -EFAULT;
1255
1256 p = get_proc_task(inode);
1257 if (!p)
1258 return -ESRCH;
1259
1260 if (same_thread_group(current, p))
1261 set_task_comm(p, buffer);
1262 else
1263 count = -EINVAL;
1264
1265 put_task_struct(p);
1266
1267 return count;
1268 }
1269
1270 static int comm_show(struct seq_file *m, void *v)
1271 {
1272 struct inode *inode = m->private;
1273 struct task_struct *p;
1274
1275 p = get_proc_task(inode);
1276 if (!p)
1277 return -ESRCH;
1278
1279 task_lock(p);
1280 seq_printf(m, "%s\n", p->comm);
1281 task_unlock(p);
1282
1283 put_task_struct(p);
1284
1285 return 0;
1286 }
1287
1288 static int comm_open(struct inode *inode, struct file *filp)
1289 {
1290 return single_open(filp, comm_show, inode);
1291 }
1292
1293 static const struct file_operations proc_pid_set_comm_operations = {
1294 .open = comm_open,
1295 .read = seq_read,
1296 .write = comm_write,
1297 .llseek = seq_lseek,
1298 .release = single_release,
1299 };
1300
1301 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1302 {
1303 struct task_struct *task;
1304 struct mm_struct *mm;
1305 struct file *exe_file;
1306
1307 task = get_proc_task(dentry->d_inode);
1308 if (!task)
1309 return -ENOENT;
1310 mm = get_task_mm(task);
1311 put_task_struct(task);
1312 if (!mm)
1313 return -ENOENT;
1314 exe_file = get_mm_exe_file(mm);
1315 mmput(mm);
1316 if (exe_file) {
1317 *exe_path = exe_file->f_path;
1318 path_get(&exe_file->f_path);
1319 fput(exe_file);
1320 return 0;
1321 } else
1322 return -ENOENT;
1323 }
1324
1325 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1326 {
1327 struct inode *inode = dentry->d_inode;
1328 struct path path;
1329 int error = -EACCES;
1330
1331 /* Are we allowed to snoop on the tasks file descriptors? */
1332 if (!proc_fd_access_allowed(inode))
1333 goto out;
1334
1335 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1336 if (error)
1337 goto out;
1338
1339 nd_jump_link(nd, &path);
1340 return NULL;
1341 out:
1342 return ERR_PTR(error);
1343 }
1344
1345 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1346 {
1347 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1348 char *pathname;
1349 int len;
1350
1351 if (!tmp)
1352 return -ENOMEM;
1353
1354 pathname = d_path(path, tmp, PAGE_SIZE);
1355 len = PTR_ERR(pathname);
1356 if (IS_ERR(pathname))
1357 goto out;
1358 len = tmp + PAGE_SIZE - 1 - pathname;
1359
1360 if (len > buflen)
1361 len = buflen;
1362 if (copy_to_user(buffer, pathname, len))
1363 len = -EFAULT;
1364 out:
1365 free_page((unsigned long)tmp);
1366 return len;
1367 }
1368
1369 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1370 {
1371 int error = -EACCES;
1372 struct inode *inode = dentry->d_inode;
1373 struct path path;
1374
1375 /* Are we allowed to snoop on the tasks file descriptors? */
1376 if (!proc_fd_access_allowed(inode))
1377 goto out;
1378
1379 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1380 if (error)
1381 goto out;
1382
1383 error = do_proc_readlink(&path, buffer, buflen);
1384 path_put(&path);
1385 out:
1386 return error;
1387 }
1388
1389 const struct inode_operations proc_pid_link_inode_operations = {
1390 .readlink = proc_pid_readlink,
1391 .follow_link = proc_pid_follow_link,
1392 .setattr = proc_setattr,
1393 };
1394
1395
1396 /* building an inode */
1397
1398 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1399 {
1400 struct inode * inode;
1401 struct proc_inode *ei;
1402 const struct cred *cred;
1403
1404 /* We need a new inode */
1405
1406 inode = new_inode(sb);
1407 if (!inode)
1408 goto out;
1409
1410 /* Common stuff */
1411 ei = PROC_I(inode);
1412 inode->i_ino = get_next_ino();
1413 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1414 inode->i_op = &proc_def_inode_operations;
1415
1416 /*
1417 * grab the reference to task.
1418 */
1419 ei->pid = get_task_pid(task, PIDTYPE_PID);
1420 if (!ei->pid)
1421 goto out_unlock;
1422
1423 if (task_dumpable(task)) {
1424 rcu_read_lock();
1425 cred = __task_cred(task);
1426 inode->i_uid = cred->euid;
1427 inode->i_gid = cred->egid;
1428 rcu_read_unlock();
1429 }
1430 security_task_to_inode(task, inode);
1431
1432 out:
1433 return inode;
1434
1435 out_unlock:
1436 iput(inode);
1437 return NULL;
1438 }
1439
1440 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1441 {
1442 struct inode *inode = dentry->d_inode;
1443 struct task_struct *task;
1444 const struct cred *cred;
1445 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1446
1447 generic_fillattr(inode, stat);
1448
1449 rcu_read_lock();
1450 stat->uid = GLOBAL_ROOT_UID;
1451 stat->gid = GLOBAL_ROOT_GID;
1452 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1453 if (task) {
1454 if (!has_pid_permissions(pid, task, 2)) {
1455 rcu_read_unlock();
1456 /*
1457 * This doesn't prevent learning whether PID exists,
1458 * it only makes getattr() consistent with readdir().
1459 */
1460 return -ENOENT;
1461 }
1462 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1463 task_dumpable(task)) {
1464 cred = __task_cred(task);
1465 stat->uid = cred->euid;
1466 stat->gid = cred->egid;
1467 }
1468 }
1469 rcu_read_unlock();
1470 return 0;
1471 }
1472
1473 /* dentry stuff */
1474
1475 /*
1476 * Exceptional case: normally we are not allowed to unhash a busy
1477 * directory. In this case, however, we can do it - no aliasing problems
1478 * due to the way we treat inodes.
1479 *
1480 * Rewrite the inode's ownerships here because the owning task may have
1481 * performed a setuid(), etc.
1482 *
1483 * Before the /proc/pid/status file was created the only way to read
1484 * the effective uid of a /process was to stat /proc/pid. Reading
1485 * /proc/pid/status is slow enough that procps and other packages
1486 * kept stating /proc/pid. To keep the rules in /proc simple I have
1487 * made this apply to all per process world readable and executable
1488 * directories.
1489 */
1490 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1491 {
1492 struct inode *inode;
1493 struct task_struct *task;
1494 const struct cred *cred;
1495
1496 if (flags & LOOKUP_RCU)
1497 return -ECHILD;
1498
1499 inode = dentry->d_inode;
1500 task = get_proc_task(inode);
1501
1502 if (task) {
1503 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1504 task_dumpable(task)) {
1505 rcu_read_lock();
1506 cred = __task_cred(task);
1507 inode->i_uid = cred->euid;
1508 inode->i_gid = cred->egid;
1509 rcu_read_unlock();
1510 } else {
1511 inode->i_uid = GLOBAL_ROOT_UID;
1512 inode->i_gid = GLOBAL_ROOT_GID;
1513 }
1514 inode->i_mode &= ~(S_ISUID | S_ISGID);
1515 security_task_to_inode(task, inode);
1516 put_task_struct(task);
1517 return 1;
1518 }
1519 d_drop(dentry);
1520 return 0;
1521 }
1522
1523 const struct dentry_operations pid_dentry_operations =
1524 {
1525 .d_revalidate = pid_revalidate,
1526 .d_delete = pid_delete_dentry,
1527 };
1528
1529 /* Lookups */
1530
1531 /*
1532 * Fill a directory entry.
1533 *
1534 * If possible create the dcache entry and derive our inode number and
1535 * file type from dcache entry.
1536 *
1537 * Since all of the proc inode numbers are dynamically generated, the inode
1538 * numbers do not exist until the inode is cache. This means creating the
1539 * the dcache entry in readdir is necessary to keep the inode numbers
1540 * reported by readdir in sync with the inode numbers reported
1541 * by stat.
1542 */
1543 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1544 const char *name, int len,
1545 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1546 {
1547 struct dentry *child, *dir = filp->f_path.dentry;
1548 struct inode *inode;
1549 struct qstr qname;
1550 ino_t ino = 0;
1551 unsigned type = DT_UNKNOWN;
1552
1553 qname.name = name;
1554 qname.len = len;
1555 qname.hash = full_name_hash(name, len);
1556
1557 child = d_lookup(dir, &qname);
1558 if (!child) {
1559 struct dentry *new;
1560 new = d_alloc(dir, &qname);
1561 if (new) {
1562 child = instantiate(dir->d_inode, new, task, ptr);
1563 if (child)
1564 dput(new);
1565 else
1566 child = new;
1567 }
1568 }
1569 if (!child || IS_ERR(child) || !child->d_inode)
1570 goto end_instantiate;
1571 inode = child->d_inode;
1572 if (inode) {
1573 ino = inode->i_ino;
1574 type = inode->i_mode >> 12;
1575 }
1576 dput(child);
1577 end_instantiate:
1578 if (!ino)
1579 ino = find_inode_number(dir, &qname);
1580 if (!ino)
1581 ino = 1;
1582 return filldir(dirent, name, len, filp->f_pos, ino, type);
1583 }
1584
1585 #ifdef CONFIG_CHECKPOINT_RESTORE
1586
1587 /*
1588 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1589 * which represent vma start and end addresses.
1590 */
1591 static int dname_to_vma_addr(struct dentry *dentry,
1592 unsigned long *start, unsigned long *end)
1593 {
1594 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1595 return -EINVAL;
1596
1597 return 0;
1598 }
1599
1600 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1601 {
1602 unsigned long vm_start, vm_end;
1603 bool exact_vma_exists = false;
1604 struct mm_struct *mm = NULL;
1605 struct task_struct *task;
1606 const struct cred *cred;
1607 struct inode *inode;
1608 int status = 0;
1609
1610 if (flags & LOOKUP_RCU)
1611 return -ECHILD;
1612
1613 if (!capable(CAP_SYS_ADMIN)) {
1614 status = -EACCES;
1615 goto out_notask;
1616 }
1617
1618 inode = dentry->d_inode;
1619 task = get_proc_task(inode);
1620 if (!task)
1621 goto out_notask;
1622
1623 mm = mm_access(task, PTRACE_MODE_READ);
1624 if (IS_ERR_OR_NULL(mm))
1625 goto out;
1626
1627 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1628 down_read(&mm->mmap_sem);
1629 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1630 up_read(&mm->mmap_sem);
1631 }
1632
1633 mmput(mm);
1634
1635 if (exact_vma_exists) {
1636 if (task_dumpable(task)) {
1637 rcu_read_lock();
1638 cred = __task_cred(task);
1639 inode->i_uid = cred->euid;
1640 inode->i_gid = cred->egid;
1641 rcu_read_unlock();
1642 } else {
1643 inode->i_uid = GLOBAL_ROOT_UID;
1644 inode->i_gid = GLOBAL_ROOT_GID;
1645 }
1646 security_task_to_inode(task, inode);
1647 status = 1;
1648 }
1649
1650 out:
1651 put_task_struct(task);
1652
1653 out_notask:
1654 if (status <= 0)
1655 d_drop(dentry);
1656
1657 return status;
1658 }
1659
1660 static const struct dentry_operations tid_map_files_dentry_operations = {
1661 .d_revalidate = map_files_d_revalidate,
1662 .d_delete = pid_delete_dentry,
1663 };
1664
1665 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1666 {
1667 unsigned long vm_start, vm_end;
1668 struct vm_area_struct *vma;
1669 struct task_struct *task;
1670 struct mm_struct *mm;
1671 int rc;
1672
1673 rc = -ENOENT;
1674 task = get_proc_task(dentry->d_inode);
1675 if (!task)
1676 goto out;
1677
1678 mm = get_task_mm(task);
1679 put_task_struct(task);
1680 if (!mm)
1681 goto out;
1682
1683 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1684 if (rc)
1685 goto out_mmput;
1686
1687 down_read(&mm->mmap_sem);
1688 vma = find_exact_vma(mm, vm_start, vm_end);
1689 if (vma && vma->vm_file) {
1690 *path = vma->vm_file->f_path;
1691 path_get(path);
1692 rc = 0;
1693 }
1694 up_read(&mm->mmap_sem);
1695
1696 out_mmput:
1697 mmput(mm);
1698 out:
1699 return rc;
1700 }
1701
1702 struct map_files_info {
1703 fmode_t mode;
1704 unsigned long len;
1705 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1706 };
1707
1708 static struct dentry *
1709 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1710 struct task_struct *task, const void *ptr)
1711 {
1712 fmode_t mode = (fmode_t)(unsigned long)ptr;
1713 struct proc_inode *ei;
1714 struct inode *inode;
1715
1716 inode = proc_pid_make_inode(dir->i_sb, task);
1717 if (!inode)
1718 return ERR_PTR(-ENOENT);
1719
1720 ei = PROC_I(inode);
1721 ei->op.proc_get_link = proc_map_files_get_link;
1722
1723 inode->i_op = &proc_pid_link_inode_operations;
1724 inode->i_size = 64;
1725 inode->i_mode = S_IFLNK;
1726
1727 if (mode & FMODE_READ)
1728 inode->i_mode |= S_IRUSR;
1729 if (mode & FMODE_WRITE)
1730 inode->i_mode |= S_IWUSR;
1731
1732 d_set_d_op(dentry, &tid_map_files_dentry_operations);
1733 d_add(dentry, inode);
1734
1735 return NULL;
1736 }
1737
1738 static struct dentry *proc_map_files_lookup(struct inode *dir,
1739 struct dentry *dentry, unsigned int flags)
1740 {
1741 unsigned long vm_start, vm_end;
1742 struct vm_area_struct *vma;
1743 struct task_struct *task;
1744 struct dentry *result;
1745 struct mm_struct *mm;
1746
1747 result = ERR_PTR(-EACCES);
1748 if (!capable(CAP_SYS_ADMIN))
1749 goto out;
1750
1751 result = ERR_PTR(-ENOENT);
1752 task = get_proc_task(dir);
1753 if (!task)
1754 goto out;
1755
1756 result = ERR_PTR(-EACCES);
1757 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1758 goto out_put_task;
1759
1760 result = ERR_PTR(-ENOENT);
1761 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1762 goto out_put_task;
1763
1764 mm = get_task_mm(task);
1765 if (!mm)
1766 goto out_put_task;
1767
1768 down_read(&mm->mmap_sem);
1769 vma = find_exact_vma(mm, vm_start, vm_end);
1770 if (!vma)
1771 goto out_no_vma;
1772
1773 result = proc_map_files_instantiate(dir, dentry, task,
1774 (void *)(unsigned long)vma->vm_file->f_mode);
1775
1776 out_no_vma:
1777 up_read(&mm->mmap_sem);
1778 mmput(mm);
1779 out_put_task:
1780 put_task_struct(task);
1781 out:
1782 return result;
1783 }
1784
1785 static const struct inode_operations proc_map_files_inode_operations = {
1786 .lookup = proc_map_files_lookup,
1787 .permission = proc_fd_permission,
1788 .setattr = proc_setattr,
1789 };
1790
1791 static int
1792 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1793 {
1794 struct dentry *dentry = filp->f_path.dentry;
1795 struct inode *inode = dentry->d_inode;
1796 struct vm_area_struct *vma;
1797 struct task_struct *task;
1798 struct mm_struct *mm;
1799 ino_t ino;
1800 int ret;
1801
1802 ret = -EACCES;
1803 if (!capable(CAP_SYS_ADMIN))
1804 goto out;
1805
1806 ret = -ENOENT;
1807 task = get_proc_task(inode);
1808 if (!task)
1809 goto out;
1810
1811 ret = -EACCES;
1812 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1813 goto out_put_task;
1814
1815 ret = 0;
1816 switch (filp->f_pos) {
1817 case 0:
1818 ino = inode->i_ino;
1819 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1820 goto out_put_task;
1821 filp->f_pos++;
1822 case 1:
1823 ino = parent_ino(dentry);
1824 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1825 goto out_put_task;
1826 filp->f_pos++;
1827 default:
1828 {
1829 unsigned long nr_files, pos, i;
1830 struct flex_array *fa = NULL;
1831 struct map_files_info info;
1832 struct map_files_info *p;
1833
1834 mm = get_task_mm(task);
1835 if (!mm)
1836 goto out_put_task;
1837 down_read(&mm->mmap_sem);
1838
1839 nr_files = 0;
1840
1841 /*
1842 * We need two passes here:
1843 *
1844 * 1) Collect vmas of mapped files with mmap_sem taken
1845 * 2) Release mmap_sem and instantiate entries
1846 *
1847 * otherwise we get lockdep complained, since filldir()
1848 * routine might require mmap_sem taken in might_fault().
1849 */
1850
1851 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1852 if (vma->vm_file && ++pos > filp->f_pos)
1853 nr_files++;
1854 }
1855
1856 if (nr_files) {
1857 fa = flex_array_alloc(sizeof(info), nr_files,
1858 GFP_KERNEL);
1859 if (!fa || flex_array_prealloc(fa, 0, nr_files,
1860 GFP_KERNEL)) {
1861 ret = -ENOMEM;
1862 if (fa)
1863 flex_array_free(fa);
1864 up_read(&mm->mmap_sem);
1865 mmput(mm);
1866 goto out_put_task;
1867 }
1868 for (i = 0, vma = mm->mmap, pos = 2; vma;
1869 vma = vma->vm_next) {
1870 if (!vma->vm_file)
1871 continue;
1872 if (++pos <= filp->f_pos)
1873 continue;
1874
1875 info.mode = vma->vm_file->f_mode;
1876 info.len = snprintf(info.name,
1877 sizeof(info.name), "%lx-%lx",
1878 vma->vm_start, vma->vm_end);
1879 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1880 BUG();
1881 }
1882 }
1883 up_read(&mm->mmap_sem);
1884
1885 for (i = 0; i < nr_files; i++) {
1886 p = flex_array_get(fa, i);
1887 ret = proc_fill_cache(filp, dirent, filldir,
1888 p->name, p->len,
1889 proc_map_files_instantiate,
1890 task,
1891 (void *)(unsigned long)p->mode);
1892 if (ret)
1893 break;
1894 filp->f_pos++;
1895 }
1896 if (fa)
1897 flex_array_free(fa);
1898 mmput(mm);
1899 }
1900 }
1901
1902 out_put_task:
1903 put_task_struct(task);
1904 out:
1905 return ret;
1906 }
1907
1908 static const struct file_operations proc_map_files_operations = {
1909 .read = generic_read_dir,
1910 .readdir = proc_map_files_readdir,
1911 .llseek = default_llseek,
1912 };
1913
1914 #endif /* CONFIG_CHECKPOINT_RESTORE */
1915
1916 static struct dentry *proc_pident_instantiate(struct inode *dir,
1917 struct dentry *dentry, struct task_struct *task, const void *ptr)
1918 {
1919 const struct pid_entry *p = ptr;
1920 struct inode *inode;
1921 struct proc_inode *ei;
1922 struct dentry *error = ERR_PTR(-ENOENT);
1923
1924 inode = proc_pid_make_inode(dir->i_sb, task);
1925 if (!inode)
1926 goto out;
1927
1928 ei = PROC_I(inode);
1929 inode->i_mode = p->mode;
1930 if (S_ISDIR(inode->i_mode))
1931 set_nlink(inode, 2); /* Use getattr to fix if necessary */
1932 if (p->iop)
1933 inode->i_op = p->iop;
1934 if (p->fop)
1935 inode->i_fop = p->fop;
1936 ei->op = p->op;
1937 d_set_d_op(dentry, &pid_dentry_operations);
1938 d_add(dentry, inode);
1939 /* Close the race of the process dying before we return the dentry */
1940 if (pid_revalidate(dentry, 0))
1941 error = NULL;
1942 out:
1943 return error;
1944 }
1945
1946 static struct dentry *proc_pident_lookup(struct inode *dir,
1947 struct dentry *dentry,
1948 const struct pid_entry *ents,
1949 unsigned int nents)
1950 {
1951 struct dentry *error;
1952 struct task_struct *task = get_proc_task(dir);
1953 const struct pid_entry *p, *last;
1954
1955 error = ERR_PTR(-ENOENT);
1956
1957 if (!task)
1958 goto out_no_task;
1959
1960 /*
1961 * Yes, it does not scale. And it should not. Don't add
1962 * new entries into /proc/<tgid>/ without very good reasons.
1963 */
1964 last = &ents[nents - 1];
1965 for (p = ents; p <= last; p++) {
1966 if (p->len != dentry->d_name.len)
1967 continue;
1968 if (!memcmp(dentry->d_name.name, p->name, p->len))
1969 break;
1970 }
1971 if (p > last)
1972 goto out;
1973
1974 error = proc_pident_instantiate(dir, dentry, task, p);
1975 out:
1976 put_task_struct(task);
1977 out_no_task:
1978 return error;
1979 }
1980
1981 static int proc_pident_fill_cache(struct file *filp, void *dirent,
1982 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
1983 {
1984 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
1985 proc_pident_instantiate, task, p);
1986 }
1987
1988 static int proc_pident_readdir(struct file *filp,
1989 void *dirent, filldir_t filldir,
1990 const struct pid_entry *ents, unsigned int nents)
1991 {
1992 int i;
1993 struct dentry *dentry = filp->f_path.dentry;
1994 struct inode *inode = dentry->d_inode;
1995 struct task_struct *task = get_proc_task(inode);
1996 const struct pid_entry *p, *last;
1997 ino_t ino;
1998 int ret;
1999
2000 ret = -ENOENT;
2001 if (!task)
2002 goto out_no_task;
2003
2004 ret = 0;
2005 i = filp->f_pos;
2006 switch (i) {
2007 case 0:
2008 ino = inode->i_ino;
2009 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2010 goto out;
2011 i++;
2012 filp->f_pos++;
2013 /* fall through */
2014 case 1:
2015 ino = parent_ino(dentry);
2016 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2017 goto out;
2018 i++;
2019 filp->f_pos++;
2020 /* fall through */
2021 default:
2022 i -= 2;
2023 if (i >= nents) {
2024 ret = 1;
2025 goto out;
2026 }
2027 p = ents + i;
2028 last = &ents[nents - 1];
2029 while (p <= last) {
2030 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2031 goto out;
2032 filp->f_pos++;
2033 p++;
2034 }
2035 }
2036
2037 ret = 1;
2038 out:
2039 put_task_struct(task);
2040 out_no_task:
2041 return ret;
2042 }
2043
2044 #ifdef CONFIG_SECURITY
2045 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2046 size_t count, loff_t *ppos)
2047 {
2048 struct inode * inode = file->f_path.dentry->d_inode;
2049 char *p = NULL;
2050 ssize_t length;
2051 struct task_struct *task = get_proc_task(inode);
2052
2053 if (!task)
2054 return -ESRCH;
2055
2056 length = security_getprocattr(task,
2057 (char*)file->f_path.dentry->d_name.name,
2058 &p);
2059 put_task_struct(task);
2060 if (length > 0)
2061 length = simple_read_from_buffer(buf, count, ppos, p, length);
2062 kfree(p);
2063 return length;
2064 }
2065
2066 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2067 size_t count, loff_t *ppos)
2068 {
2069 struct inode * inode = file->f_path.dentry->d_inode;
2070 char *page;
2071 ssize_t length;
2072 struct task_struct *task = get_proc_task(inode);
2073
2074 length = -ESRCH;
2075 if (!task)
2076 goto out_no_task;
2077 if (count > PAGE_SIZE)
2078 count = PAGE_SIZE;
2079
2080 /* No partial writes. */
2081 length = -EINVAL;
2082 if (*ppos != 0)
2083 goto out;
2084
2085 length = -ENOMEM;
2086 page = (char*)__get_free_page(GFP_TEMPORARY);
2087 if (!page)
2088 goto out;
2089
2090 length = -EFAULT;
2091 if (copy_from_user(page, buf, count))
2092 goto out_free;
2093
2094 /* Guard against adverse ptrace interaction */
2095 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2096 if (length < 0)
2097 goto out_free;
2098
2099 length = security_setprocattr(task,
2100 (char*)file->f_path.dentry->d_name.name,
2101 (void*)page, count);
2102 mutex_unlock(&task->signal->cred_guard_mutex);
2103 out_free:
2104 free_page((unsigned long) page);
2105 out:
2106 put_task_struct(task);
2107 out_no_task:
2108 return length;
2109 }
2110
2111 static const struct file_operations proc_pid_attr_operations = {
2112 .read = proc_pid_attr_read,
2113 .write = proc_pid_attr_write,
2114 .llseek = generic_file_llseek,
2115 };
2116
2117 static const struct pid_entry attr_dir_stuff[] = {
2118 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2119 REG("prev", S_IRUGO, proc_pid_attr_operations),
2120 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2121 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2122 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2123 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2124 };
2125
2126 static int proc_attr_dir_readdir(struct file * filp,
2127 void * dirent, filldir_t filldir)
2128 {
2129 return proc_pident_readdir(filp,dirent,filldir,
2130 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2131 }
2132
2133 static const struct file_operations proc_attr_dir_operations = {
2134 .read = generic_read_dir,
2135 .readdir = proc_attr_dir_readdir,
2136 .llseek = default_llseek,
2137 };
2138
2139 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2140 struct dentry *dentry, unsigned int flags)
2141 {
2142 return proc_pident_lookup(dir, dentry,
2143 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2144 }
2145
2146 static const struct inode_operations proc_attr_dir_inode_operations = {
2147 .lookup = proc_attr_dir_lookup,
2148 .getattr = pid_getattr,
2149 .setattr = proc_setattr,
2150 };
2151
2152 #endif
2153
2154 #ifdef CONFIG_ELF_CORE
2155 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2156 size_t count, loff_t *ppos)
2157 {
2158 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2159 struct mm_struct *mm;
2160 char buffer[PROC_NUMBUF];
2161 size_t len;
2162 int ret;
2163
2164 if (!task)
2165 return -ESRCH;
2166
2167 ret = 0;
2168 mm = get_task_mm(task);
2169 if (mm) {
2170 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2171 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2172 MMF_DUMP_FILTER_SHIFT));
2173 mmput(mm);
2174 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2175 }
2176
2177 put_task_struct(task);
2178
2179 return ret;
2180 }
2181
2182 static ssize_t proc_coredump_filter_write(struct file *file,
2183 const char __user *buf,
2184 size_t count,
2185 loff_t *ppos)
2186 {
2187 struct task_struct *task;
2188 struct mm_struct *mm;
2189 char buffer[PROC_NUMBUF], *end;
2190 unsigned int val;
2191 int ret;
2192 int i;
2193 unsigned long mask;
2194
2195 ret = -EFAULT;
2196 memset(buffer, 0, sizeof(buffer));
2197 if (count > sizeof(buffer) - 1)
2198 count = sizeof(buffer) - 1;
2199 if (copy_from_user(buffer, buf, count))
2200 goto out_no_task;
2201
2202 ret = -EINVAL;
2203 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2204 if (*end == '\n')
2205 end++;
2206 if (end - buffer == 0)
2207 goto out_no_task;
2208
2209 ret = -ESRCH;
2210 task = get_proc_task(file->f_dentry->d_inode);
2211 if (!task)
2212 goto out_no_task;
2213
2214 ret = end - buffer;
2215 mm = get_task_mm(task);
2216 if (!mm)
2217 goto out_no_mm;
2218
2219 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2220 if (val & mask)
2221 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2222 else
2223 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2224 }
2225
2226 mmput(mm);
2227 out_no_mm:
2228 put_task_struct(task);
2229 out_no_task:
2230 return ret;
2231 }
2232
2233 static const struct file_operations proc_coredump_filter_operations = {
2234 .read = proc_coredump_filter_read,
2235 .write = proc_coredump_filter_write,
2236 .llseek = generic_file_llseek,
2237 };
2238 #endif
2239
2240 /*
2241 * /proc/self:
2242 */
2243 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2244 int buflen)
2245 {
2246 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2247 pid_t tgid = task_tgid_nr_ns(current, ns);
2248 char tmp[PROC_NUMBUF];
2249 if (!tgid)
2250 return -ENOENT;
2251 sprintf(tmp, "%d", tgid);
2252 return vfs_readlink(dentry,buffer,buflen,tmp);
2253 }
2254
2255 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2256 {
2257 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2258 pid_t tgid = task_tgid_nr_ns(current, ns);
2259 char *name = ERR_PTR(-ENOENT);
2260 if (tgid) {
2261 /* 11 for max length of signed int in decimal + NULL term */
2262 name = kmalloc(12, GFP_KERNEL);
2263 if (!name)
2264 name = ERR_PTR(-ENOMEM);
2265 else
2266 sprintf(name, "%d", tgid);
2267 }
2268 nd_set_link(nd, name);
2269 return NULL;
2270 }
2271
2272 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2273 void *cookie)
2274 {
2275 char *s = nd_get_link(nd);
2276 if (!IS_ERR(s))
2277 kfree(s);
2278 }
2279
2280 static const struct inode_operations proc_self_inode_operations = {
2281 .readlink = proc_self_readlink,
2282 .follow_link = proc_self_follow_link,
2283 .put_link = proc_self_put_link,
2284 };
2285
2286 /*
2287 * proc base
2288 *
2289 * These are the directory entries in the root directory of /proc
2290 * that properly belong to the /proc filesystem, as they describe
2291 * describe something that is process related.
2292 */
2293 static const struct pid_entry proc_base_stuff[] = {
2294 NOD("self", S_IFLNK|S_IRWXUGO,
2295 &proc_self_inode_operations, NULL, {}),
2296 };
2297
2298 static struct dentry *proc_base_instantiate(struct inode *dir,
2299 struct dentry *dentry, struct task_struct *task, const void *ptr)
2300 {
2301 const struct pid_entry *p = ptr;
2302 struct inode *inode;
2303 struct proc_inode *ei;
2304 struct dentry *error;
2305
2306 /* Allocate the inode */
2307 error = ERR_PTR(-ENOMEM);
2308 inode = new_inode(dir->i_sb);
2309 if (!inode)
2310 goto out;
2311
2312 /* Initialize the inode */
2313 ei = PROC_I(inode);
2314 inode->i_ino = get_next_ino();
2315 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2316
2317 /*
2318 * grab the reference to the task.
2319 */
2320 ei->pid = get_task_pid(task, PIDTYPE_PID);
2321 if (!ei->pid)
2322 goto out_iput;
2323
2324 inode->i_mode = p->mode;
2325 if (S_ISDIR(inode->i_mode))
2326 set_nlink(inode, 2);
2327 if (S_ISLNK(inode->i_mode))
2328 inode->i_size = 64;
2329 if (p->iop)
2330 inode->i_op = p->iop;
2331 if (p->fop)
2332 inode->i_fop = p->fop;
2333 ei->op = p->op;
2334 d_add(dentry, inode);
2335 error = NULL;
2336 out:
2337 return error;
2338 out_iput:
2339 iput(inode);
2340 goto out;
2341 }
2342
2343 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2344 {
2345 struct dentry *error;
2346 struct task_struct *task = get_proc_task(dir);
2347 const struct pid_entry *p, *last;
2348
2349 error = ERR_PTR(-ENOENT);
2350
2351 if (!task)
2352 goto out_no_task;
2353
2354 /* Lookup the directory entry */
2355 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2356 for (p = proc_base_stuff; p <= last; p++) {
2357 if (p->len != dentry->d_name.len)
2358 continue;
2359 if (!memcmp(dentry->d_name.name, p->name, p->len))
2360 break;
2361 }
2362 if (p > last)
2363 goto out;
2364
2365 error = proc_base_instantiate(dir, dentry, task, p);
2366
2367 out:
2368 put_task_struct(task);
2369 out_no_task:
2370 return error;
2371 }
2372
2373 static int proc_base_fill_cache(struct file *filp, void *dirent,
2374 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2375 {
2376 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2377 proc_base_instantiate, task, p);
2378 }
2379
2380 #ifdef CONFIG_TASK_IO_ACCOUNTING
2381 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2382 {
2383 struct task_io_accounting acct = task->ioac;
2384 unsigned long flags;
2385 int result;
2386
2387 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2388 if (result)
2389 return result;
2390
2391 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2392 result = -EACCES;
2393 goto out_unlock;
2394 }
2395
2396 if (whole && lock_task_sighand(task, &flags)) {
2397 struct task_struct *t = task;
2398
2399 task_io_accounting_add(&acct, &task->signal->ioac);
2400 while_each_thread(task, t)
2401 task_io_accounting_add(&acct, &t->ioac);
2402
2403 unlock_task_sighand(task, &flags);
2404 }
2405 result = sprintf(buffer,
2406 "rchar: %llu\n"
2407 "wchar: %llu\n"
2408 "syscr: %llu\n"
2409 "syscw: %llu\n"
2410 "read_bytes: %llu\n"
2411 "write_bytes: %llu\n"
2412 "cancelled_write_bytes: %llu\n",
2413 (unsigned long long)acct.rchar,
2414 (unsigned long long)acct.wchar,
2415 (unsigned long long)acct.syscr,
2416 (unsigned long long)acct.syscw,
2417 (unsigned long long)acct.read_bytes,
2418 (unsigned long long)acct.write_bytes,
2419 (unsigned long long)acct.cancelled_write_bytes);
2420 out_unlock:
2421 mutex_unlock(&task->signal->cred_guard_mutex);
2422 return result;
2423 }
2424
2425 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2426 {
2427 return do_io_accounting(task, buffer, 0);
2428 }
2429
2430 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2431 {
2432 return do_io_accounting(task, buffer, 1);
2433 }
2434 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2435
2436 #ifdef CONFIG_USER_NS
2437 static int proc_id_map_open(struct inode *inode, struct file *file,
2438 struct seq_operations *seq_ops)
2439 {
2440 struct user_namespace *ns = NULL;
2441 struct task_struct *task;
2442 struct seq_file *seq;
2443 int ret = -EINVAL;
2444
2445 task = get_proc_task(inode);
2446 if (task) {
2447 rcu_read_lock();
2448 ns = get_user_ns(task_cred_xxx(task, user_ns));
2449 rcu_read_unlock();
2450 put_task_struct(task);
2451 }
2452 if (!ns)
2453 goto err;
2454
2455 ret = seq_open(file, seq_ops);
2456 if (ret)
2457 goto err_put_ns;
2458
2459 seq = file->private_data;
2460 seq->private = ns;
2461
2462 return 0;
2463 err_put_ns:
2464 put_user_ns(ns);
2465 err:
2466 return ret;
2467 }
2468
2469 static int proc_id_map_release(struct inode *inode, struct file *file)
2470 {
2471 struct seq_file *seq = file->private_data;
2472 struct user_namespace *ns = seq->private;
2473 put_user_ns(ns);
2474 return seq_release(inode, file);
2475 }
2476
2477 static int proc_uid_map_open(struct inode *inode, struct file *file)
2478 {
2479 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2480 }
2481
2482 static int proc_gid_map_open(struct inode *inode, struct file *file)
2483 {
2484 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2485 }
2486
2487 static int proc_projid_map_open(struct inode *inode, struct file *file)
2488 {
2489 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2490 }
2491
2492 static const struct file_operations proc_uid_map_operations = {
2493 .open = proc_uid_map_open,
2494 .write = proc_uid_map_write,
2495 .read = seq_read,
2496 .llseek = seq_lseek,
2497 .release = proc_id_map_release,
2498 };
2499
2500 static const struct file_operations proc_gid_map_operations = {
2501 .open = proc_gid_map_open,
2502 .write = proc_gid_map_write,
2503 .read = seq_read,
2504 .llseek = seq_lseek,
2505 .release = proc_id_map_release,
2506 };
2507
2508 static const struct file_operations proc_projid_map_operations = {
2509 .open = proc_projid_map_open,
2510 .write = proc_projid_map_write,
2511 .read = seq_read,
2512 .llseek = seq_lseek,
2513 .release = proc_id_map_release,
2514 };
2515 #endif /* CONFIG_USER_NS */
2516
2517 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2518 struct pid *pid, struct task_struct *task)
2519 {
2520 int err = lock_trace(task);
2521 if (!err) {
2522 seq_printf(m, "%08x\n", task->personality);
2523 unlock_trace(task);
2524 }
2525 return err;
2526 }
2527
2528 /*
2529 * Thread groups
2530 */
2531 static const struct file_operations proc_task_operations;
2532 static const struct inode_operations proc_task_inode_operations;
2533
2534 static const struct pid_entry tgid_base_stuff[] = {
2535 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2536 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2537 #ifdef CONFIG_CHECKPOINT_RESTORE
2538 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2539 #endif
2540 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2541 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2542 #ifdef CONFIG_NET
2543 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2544 #endif
2545 REG("environ", S_IRUSR, proc_environ_operations),
2546 INF("auxv", S_IRUSR, proc_pid_auxv),
2547 ONE("status", S_IRUGO, proc_pid_status),
2548 ONE("personality", S_IRUGO, proc_pid_personality),
2549 INF("limits", S_IRUGO, proc_pid_limits),
2550 #ifdef CONFIG_SCHED_DEBUG
2551 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2552 #endif
2553 #ifdef CONFIG_SCHED_AUTOGROUP
2554 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2555 #endif
2556 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2557 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2558 INF("syscall", S_IRUGO, proc_pid_syscall),
2559 #endif
2560 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2561 ONE("stat", S_IRUGO, proc_tgid_stat),
2562 ONE("statm", S_IRUGO, proc_pid_statm),
2563 REG("maps", S_IRUGO, proc_pid_maps_operations),
2564 #ifdef CONFIG_NUMA
2565 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2566 #endif
2567 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2568 LNK("cwd", proc_cwd_link),
2569 LNK("root", proc_root_link),
2570 LNK("exe", proc_exe_link),
2571 REG("mounts", S_IRUGO, proc_mounts_operations),
2572 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2573 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2574 #ifdef CONFIG_PROC_PAGE_MONITOR
2575 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2576 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2577 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2578 #endif
2579 #ifdef CONFIG_SECURITY
2580 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2581 #endif
2582 #ifdef CONFIG_KALLSYMS
2583 INF("wchan", S_IRUGO, proc_pid_wchan),
2584 #endif
2585 #ifdef CONFIG_STACKTRACE
2586 ONE("stack", S_IRUGO, proc_pid_stack),
2587 #endif
2588 #ifdef CONFIG_SCHEDSTATS
2589 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2590 #endif
2591 #ifdef CONFIG_LATENCYTOP
2592 REG("latency", S_IRUGO, proc_lstats_operations),
2593 #endif
2594 #ifdef CONFIG_PROC_PID_CPUSET
2595 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2596 #endif
2597 #ifdef CONFIG_CGROUPS
2598 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2599 #endif
2600 INF("oom_score", S_IRUGO, proc_oom_score),
2601 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2602 #ifdef CONFIG_AUDITSYSCALL
2603 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2604 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2605 #endif
2606 #ifdef CONFIG_FAULT_INJECTION
2607 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2608 #endif
2609 #ifdef CONFIG_ELF_CORE
2610 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2611 #endif
2612 #ifdef CONFIG_TASK_IO_ACCOUNTING
2613 INF("io", S_IRUSR, proc_tgid_io_accounting),
2614 #endif
2615 #ifdef CONFIG_HARDWALL
2616 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2617 #endif
2618 #ifdef CONFIG_USER_NS
2619 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2620 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2621 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2622 #endif
2623 };
2624
2625 static int proc_tgid_base_readdir(struct file * filp,
2626 void * dirent, filldir_t filldir)
2627 {
2628 return proc_pident_readdir(filp,dirent,filldir,
2629 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2630 }
2631
2632 static const struct file_operations proc_tgid_base_operations = {
2633 .read = generic_read_dir,
2634 .readdir = proc_tgid_base_readdir,
2635 .llseek = default_llseek,
2636 };
2637
2638 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2639 {
2640 return proc_pident_lookup(dir, dentry,
2641 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2642 }
2643
2644 static const struct inode_operations proc_tgid_base_inode_operations = {
2645 .lookup = proc_tgid_base_lookup,
2646 .getattr = pid_getattr,
2647 .setattr = proc_setattr,
2648 .permission = proc_pid_permission,
2649 };
2650
2651 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2652 {
2653 struct dentry *dentry, *leader, *dir;
2654 char buf[PROC_NUMBUF];
2655 struct qstr name;
2656
2657 name.name = buf;
2658 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2659 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2660 if (dentry) {
2661 shrink_dcache_parent(dentry);
2662 d_drop(dentry);
2663 dput(dentry);
2664 }
2665
2666 name.name = buf;
2667 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2668 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2669 if (!leader)
2670 goto out;
2671
2672 name.name = "task";
2673 name.len = strlen(name.name);
2674 dir = d_hash_and_lookup(leader, &name);
2675 if (!dir)
2676 goto out_put_leader;
2677
2678 name.name = buf;
2679 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2680 dentry = d_hash_and_lookup(dir, &name);
2681 if (dentry) {
2682 shrink_dcache_parent(dentry);
2683 d_drop(dentry);
2684 dput(dentry);
2685 }
2686
2687 dput(dir);
2688 out_put_leader:
2689 dput(leader);
2690 out:
2691 return;
2692 }
2693
2694 /**
2695 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2696 * @task: task that should be flushed.
2697 *
2698 * When flushing dentries from proc, one needs to flush them from global
2699 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2700 * in. This call is supposed to do all of this job.
2701 *
2702 * Looks in the dcache for
2703 * /proc/@pid
2704 * /proc/@tgid/task/@pid
2705 * if either directory is present flushes it and all of it'ts children
2706 * from the dcache.
2707 *
2708 * It is safe and reasonable to cache /proc entries for a task until
2709 * that task exits. After that they just clog up the dcache with
2710 * useless entries, possibly causing useful dcache entries to be
2711 * flushed instead. This routine is proved to flush those useless
2712 * dcache entries at process exit time.
2713 *
2714 * NOTE: This routine is just an optimization so it does not guarantee
2715 * that no dcache entries will exist at process exit time it
2716 * just makes it very unlikely that any will persist.
2717 */
2718
2719 void proc_flush_task(struct task_struct *task)
2720 {
2721 int i;
2722 struct pid *pid, *tgid;
2723 struct upid *upid;
2724
2725 pid = task_pid(task);
2726 tgid = task_tgid(task);
2727
2728 for (i = 0; i <= pid->level; i++) {
2729 upid = &pid->numbers[i];
2730 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2731 tgid->numbers[i].nr);
2732 }
2733
2734 upid = &pid->numbers[pid->level];
2735 if (upid->nr == 1)
2736 pid_ns_release_proc(upid->ns);
2737 }
2738
2739 static struct dentry *proc_pid_instantiate(struct inode *dir,
2740 struct dentry * dentry,
2741 struct task_struct *task, const void *ptr)
2742 {
2743 struct dentry *error = ERR_PTR(-ENOENT);
2744 struct inode *inode;
2745
2746 inode = proc_pid_make_inode(dir->i_sb, task);
2747 if (!inode)
2748 goto out;
2749
2750 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2751 inode->i_op = &proc_tgid_base_inode_operations;
2752 inode->i_fop = &proc_tgid_base_operations;
2753 inode->i_flags|=S_IMMUTABLE;
2754
2755 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2756 ARRAY_SIZE(tgid_base_stuff)));
2757
2758 d_set_d_op(dentry, &pid_dentry_operations);
2759
2760 d_add(dentry, inode);
2761 /* Close the race of the process dying before we return the dentry */
2762 if (pid_revalidate(dentry, 0))
2763 error = NULL;
2764 out:
2765 return error;
2766 }
2767
2768 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2769 {
2770 struct dentry *result;
2771 struct task_struct *task;
2772 unsigned tgid;
2773 struct pid_namespace *ns;
2774
2775 result = proc_base_lookup(dir, dentry);
2776 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2777 goto out;
2778
2779 tgid = name_to_int(dentry);
2780 if (tgid == ~0U)
2781 goto out;
2782
2783 ns = dentry->d_sb->s_fs_info;
2784 rcu_read_lock();
2785 task = find_task_by_pid_ns(tgid, ns);
2786 if (task)
2787 get_task_struct(task);
2788 rcu_read_unlock();
2789 if (!task)
2790 goto out;
2791
2792 result = proc_pid_instantiate(dir, dentry, task, NULL);
2793 put_task_struct(task);
2794 out:
2795 return result;
2796 }
2797
2798 /*
2799 * Find the first task with tgid >= tgid
2800 *
2801 */
2802 struct tgid_iter {
2803 unsigned int tgid;
2804 struct task_struct *task;
2805 };
2806 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2807 {
2808 struct pid *pid;
2809
2810 if (iter.task)
2811 put_task_struct(iter.task);
2812 rcu_read_lock();
2813 retry:
2814 iter.task = NULL;
2815 pid = find_ge_pid(iter.tgid, ns);
2816 if (pid) {
2817 iter.tgid = pid_nr_ns(pid, ns);
2818 iter.task = pid_task(pid, PIDTYPE_PID);
2819 /* What we to know is if the pid we have find is the
2820 * pid of a thread_group_leader. Testing for task
2821 * being a thread_group_leader is the obvious thing
2822 * todo but there is a window when it fails, due to
2823 * the pid transfer logic in de_thread.
2824 *
2825 * So we perform the straight forward test of seeing
2826 * if the pid we have found is the pid of a thread
2827 * group leader, and don't worry if the task we have
2828 * found doesn't happen to be a thread group leader.
2829 * As we don't care in the case of readdir.
2830 */
2831 if (!iter.task || !has_group_leader_pid(iter.task)) {
2832 iter.tgid += 1;
2833 goto retry;
2834 }
2835 get_task_struct(iter.task);
2836 }
2837 rcu_read_unlock();
2838 return iter;
2839 }
2840
2841 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2842
2843 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2844 struct tgid_iter iter)
2845 {
2846 char name[PROC_NUMBUF];
2847 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2848 return proc_fill_cache(filp, dirent, filldir, name, len,
2849 proc_pid_instantiate, iter.task, NULL);
2850 }
2851
2852 static int fake_filldir(void *buf, const char *name, int namelen,
2853 loff_t offset, u64 ino, unsigned d_type)
2854 {
2855 return 0;
2856 }
2857
2858 /* for the /proc/ directory itself, after non-process stuff has been done */
2859 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2860 {
2861 unsigned int nr;
2862 struct task_struct *reaper;
2863 struct tgid_iter iter;
2864 struct pid_namespace *ns;
2865 filldir_t __filldir;
2866
2867 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2868 goto out_no_task;
2869 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2870
2871 reaper = get_proc_task(filp->f_path.dentry->d_inode);
2872 if (!reaper)
2873 goto out_no_task;
2874
2875 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2876 const struct pid_entry *p = &proc_base_stuff[nr];
2877 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2878 goto out;
2879 }
2880
2881 ns = filp->f_dentry->d_sb->s_fs_info;
2882 iter.task = NULL;
2883 iter.tgid = filp->f_pos - TGID_OFFSET;
2884 for (iter = next_tgid(ns, iter);
2885 iter.task;
2886 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2887 if (has_pid_permissions(ns, iter.task, 2))
2888 __filldir = filldir;
2889 else
2890 __filldir = fake_filldir;
2891
2892 filp->f_pos = iter.tgid + TGID_OFFSET;
2893 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
2894 put_task_struct(iter.task);
2895 goto out;
2896 }
2897 }
2898 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
2899 out:
2900 put_task_struct(reaper);
2901 out_no_task:
2902 return 0;
2903 }
2904
2905 /*
2906 * Tasks
2907 */
2908 static const struct pid_entry tid_base_stuff[] = {
2909 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2910 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2911 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2912 REG("environ", S_IRUSR, proc_environ_operations),
2913 INF("auxv", S_IRUSR, proc_pid_auxv),
2914 ONE("status", S_IRUGO, proc_pid_status),
2915 ONE("personality", S_IRUGO, proc_pid_personality),
2916 INF("limits", S_IRUGO, proc_pid_limits),
2917 #ifdef CONFIG_SCHED_DEBUG
2918 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2919 #endif
2920 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2921 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2922 INF("syscall", S_IRUGO, proc_pid_syscall),
2923 #endif
2924 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2925 ONE("stat", S_IRUGO, proc_tid_stat),
2926 ONE("statm", S_IRUGO, proc_pid_statm),
2927 REG("maps", S_IRUGO, proc_tid_maps_operations),
2928 #ifdef CONFIG_CHECKPOINT_RESTORE
2929 REG("children", S_IRUGO, proc_tid_children_operations),
2930 #endif
2931 #ifdef CONFIG_NUMA
2932 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2933 #endif
2934 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2935 LNK("cwd", proc_cwd_link),
2936 LNK("root", proc_root_link),
2937 LNK("exe", proc_exe_link),
2938 REG("mounts", S_IRUGO, proc_mounts_operations),
2939 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2940 #ifdef CONFIG_PROC_PAGE_MONITOR
2941 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2942 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
2943 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2944 #endif
2945 #ifdef CONFIG_SECURITY
2946 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2947 #endif
2948 #ifdef CONFIG_KALLSYMS
2949 INF("wchan", S_IRUGO, proc_pid_wchan),
2950 #endif
2951 #ifdef CONFIG_STACKTRACE
2952 ONE("stack", S_IRUGO, proc_pid_stack),
2953 #endif
2954 #ifdef CONFIG_SCHEDSTATS
2955 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2956 #endif
2957 #ifdef CONFIG_LATENCYTOP
2958 REG("latency", S_IRUGO, proc_lstats_operations),
2959 #endif
2960 #ifdef CONFIG_PROC_PID_CPUSET
2961 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2962 #endif
2963 #ifdef CONFIG_CGROUPS
2964 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2965 #endif
2966 INF("oom_score", S_IRUGO, proc_oom_score),
2967 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2968 #ifdef CONFIG_AUDITSYSCALL
2969 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2970 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2971 #endif
2972 #ifdef CONFIG_FAULT_INJECTION
2973 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2974 #endif
2975 #ifdef CONFIG_TASK_IO_ACCOUNTING
2976 INF("io", S_IRUSR, proc_tid_io_accounting),
2977 #endif
2978 #ifdef CONFIG_HARDWALL
2979 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2980 #endif
2981 #ifdef CONFIG_USER_NS
2982 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2983 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2984 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2985 #endif
2986 };
2987
2988 static int proc_tid_base_readdir(struct file * filp,
2989 void * dirent, filldir_t filldir)
2990 {
2991 return proc_pident_readdir(filp,dirent,filldir,
2992 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
2993 }
2994
2995 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2996 {
2997 return proc_pident_lookup(dir, dentry,
2998 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2999 }
3000
3001 static const struct file_operations proc_tid_base_operations = {
3002 .read = generic_read_dir,
3003 .readdir = proc_tid_base_readdir,
3004 .llseek = default_llseek,
3005 };
3006
3007 static const struct inode_operations proc_tid_base_inode_operations = {
3008 .lookup = proc_tid_base_lookup,
3009 .getattr = pid_getattr,
3010 .setattr = proc_setattr,
3011 };
3012
3013 static struct dentry *proc_task_instantiate(struct inode *dir,
3014 struct dentry *dentry, struct task_struct *task, const void *ptr)
3015 {
3016 struct dentry *error = ERR_PTR(-ENOENT);
3017 struct inode *inode;
3018 inode = proc_pid_make_inode(dir->i_sb, task);
3019
3020 if (!inode)
3021 goto out;
3022 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3023 inode->i_op = &proc_tid_base_inode_operations;
3024 inode->i_fop = &proc_tid_base_operations;
3025 inode->i_flags|=S_IMMUTABLE;
3026
3027 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3028 ARRAY_SIZE(tid_base_stuff)));
3029
3030 d_set_d_op(dentry, &pid_dentry_operations);
3031
3032 d_add(dentry, inode);
3033 /* Close the race of the process dying before we return the dentry */
3034 if (pid_revalidate(dentry, 0))
3035 error = NULL;
3036 out:
3037 return error;
3038 }
3039
3040 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3041 {
3042 struct dentry *result = ERR_PTR(-ENOENT);
3043 struct task_struct *task;
3044 struct task_struct *leader = get_proc_task(dir);
3045 unsigned tid;
3046 struct pid_namespace *ns;
3047
3048 if (!leader)
3049 goto out_no_task;
3050
3051 tid = name_to_int(dentry);
3052 if (tid == ~0U)
3053 goto out;
3054
3055 ns = dentry->d_sb->s_fs_info;
3056 rcu_read_lock();
3057 task = find_task_by_pid_ns(tid, ns);
3058 if (task)
3059 get_task_struct(task);
3060 rcu_read_unlock();
3061 if (!task)
3062 goto out;
3063 if (!same_thread_group(leader, task))
3064 goto out_drop_task;
3065
3066 result = proc_task_instantiate(dir, dentry, task, NULL);
3067 out_drop_task:
3068 put_task_struct(task);
3069 out:
3070 put_task_struct(leader);
3071 out_no_task:
3072 return result;
3073 }
3074
3075 /*
3076 * Find the first tid of a thread group to return to user space.
3077 *
3078 * Usually this is just the thread group leader, but if the users
3079 * buffer was too small or there was a seek into the middle of the
3080 * directory we have more work todo.
3081 *
3082 * In the case of a short read we start with find_task_by_pid.
3083 *
3084 * In the case of a seek we start with the leader and walk nr
3085 * threads past it.
3086 */
3087 static struct task_struct *first_tid(struct task_struct *leader,
3088 int tid, int nr, struct pid_namespace *ns)
3089 {
3090 struct task_struct *pos;
3091
3092 rcu_read_lock();
3093 /* Attempt to start with the pid of a thread */
3094 if (tid && (nr > 0)) {
3095 pos = find_task_by_pid_ns(tid, ns);
3096 if (pos && (pos->group_leader == leader))
3097 goto found;
3098 }
3099
3100 /* If nr exceeds the number of threads there is nothing todo */
3101 pos = NULL;
3102 if (nr && nr >= get_nr_threads(leader))
3103 goto out;
3104
3105 /* If we haven't found our starting place yet start
3106 * with the leader and walk nr threads forward.
3107 */
3108 for (pos = leader; nr > 0; --nr) {
3109 pos = next_thread(pos);
3110 if (pos == leader) {
3111 pos = NULL;
3112 goto out;
3113 }
3114 }
3115 found:
3116 get_task_struct(pos);
3117 out:
3118 rcu_read_unlock();
3119 return pos;
3120 }
3121
3122 /*
3123 * Find the next thread in the thread list.
3124 * Return NULL if there is an error or no next thread.
3125 *
3126 * The reference to the input task_struct is released.
3127 */
3128 static struct task_struct *next_tid(struct task_struct *start)
3129 {
3130 struct task_struct *pos = NULL;
3131 rcu_read_lock();
3132 if (pid_alive(start)) {
3133 pos = next_thread(start);
3134 if (thread_group_leader(pos))
3135 pos = NULL;
3136 else
3137 get_task_struct(pos);
3138 }
3139 rcu_read_unlock();
3140 put_task_struct(start);
3141 return pos;
3142 }
3143
3144 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3145 struct task_struct *task, int tid)
3146 {
3147 char name[PROC_NUMBUF];
3148 int len = snprintf(name, sizeof(name), "%d", tid);
3149 return proc_fill_cache(filp, dirent, filldir, name, len,
3150 proc_task_instantiate, task, NULL);
3151 }
3152
3153 /* for the /proc/TGID/task/ directories */
3154 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3155 {
3156 struct dentry *dentry = filp->f_path.dentry;
3157 struct inode *inode = dentry->d_inode;
3158 struct task_struct *leader = NULL;
3159 struct task_struct *task;
3160 int retval = -ENOENT;
3161 ino_t ino;
3162 int tid;
3163 struct pid_namespace *ns;
3164
3165 task = get_proc_task(inode);
3166 if (!task)
3167 goto out_no_task;
3168 rcu_read_lock();
3169 if (pid_alive(task)) {
3170 leader = task->group_leader;
3171 get_task_struct(leader);
3172 }
3173 rcu_read_unlock();
3174 put_task_struct(task);
3175 if (!leader)
3176 goto out_no_task;
3177 retval = 0;
3178
3179 switch ((unsigned long)filp->f_pos) {
3180 case 0:
3181 ino = inode->i_ino;
3182 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3183 goto out;
3184 filp->f_pos++;
3185 /* fall through */
3186 case 1:
3187 ino = parent_ino(dentry);
3188 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3189 goto out;
3190 filp->f_pos++;
3191 /* fall through */
3192 }
3193
3194 /* f_version caches the tgid value that the last readdir call couldn't
3195 * return. lseek aka telldir automagically resets f_version to 0.
3196 */
3197 ns = filp->f_dentry->d_sb->s_fs_info;
3198 tid = (int)filp->f_version;
3199 filp->f_version = 0;
3200 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3201 task;
3202 task = next_tid(task), filp->f_pos++) {
3203 tid = task_pid_nr_ns(task, ns);
3204 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3205 /* returning this tgid failed, save it as the first
3206 * pid for the next readir call */
3207 filp->f_version = (u64)tid;
3208 put_task_struct(task);
3209 break;
3210 }
3211 }
3212 out:
3213 put_task_struct(leader);
3214 out_no_task:
3215 return retval;
3216 }
3217
3218 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3219 {
3220 struct inode *inode = dentry->d_inode;
3221 struct task_struct *p = get_proc_task(inode);
3222 generic_fillattr(inode, stat);
3223
3224 if (p) {
3225 stat->nlink += get_nr_threads(p);
3226 put_task_struct(p);
3227 }
3228
3229 return 0;
3230 }
3231
3232 static const struct inode_operations proc_task_inode_operations = {
3233 .lookup = proc_task_lookup,
3234 .getattr = proc_task_getattr,
3235 .setattr = proc_setattr,
3236 .permission = proc_pid_permission,
3237 };
3238
3239 static const struct file_operations proc_task_operations = {
3240 .read = generic_read_dir,
3241 .readdir = proc_task_readdir,
3242 .llseek = default_llseek,
3243 };
This page took 0.110021 seconds and 6 git commands to generate.