Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / fs / proc / base.c
1 /*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50 #include <asm/uaccess.h>
51
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/cgroup.h>
77 #include <linux/cpuset.h>
78 #include <linux/audit.h>
79 #include <linux/poll.h>
80 #include <linux/nsproxy.h>
81 #include <linux/oom.h>
82 #include <linux/elf.h>
83 #include <linux/pid_namespace.h>
84 #include <linux/user_namespace.h>
85 #include <linux/fs_struct.h>
86 #include <linux/slab.h>
87 #include <linux/flex_array.h>
88 #ifdef CONFIG_HARDWALL
89 #include <asm/hardwall.h>
90 #endif
91 #include <trace/events/oom.h>
92 #include "internal.h"
93 #include "fd.h"
94
95 /* NOTE:
96 * Implementing inode permission operations in /proc is almost
97 * certainly an error. Permission checks need to happen during
98 * each system call not at open time. The reason is that most of
99 * what we wish to check for permissions in /proc varies at runtime.
100 *
101 * The classic example of a problem is opening file descriptors
102 * in /proc for a task before it execs a suid executable.
103 */
104
105 struct pid_entry {
106 char *name;
107 int len;
108 umode_t mode;
109 const struct inode_operations *iop;
110 const struct file_operations *fop;
111 union proc_op op;
112 };
113
114 #define NOD(NAME, MODE, IOP, FOP, OP) { \
115 .name = (NAME), \
116 .len = sizeof(NAME) - 1, \
117 .mode = MODE, \
118 .iop = IOP, \
119 .fop = FOP, \
120 .op = OP, \
121 }
122
123 #define DIR(NAME, MODE, iops, fops) \
124 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
125 #define LNK(NAME, get_link) \
126 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
127 &proc_pid_link_inode_operations, NULL, \
128 { .proc_get_link = get_link } )
129 #define REG(NAME, MODE, fops) \
130 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
131 #define INF(NAME, MODE, read) \
132 NOD(NAME, (S_IFREG|(MODE)), \
133 NULL, &proc_info_file_operations, \
134 { .proc_read = read } )
135 #define ONE(NAME, MODE, show) \
136 NOD(NAME, (S_IFREG|(MODE)), \
137 NULL, &proc_single_file_operations, \
138 { .proc_show = show } )
139
140 /*
141 * Count the number of hardlinks for the pid_entry table, excluding the .
142 * and .. links.
143 */
144 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
145 unsigned int n)
146 {
147 unsigned int i;
148 unsigned int count;
149
150 count = 0;
151 for (i = 0; i < n; ++i) {
152 if (S_ISDIR(entries[i].mode))
153 ++count;
154 }
155
156 return count;
157 }
158
159 static int get_task_root(struct task_struct *task, struct path *root)
160 {
161 int result = -ENOENT;
162
163 task_lock(task);
164 if (task->fs) {
165 get_fs_root(task->fs, root);
166 result = 0;
167 }
168 task_unlock(task);
169 return result;
170 }
171
172 static int proc_cwd_link(struct dentry *dentry, struct path *path)
173 {
174 struct task_struct *task = get_proc_task(dentry->d_inode);
175 int result = -ENOENT;
176
177 if (task) {
178 task_lock(task);
179 if (task->fs) {
180 get_fs_pwd(task->fs, path);
181 result = 0;
182 }
183 task_unlock(task);
184 put_task_struct(task);
185 }
186 return result;
187 }
188
189 static int proc_root_link(struct dentry *dentry, struct path *path)
190 {
191 struct task_struct *task = get_proc_task(dentry->d_inode);
192 int result = -ENOENT;
193
194 if (task) {
195 result = get_task_root(task, path);
196 put_task_struct(task);
197 }
198 return result;
199 }
200
201 static int proc_pid_cmdline(struct task_struct *task, char * buffer)
202 {
203 int res = 0;
204 unsigned int len;
205 struct mm_struct *mm = get_task_mm(task);
206 if (!mm)
207 goto out;
208 if (!mm->arg_end)
209 goto out_mm; /* Shh! No looking before we're done */
210
211 len = mm->arg_end - mm->arg_start;
212
213 if (len > PAGE_SIZE)
214 len = PAGE_SIZE;
215
216 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
217
218 // If the nul at the end of args has been overwritten, then
219 // assume application is using setproctitle(3).
220 if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
221 len = strnlen(buffer, res);
222 if (len < res) {
223 res = len;
224 } else {
225 len = mm->env_end - mm->env_start;
226 if (len > PAGE_SIZE - res)
227 len = PAGE_SIZE - res;
228 res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
229 res = strnlen(buffer, res);
230 }
231 }
232 out_mm:
233 mmput(mm);
234 out:
235 return res;
236 }
237
238 static int proc_pid_auxv(struct task_struct *task, char *buffer)
239 {
240 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
241 int res = PTR_ERR(mm);
242 if (mm && !IS_ERR(mm)) {
243 unsigned int nwords = 0;
244 do {
245 nwords += 2;
246 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
247 res = nwords * sizeof(mm->saved_auxv[0]);
248 if (res > PAGE_SIZE)
249 res = PAGE_SIZE;
250 memcpy(buffer, mm->saved_auxv, res);
251 mmput(mm);
252 }
253 return res;
254 }
255
256
257 #ifdef CONFIG_KALLSYMS
258 /*
259 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
260 * Returns the resolved symbol. If that fails, simply return the address.
261 */
262 static int proc_pid_wchan(struct task_struct *task, char *buffer)
263 {
264 unsigned long wchan;
265 char symname[KSYM_NAME_LEN];
266
267 wchan = get_wchan(task);
268
269 if (lookup_symbol_name(wchan, symname) < 0)
270 if (!ptrace_may_access(task, PTRACE_MODE_READ))
271 return 0;
272 else
273 return sprintf(buffer, "%lu", wchan);
274 else
275 return sprintf(buffer, "%s", symname);
276 }
277 #endif /* CONFIG_KALLSYMS */
278
279 static int lock_trace(struct task_struct *task)
280 {
281 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
282 if (err)
283 return err;
284 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
285 mutex_unlock(&task->signal->cred_guard_mutex);
286 return -EPERM;
287 }
288 return 0;
289 }
290
291 static void unlock_trace(struct task_struct *task)
292 {
293 mutex_unlock(&task->signal->cred_guard_mutex);
294 }
295
296 #ifdef CONFIG_STACKTRACE
297
298 #define MAX_STACK_TRACE_DEPTH 64
299
300 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
301 struct pid *pid, struct task_struct *task)
302 {
303 struct stack_trace trace;
304 unsigned long *entries;
305 int err;
306 int i;
307
308 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
309 if (!entries)
310 return -ENOMEM;
311
312 trace.nr_entries = 0;
313 trace.max_entries = MAX_STACK_TRACE_DEPTH;
314 trace.entries = entries;
315 trace.skip = 0;
316
317 err = lock_trace(task);
318 if (!err) {
319 save_stack_trace_tsk(task, &trace);
320
321 for (i = 0; i < trace.nr_entries; i++) {
322 seq_printf(m, "[<%pK>] %pS\n",
323 (void *)entries[i], (void *)entries[i]);
324 }
325 unlock_trace(task);
326 }
327 kfree(entries);
328
329 return err;
330 }
331 #endif
332
333 #ifdef CONFIG_SCHEDSTATS
334 /*
335 * Provides /proc/PID/schedstat
336 */
337 static int proc_pid_schedstat(struct task_struct *task, char *buffer)
338 {
339 return sprintf(buffer, "%llu %llu %lu\n",
340 (unsigned long long)task->se.sum_exec_runtime,
341 (unsigned long long)task->sched_info.run_delay,
342 task->sched_info.pcount);
343 }
344 #endif
345
346 #ifdef CONFIG_LATENCYTOP
347 static int lstats_show_proc(struct seq_file *m, void *v)
348 {
349 int i;
350 struct inode *inode = m->private;
351 struct task_struct *task = get_proc_task(inode);
352
353 if (!task)
354 return -ESRCH;
355 seq_puts(m, "Latency Top version : v0.1\n");
356 for (i = 0; i < 32; i++) {
357 struct latency_record *lr = &task->latency_record[i];
358 if (lr->backtrace[0]) {
359 int q;
360 seq_printf(m, "%i %li %li",
361 lr->count, lr->time, lr->max);
362 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
363 unsigned long bt = lr->backtrace[q];
364 if (!bt)
365 break;
366 if (bt == ULONG_MAX)
367 break;
368 seq_printf(m, " %ps", (void *)bt);
369 }
370 seq_putc(m, '\n');
371 }
372
373 }
374 put_task_struct(task);
375 return 0;
376 }
377
378 static int lstats_open(struct inode *inode, struct file *file)
379 {
380 return single_open(file, lstats_show_proc, inode);
381 }
382
383 static ssize_t lstats_write(struct file *file, const char __user *buf,
384 size_t count, loff_t *offs)
385 {
386 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
387
388 if (!task)
389 return -ESRCH;
390 clear_all_latency_tracing(task);
391 put_task_struct(task);
392
393 return count;
394 }
395
396 static const struct file_operations proc_lstats_operations = {
397 .open = lstats_open,
398 .read = seq_read,
399 .write = lstats_write,
400 .llseek = seq_lseek,
401 .release = single_release,
402 };
403
404 #endif
405
406 static int proc_oom_score(struct task_struct *task, char *buffer)
407 {
408 unsigned long totalpages = totalram_pages + total_swap_pages;
409 unsigned long points = 0;
410
411 read_lock(&tasklist_lock);
412 if (pid_alive(task))
413 points = oom_badness(task, NULL, NULL, totalpages) *
414 1000 / totalpages;
415 read_unlock(&tasklist_lock);
416 return sprintf(buffer, "%lu\n", points);
417 }
418
419 struct limit_names {
420 char *name;
421 char *unit;
422 };
423
424 static const struct limit_names lnames[RLIM_NLIMITS] = {
425 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
426 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
427 [RLIMIT_DATA] = {"Max data size", "bytes"},
428 [RLIMIT_STACK] = {"Max stack size", "bytes"},
429 [RLIMIT_CORE] = {"Max core file size", "bytes"},
430 [RLIMIT_RSS] = {"Max resident set", "bytes"},
431 [RLIMIT_NPROC] = {"Max processes", "processes"},
432 [RLIMIT_NOFILE] = {"Max open files", "files"},
433 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
434 [RLIMIT_AS] = {"Max address space", "bytes"},
435 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
436 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
437 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
438 [RLIMIT_NICE] = {"Max nice priority", NULL},
439 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
440 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
441 };
442
443 /* Display limits for a process */
444 static int proc_pid_limits(struct task_struct *task, char *buffer)
445 {
446 unsigned int i;
447 int count = 0;
448 unsigned long flags;
449 char *bufptr = buffer;
450
451 struct rlimit rlim[RLIM_NLIMITS];
452
453 if (!lock_task_sighand(task, &flags))
454 return 0;
455 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
456 unlock_task_sighand(task, &flags);
457
458 /*
459 * print the file header
460 */
461 count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
462 "Limit", "Soft Limit", "Hard Limit", "Units");
463
464 for (i = 0; i < RLIM_NLIMITS; i++) {
465 if (rlim[i].rlim_cur == RLIM_INFINITY)
466 count += sprintf(&bufptr[count], "%-25s %-20s ",
467 lnames[i].name, "unlimited");
468 else
469 count += sprintf(&bufptr[count], "%-25s %-20lu ",
470 lnames[i].name, rlim[i].rlim_cur);
471
472 if (rlim[i].rlim_max == RLIM_INFINITY)
473 count += sprintf(&bufptr[count], "%-20s ", "unlimited");
474 else
475 count += sprintf(&bufptr[count], "%-20lu ",
476 rlim[i].rlim_max);
477
478 if (lnames[i].unit)
479 count += sprintf(&bufptr[count], "%-10s\n",
480 lnames[i].unit);
481 else
482 count += sprintf(&bufptr[count], "\n");
483 }
484
485 return count;
486 }
487
488 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
489 static int proc_pid_syscall(struct task_struct *task, char *buffer)
490 {
491 long nr;
492 unsigned long args[6], sp, pc;
493 int res = lock_trace(task);
494 if (res)
495 return res;
496
497 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
498 res = sprintf(buffer, "running\n");
499 else if (nr < 0)
500 res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
501 else
502 res = sprintf(buffer,
503 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
504 nr,
505 args[0], args[1], args[2], args[3], args[4], args[5],
506 sp, pc);
507 unlock_trace(task);
508 return res;
509 }
510 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
511
512 /************************************************************************/
513 /* Here the fs part begins */
514 /************************************************************************/
515
516 /* permission checks */
517 static int proc_fd_access_allowed(struct inode *inode)
518 {
519 struct task_struct *task;
520 int allowed = 0;
521 /* Allow access to a task's file descriptors if it is us or we
522 * may use ptrace attach to the process and find out that
523 * information.
524 */
525 task = get_proc_task(inode);
526 if (task) {
527 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
528 put_task_struct(task);
529 }
530 return allowed;
531 }
532
533 int proc_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535 int error;
536 struct inode *inode = dentry->d_inode;
537
538 if (attr->ia_valid & ATTR_MODE)
539 return -EPERM;
540
541 error = inode_change_ok(inode, attr);
542 if (error)
543 return error;
544
545 if ((attr->ia_valid & ATTR_SIZE) &&
546 attr->ia_size != i_size_read(inode)) {
547 error = vmtruncate(inode, attr->ia_size);
548 if (error)
549 return error;
550 }
551
552 setattr_copy(inode, attr);
553 mark_inode_dirty(inode);
554 return 0;
555 }
556
557 /*
558 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
559 * or euid/egid (for hide_pid_min=2)?
560 */
561 static bool has_pid_permissions(struct pid_namespace *pid,
562 struct task_struct *task,
563 int hide_pid_min)
564 {
565 if (pid->hide_pid < hide_pid_min)
566 return true;
567 if (in_group_p(pid->pid_gid))
568 return true;
569 return ptrace_may_access(task, PTRACE_MODE_READ);
570 }
571
572
573 static int proc_pid_permission(struct inode *inode, int mask)
574 {
575 struct pid_namespace *pid = inode->i_sb->s_fs_info;
576 struct task_struct *task;
577 bool has_perms;
578
579 task = get_proc_task(inode);
580 if (!task)
581 return -ESRCH;
582 has_perms = has_pid_permissions(pid, task, 1);
583 put_task_struct(task);
584
585 if (!has_perms) {
586 if (pid->hide_pid == 2) {
587 /*
588 * Let's make getdents(), stat(), and open()
589 * consistent with each other. If a process
590 * may not stat() a file, it shouldn't be seen
591 * in procfs at all.
592 */
593 return -ENOENT;
594 }
595
596 return -EPERM;
597 }
598 return generic_permission(inode, mask);
599 }
600
601
602
603 static const struct inode_operations proc_def_inode_operations = {
604 .setattr = proc_setattr,
605 };
606
607 #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
608
609 static ssize_t proc_info_read(struct file * file, char __user * buf,
610 size_t count, loff_t *ppos)
611 {
612 struct inode * inode = file->f_path.dentry->d_inode;
613 unsigned long page;
614 ssize_t length;
615 struct task_struct *task = get_proc_task(inode);
616
617 length = -ESRCH;
618 if (!task)
619 goto out_no_task;
620
621 if (count > PROC_BLOCK_SIZE)
622 count = PROC_BLOCK_SIZE;
623
624 length = -ENOMEM;
625 if (!(page = __get_free_page(GFP_TEMPORARY)))
626 goto out;
627
628 length = PROC_I(inode)->op.proc_read(task, (char*)page);
629
630 if (length >= 0)
631 length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
632 free_page(page);
633 out:
634 put_task_struct(task);
635 out_no_task:
636 return length;
637 }
638
639 static const struct file_operations proc_info_file_operations = {
640 .read = proc_info_read,
641 .llseek = generic_file_llseek,
642 };
643
644 static int proc_single_show(struct seq_file *m, void *v)
645 {
646 struct inode *inode = m->private;
647 struct pid_namespace *ns;
648 struct pid *pid;
649 struct task_struct *task;
650 int ret;
651
652 ns = inode->i_sb->s_fs_info;
653 pid = proc_pid(inode);
654 task = get_pid_task(pid, PIDTYPE_PID);
655 if (!task)
656 return -ESRCH;
657
658 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
659
660 put_task_struct(task);
661 return ret;
662 }
663
664 static int proc_single_open(struct inode *inode, struct file *filp)
665 {
666 return single_open(filp, proc_single_show, inode);
667 }
668
669 static const struct file_operations proc_single_file_operations = {
670 .open = proc_single_open,
671 .read = seq_read,
672 .llseek = seq_lseek,
673 .release = single_release,
674 };
675
676 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
677 {
678 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
679 struct mm_struct *mm;
680
681 if (!task)
682 return -ESRCH;
683
684 mm = mm_access(task, mode);
685 put_task_struct(task);
686
687 if (IS_ERR(mm))
688 return PTR_ERR(mm);
689
690 if (mm) {
691 /* ensure this mm_struct can't be freed */
692 atomic_inc(&mm->mm_count);
693 /* but do not pin its memory */
694 mmput(mm);
695 }
696
697 file->private_data = mm;
698
699 return 0;
700 }
701
702 static int mem_open(struct inode *inode, struct file *file)
703 {
704 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
705
706 /* OK to pass negative loff_t, we can catch out-of-range */
707 file->f_mode |= FMODE_UNSIGNED_OFFSET;
708
709 return ret;
710 }
711
712 static ssize_t mem_rw(struct file *file, char __user *buf,
713 size_t count, loff_t *ppos, int write)
714 {
715 struct mm_struct *mm = file->private_data;
716 unsigned long addr = *ppos;
717 ssize_t copied;
718 char *page;
719
720 if (!mm)
721 return 0;
722
723 page = (char *)__get_free_page(GFP_TEMPORARY);
724 if (!page)
725 return -ENOMEM;
726
727 copied = 0;
728 if (!atomic_inc_not_zero(&mm->mm_users))
729 goto free;
730
731 while (count > 0) {
732 int this_len = min_t(int, count, PAGE_SIZE);
733
734 if (write && copy_from_user(page, buf, this_len)) {
735 copied = -EFAULT;
736 break;
737 }
738
739 this_len = access_remote_vm(mm, addr, page, this_len, write);
740 if (!this_len) {
741 if (!copied)
742 copied = -EIO;
743 break;
744 }
745
746 if (!write && copy_to_user(buf, page, this_len)) {
747 copied = -EFAULT;
748 break;
749 }
750
751 buf += this_len;
752 addr += this_len;
753 copied += this_len;
754 count -= this_len;
755 }
756 *ppos = addr;
757
758 mmput(mm);
759 free:
760 free_page((unsigned long) page);
761 return copied;
762 }
763
764 static ssize_t mem_read(struct file *file, char __user *buf,
765 size_t count, loff_t *ppos)
766 {
767 return mem_rw(file, buf, count, ppos, 0);
768 }
769
770 static ssize_t mem_write(struct file *file, const char __user *buf,
771 size_t count, loff_t *ppos)
772 {
773 return mem_rw(file, (char __user*)buf, count, ppos, 1);
774 }
775
776 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
777 {
778 switch (orig) {
779 case 0:
780 file->f_pos = offset;
781 break;
782 case 1:
783 file->f_pos += offset;
784 break;
785 default:
786 return -EINVAL;
787 }
788 force_successful_syscall_return();
789 return file->f_pos;
790 }
791
792 static int mem_release(struct inode *inode, struct file *file)
793 {
794 struct mm_struct *mm = file->private_data;
795 if (mm)
796 mmdrop(mm);
797 return 0;
798 }
799
800 static const struct file_operations proc_mem_operations = {
801 .llseek = mem_lseek,
802 .read = mem_read,
803 .write = mem_write,
804 .open = mem_open,
805 .release = mem_release,
806 };
807
808 static int environ_open(struct inode *inode, struct file *file)
809 {
810 return __mem_open(inode, file, PTRACE_MODE_READ);
811 }
812
813 static ssize_t environ_read(struct file *file, char __user *buf,
814 size_t count, loff_t *ppos)
815 {
816 char *page;
817 unsigned long src = *ppos;
818 int ret = 0;
819 struct mm_struct *mm = file->private_data;
820
821 if (!mm)
822 return 0;
823
824 page = (char *)__get_free_page(GFP_TEMPORARY);
825 if (!page)
826 return -ENOMEM;
827
828 ret = 0;
829 if (!atomic_inc_not_zero(&mm->mm_users))
830 goto free;
831 while (count > 0) {
832 size_t this_len, max_len;
833 int retval;
834
835 if (src >= (mm->env_end - mm->env_start))
836 break;
837
838 this_len = mm->env_end - (mm->env_start + src);
839
840 max_len = min_t(size_t, PAGE_SIZE, count);
841 this_len = min(max_len, this_len);
842
843 retval = access_remote_vm(mm, (mm->env_start + src),
844 page, this_len, 0);
845
846 if (retval <= 0) {
847 ret = retval;
848 break;
849 }
850
851 if (copy_to_user(buf, page, retval)) {
852 ret = -EFAULT;
853 break;
854 }
855
856 ret += retval;
857 src += retval;
858 buf += retval;
859 count -= retval;
860 }
861 *ppos = src;
862 mmput(mm);
863
864 free:
865 free_page((unsigned long) page);
866 return ret;
867 }
868
869 static const struct file_operations proc_environ_operations = {
870 .open = environ_open,
871 .read = environ_read,
872 .llseek = generic_file_llseek,
873 .release = mem_release,
874 };
875
876 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
877 loff_t *ppos)
878 {
879 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
880 char buffer[PROC_NUMBUF];
881 int oom_adj = OOM_ADJUST_MIN;
882 size_t len;
883 unsigned long flags;
884
885 if (!task)
886 return -ESRCH;
887 if (lock_task_sighand(task, &flags)) {
888 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
889 oom_adj = OOM_ADJUST_MAX;
890 else
891 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
892 OOM_SCORE_ADJ_MAX;
893 unlock_task_sighand(task, &flags);
894 }
895 put_task_struct(task);
896 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
897 return simple_read_from_buffer(buf, count, ppos, buffer, len);
898 }
899
900 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
901 size_t count, loff_t *ppos)
902 {
903 struct task_struct *task;
904 char buffer[PROC_NUMBUF];
905 int oom_adj;
906 unsigned long flags;
907 int err;
908
909 memset(buffer, 0, sizeof(buffer));
910 if (count > sizeof(buffer) - 1)
911 count = sizeof(buffer) - 1;
912 if (copy_from_user(buffer, buf, count)) {
913 err = -EFAULT;
914 goto out;
915 }
916
917 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
918 if (err)
919 goto out;
920 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
921 oom_adj != OOM_DISABLE) {
922 err = -EINVAL;
923 goto out;
924 }
925
926 task = get_proc_task(file->f_path.dentry->d_inode);
927 if (!task) {
928 err = -ESRCH;
929 goto out;
930 }
931
932 task_lock(task);
933 if (!task->mm) {
934 err = -EINVAL;
935 goto err_task_lock;
936 }
937
938 if (!lock_task_sighand(task, &flags)) {
939 err = -ESRCH;
940 goto err_task_lock;
941 }
942
943 /*
944 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
945 * value is always attainable.
946 */
947 if (oom_adj == OOM_ADJUST_MAX)
948 oom_adj = OOM_SCORE_ADJ_MAX;
949 else
950 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
951
952 if (oom_adj < task->signal->oom_score_adj &&
953 !capable(CAP_SYS_RESOURCE)) {
954 err = -EACCES;
955 goto err_sighand;
956 }
957
958 /*
959 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
960 * /proc/pid/oom_score_adj instead.
961 */
962 printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
963 current->comm, task_pid_nr(current), task_pid_nr(task),
964 task_pid_nr(task));
965
966 task->signal->oom_score_adj = oom_adj;
967 trace_oom_score_adj_update(task);
968 err_sighand:
969 unlock_task_sighand(task, &flags);
970 err_task_lock:
971 task_unlock(task);
972 put_task_struct(task);
973 out:
974 return err < 0 ? err : count;
975 }
976
977 static const struct file_operations proc_oom_adj_operations = {
978 .read = oom_adj_read,
979 .write = oom_adj_write,
980 .llseek = generic_file_llseek,
981 };
982
983 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
984 size_t count, loff_t *ppos)
985 {
986 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
987 char buffer[PROC_NUMBUF];
988 int oom_score_adj = OOM_SCORE_ADJ_MIN;
989 unsigned long flags;
990 size_t len;
991
992 if (!task)
993 return -ESRCH;
994 if (lock_task_sighand(task, &flags)) {
995 oom_score_adj = task->signal->oom_score_adj;
996 unlock_task_sighand(task, &flags);
997 }
998 put_task_struct(task);
999 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
1000 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1001 }
1002
1003 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1004 size_t count, loff_t *ppos)
1005 {
1006 struct task_struct *task;
1007 char buffer[PROC_NUMBUF];
1008 unsigned long flags;
1009 int oom_score_adj;
1010 int err;
1011
1012 memset(buffer, 0, sizeof(buffer));
1013 if (count > sizeof(buffer) - 1)
1014 count = sizeof(buffer) - 1;
1015 if (copy_from_user(buffer, buf, count)) {
1016 err = -EFAULT;
1017 goto out;
1018 }
1019
1020 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1021 if (err)
1022 goto out;
1023 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1024 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1025 err = -EINVAL;
1026 goto out;
1027 }
1028
1029 task = get_proc_task(file->f_path.dentry->d_inode);
1030 if (!task) {
1031 err = -ESRCH;
1032 goto out;
1033 }
1034
1035 task_lock(task);
1036 if (!task->mm) {
1037 err = -EINVAL;
1038 goto err_task_lock;
1039 }
1040
1041 if (!lock_task_sighand(task, &flags)) {
1042 err = -ESRCH;
1043 goto err_task_lock;
1044 }
1045
1046 if (oom_score_adj < task->signal->oom_score_adj_min &&
1047 !capable(CAP_SYS_RESOURCE)) {
1048 err = -EACCES;
1049 goto err_sighand;
1050 }
1051
1052 task->signal->oom_score_adj = oom_score_adj;
1053 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1054 task->signal->oom_score_adj_min = oom_score_adj;
1055 trace_oom_score_adj_update(task);
1056
1057 err_sighand:
1058 unlock_task_sighand(task, &flags);
1059 err_task_lock:
1060 task_unlock(task);
1061 put_task_struct(task);
1062 out:
1063 return err < 0 ? err : count;
1064 }
1065
1066 static const struct file_operations proc_oom_score_adj_operations = {
1067 .read = oom_score_adj_read,
1068 .write = oom_score_adj_write,
1069 .llseek = default_llseek,
1070 };
1071
1072 #ifdef CONFIG_AUDITSYSCALL
1073 #define TMPBUFLEN 21
1074 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1075 size_t count, loff_t *ppos)
1076 {
1077 struct inode * inode = file->f_path.dentry->d_inode;
1078 struct task_struct *task = get_proc_task(inode);
1079 ssize_t length;
1080 char tmpbuf[TMPBUFLEN];
1081
1082 if (!task)
1083 return -ESRCH;
1084 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1085 from_kuid(file->f_cred->user_ns,
1086 audit_get_loginuid(task)));
1087 put_task_struct(task);
1088 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1089 }
1090
1091 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1092 size_t count, loff_t *ppos)
1093 {
1094 struct inode * inode = file->f_path.dentry->d_inode;
1095 char *page, *tmp;
1096 ssize_t length;
1097 uid_t loginuid;
1098 kuid_t kloginuid;
1099
1100 rcu_read_lock();
1101 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1102 rcu_read_unlock();
1103 return -EPERM;
1104 }
1105 rcu_read_unlock();
1106
1107 if (count >= PAGE_SIZE)
1108 count = PAGE_SIZE - 1;
1109
1110 if (*ppos != 0) {
1111 /* No partial writes. */
1112 return -EINVAL;
1113 }
1114 page = (char*)__get_free_page(GFP_TEMPORARY);
1115 if (!page)
1116 return -ENOMEM;
1117 length = -EFAULT;
1118 if (copy_from_user(page, buf, count))
1119 goto out_free_page;
1120
1121 page[count] = '\0';
1122 loginuid = simple_strtoul(page, &tmp, 10);
1123 if (tmp == page) {
1124 length = -EINVAL;
1125 goto out_free_page;
1126
1127 }
1128 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1129 if (!uid_valid(kloginuid)) {
1130 length = -EINVAL;
1131 goto out_free_page;
1132 }
1133
1134 length = audit_set_loginuid(kloginuid);
1135 if (likely(length == 0))
1136 length = count;
1137
1138 out_free_page:
1139 free_page((unsigned long) page);
1140 return length;
1141 }
1142
1143 static const struct file_operations proc_loginuid_operations = {
1144 .read = proc_loginuid_read,
1145 .write = proc_loginuid_write,
1146 .llseek = generic_file_llseek,
1147 };
1148
1149 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1150 size_t count, loff_t *ppos)
1151 {
1152 struct inode * inode = file->f_path.dentry->d_inode;
1153 struct task_struct *task = get_proc_task(inode);
1154 ssize_t length;
1155 char tmpbuf[TMPBUFLEN];
1156
1157 if (!task)
1158 return -ESRCH;
1159 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1160 audit_get_sessionid(task));
1161 put_task_struct(task);
1162 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1163 }
1164
1165 static const struct file_operations proc_sessionid_operations = {
1166 .read = proc_sessionid_read,
1167 .llseek = generic_file_llseek,
1168 };
1169 #endif
1170
1171 #ifdef CONFIG_FAULT_INJECTION
1172 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1173 size_t count, loff_t *ppos)
1174 {
1175 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1176 char buffer[PROC_NUMBUF];
1177 size_t len;
1178 int make_it_fail;
1179
1180 if (!task)
1181 return -ESRCH;
1182 make_it_fail = task->make_it_fail;
1183 put_task_struct(task);
1184
1185 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1186
1187 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1188 }
1189
1190 static ssize_t proc_fault_inject_write(struct file * file,
1191 const char __user * buf, size_t count, loff_t *ppos)
1192 {
1193 struct task_struct *task;
1194 char buffer[PROC_NUMBUF], *end;
1195 int make_it_fail;
1196
1197 if (!capable(CAP_SYS_RESOURCE))
1198 return -EPERM;
1199 memset(buffer, 0, sizeof(buffer));
1200 if (count > sizeof(buffer) - 1)
1201 count = sizeof(buffer) - 1;
1202 if (copy_from_user(buffer, buf, count))
1203 return -EFAULT;
1204 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1205 if (*end)
1206 return -EINVAL;
1207 task = get_proc_task(file->f_dentry->d_inode);
1208 if (!task)
1209 return -ESRCH;
1210 task->make_it_fail = make_it_fail;
1211 put_task_struct(task);
1212
1213 return count;
1214 }
1215
1216 static const struct file_operations proc_fault_inject_operations = {
1217 .read = proc_fault_inject_read,
1218 .write = proc_fault_inject_write,
1219 .llseek = generic_file_llseek,
1220 };
1221 #endif
1222
1223
1224 #ifdef CONFIG_SCHED_DEBUG
1225 /*
1226 * Print out various scheduling related per-task fields:
1227 */
1228 static int sched_show(struct seq_file *m, void *v)
1229 {
1230 struct inode *inode = m->private;
1231 struct task_struct *p;
1232
1233 p = get_proc_task(inode);
1234 if (!p)
1235 return -ESRCH;
1236 proc_sched_show_task(p, m);
1237
1238 put_task_struct(p);
1239
1240 return 0;
1241 }
1242
1243 static ssize_t
1244 sched_write(struct file *file, const char __user *buf,
1245 size_t count, loff_t *offset)
1246 {
1247 struct inode *inode = file->f_path.dentry->d_inode;
1248 struct task_struct *p;
1249
1250 p = get_proc_task(inode);
1251 if (!p)
1252 return -ESRCH;
1253 proc_sched_set_task(p);
1254
1255 put_task_struct(p);
1256
1257 return count;
1258 }
1259
1260 static int sched_open(struct inode *inode, struct file *filp)
1261 {
1262 return single_open(filp, sched_show, inode);
1263 }
1264
1265 static const struct file_operations proc_pid_sched_operations = {
1266 .open = sched_open,
1267 .read = seq_read,
1268 .write = sched_write,
1269 .llseek = seq_lseek,
1270 .release = single_release,
1271 };
1272
1273 #endif
1274
1275 #ifdef CONFIG_SCHED_AUTOGROUP
1276 /*
1277 * Print out autogroup related information:
1278 */
1279 static int sched_autogroup_show(struct seq_file *m, void *v)
1280 {
1281 struct inode *inode = m->private;
1282 struct task_struct *p;
1283
1284 p = get_proc_task(inode);
1285 if (!p)
1286 return -ESRCH;
1287 proc_sched_autogroup_show_task(p, m);
1288
1289 put_task_struct(p);
1290
1291 return 0;
1292 }
1293
1294 static ssize_t
1295 sched_autogroup_write(struct file *file, const char __user *buf,
1296 size_t count, loff_t *offset)
1297 {
1298 struct inode *inode = file->f_path.dentry->d_inode;
1299 struct task_struct *p;
1300 char buffer[PROC_NUMBUF];
1301 int nice;
1302 int err;
1303
1304 memset(buffer, 0, sizeof(buffer));
1305 if (count > sizeof(buffer) - 1)
1306 count = sizeof(buffer) - 1;
1307 if (copy_from_user(buffer, buf, count))
1308 return -EFAULT;
1309
1310 err = kstrtoint(strstrip(buffer), 0, &nice);
1311 if (err < 0)
1312 return err;
1313
1314 p = get_proc_task(inode);
1315 if (!p)
1316 return -ESRCH;
1317
1318 err = proc_sched_autogroup_set_nice(p, nice);
1319 if (err)
1320 count = err;
1321
1322 put_task_struct(p);
1323
1324 return count;
1325 }
1326
1327 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1328 {
1329 int ret;
1330
1331 ret = single_open(filp, sched_autogroup_show, NULL);
1332 if (!ret) {
1333 struct seq_file *m = filp->private_data;
1334
1335 m->private = inode;
1336 }
1337 return ret;
1338 }
1339
1340 static const struct file_operations proc_pid_sched_autogroup_operations = {
1341 .open = sched_autogroup_open,
1342 .read = seq_read,
1343 .write = sched_autogroup_write,
1344 .llseek = seq_lseek,
1345 .release = single_release,
1346 };
1347
1348 #endif /* CONFIG_SCHED_AUTOGROUP */
1349
1350 static ssize_t comm_write(struct file *file, const char __user *buf,
1351 size_t count, loff_t *offset)
1352 {
1353 struct inode *inode = file->f_path.dentry->d_inode;
1354 struct task_struct *p;
1355 char buffer[TASK_COMM_LEN];
1356
1357 memset(buffer, 0, sizeof(buffer));
1358 if (count > sizeof(buffer) - 1)
1359 count = sizeof(buffer) - 1;
1360 if (copy_from_user(buffer, buf, count))
1361 return -EFAULT;
1362
1363 p = get_proc_task(inode);
1364 if (!p)
1365 return -ESRCH;
1366
1367 if (same_thread_group(current, p))
1368 set_task_comm(p, buffer);
1369 else
1370 count = -EINVAL;
1371
1372 put_task_struct(p);
1373
1374 return count;
1375 }
1376
1377 static int comm_show(struct seq_file *m, void *v)
1378 {
1379 struct inode *inode = m->private;
1380 struct task_struct *p;
1381
1382 p = get_proc_task(inode);
1383 if (!p)
1384 return -ESRCH;
1385
1386 task_lock(p);
1387 seq_printf(m, "%s\n", p->comm);
1388 task_unlock(p);
1389
1390 put_task_struct(p);
1391
1392 return 0;
1393 }
1394
1395 static int comm_open(struct inode *inode, struct file *filp)
1396 {
1397 return single_open(filp, comm_show, inode);
1398 }
1399
1400 static const struct file_operations proc_pid_set_comm_operations = {
1401 .open = comm_open,
1402 .read = seq_read,
1403 .write = comm_write,
1404 .llseek = seq_lseek,
1405 .release = single_release,
1406 };
1407
1408 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1409 {
1410 struct task_struct *task;
1411 struct mm_struct *mm;
1412 struct file *exe_file;
1413
1414 task = get_proc_task(dentry->d_inode);
1415 if (!task)
1416 return -ENOENT;
1417 mm = get_task_mm(task);
1418 put_task_struct(task);
1419 if (!mm)
1420 return -ENOENT;
1421 exe_file = get_mm_exe_file(mm);
1422 mmput(mm);
1423 if (exe_file) {
1424 *exe_path = exe_file->f_path;
1425 path_get(&exe_file->f_path);
1426 fput(exe_file);
1427 return 0;
1428 } else
1429 return -ENOENT;
1430 }
1431
1432 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1433 {
1434 struct inode *inode = dentry->d_inode;
1435 struct path path;
1436 int error = -EACCES;
1437
1438 /* Are we allowed to snoop on the tasks file descriptors? */
1439 if (!proc_fd_access_allowed(inode))
1440 goto out;
1441
1442 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1443 if (error)
1444 goto out;
1445
1446 nd_jump_link(nd, &path);
1447 return NULL;
1448 out:
1449 return ERR_PTR(error);
1450 }
1451
1452 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1453 {
1454 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1455 char *pathname;
1456 int len;
1457
1458 if (!tmp)
1459 return -ENOMEM;
1460
1461 pathname = d_path(path, tmp, PAGE_SIZE);
1462 len = PTR_ERR(pathname);
1463 if (IS_ERR(pathname))
1464 goto out;
1465 len = tmp + PAGE_SIZE - 1 - pathname;
1466
1467 if (len > buflen)
1468 len = buflen;
1469 if (copy_to_user(buffer, pathname, len))
1470 len = -EFAULT;
1471 out:
1472 free_page((unsigned long)tmp);
1473 return len;
1474 }
1475
1476 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1477 {
1478 int error = -EACCES;
1479 struct inode *inode = dentry->d_inode;
1480 struct path path;
1481
1482 /* Are we allowed to snoop on the tasks file descriptors? */
1483 if (!proc_fd_access_allowed(inode))
1484 goto out;
1485
1486 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1487 if (error)
1488 goto out;
1489
1490 error = do_proc_readlink(&path, buffer, buflen);
1491 path_put(&path);
1492 out:
1493 return error;
1494 }
1495
1496 const struct inode_operations proc_pid_link_inode_operations = {
1497 .readlink = proc_pid_readlink,
1498 .follow_link = proc_pid_follow_link,
1499 .setattr = proc_setattr,
1500 };
1501
1502
1503 /* building an inode */
1504
1505 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1506 {
1507 struct inode * inode;
1508 struct proc_inode *ei;
1509 const struct cred *cred;
1510
1511 /* We need a new inode */
1512
1513 inode = new_inode(sb);
1514 if (!inode)
1515 goto out;
1516
1517 /* Common stuff */
1518 ei = PROC_I(inode);
1519 inode->i_ino = get_next_ino();
1520 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1521 inode->i_op = &proc_def_inode_operations;
1522
1523 /*
1524 * grab the reference to task.
1525 */
1526 ei->pid = get_task_pid(task, PIDTYPE_PID);
1527 if (!ei->pid)
1528 goto out_unlock;
1529
1530 if (task_dumpable(task)) {
1531 rcu_read_lock();
1532 cred = __task_cred(task);
1533 inode->i_uid = cred->euid;
1534 inode->i_gid = cred->egid;
1535 rcu_read_unlock();
1536 }
1537 security_task_to_inode(task, inode);
1538
1539 out:
1540 return inode;
1541
1542 out_unlock:
1543 iput(inode);
1544 return NULL;
1545 }
1546
1547 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1548 {
1549 struct inode *inode = dentry->d_inode;
1550 struct task_struct *task;
1551 const struct cred *cred;
1552 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1553
1554 generic_fillattr(inode, stat);
1555
1556 rcu_read_lock();
1557 stat->uid = GLOBAL_ROOT_UID;
1558 stat->gid = GLOBAL_ROOT_GID;
1559 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1560 if (task) {
1561 if (!has_pid_permissions(pid, task, 2)) {
1562 rcu_read_unlock();
1563 /*
1564 * This doesn't prevent learning whether PID exists,
1565 * it only makes getattr() consistent with readdir().
1566 */
1567 return -ENOENT;
1568 }
1569 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1570 task_dumpable(task)) {
1571 cred = __task_cred(task);
1572 stat->uid = cred->euid;
1573 stat->gid = cred->egid;
1574 }
1575 }
1576 rcu_read_unlock();
1577 return 0;
1578 }
1579
1580 /* dentry stuff */
1581
1582 /*
1583 * Exceptional case: normally we are not allowed to unhash a busy
1584 * directory. In this case, however, we can do it - no aliasing problems
1585 * due to the way we treat inodes.
1586 *
1587 * Rewrite the inode's ownerships here because the owning task may have
1588 * performed a setuid(), etc.
1589 *
1590 * Before the /proc/pid/status file was created the only way to read
1591 * the effective uid of a /process was to stat /proc/pid. Reading
1592 * /proc/pid/status is slow enough that procps and other packages
1593 * kept stating /proc/pid. To keep the rules in /proc simple I have
1594 * made this apply to all per process world readable and executable
1595 * directories.
1596 */
1597 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1598 {
1599 struct inode *inode;
1600 struct task_struct *task;
1601 const struct cred *cred;
1602
1603 if (flags & LOOKUP_RCU)
1604 return -ECHILD;
1605
1606 inode = dentry->d_inode;
1607 task = get_proc_task(inode);
1608
1609 if (task) {
1610 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1611 task_dumpable(task)) {
1612 rcu_read_lock();
1613 cred = __task_cred(task);
1614 inode->i_uid = cred->euid;
1615 inode->i_gid = cred->egid;
1616 rcu_read_unlock();
1617 } else {
1618 inode->i_uid = GLOBAL_ROOT_UID;
1619 inode->i_gid = GLOBAL_ROOT_GID;
1620 }
1621 inode->i_mode &= ~(S_ISUID | S_ISGID);
1622 security_task_to_inode(task, inode);
1623 put_task_struct(task);
1624 return 1;
1625 }
1626 d_drop(dentry);
1627 return 0;
1628 }
1629
1630 const struct dentry_operations pid_dentry_operations =
1631 {
1632 .d_revalidate = pid_revalidate,
1633 .d_delete = pid_delete_dentry,
1634 };
1635
1636 /* Lookups */
1637
1638 /*
1639 * Fill a directory entry.
1640 *
1641 * If possible create the dcache entry and derive our inode number and
1642 * file type from dcache entry.
1643 *
1644 * Since all of the proc inode numbers are dynamically generated, the inode
1645 * numbers do not exist until the inode is cache. This means creating the
1646 * the dcache entry in readdir is necessary to keep the inode numbers
1647 * reported by readdir in sync with the inode numbers reported
1648 * by stat.
1649 */
1650 int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1651 const char *name, int len,
1652 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1653 {
1654 struct dentry *child, *dir = filp->f_path.dentry;
1655 struct inode *inode;
1656 struct qstr qname;
1657 ino_t ino = 0;
1658 unsigned type = DT_UNKNOWN;
1659
1660 qname.name = name;
1661 qname.len = len;
1662 qname.hash = full_name_hash(name, len);
1663
1664 child = d_lookup(dir, &qname);
1665 if (!child) {
1666 struct dentry *new;
1667 new = d_alloc(dir, &qname);
1668 if (new) {
1669 child = instantiate(dir->d_inode, new, task, ptr);
1670 if (child)
1671 dput(new);
1672 else
1673 child = new;
1674 }
1675 }
1676 if (!child || IS_ERR(child) || !child->d_inode)
1677 goto end_instantiate;
1678 inode = child->d_inode;
1679 if (inode) {
1680 ino = inode->i_ino;
1681 type = inode->i_mode >> 12;
1682 }
1683 dput(child);
1684 end_instantiate:
1685 if (!ino)
1686 ino = find_inode_number(dir, &qname);
1687 if (!ino)
1688 ino = 1;
1689 return filldir(dirent, name, len, filp->f_pos, ino, type);
1690 }
1691
1692 #ifdef CONFIG_CHECKPOINT_RESTORE
1693
1694 /*
1695 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1696 * which represent vma start and end addresses.
1697 */
1698 static int dname_to_vma_addr(struct dentry *dentry,
1699 unsigned long *start, unsigned long *end)
1700 {
1701 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1702 return -EINVAL;
1703
1704 return 0;
1705 }
1706
1707 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1708 {
1709 unsigned long vm_start, vm_end;
1710 bool exact_vma_exists = false;
1711 struct mm_struct *mm = NULL;
1712 struct task_struct *task;
1713 const struct cred *cred;
1714 struct inode *inode;
1715 int status = 0;
1716
1717 if (flags & LOOKUP_RCU)
1718 return -ECHILD;
1719
1720 if (!capable(CAP_SYS_ADMIN)) {
1721 status = -EACCES;
1722 goto out_notask;
1723 }
1724
1725 inode = dentry->d_inode;
1726 task = get_proc_task(inode);
1727 if (!task)
1728 goto out_notask;
1729
1730 mm = mm_access(task, PTRACE_MODE_READ);
1731 if (IS_ERR_OR_NULL(mm))
1732 goto out;
1733
1734 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1735 down_read(&mm->mmap_sem);
1736 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1737 up_read(&mm->mmap_sem);
1738 }
1739
1740 mmput(mm);
1741
1742 if (exact_vma_exists) {
1743 if (task_dumpable(task)) {
1744 rcu_read_lock();
1745 cred = __task_cred(task);
1746 inode->i_uid = cred->euid;
1747 inode->i_gid = cred->egid;
1748 rcu_read_unlock();
1749 } else {
1750 inode->i_uid = GLOBAL_ROOT_UID;
1751 inode->i_gid = GLOBAL_ROOT_GID;
1752 }
1753 security_task_to_inode(task, inode);
1754 status = 1;
1755 }
1756
1757 out:
1758 put_task_struct(task);
1759
1760 out_notask:
1761 if (status <= 0)
1762 d_drop(dentry);
1763
1764 return status;
1765 }
1766
1767 static const struct dentry_operations tid_map_files_dentry_operations = {
1768 .d_revalidate = map_files_d_revalidate,
1769 .d_delete = pid_delete_dentry,
1770 };
1771
1772 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1773 {
1774 unsigned long vm_start, vm_end;
1775 struct vm_area_struct *vma;
1776 struct task_struct *task;
1777 struct mm_struct *mm;
1778 int rc;
1779
1780 rc = -ENOENT;
1781 task = get_proc_task(dentry->d_inode);
1782 if (!task)
1783 goto out;
1784
1785 mm = get_task_mm(task);
1786 put_task_struct(task);
1787 if (!mm)
1788 goto out;
1789
1790 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1791 if (rc)
1792 goto out_mmput;
1793
1794 down_read(&mm->mmap_sem);
1795 vma = find_exact_vma(mm, vm_start, vm_end);
1796 if (vma && vma->vm_file) {
1797 *path = vma->vm_file->f_path;
1798 path_get(path);
1799 rc = 0;
1800 }
1801 up_read(&mm->mmap_sem);
1802
1803 out_mmput:
1804 mmput(mm);
1805 out:
1806 return rc;
1807 }
1808
1809 struct map_files_info {
1810 fmode_t mode;
1811 unsigned long len;
1812 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1813 };
1814
1815 static struct dentry *
1816 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1817 struct task_struct *task, const void *ptr)
1818 {
1819 fmode_t mode = (fmode_t)(unsigned long)ptr;
1820 struct proc_inode *ei;
1821 struct inode *inode;
1822
1823 inode = proc_pid_make_inode(dir->i_sb, task);
1824 if (!inode)
1825 return ERR_PTR(-ENOENT);
1826
1827 ei = PROC_I(inode);
1828 ei->op.proc_get_link = proc_map_files_get_link;
1829
1830 inode->i_op = &proc_pid_link_inode_operations;
1831 inode->i_size = 64;
1832 inode->i_mode = S_IFLNK;
1833
1834 if (mode & FMODE_READ)
1835 inode->i_mode |= S_IRUSR;
1836 if (mode & FMODE_WRITE)
1837 inode->i_mode |= S_IWUSR;
1838
1839 d_set_d_op(dentry, &tid_map_files_dentry_operations);
1840 d_add(dentry, inode);
1841
1842 return NULL;
1843 }
1844
1845 static struct dentry *proc_map_files_lookup(struct inode *dir,
1846 struct dentry *dentry, unsigned int flags)
1847 {
1848 unsigned long vm_start, vm_end;
1849 struct vm_area_struct *vma;
1850 struct task_struct *task;
1851 struct dentry *result;
1852 struct mm_struct *mm;
1853
1854 result = ERR_PTR(-EACCES);
1855 if (!capable(CAP_SYS_ADMIN))
1856 goto out;
1857
1858 result = ERR_PTR(-ENOENT);
1859 task = get_proc_task(dir);
1860 if (!task)
1861 goto out;
1862
1863 result = ERR_PTR(-EACCES);
1864 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1865 goto out_put_task;
1866
1867 result = ERR_PTR(-ENOENT);
1868 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1869 goto out_put_task;
1870
1871 mm = get_task_mm(task);
1872 if (!mm)
1873 goto out_put_task;
1874
1875 down_read(&mm->mmap_sem);
1876 vma = find_exact_vma(mm, vm_start, vm_end);
1877 if (!vma)
1878 goto out_no_vma;
1879
1880 result = proc_map_files_instantiate(dir, dentry, task,
1881 (void *)(unsigned long)vma->vm_file->f_mode);
1882
1883 out_no_vma:
1884 up_read(&mm->mmap_sem);
1885 mmput(mm);
1886 out_put_task:
1887 put_task_struct(task);
1888 out:
1889 return result;
1890 }
1891
1892 static const struct inode_operations proc_map_files_inode_operations = {
1893 .lookup = proc_map_files_lookup,
1894 .permission = proc_fd_permission,
1895 .setattr = proc_setattr,
1896 };
1897
1898 static int
1899 proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
1900 {
1901 struct dentry *dentry = filp->f_path.dentry;
1902 struct inode *inode = dentry->d_inode;
1903 struct vm_area_struct *vma;
1904 struct task_struct *task;
1905 struct mm_struct *mm;
1906 ino_t ino;
1907 int ret;
1908
1909 ret = -EACCES;
1910 if (!capable(CAP_SYS_ADMIN))
1911 goto out;
1912
1913 ret = -ENOENT;
1914 task = get_proc_task(inode);
1915 if (!task)
1916 goto out;
1917
1918 ret = -EACCES;
1919 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1920 goto out_put_task;
1921
1922 ret = 0;
1923 switch (filp->f_pos) {
1924 case 0:
1925 ino = inode->i_ino;
1926 if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
1927 goto out_put_task;
1928 filp->f_pos++;
1929 case 1:
1930 ino = parent_ino(dentry);
1931 if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1932 goto out_put_task;
1933 filp->f_pos++;
1934 default:
1935 {
1936 unsigned long nr_files, pos, i;
1937 struct flex_array *fa = NULL;
1938 struct map_files_info info;
1939 struct map_files_info *p;
1940
1941 mm = get_task_mm(task);
1942 if (!mm)
1943 goto out_put_task;
1944 down_read(&mm->mmap_sem);
1945
1946 nr_files = 0;
1947
1948 /*
1949 * We need two passes here:
1950 *
1951 * 1) Collect vmas of mapped files with mmap_sem taken
1952 * 2) Release mmap_sem and instantiate entries
1953 *
1954 * otherwise we get lockdep complained, since filldir()
1955 * routine might require mmap_sem taken in might_fault().
1956 */
1957
1958 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1959 if (vma->vm_file && ++pos > filp->f_pos)
1960 nr_files++;
1961 }
1962
1963 if (nr_files) {
1964 fa = flex_array_alloc(sizeof(info), nr_files,
1965 GFP_KERNEL);
1966 if (!fa || flex_array_prealloc(fa, 0, nr_files,
1967 GFP_KERNEL)) {
1968 ret = -ENOMEM;
1969 if (fa)
1970 flex_array_free(fa);
1971 up_read(&mm->mmap_sem);
1972 mmput(mm);
1973 goto out_put_task;
1974 }
1975 for (i = 0, vma = mm->mmap, pos = 2; vma;
1976 vma = vma->vm_next) {
1977 if (!vma->vm_file)
1978 continue;
1979 if (++pos <= filp->f_pos)
1980 continue;
1981
1982 info.mode = vma->vm_file->f_mode;
1983 info.len = snprintf(info.name,
1984 sizeof(info.name), "%lx-%lx",
1985 vma->vm_start, vma->vm_end);
1986 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1987 BUG();
1988 }
1989 }
1990 up_read(&mm->mmap_sem);
1991
1992 for (i = 0; i < nr_files; i++) {
1993 p = flex_array_get(fa, i);
1994 ret = proc_fill_cache(filp, dirent, filldir,
1995 p->name, p->len,
1996 proc_map_files_instantiate,
1997 task,
1998 (void *)(unsigned long)p->mode);
1999 if (ret)
2000 break;
2001 filp->f_pos++;
2002 }
2003 if (fa)
2004 flex_array_free(fa);
2005 mmput(mm);
2006 }
2007 }
2008
2009 out_put_task:
2010 put_task_struct(task);
2011 out:
2012 return ret;
2013 }
2014
2015 static const struct file_operations proc_map_files_operations = {
2016 .read = generic_read_dir,
2017 .readdir = proc_map_files_readdir,
2018 .llseek = default_llseek,
2019 };
2020
2021 #endif /* CONFIG_CHECKPOINT_RESTORE */
2022
2023 static struct dentry *proc_pident_instantiate(struct inode *dir,
2024 struct dentry *dentry, struct task_struct *task, const void *ptr)
2025 {
2026 const struct pid_entry *p = ptr;
2027 struct inode *inode;
2028 struct proc_inode *ei;
2029 struct dentry *error = ERR_PTR(-ENOENT);
2030
2031 inode = proc_pid_make_inode(dir->i_sb, task);
2032 if (!inode)
2033 goto out;
2034
2035 ei = PROC_I(inode);
2036 inode->i_mode = p->mode;
2037 if (S_ISDIR(inode->i_mode))
2038 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2039 if (p->iop)
2040 inode->i_op = p->iop;
2041 if (p->fop)
2042 inode->i_fop = p->fop;
2043 ei->op = p->op;
2044 d_set_d_op(dentry, &pid_dentry_operations);
2045 d_add(dentry, inode);
2046 /* Close the race of the process dying before we return the dentry */
2047 if (pid_revalidate(dentry, 0))
2048 error = NULL;
2049 out:
2050 return error;
2051 }
2052
2053 static struct dentry *proc_pident_lookup(struct inode *dir,
2054 struct dentry *dentry,
2055 const struct pid_entry *ents,
2056 unsigned int nents)
2057 {
2058 struct dentry *error;
2059 struct task_struct *task = get_proc_task(dir);
2060 const struct pid_entry *p, *last;
2061
2062 error = ERR_PTR(-ENOENT);
2063
2064 if (!task)
2065 goto out_no_task;
2066
2067 /*
2068 * Yes, it does not scale. And it should not. Don't add
2069 * new entries into /proc/<tgid>/ without very good reasons.
2070 */
2071 last = &ents[nents - 1];
2072 for (p = ents; p <= last; p++) {
2073 if (p->len != dentry->d_name.len)
2074 continue;
2075 if (!memcmp(dentry->d_name.name, p->name, p->len))
2076 break;
2077 }
2078 if (p > last)
2079 goto out;
2080
2081 error = proc_pident_instantiate(dir, dentry, task, p);
2082 out:
2083 put_task_struct(task);
2084 out_no_task:
2085 return error;
2086 }
2087
2088 static int proc_pident_fill_cache(struct file *filp, void *dirent,
2089 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2090 {
2091 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2092 proc_pident_instantiate, task, p);
2093 }
2094
2095 static int proc_pident_readdir(struct file *filp,
2096 void *dirent, filldir_t filldir,
2097 const struct pid_entry *ents, unsigned int nents)
2098 {
2099 int i;
2100 struct dentry *dentry = filp->f_path.dentry;
2101 struct inode *inode = dentry->d_inode;
2102 struct task_struct *task = get_proc_task(inode);
2103 const struct pid_entry *p, *last;
2104 ino_t ino;
2105 int ret;
2106
2107 ret = -ENOENT;
2108 if (!task)
2109 goto out_no_task;
2110
2111 ret = 0;
2112 i = filp->f_pos;
2113 switch (i) {
2114 case 0:
2115 ino = inode->i_ino;
2116 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2117 goto out;
2118 i++;
2119 filp->f_pos++;
2120 /* fall through */
2121 case 1:
2122 ino = parent_ino(dentry);
2123 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2124 goto out;
2125 i++;
2126 filp->f_pos++;
2127 /* fall through */
2128 default:
2129 i -= 2;
2130 if (i >= nents) {
2131 ret = 1;
2132 goto out;
2133 }
2134 p = ents + i;
2135 last = &ents[nents - 1];
2136 while (p <= last) {
2137 if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2138 goto out;
2139 filp->f_pos++;
2140 p++;
2141 }
2142 }
2143
2144 ret = 1;
2145 out:
2146 put_task_struct(task);
2147 out_no_task:
2148 return ret;
2149 }
2150
2151 #ifdef CONFIG_SECURITY
2152 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2153 size_t count, loff_t *ppos)
2154 {
2155 struct inode * inode = file->f_path.dentry->d_inode;
2156 char *p = NULL;
2157 ssize_t length;
2158 struct task_struct *task = get_proc_task(inode);
2159
2160 if (!task)
2161 return -ESRCH;
2162
2163 length = security_getprocattr(task,
2164 (char*)file->f_path.dentry->d_name.name,
2165 &p);
2166 put_task_struct(task);
2167 if (length > 0)
2168 length = simple_read_from_buffer(buf, count, ppos, p, length);
2169 kfree(p);
2170 return length;
2171 }
2172
2173 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2174 size_t count, loff_t *ppos)
2175 {
2176 struct inode * inode = file->f_path.dentry->d_inode;
2177 char *page;
2178 ssize_t length;
2179 struct task_struct *task = get_proc_task(inode);
2180
2181 length = -ESRCH;
2182 if (!task)
2183 goto out_no_task;
2184 if (count > PAGE_SIZE)
2185 count = PAGE_SIZE;
2186
2187 /* No partial writes. */
2188 length = -EINVAL;
2189 if (*ppos != 0)
2190 goto out;
2191
2192 length = -ENOMEM;
2193 page = (char*)__get_free_page(GFP_TEMPORARY);
2194 if (!page)
2195 goto out;
2196
2197 length = -EFAULT;
2198 if (copy_from_user(page, buf, count))
2199 goto out_free;
2200
2201 /* Guard against adverse ptrace interaction */
2202 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2203 if (length < 0)
2204 goto out_free;
2205
2206 length = security_setprocattr(task,
2207 (char*)file->f_path.dentry->d_name.name,
2208 (void*)page, count);
2209 mutex_unlock(&task->signal->cred_guard_mutex);
2210 out_free:
2211 free_page((unsigned long) page);
2212 out:
2213 put_task_struct(task);
2214 out_no_task:
2215 return length;
2216 }
2217
2218 static const struct file_operations proc_pid_attr_operations = {
2219 .read = proc_pid_attr_read,
2220 .write = proc_pid_attr_write,
2221 .llseek = generic_file_llseek,
2222 };
2223
2224 static const struct pid_entry attr_dir_stuff[] = {
2225 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2226 REG("prev", S_IRUGO, proc_pid_attr_operations),
2227 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2228 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2229 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2230 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2231 };
2232
2233 static int proc_attr_dir_readdir(struct file * filp,
2234 void * dirent, filldir_t filldir)
2235 {
2236 return proc_pident_readdir(filp,dirent,filldir,
2237 attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2238 }
2239
2240 static const struct file_operations proc_attr_dir_operations = {
2241 .read = generic_read_dir,
2242 .readdir = proc_attr_dir_readdir,
2243 .llseek = default_llseek,
2244 };
2245
2246 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2247 struct dentry *dentry, unsigned int flags)
2248 {
2249 return proc_pident_lookup(dir, dentry,
2250 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2251 }
2252
2253 static const struct inode_operations proc_attr_dir_inode_operations = {
2254 .lookup = proc_attr_dir_lookup,
2255 .getattr = pid_getattr,
2256 .setattr = proc_setattr,
2257 };
2258
2259 #endif
2260
2261 #ifdef CONFIG_ELF_CORE
2262 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2263 size_t count, loff_t *ppos)
2264 {
2265 struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2266 struct mm_struct *mm;
2267 char buffer[PROC_NUMBUF];
2268 size_t len;
2269 int ret;
2270
2271 if (!task)
2272 return -ESRCH;
2273
2274 ret = 0;
2275 mm = get_task_mm(task);
2276 if (mm) {
2277 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2278 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2279 MMF_DUMP_FILTER_SHIFT));
2280 mmput(mm);
2281 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2282 }
2283
2284 put_task_struct(task);
2285
2286 return ret;
2287 }
2288
2289 static ssize_t proc_coredump_filter_write(struct file *file,
2290 const char __user *buf,
2291 size_t count,
2292 loff_t *ppos)
2293 {
2294 struct task_struct *task;
2295 struct mm_struct *mm;
2296 char buffer[PROC_NUMBUF], *end;
2297 unsigned int val;
2298 int ret;
2299 int i;
2300 unsigned long mask;
2301
2302 ret = -EFAULT;
2303 memset(buffer, 0, sizeof(buffer));
2304 if (count > sizeof(buffer) - 1)
2305 count = sizeof(buffer) - 1;
2306 if (copy_from_user(buffer, buf, count))
2307 goto out_no_task;
2308
2309 ret = -EINVAL;
2310 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2311 if (*end == '\n')
2312 end++;
2313 if (end - buffer == 0)
2314 goto out_no_task;
2315
2316 ret = -ESRCH;
2317 task = get_proc_task(file->f_dentry->d_inode);
2318 if (!task)
2319 goto out_no_task;
2320
2321 ret = end - buffer;
2322 mm = get_task_mm(task);
2323 if (!mm)
2324 goto out_no_mm;
2325
2326 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2327 if (val & mask)
2328 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2329 else
2330 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2331 }
2332
2333 mmput(mm);
2334 out_no_mm:
2335 put_task_struct(task);
2336 out_no_task:
2337 return ret;
2338 }
2339
2340 static const struct file_operations proc_coredump_filter_operations = {
2341 .read = proc_coredump_filter_read,
2342 .write = proc_coredump_filter_write,
2343 .llseek = generic_file_llseek,
2344 };
2345 #endif
2346
2347 /*
2348 * /proc/self:
2349 */
2350 static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2351 int buflen)
2352 {
2353 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2354 pid_t tgid = task_tgid_nr_ns(current, ns);
2355 char tmp[PROC_NUMBUF];
2356 if (!tgid)
2357 return -ENOENT;
2358 sprintf(tmp, "%d", tgid);
2359 return vfs_readlink(dentry,buffer,buflen,tmp);
2360 }
2361
2362 static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2363 {
2364 struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2365 pid_t tgid = task_tgid_nr_ns(current, ns);
2366 char *name = ERR_PTR(-ENOENT);
2367 if (tgid) {
2368 /* 11 for max length of signed int in decimal + NULL term */
2369 name = kmalloc(12, GFP_KERNEL);
2370 if (!name)
2371 name = ERR_PTR(-ENOMEM);
2372 else
2373 sprintf(name, "%d", tgid);
2374 }
2375 nd_set_link(nd, name);
2376 return NULL;
2377 }
2378
2379 static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2380 void *cookie)
2381 {
2382 char *s = nd_get_link(nd);
2383 if (!IS_ERR(s))
2384 kfree(s);
2385 }
2386
2387 static const struct inode_operations proc_self_inode_operations = {
2388 .readlink = proc_self_readlink,
2389 .follow_link = proc_self_follow_link,
2390 .put_link = proc_self_put_link,
2391 };
2392
2393 /*
2394 * proc base
2395 *
2396 * These are the directory entries in the root directory of /proc
2397 * that properly belong to the /proc filesystem, as they describe
2398 * describe something that is process related.
2399 */
2400 static const struct pid_entry proc_base_stuff[] = {
2401 NOD("self", S_IFLNK|S_IRWXUGO,
2402 &proc_self_inode_operations, NULL, {}),
2403 };
2404
2405 static struct dentry *proc_base_instantiate(struct inode *dir,
2406 struct dentry *dentry, struct task_struct *task, const void *ptr)
2407 {
2408 const struct pid_entry *p = ptr;
2409 struct inode *inode;
2410 struct proc_inode *ei;
2411 struct dentry *error;
2412
2413 /* Allocate the inode */
2414 error = ERR_PTR(-ENOMEM);
2415 inode = new_inode(dir->i_sb);
2416 if (!inode)
2417 goto out;
2418
2419 /* Initialize the inode */
2420 ei = PROC_I(inode);
2421 inode->i_ino = get_next_ino();
2422 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2423
2424 /*
2425 * grab the reference to the task.
2426 */
2427 ei->pid = get_task_pid(task, PIDTYPE_PID);
2428 if (!ei->pid)
2429 goto out_iput;
2430
2431 inode->i_mode = p->mode;
2432 if (S_ISDIR(inode->i_mode))
2433 set_nlink(inode, 2);
2434 if (S_ISLNK(inode->i_mode))
2435 inode->i_size = 64;
2436 if (p->iop)
2437 inode->i_op = p->iop;
2438 if (p->fop)
2439 inode->i_fop = p->fop;
2440 ei->op = p->op;
2441 d_add(dentry, inode);
2442 error = NULL;
2443 out:
2444 return error;
2445 out_iput:
2446 iput(inode);
2447 goto out;
2448 }
2449
2450 static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2451 {
2452 struct dentry *error;
2453 struct task_struct *task = get_proc_task(dir);
2454 const struct pid_entry *p, *last;
2455
2456 error = ERR_PTR(-ENOENT);
2457
2458 if (!task)
2459 goto out_no_task;
2460
2461 /* Lookup the directory entry */
2462 last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2463 for (p = proc_base_stuff; p <= last; p++) {
2464 if (p->len != dentry->d_name.len)
2465 continue;
2466 if (!memcmp(dentry->d_name.name, p->name, p->len))
2467 break;
2468 }
2469 if (p > last)
2470 goto out;
2471
2472 error = proc_base_instantiate(dir, dentry, task, p);
2473
2474 out:
2475 put_task_struct(task);
2476 out_no_task:
2477 return error;
2478 }
2479
2480 static int proc_base_fill_cache(struct file *filp, void *dirent,
2481 filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2482 {
2483 return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2484 proc_base_instantiate, task, p);
2485 }
2486
2487 #ifdef CONFIG_TASK_IO_ACCOUNTING
2488 static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2489 {
2490 struct task_io_accounting acct = task->ioac;
2491 unsigned long flags;
2492 int result;
2493
2494 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2495 if (result)
2496 return result;
2497
2498 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2499 result = -EACCES;
2500 goto out_unlock;
2501 }
2502
2503 if (whole && lock_task_sighand(task, &flags)) {
2504 struct task_struct *t = task;
2505
2506 task_io_accounting_add(&acct, &task->signal->ioac);
2507 while_each_thread(task, t)
2508 task_io_accounting_add(&acct, &t->ioac);
2509
2510 unlock_task_sighand(task, &flags);
2511 }
2512 result = sprintf(buffer,
2513 "rchar: %llu\n"
2514 "wchar: %llu\n"
2515 "syscr: %llu\n"
2516 "syscw: %llu\n"
2517 "read_bytes: %llu\n"
2518 "write_bytes: %llu\n"
2519 "cancelled_write_bytes: %llu\n",
2520 (unsigned long long)acct.rchar,
2521 (unsigned long long)acct.wchar,
2522 (unsigned long long)acct.syscr,
2523 (unsigned long long)acct.syscw,
2524 (unsigned long long)acct.read_bytes,
2525 (unsigned long long)acct.write_bytes,
2526 (unsigned long long)acct.cancelled_write_bytes);
2527 out_unlock:
2528 mutex_unlock(&task->signal->cred_guard_mutex);
2529 return result;
2530 }
2531
2532 static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
2533 {
2534 return do_io_accounting(task, buffer, 0);
2535 }
2536
2537 static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
2538 {
2539 return do_io_accounting(task, buffer, 1);
2540 }
2541 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2542
2543 #ifdef CONFIG_USER_NS
2544 static int proc_id_map_open(struct inode *inode, struct file *file,
2545 struct seq_operations *seq_ops)
2546 {
2547 struct user_namespace *ns = NULL;
2548 struct task_struct *task;
2549 struct seq_file *seq;
2550 int ret = -EINVAL;
2551
2552 task = get_proc_task(inode);
2553 if (task) {
2554 rcu_read_lock();
2555 ns = get_user_ns(task_cred_xxx(task, user_ns));
2556 rcu_read_unlock();
2557 put_task_struct(task);
2558 }
2559 if (!ns)
2560 goto err;
2561
2562 ret = seq_open(file, seq_ops);
2563 if (ret)
2564 goto err_put_ns;
2565
2566 seq = file->private_data;
2567 seq->private = ns;
2568
2569 return 0;
2570 err_put_ns:
2571 put_user_ns(ns);
2572 err:
2573 return ret;
2574 }
2575
2576 static int proc_id_map_release(struct inode *inode, struct file *file)
2577 {
2578 struct seq_file *seq = file->private_data;
2579 struct user_namespace *ns = seq->private;
2580 put_user_ns(ns);
2581 return seq_release(inode, file);
2582 }
2583
2584 static int proc_uid_map_open(struct inode *inode, struct file *file)
2585 {
2586 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2587 }
2588
2589 static int proc_gid_map_open(struct inode *inode, struct file *file)
2590 {
2591 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2592 }
2593
2594 static int proc_projid_map_open(struct inode *inode, struct file *file)
2595 {
2596 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2597 }
2598
2599 static const struct file_operations proc_uid_map_operations = {
2600 .open = proc_uid_map_open,
2601 .write = proc_uid_map_write,
2602 .read = seq_read,
2603 .llseek = seq_lseek,
2604 .release = proc_id_map_release,
2605 };
2606
2607 static const struct file_operations proc_gid_map_operations = {
2608 .open = proc_gid_map_open,
2609 .write = proc_gid_map_write,
2610 .read = seq_read,
2611 .llseek = seq_lseek,
2612 .release = proc_id_map_release,
2613 };
2614
2615 static const struct file_operations proc_projid_map_operations = {
2616 .open = proc_projid_map_open,
2617 .write = proc_projid_map_write,
2618 .read = seq_read,
2619 .llseek = seq_lseek,
2620 .release = proc_id_map_release,
2621 };
2622 #endif /* CONFIG_USER_NS */
2623
2624 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2625 struct pid *pid, struct task_struct *task)
2626 {
2627 int err = lock_trace(task);
2628 if (!err) {
2629 seq_printf(m, "%08x\n", task->personality);
2630 unlock_trace(task);
2631 }
2632 return err;
2633 }
2634
2635 /*
2636 * Thread groups
2637 */
2638 static const struct file_operations proc_task_operations;
2639 static const struct inode_operations proc_task_inode_operations;
2640
2641 static const struct pid_entry tgid_base_stuff[] = {
2642 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2643 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2644 #ifdef CONFIG_CHECKPOINT_RESTORE
2645 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2646 #endif
2647 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2648 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2649 #ifdef CONFIG_NET
2650 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2651 #endif
2652 REG("environ", S_IRUSR, proc_environ_operations),
2653 INF("auxv", S_IRUSR, proc_pid_auxv),
2654 ONE("status", S_IRUGO, proc_pid_status),
2655 ONE("personality", S_IRUGO, proc_pid_personality),
2656 INF("limits", S_IRUGO, proc_pid_limits),
2657 #ifdef CONFIG_SCHED_DEBUG
2658 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2659 #endif
2660 #ifdef CONFIG_SCHED_AUTOGROUP
2661 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2662 #endif
2663 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2664 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2665 INF("syscall", S_IRUGO, proc_pid_syscall),
2666 #endif
2667 INF("cmdline", S_IRUGO, proc_pid_cmdline),
2668 ONE("stat", S_IRUGO, proc_tgid_stat),
2669 ONE("statm", S_IRUGO, proc_pid_statm),
2670 REG("maps", S_IRUGO, proc_pid_maps_operations),
2671 #ifdef CONFIG_NUMA
2672 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2673 #endif
2674 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2675 LNK("cwd", proc_cwd_link),
2676 LNK("root", proc_root_link),
2677 LNK("exe", proc_exe_link),
2678 REG("mounts", S_IRUGO, proc_mounts_operations),
2679 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2680 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2681 #ifdef CONFIG_PROC_PAGE_MONITOR
2682 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2683 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2684 REG("pagemap", S_IRUGO, proc_pagemap_operations),
2685 #endif
2686 #ifdef CONFIG_SECURITY
2687 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2688 #endif
2689 #ifdef CONFIG_KALLSYMS
2690 INF("wchan", S_IRUGO, proc_pid_wchan),
2691 #endif
2692 #ifdef CONFIG_STACKTRACE
2693 ONE("stack", S_IRUGO, proc_pid_stack),
2694 #endif
2695 #ifdef CONFIG_SCHEDSTATS
2696 INF("schedstat", S_IRUGO, proc_pid_schedstat),
2697 #endif
2698 #ifdef CONFIG_LATENCYTOP
2699 REG("latency", S_IRUGO, proc_lstats_operations),
2700 #endif
2701 #ifdef CONFIG_PROC_PID_CPUSET
2702 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2703 #endif
2704 #ifdef CONFIG_CGROUPS
2705 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2706 #endif
2707 INF("oom_score", S_IRUGO, proc_oom_score),
2708 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2709 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2710 #ifdef CONFIG_AUDITSYSCALL
2711 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2712 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2713 #endif
2714 #ifdef CONFIG_FAULT_INJECTION
2715 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2716 #endif
2717 #ifdef CONFIG_ELF_CORE
2718 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2719 #endif
2720 #ifdef CONFIG_TASK_IO_ACCOUNTING
2721 INF("io", S_IRUSR, proc_tgid_io_accounting),
2722 #endif
2723 #ifdef CONFIG_HARDWALL
2724 INF("hardwall", S_IRUGO, proc_pid_hardwall),
2725 #endif
2726 #ifdef CONFIG_USER_NS
2727 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2728 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2729 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2730 #endif
2731 };
2732
2733 static int proc_tgid_base_readdir(struct file * filp,
2734 void * dirent, filldir_t filldir)
2735 {
2736 return proc_pident_readdir(filp,dirent,filldir,
2737 tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
2738 }
2739
2740 static const struct file_operations proc_tgid_base_operations = {
2741 .read = generic_read_dir,
2742 .readdir = proc_tgid_base_readdir,
2743 .llseek = default_llseek,
2744 };
2745
2746 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2747 {
2748 return proc_pident_lookup(dir, dentry,
2749 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2750 }
2751
2752 static const struct inode_operations proc_tgid_base_inode_operations = {
2753 .lookup = proc_tgid_base_lookup,
2754 .getattr = pid_getattr,
2755 .setattr = proc_setattr,
2756 .permission = proc_pid_permission,
2757 };
2758
2759 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2760 {
2761 struct dentry *dentry, *leader, *dir;
2762 char buf[PROC_NUMBUF];
2763 struct qstr name;
2764
2765 name.name = buf;
2766 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2767 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2768 if (dentry) {
2769 shrink_dcache_parent(dentry);
2770 d_drop(dentry);
2771 dput(dentry);
2772 }
2773
2774 name.name = buf;
2775 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2776 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2777 if (!leader)
2778 goto out;
2779
2780 name.name = "task";
2781 name.len = strlen(name.name);
2782 dir = d_hash_and_lookup(leader, &name);
2783 if (!dir)
2784 goto out_put_leader;
2785
2786 name.name = buf;
2787 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2788 dentry = d_hash_and_lookup(dir, &name);
2789 if (dentry) {
2790 shrink_dcache_parent(dentry);
2791 d_drop(dentry);
2792 dput(dentry);
2793 }
2794
2795 dput(dir);
2796 out_put_leader:
2797 dput(leader);
2798 out:
2799 return;
2800 }
2801
2802 /**
2803 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2804 * @task: task that should be flushed.
2805 *
2806 * When flushing dentries from proc, one needs to flush them from global
2807 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2808 * in. This call is supposed to do all of this job.
2809 *
2810 * Looks in the dcache for
2811 * /proc/@pid
2812 * /proc/@tgid/task/@pid
2813 * if either directory is present flushes it and all of it'ts children
2814 * from the dcache.
2815 *
2816 * It is safe and reasonable to cache /proc entries for a task until
2817 * that task exits. After that they just clog up the dcache with
2818 * useless entries, possibly causing useful dcache entries to be
2819 * flushed instead. This routine is proved to flush those useless
2820 * dcache entries at process exit time.
2821 *
2822 * NOTE: This routine is just an optimization so it does not guarantee
2823 * that no dcache entries will exist at process exit time it
2824 * just makes it very unlikely that any will persist.
2825 */
2826
2827 void proc_flush_task(struct task_struct *task)
2828 {
2829 int i;
2830 struct pid *pid, *tgid;
2831 struct upid *upid;
2832
2833 pid = task_pid(task);
2834 tgid = task_tgid(task);
2835
2836 for (i = 0; i <= pid->level; i++) {
2837 upid = &pid->numbers[i];
2838 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2839 tgid->numbers[i].nr);
2840 }
2841
2842 upid = &pid->numbers[pid->level];
2843 if (upid->nr == 1)
2844 pid_ns_release_proc(upid->ns);
2845 }
2846
2847 static struct dentry *proc_pid_instantiate(struct inode *dir,
2848 struct dentry * dentry,
2849 struct task_struct *task, const void *ptr)
2850 {
2851 struct dentry *error = ERR_PTR(-ENOENT);
2852 struct inode *inode;
2853
2854 inode = proc_pid_make_inode(dir->i_sb, task);
2855 if (!inode)
2856 goto out;
2857
2858 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2859 inode->i_op = &proc_tgid_base_inode_operations;
2860 inode->i_fop = &proc_tgid_base_operations;
2861 inode->i_flags|=S_IMMUTABLE;
2862
2863 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2864 ARRAY_SIZE(tgid_base_stuff)));
2865
2866 d_set_d_op(dentry, &pid_dentry_operations);
2867
2868 d_add(dentry, inode);
2869 /* Close the race of the process dying before we return the dentry */
2870 if (pid_revalidate(dentry, 0))
2871 error = NULL;
2872 out:
2873 return error;
2874 }
2875
2876 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2877 {
2878 struct dentry *result;
2879 struct task_struct *task;
2880 unsigned tgid;
2881 struct pid_namespace *ns;
2882
2883 result = proc_base_lookup(dir, dentry);
2884 if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
2885 goto out;
2886
2887 tgid = name_to_int(dentry);
2888 if (tgid == ~0U)
2889 goto out;
2890
2891 ns = dentry->d_sb->s_fs_info;
2892 rcu_read_lock();
2893 task = find_task_by_pid_ns(tgid, ns);
2894 if (task)
2895 get_task_struct(task);
2896 rcu_read_unlock();
2897 if (!task)
2898 goto out;
2899
2900 result = proc_pid_instantiate(dir, dentry, task, NULL);
2901 put_task_struct(task);
2902 out:
2903 return result;
2904 }
2905
2906 /*
2907 * Find the first task with tgid >= tgid
2908 *
2909 */
2910 struct tgid_iter {
2911 unsigned int tgid;
2912 struct task_struct *task;
2913 };
2914 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2915 {
2916 struct pid *pid;
2917
2918 if (iter.task)
2919 put_task_struct(iter.task);
2920 rcu_read_lock();
2921 retry:
2922 iter.task = NULL;
2923 pid = find_ge_pid(iter.tgid, ns);
2924 if (pid) {
2925 iter.tgid = pid_nr_ns(pid, ns);
2926 iter.task = pid_task(pid, PIDTYPE_PID);
2927 /* What we to know is if the pid we have find is the
2928 * pid of a thread_group_leader. Testing for task
2929 * being a thread_group_leader is the obvious thing
2930 * todo but there is a window when it fails, due to
2931 * the pid transfer logic in de_thread.
2932 *
2933 * So we perform the straight forward test of seeing
2934 * if the pid we have found is the pid of a thread
2935 * group leader, and don't worry if the task we have
2936 * found doesn't happen to be a thread group leader.
2937 * As we don't care in the case of readdir.
2938 */
2939 if (!iter.task || !has_group_leader_pid(iter.task)) {
2940 iter.tgid += 1;
2941 goto retry;
2942 }
2943 get_task_struct(iter.task);
2944 }
2945 rcu_read_unlock();
2946 return iter;
2947 }
2948
2949 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
2950
2951 static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
2952 struct tgid_iter iter)
2953 {
2954 char name[PROC_NUMBUF];
2955 int len = snprintf(name, sizeof(name), "%d", iter.tgid);
2956 return proc_fill_cache(filp, dirent, filldir, name, len,
2957 proc_pid_instantiate, iter.task, NULL);
2958 }
2959
2960 static int fake_filldir(void *buf, const char *name, int namelen,
2961 loff_t offset, u64 ino, unsigned d_type)
2962 {
2963 return 0;
2964 }
2965
2966 /* for the /proc/ directory itself, after non-process stuff has been done */
2967 int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
2968 {
2969 unsigned int nr;
2970 struct task_struct *reaper;
2971 struct tgid_iter iter;
2972 struct pid_namespace *ns;
2973 filldir_t __filldir;
2974
2975 if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
2976 goto out_no_task;
2977 nr = filp->f_pos - FIRST_PROCESS_ENTRY;
2978
2979 reaper = get_proc_task(filp->f_path.dentry->d_inode);
2980 if (!reaper)
2981 goto out_no_task;
2982
2983 for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
2984 const struct pid_entry *p = &proc_base_stuff[nr];
2985 if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
2986 goto out;
2987 }
2988
2989 ns = filp->f_dentry->d_sb->s_fs_info;
2990 iter.task = NULL;
2991 iter.tgid = filp->f_pos - TGID_OFFSET;
2992 for (iter = next_tgid(ns, iter);
2993 iter.task;
2994 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2995 if (has_pid_permissions(ns, iter.task, 2))
2996 __filldir = filldir;
2997 else
2998 __filldir = fake_filldir;
2999
3000 filp->f_pos = iter.tgid + TGID_OFFSET;
3001 if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
3002 put_task_struct(iter.task);
3003 goto out;
3004 }
3005 }
3006 filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3007 out:
3008 put_task_struct(reaper);
3009 out_no_task:
3010 return 0;
3011 }
3012
3013 /*
3014 * Tasks
3015 */
3016 static const struct pid_entry tid_base_stuff[] = {
3017 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3018 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3019 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3020 REG("environ", S_IRUSR, proc_environ_operations),
3021 INF("auxv", S_IRUSR, proc_pid_auxv),
3022 ONE("status", S_IRUGO, proc_pid_status),
3023 ONE("personality", S_IRUGO, proc_pid_personality),
3024 INF("limits", S_IRUGO, proc_pid_limits),
3025 #ifdef CONFIG_SCHED_DEBUG
3026 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3027 #endif
3028 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3029 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3030 INF("syscall", S_IRUGO, proc_pid_syscall),
3031 #endif
3032 INF("cmdline", S_IRUGO, proc_pid_cmdline),
3033 ONE("stat", S_IRUGO, proc_tid_stat),
3034 ONE("statm", S_IRUGO, proc_pid_statm),
3035 REG("maps", S_IRUGO, proc_tid_maps_operations),
3036 #ifdef CONFIG_CHECKPOINT_RESTORE
3037 REG("children", S_IRUGO, proc_tid_children_operations),
3038 #endif
3039 #ifdef CONFIG_NUMA
3040 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3041 #endif
3042 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3043 LNK("cwd", proc_cwd_link),
3044 LNK("root", proc_root_link),
3045 LNK("exe", proc_exe_link),
3046 REG("mounts", S_IRUGO, proc_mounts_operations),
3047 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3048 #ifdef CONFIG_PROC_PAGE_MONITOR
3049 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3050 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
3051 REG("pagemap", S_IRUGO, proc_pagemap_operations),
3052 #endif
3053 #ifdef CONFIG_SECURITY
3054 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3055 #endif
3056 #ifdef CONFIG_KALLSYMS
3057 INF("wchan", S_IRUGO, proc_pid_wchan),
3058 #endif
3059 #ifdef CONFIG_STACKTRACE
3060 ONE("stack", S_IRUGO, proc_pid_stack),
3061 #endif
3062 #ifdef CONFIG_SCHEDSTATS
3063 INF("schedstat", S_IRUGO, proc_pid_schedstat),
3064 #endif
3065 #ifdef CONFIG_LATENCYTOP
3066 REG("latency", S_IRUGO, proc_lstats_operations),
3067 #endif
3068 #ifdef CONFIG_PROC_PID_CPUSET
3069 REG("cpuset", S_IRUGO, proc_cpuset_operations),
3070 #endif
3071 #ifdef CONFIG_CGROUPS
3072 REG("cgroup", S_IRUGO, proc_cgroup_operations),
3073 #endif
3074 INF("oom_score", S_IRUGO, proc_oom_score),
3075 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3076 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3077 #ifdef CONFIG_AUDITSYSCALL
3078 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3079 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3080 #endif
3081 #ifdef CONFIG_FAULT_INJECTION
3082 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3083 #endif
3084 #ifdef CONFIG_TASK_IO_ACCOUNTING
3085 INF("io", S_IRUSR, proc_tid_io_accounting),
3086 #endif
3087 #ifdef CONFIG_HARDWALL
3088 INF("hardwall", S_IRUGO, proc_pid_hardwall),
3089 #endif
3090 #ifdef CONFIG_USER_NS
3091 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3092 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3093 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3094 #endif
3095 };
3096
3097 static int proc_tid_base_readdir(struct file * filp,
3098 void * dirent, filldir_t filldir)
3099 {
3100 return proc_pident_readdir(filp,dirent,filldir,
3101 tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3102 }
3103
3104 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3105 {
3106 return proc_pident_lookup(dir, dentry,
3107 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3108 }
3109
3110 static const struct file_operations proc_tid_base_operations = {
3111 .read = generic_read_dir,
3112 .readdir = proc_tid_base_readdir,
3113 .llseek = default_llseek,
3114 };
3115
3116 static const struct inode_operations proc_tid_base_inode_operations = {
3117 .lookup = proc_tid_base_lookup,
3118 .getattr = pid_getattr,
3119 .setattr = proc_setattr,
3120 };
3121
3122 static struct dentry *proc_task_instantiate(struct inode *dir,
3123 struct dentry *dentry, struct task_struct *task, const void *ptr)
3124 {
3125 struct dentry *error = ERR_PTR(-ENOENT);
3126 struct inode *inode;
3127 inode = proc_pid_make_inode(dir->i_sb, task);
3128
3129 if (!inode)
3130 goto out;
3131 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3132 inode->i_op = &proc_tid_base_inode_operations;
3133 inode->i_fop = &proc_tid_base_operations;
3134 inode->i_flags|=S_IMMUTABLE;
3135
3136 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3137 ARRAY_SIZE(tid_base_stuff)));
3138
3139 d_set_d_op(dentry, &pid_dentry_operations);
3140
3141 d_add(dentry, inode);
3142 /* Close the race of the process dying before we return the dentry */
3143 if (pid_revalidate(dentry, 0))
3144 error = NULL;
3145 out:
3146 return error;
3147 }
3148
3149 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3150 {
3151 struct dentry *result = ERR_PTR(-ENOENT);
3152 struct task_struct *task;
3153 struct task_struct *leader = get_proc_task(dir);
3154 unsigned tid;
3155 struct pid_namespace *ns;
3156
3157 if (!leader)
3158 goto out_no_task;
3159
3160 tid = name_to_int(dentry);
3161 if (tid == ~0U)
3162 goto out;
3163
3164 ns = dentry->d_sb->s_fs_info;
3165 rcu_read_lock();
3166 task = find_task_by_pid_ns(tid, ns);
3167 if (task)
3168 get_task_struct(task);
3169 rcu_read_unlock();
3170 if (!task)
3171 goto out;
3172 if (!same_thread_group(leader, task))
3173 goto out_drop_task;
3174
3175 result = proc_task_instantiate(dir, dentry, task, NULL);
3176 out_drop_task:
3177 put_task_struct(task);
3178 out:
3179 put_task_struct(leader);
3180 out_no_task:
3181 return result;
3182 }
3183
3184 /*
3185 * Find the first tid of a thread group to return to user space.
3186 *
3187 * Usually this is just the thread group leader, but if the users
3188 * buffer was too small or there was a seek into the middle of the
3189 * directory we have more work todo.
3190 *
3191 * In the case of a short read we start with find_task_by_pid.
3192 *
3193 * In the case of a seek we start with the leader and walk nr
3194 * threads past it.
3195 */
3196 static struct task_struct *first_tid(struct task_struct *leader,
3197 int tid, int nr, struct pid_namespace *ns)
3198 {
3199 struct task_struct *pos;
3200
3201 rcu_read_lock();
3202 /* Attempt to start with the pid of a thread */
3203 if (tid && (nr > 0)) {
3204 pos = find_task_by_pid_ns(tid, ns);
3205 if (pos && (pos->group_leader == leader))
3206 goto found;
3207 }
3208
3209 /* If nr exceeds the number of threads there is nothing todo */
3210 pos = NULL;
3211 if (nr && nr >= get_nr_threads(leader))
3212 goto out;
3213
3214 /* If we haven't found our starting place yet start
3215 * with the leader and walk nr threads forward.
3216 */
3217 for (pos = leader; nr > 0; --nr) {
3218 pos = next_thread(pos);
3219 if (pos == leader) {
3220 pos = NULL;
3221 goto out;
3222 }
3223 }
3224 found:
3225 get_task_struct(pos);
3226 out:
3227 rcu_read_unlock();
3228 return pos;
3229 }
3230
3231 /*
3232 * Find the next thread in the thread list.
3233 * Return NULL if there is an error or no next thread.
3234 *
3235 * The reference to the input task_struct is released.
3236 */
3237 static struct task_struct *next_tid(struct task_struct *start)
3238 {
3239 struct task_struct *pos = NULL;
3240 rcu_read_lock();
3241 if (pid_alive(start)) {
3242 pos = next_thread(start);
3243 if (thread_group_leader(pos))
3244 pos = NULL;
3245 else
3246 get_task_struct(pos);
3247 }
3248 rcu_read_unlock();
3249 put_task_struct(start);
3250 return pos;
3251 }
3252
3253 static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3254 struct task_struct *task, int tid)
3255 {
3256 char name[PROC_NUMBUF];
3257 int len = snprintf(name, sizeof(name), "%d", tid);
3258 return proc_fill_cache(filp, dirent, filldir, name, len,
3259 proc_task_instantiate, task, NULL);
3260 }
3261
3262 /* for the /proc/TGID/task/ directories */
3263 static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3264 {
3265 struct dentry *dentry = filp->f_path.dentry;
3266 struct inode *inode = dentry->d_inode;
3267 struct task_struct *leader = NULL;
3268 struct task_struct *task;
3269 int retval = -ENOENT;
3270 ino_t ino;
3271 int tid;
3272 struct pid_namespace *ns;
3273
3274 task = get_proc_task(inode);
3275 if (!task)
3276 goto out_no_task;
3277 rcu_read_lock();
3278 if (pid_alive(task)) {
3279 leader = task->group_leader;
3280 get_task_struct(leader);
3281 }
3282 rcu_read_unlock();
3283 put_task_struct(task);
3284 if (!leader)
3285 goto out_no_task;
3286 retval = 0;
3287
3288 switch ((unsigned long)filp->f_pos) {
3289 case 0:
3290 ino = inode->i_ino;
3291 if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3292 goto out;
3293 filp->f_pos++;
3294 /* fall through */
3295 case 1:
3296 ino = parent_ino(dentry);
3297 if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3298 goto out;
3299 filp->f_pos++;
3300 /* fall through */
3301 }
3302
3303 /* f_version caches the tgid value that the last readdir call couldn't
3304 * return. lseek aka telldir automagically resets f_version to 0.
3305 */
3306 ns = filp->f_dentry->d_sb->s_fs_info;
3307 tid = (int)filp->f_version;
3308 filp->f_version = 0;
3309 for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3310 task;
3311 task = next_tid(task), filp->f_pos++) {
3312 tid = task_pid_nr_ns(task, ns);
3313 if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
3314 /* returning this tgid failed, save it as the first
3315 * pid for the next readir call */
3316 filp->f_version = (u64)tid;
3317 put_task_struct(task);
3318 break;
3319 }
3320 }
3321 out:
3322 put_task_struct(leader);
3323 out_no_task:
3324 return retval;
3325 }
3326
3327 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3328 {
3329 struct inode *inode = dentry->d_inode;
3330 struct task_struct *p = get_proc_task(inode);
3331 generic_fillattr(inode, stat);
3332
3333 if (p) {
3334 stat->nlink += get_nr_threads(p);
3335 put_task_struct(p);
3336 }
3337
3338 return 0;
3339 }
3340
3341 static const struct inode_operations proc_task_inode_operations = {
3342 .lookup = proc_task_lookup,
3343 .getattr = proc_task_getattr,
3344 .setattr = proc_setattr,
3345 .permission = proc_pid_permission,
3346 };
3347
3348 static const struct file_operations proc_task_operations = {
3349 .read = generic_read_dir,
3350 .readdir = proc_task_readdir,
3351 .llseek = default_llseek,
3352 };
This page took 0.093494 seconds and 6 git commands to generate.