proc: pagemap: Hold mmap_sem during page walk
[deliverable/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/mempolicy.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11
12 #include <asm/elf.h>
13 #include <asm/uaccess.h>
14 #include <asm/tlbflush.h>
15 #include "internal.h"
16
17 void task_mem(struct seq_file *m, struct mm_struct *mm)
18 {
19 unsigned long data, text, lib, swap;
20 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
21
22 /*
23 * Note: to minimize their overhead, mm maintains hiwater_vm and
24 * hiwater_rss only when about to *lower* total_vm or rss. Any
25 * collector of these hiwater stats must therefore get total_vm
26 * and rss too, which will usually be the higher. Barriers? not
27 * worth the effort, such snapshots can always be inconsistent.
28 */
29 hiwater_vm = total_vm = mm->total_vm;
30 if (hiwater_vm < mm->hiwater_vm)
31 hiwater_vm = mm->hiwater_vm;
32 hiwater_rss = total_rss = get_mm_rss(mm);
33 if (hiwater_rss < mm->hiwater_rss)
34 hiwater_rss = mm->hiwater_rss;
35
36 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
37 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
38 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
39 swap = get_mm_counter(mm, MM_SWAPENTS);
40 seq_printf(m,
41 "VmPeak:\t%8lu kB\n"
42 "VmSize:\t%8lu kB\n"
43 "VmLck:\t%8lu kB\n"
44 "VmHWM:\t%8lu kB\n"
45 "VmRSS:\t%8lu kB\n"
46 "VmData:\t%8lu kB\n"
47 "VmStk:\t%8lu kB\n"
48 "VmExe:\t%8lu kB\n"
49 "VmLib:\t%8lu kB\n"
50 "VmPTE:\t%8lu kB\n"
51 "VmSwap:\t%8lu kB\n",
52 hiwater_vm << (PAGE_SHIFT-10),
53 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
54 mm->locked_vm << (PAGE_SHIFT-10),
55 hiwater_rss << (PAGE_SHIFT-10),
56 total_rss << (PAGE_SHIFT-10),
57 data << (PAGE_SHIFT-10),
58 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
59 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
60 swap << (PAGE_SHIFT-10));
61 }
62
63 unsigned long task_vsize(struct mm_struct *mm)
64 {
65 return PAGE_SIZE * mm->total_vm;
66 }
67
68 int task_statm(struct mm_struct *mm, int *shared, int *text,
69 int *data, int *resident)
70 {
71 *shared = get_mm_counter(mm, MM_FILEPAGES);
72 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
73 >> PAGE_SHIFT;
74 *data = mm->total_vm - mm->shared_vm;
75 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
76 return mm->total_vm;
77 }
78
79 static void pad_len_spaces(struct seq_file *m, int len)
80 {
81 len = 25 + sizeof(void*) * 6 - len;
82 if (len < 1)
83 len = 1;
84 seq_printf(m, "%*c", len, ' ');
85 }
86
87 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
88 {
89 if (vma && vma != priv->tail_vma) {
90 struct mm_struct *mm = vma->vm_mm;
91 up_read(&mm->mmap_sem);
92 mmput(mm);
93 }
94 }
95
96 static void *m_start(struct seq_file *m, loff_t *pos)
97 {
98 struct proc_maps_private *priv = m->private;
99 unsigned long last_addr = m->version;
100 struct mm_struct *mm;
101 struct vm_area_struct *vma, *tail_vma = NULL;
102 loff_t l = *pos;
103
104 /* Clear the per syscall fields in priv */
105 priv->task = NULL;
106 priv->tail_vma = NULL;
107
108 /*
109 * We remember last_addr rather than next_addr to hit with
110 * mmap_cache most of the time. We have zero last_addr at
111 * the beginning and also after lseek. We will have -1 last_addr
112 * after the end of the vmas.
113 */
114
115 if (last_addr == -1UL)
116 return NULL;
117
118 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
119 if (!priv->task)
120 return NULL;
121
122 mm = mm_for_maps(priv->task);
123 if (!mm)
124 return NULL;
125 down_read(&mm->mmap_sem);
126
127 tail_vma = get_gate_vma(priv->task);
128 priv->tail_vma = tail_vma;
129
130 /* Start with last addr hint */
131 vma = find_vma(mm, last_addr);
132 if (last_addr && vma) {
133 vma = vma->vm_next;
134 goto out;
135 }
136
137 /*
138 * Check the vma index is within the range and do
139 * sequential scan until m_index.
140 */
141 vma = NULL;
142 if ((unsigned long)l < mm->map_count) {
143 vma = mm->mmap;
144 while (l-- && vma)
145 vma = vma->vm_next;
146 goto out;
147 }
148
149 if (l != mm->map_count)
150 tail_vma = NULL; /* After gate vma */
151
152 out:
153 if (vma)
154 return vma;
155
156 /* End of vmas has been reached */
157 m->version = (tail_vma != NULL)? 0: -1UL;
158 up_read(&mm->mmap_sem);
159 mmput(mm);
160 return tail_vma;
161 }
162
163 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
164 {
165 struct proc_maps_private *priv = m->private;
166 struct vm_area_struct *vma = v;
167 struct vm_area_struct *tail_vma = priv->tail_vma;
168
169 (*pos)++;
170 if (vma && (vma != tail_vma) && vma->vm_next)
171 return vma->vm_next;
172 vma_stop(priv, vma);
173 return (vma != tail_vma)? tail_vma: NULL;
174 }
175
176 static void m_stop(struct seq_file *m, void *v)
177 {
178 struct proc_maps_private *priv = m->private;
179 struct vm_area_struct *vma = v;
180
181 vma_stop(priv, vma);
182 if (priv->task)
183 put_task_struct(priv->task);
184 }
185
186 static int do_maps_open(struct inode *inode, struct file *file,
187 const struct seq_operations *ops)
188 {
189 struct proc_maps_private *priv;
190 int ret = -ENOMEM;
191 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
192 if (priv) {
193 priv->pid = proc_pid(inode);
194 ret = seq_open(file, ops);
195 if (!ret) {
196 struct seq_file *m = file->private_data;
197 m->private = priv;
198 } else {
199 kfree(priv);
200 }
201 }
202 return ret;
203 }
204
205 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
206 {
207 struct mm_struct *mm = vma->vm_mm;
208 struct file *file = vma->vm_file;
209 int flags = vma->vm_flags;
210 unsigned long ino = 0;
211 unsigned long long pgoff = 0;
212 dev_t dev = 0;
213 int len;
214
215 if (file) {
216 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
217 dev = inode->i_sb->s_dev;
218 ino = inode->i_ino;
219 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
220 }
221
222 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
223 vma->vm_start,
224 vma->vm_end,
225 flags & VM_READ ? 'r' : '-',
226 flags & VM_WRITE ? 'w' : '-',
227 flags & VM_EXEC ? 'x' : '-',
228 flags & VM_MAYSHARE ? 's' : 'p',
229 pgoff,
230 MAJOR(dev), MINOR(dev), ino, &len);
231
232 /*
233 * Print the dentry name for named mappings, and a
234 * special [heap] marker for the heap:
235 */
236 if (file) {
237 pad_len_spaces(m, len);
238 seq_path(m, &file->f_path, "\n");
239 } else {
240 const char *name = arch_vma_name(vma);
241 if (!name) {
242 if (mm) {
243 if (vma->vm_start <= mm->start_brk &&
244 vma->vm_end >= mm->brk) {
245 name = "[heap]";
246 } else if (vma->vm_start <= mm->start_stack &&
247 vma->vm_end >= mm->start_stack) {
248 name = "[stack]";
249 } else {
250 unsigned long stack_start;
251 struct proc_maps_private *pmp;
252
253 pmp = m->private;
254 stack_start = pmp->task->stack_start;
255
256 if (vma->vm_start <= stack_start &&
257 vma->vm_end >= stack_start) {
258 pad_len_spaces(m, len);
259 seq_printf(m,
260 "[threadstack:%08lx]",
261 #ifdef CONFIG_STACK_GROWSUP
262 vma->vm_end - stack_start
263 #else
264 stack_start - vma->vm_start
265 #endif
266 );
267 }
268 }
269 } else {
270 name = "[vdso]";
271 }
272 }
273 if (name) {
274 pad_len_spaces(m, len);
275 seq_puts(m, name);
276 }
277 }
278 seq_putc(m, '\n');
279 }
280
281 static int show_map(struct seq_file *m, void *v)
282 {
283 struct vm_area_struct *vma = v;
284 struct proc_maps_private *priv = m->private;
285 struct task_struct *task = priv->task;
286
287 show_map_vma(m, vma);
288
289 if (m->count < m->size) /* vma is copied successfully */
290 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
291 return 0;
292 }
293
294 static const struct seq_operations proc_pid_maps_op = {
295 .start = m_start,
296 .next = m_next,
297 .stop = m_stop,
298 .show = show_map
299 };
300
301 static int maps_open(struct inode *inode, struct file *file)
302 {
303 return do_maps_open(inode, file, &proc_pid_maps_op);
304 }
305
306 const struct file_operations proc_maps_operations = {
307 .open = maps_open,
308 .read = seq_read,
309 .llseek = seq_lseek,
310 .release = seq_release_private,
311 };
312
313 /*
314 * Proportional Set Size(PSS): my share of RSS.
315 *
316 * PSS of a process is the count of pages it has in memory, where each
317 * page is divided by the number of processes sharing it. So if a
318 * process has 1000 pages all to itself, and 1000 shared with one other
319 * process, its PSS will be 1500.
320 *
321 * To keep (accumulated) division errors low, we adopt a 64bit
322 * fixed-point pss counter to minimize division errors. So (pss >>
323 * PSS_SHIFT) would be the real byte count.
324 *
325 * A shift of 12 before division means (assuming 4K page size):
326 * - 1M 3-user-pages add up to 8KB errors;
327 * - supports mapcount up to 2^24, or 16M;
328 * - supports PSS up to 2^52 bytes, or 4PB.
329 */
330 #define PSS_SHIFT 12
331
332 #ifdef CONFIG_PROC_PAGE_MONITOR
333 struct mem_size_stats {
334 struct vm_area_struct *vma;
335 unsigned long resident;
336 unsigned long shared_clean;
337 unsigned long shared_dirty;
338 unsigned long private_clean;
339 unsigned long private_dirty;
340 unsigned long referenced;
341 unsigned long swap;
342 u64 pss;
343 };
344
345 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
346 struct mm_walk *walk)
347 {
348 struct mem_size_stats *mss = walk->private;
349 struct vm_area_struct *vma = mss->vma;
350 pte_t *pte, ptent;
351 spinlock_t *ptl;
352 struct page *page;
353 int mapcount;
354
355 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
356 for (; addr != end; pte++, addr += PAGE_SIZE) {
357 ptent = *pte;
358
359 if (is_swap_pte(ptent)) {
360 mss->swap += PAGE_SIZE;
361 continue;
362 }
363
364 if (!pte_present(ptent))
365 continue;
366
367 page = vm_normal_page(vma, addr, ptent);
368 if (!page)
369 continue;
370
371 mss->resident += PAGE_SIZE;
372 /* Accumulate the size in pages that have been accessed. */
373 if (pte_young(ptent) || PageReferenced(page))
374 mss->referenced += PAGE_SIZE;
375 mapcount = page_mapcount(page);
376 if (mapcount >= 2) {
377 if (pte_dirty(ptent))
378 mss->shared_dirty += PAGE_SIZE;
379 else
380 mss->shared_clean += PAGE_SIZE;
381 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
382 } else {
383 if (pte_dirty(ptent))
384 mss->private_dirty += PAGE_SIZE;
385 else
386 mss->private_clean += PAGE_SIZE;
387 mss->pss += (PAGE_SIZE << PSS_SHIFT);
388 }
389 }
390 pte_unmap_unlock(pte - 1, ptl);
391 cond_resched();
392 return 0;
393 }
394
395 static int show_smap(struct seq_file *m, void *v)
396 {
397 struct proc_maps_private *priv = m->private;
398 struct task_struct *task = priv->task;
399 struct vm_area_struct *vma = v;
400 struct mem_size_stats mss;
401 struct mm_walk smaps_walk = {
402 .pmd_entry = smaps_pte_range,
403 .mm = vma->vm_mm,
404 .private = &mss,
405 };
406
407 memset(&mss, 0, sizeof mss);
408 mss.vma = vma;
409 /* mmap_sem is held in m_start */
410 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
411 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
412
413 show_map_vma(m, vma);
414
415 seq_printf(m,
416 "Size: %8lu kB\n"
417 "Rss: %8lu kB\n"
418 "Pss: %8lu kB\n"
419 "Shared_Clean: %8lu kB\n"
420 "Shared_Dirty: %8lu kB\n"
421 "Private_Clean: %8lu kB\n"
422 "Private_Dirty: %8lu kB\n"
423 "Referenced: %8lu kB\n"
424 "Swap: %8lu kB\n"
425 "KernelPageSize: %8lu kB\n"
426 "MMUPageSize: %8lu kB\n",
427 (vma->vm_end - vma->vm_start) >> 10,
428 mss.resident >> 10,
429 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
430 mss.shared_clean >> 10,
431 mss.shared_dirty >> 10,
432 mss.private_clean >> 10,
433 mss.private_dirty >> 10,
434 mss.referenced >> 10,
435 mss.swap >> 10,
436 vma_kernel_pagesize(vma) >> 10,
437 vma_mmu_pagesize(vma) >> 10);
438
439 if (m->count < m->size) /* vma is copied successfully */
440 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
441 return 0;
442 }
443
444 static const struct seq_operations proc_pid_smaps_op = {
445 .start = m_start,
446 .next = m_next,
447 .stop = m_stop,
448 .show = show_smap
449 };
450
451 static int smaps_open(struct inode *inode, struct file *file)
452 {
453 return do_maps_open(inode, file, &proc_pid_smaps_op);
454 }
455
456 const struct file_operations proc_smaps_operations = {
457 .open = smaps_open,
458 .read = seq_read,
459 .llseek = seq_lseek,
460 .release = seq_release_private,
461 };
462
463 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
464 unsigned long end, struct mm_walk *walk)
465 {
466 struct vm_area_struct *vma = walk->private;
467 pte_t *pte, ptent;
468 spinlock_t *ptl;
469 struct page *page;
470
471 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
472 for (; addr != end; pte++, addr += PAGE_SIZE) {
473 ptent = *pte;
474 if (!pte_present(ptent))
475 continue;
476
477 page = vm_normal_page(vma, addr, ptent);
478 if (!page)
479 continue;
480
481 /* Clear accessed and referenced bits. */
482 ptep_test_and_clear_young(vma, addr, pte);
483 ClearPageReferenced(page);
484 }
485 pte_unmap_unlock(pte - 1, ptl);
486 cond_resched();
487 return 0;
488 }
489
490 #define CLEAR_REFS_ALL 1
491 #define CLEAR_REFS_ANON 2
492 #define CLEAR_REFS_MAPPED 3
493
494 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
495 size_t count, loff_t *ppos)
496 {
497 struct task_struct *task;
498 char buffer[PROC_NUMBUF];
499 struct mm_struct *mm;
500 struct vm_area_struct *vma;
501 long type;
502
503 memset(buffer, 0, sizeof(buffer));
504 if (count > sizeof(buffer) - 1)
505 count = sizeof(buffer) - 1;
506 if (copy_from_user(buffer, buf, count))
507 return -EFAULT;
508 if (strict_strtol(strstrip(buffer), 10, &type))
509 return -EINVAL;
510 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
511 return -EINVAL;
512 task = get_proc_task(file->f_path.dentry->d_inode);
513 if (!task)
514 return -ESRCH;
515 mm = get_task_mm(task);
516 if (mm) {
517 struct mm_walk clear_refs_walk = {
518 .pmd_entry = clear_refs_pte_range,
519 .mm = mm,
520 };
521 down_read(&mm->mmap_sem);
522 for (vma = mm->mmap; vma; vma = vma->vm_next) {
523 clear_refs_walk.private = vma;
524 if (is_vm_hugetlb_page(vma))
525 continue;
526 /*
527 * Writing 1 to /proc/pid/clear_refs affects all pages.
528 *
529 * Writing 2 to /proc/pid/clear_refs only affects
530 * Anonymous pages.
531 *
532 * Writing 3 to /proc/pid/clear_refs only affects file
533 * mapped pages.
534 */
535 if (type == CLEAR_REFS_ANON && vma->vm_file)
536 continue;
537 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
538 continue;
539 walk_page_range(vma->vm_start, vma->vm_end,
540 &clear_refs_walk);
541 }
542 flush_tlb_mm(mm);
543 up_read(&mm->mmap_sem);
544 mmput(mm);
545 }
546 put_task_struct(task);
547
548 return count;
549 }
550
551 const struct file_operations proc_clear_refs_operations = {
552 .write = clear_refs_write,
553 };
554
555 struct pagemapread {
556 int pos, len;
557 u64 *buffer;
558 };
559
560 #define PM_ENTRY_BYTES sizeof(u64)
561 #define PM_STATUS_BITS 3
562 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
563 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
564 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
565 #define PM_PSHIFT_BITS 6
566 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
567 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
568 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
569 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
570 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
571
572 #define PM_PRESENT PM_STATUS(4LL)
573 #define PM_SWAP PM_STATUS(2LL)
574 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
575 #define PM_END_OF_BUFFER 1
576
577 static int add_to_pagemap(unsigned long addr, u64 pfn,
578 struct pagemapread *pm)
579 {
580 pm->buffer[pm->pos++] = pfn;
581 if (pm->pos >= pm->len)
582 return PM_END_OF_BUFFER;
583 return 0;
584 }
585
586 static int pagemap_pte_hole(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
588 {
589 struct pagemapread *pm = walk->private;
590 unsigned long addr;
591 int err = 0;
592 for (addr = start; addr < end; addr += PAGE_SIZE) {
593 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
594 if (err)
595 break;
596 }
597 return err;
598 }
599
600 static u64 swap_pte_to_pagemap_entry(pte_t pte)
601 {
602 swp_entry_t e = pte_to_swp_entry(pte);
603 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
604 }
605
606 static u64 pte_to_pagemap_entry(pte_t pte)
607 {
608 u64 pme = 0;
609 if (is_swap_pte(pte))
610 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
611 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
612 else if (pte_present(pte))
613 pme = PM_PFRAME(pte_pfn(pte))
614 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
615 return pme;
616 }
617
618 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
619 struct mm_walk *walk)
620 {
621 struct vm_area_struct *vma;
622 struct pagemapread *pm = walk->private;
623 pte_t *pte;
624 int err = 0;
625
626 /* find the first VMA at or above 'addr' */
627 vma = find_vma(walk->mm, addr);
628 for (; addr != end; addr += PAGE_SIZE) {
629 u64 pfn = PM_NOT_PRESENT;
630
631 /* check to see if we've left 'vma' behind
632 * and need a new, higher one */
633 if (vma && (addr >= vma->vm_end))
634 vma = find_vma(walk->mm, addr);
635
636 /* check that 'vma' actually covers this address,
637 * and that it isn't a huge page vma */
638 if (vma && (vma->vm_start <= addr) &&
639 !is_vm_hugetlb_page(vma)) {
640 pte = pte_offset_map(pmd, addr);
641 pfn = pte_to_pagemap_entry(*pte);
642 /* unmap before userspace copy */
643 pte_unmap(pte);
644 }
645 err = add_to_pagemap(addr, pfn, pm);
646 if (err)
647 return err;
648 }
649
650 cond_resched();
651
652 return err;
653 }
654
655 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
656 {
657 u64 pme = 0;
658 if (pte_present(pte))
659 pme = PM_PFRAME(pte_pfn(pte) + offset)
660 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
661 return pme;
662 }
663
664 static int pagemap_hugetlb_range(pte_t *pte, unsigned long addr,
665 unsigned long end, struct mm_walk *walk)
666 {
667 struct vm_area_struct *vma;
668 struct pagemapread *pm = walk->private;
669 struct hstate *hs = NULL;
670 int err = 0;
671
672 vma = find_vma(walk->mm, addr);
673 if (vma)
674 hs = hstate_vma(vma);
675 for (; addr != end; addr += PAGE_SIZE) {
676 u64 pfn = PM_NOT_PRESENT;
677
678 if (vma && (addr >= vma->vm_end)) {
679 vma = find_vma(walk->mm, addr);
680 if (vma)
681 hs = hstate_vma(vma);
682 }
683
684 if (vma && (vma->vm_start <= addr) && is_vm_hugetlb_page(vma)) {
685 /* calculate pfn of the "raw" page in the hugepage. */
686 int offset = (addr & ~huge_page_mask(hs)) >> PAGE_SHIFT;
687 pfn = huge_pte_to_pagemap_entry(*pte, offset);
688 }
689 err = add_to_pagemap(addr, pfn, pm);
690 if (err)
691 return err;
692 }
693
694 cond_resched();
695
696 return err;
697 }
698
699 /*
700 * /proc/pid/pagemap - an array mapping virtual pages to pfns
701 *
702 * For each page in the address space, this file contains one 64-bit entry
703 * consisting of the following:
704 *
705 * Bits 0-55 page frame number (PFN) if present
706 * Bits 0-4 swap type if swapped
707 * Bits 5-55 swap offset if swapped
708 * Bits 55-60 page shift (page size = 1<<page shift)
709 * Bit 61 reserved for future use
710 * Bit 62 page swapped
711 * Bit 63 page present
712 *
713 * If the page is not present but in swap, then the PFN contains an
714 * encoding of the swap file number and the page's offset into the
715 * swap. Unmapped pages return a null PFN. This allows determining
716 * precisely which pages are mapped (or in swap) and comparing mapped
717 * pages between processes.
718 *
719 * Efficient users of this interface will use /proc/pid/maps to
720 * determine which areas of memory are actually mapped and llseek to
721 * skip over unmapped regions.
722 */
723 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
724 static ssize_t pagemap_read(struct file *file, char __user *buf,
725 size_t count, loff_t *ppos)
726 {
727 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
728 struct mm_struct *mm;
729 struct pagemapread pm;
730 int ret = -ESRCH;
731 struct mm_walk pagemap_walk = {};
732 unsigned long src;
733 unsigned long svpfn;
734 unsigned long start_vaddr;
735 unsigned long end_vaddr;
736 int copied = 0;
737
738 if (!task)
739 goto out;
740
741 ret = -EACCES;
742 if (!ptrace_may_access(task, PTRACE_MODE_READ))
743 goto out_task;
744
745 ret = -EINVAL;
746 /* file position must be aligned */
747 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
748 goto out_task;
749
750 ret = 0;
751
752 if (!count)
753 goto out_task;
754
755 mm = get_task_mm(task);
756 if (!mm)
757 goto out_task;
758
759 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
760 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
761 ret = -ENOMEM;
762 if (!pm.buffer)
763 goto out_mm;
764
765 pagemap_walk.pmd_entry = pagemap_pte_range;
766 pagemap_walk.pte_hole = pagemap_pte_hole;
767 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
768 pagemap_walk.mm = mm;
769 pagemap_walk.private = &pm;
770
771 src = *ppos;
772 svpfn = src / PM_ENTRY_BYTES;
773 start_vaddr = svpfn << PAGE_SHIFT;
774 end_vaddr = TASK_SIZE_OF(task);
775
776 /* watch out for wraparound */
777 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
778 start_vaddr = end_vaddr;
779
780 /*
781 * The odds are that this will stop walking way
782 * before end_vaddr, because the length of the
783 * user buffer is tracked in "pm", and the walk
784 * will stop when we hit the end of the buffer.
785 */
786 ret = 0;
787 while (count && (start_vaddr < end_vaddr)) {
788 int len;
789 unsigned long end;
790
791 pm.pos = 0;
792 end = start_vaddr + PAGEMAP_WALK_SIZE;
793 /* overflow ? */
794 if (end < start_vaddr || end > end_vaddr)
795 end = end_vaddr;
796 down_read(&mm->mmap_sem);
797 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
798 up_read(&mm->mmap_sem);
799 start_vaddr = end;
800
801 len = min(count, PM_ENTRY_BYTES * pm.pos);
802 if (copy_to_user(buf, pm.buffer, len) < 0) {
803 ret = -EFAULT;
804 goto out_free;
805 }
806 copied += len;
807 buf += len;
808 count -= len;
809 }
810 *ppos += copied;
811 if (!ret || ret == PM_END_OF_BUFFER)
812 ret = copied;
813
814 out_free:
815 kfree(pm.buffer);
816 out_mm:
817 mmput(mm);
818 out_task:
819 put_task_struct(task);
820 out:
821 return ret;
822 }
823
824 const struct file_operations proc_pagemap_operations = {
825 .llseek = mem_lseek, /* borrow this */
826 .read = pagemap_read,
827 };
828 #endif /* CONFIG_PROC_PAGE_MONITOR */
829
830 #ifdef CONFIG_NUMA
831 extern int show_numa_map(struct seq_file *m, void *v);
832
833 static const struct seq_operations proc_pid_numa_maps_op = {
834 .start = m_start,
835 .next = m_next,
836 .stop = m_stop,
837 .show = show_numa_map,
838 };
839
840 static int numa_maps_open(struct inode *inode, struct file *file)
841 {
842 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
843 }
844
845 const struct file_operations proc_numa_maps_operations = {
846 .open = numa_maps_open,
847 .read = seq_read,
848 .llseek = seq_lseek,
849 .release = seq_release_private,
850 };
851 #endif
This page took 0.049466 seconds and 5 git commands to generate.