2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
24 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
26 unsigned long text
, lib
, swap
, ptes
, pmds
, anon
, file
, shmem
;
27 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
29 anon
= get_mm_counter(mm
, MM_ANONPAGES
);
30 file
= get_mm_counter(mm
, MM_FILEPAGES
);
31 shmem
= get_mm_counter(mm
, MM_SHMEMPAGES
);
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
40 hiwater_vm
= total_vm
= mm
->total_vm
;
41 if (hiwater_vm
< mm
->hiwater_vm
)
42 hiwater_vm
= mm
->hiwater_vm
;
43 hiwater_rss
= total_rss
= anon
+ file
+ shmem
;
44 if (hiwater_rss
< mm
->hiwater_rss
)
45 hiwater_rss
= mm
->hiwater_rss
;
47 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
48 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
49 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
50 ptes
= PTRS_PER_PTE
* sizeof(pte_t
) * atomic_long_read(&mm
->nr_ptes
);
51 pmds
= PTRS_PER_PMD
* sizeof(pmd_t
) * mm_nr_pmds(mm
);
61 "RssShmem:\t%8lu kB\n"
69 hiwater_vm
<< (PAGE_SHIFT
-10),
70 total_vm
<< (PAGE_SHIFT
-10),
71 mm
->locked_vm
<< (PAGE_SHIFT
-10),
72 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
73 hiwater_rss
<< (PAGE_SHIFT
-10),
74 total_rss
<< (PAGE_SHIFT
-10),
75 anon
<< (PAGE_SHIFT
-10),
76 file
<< (PAGE_SHIFT
-10),
77 shmem
<< (PAGE_SHIFT
-10),
78 mm
->data_vm
<< (PAGE_SHIFT
-10),
79 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
82 swap
<< (PAGE_SHIFT
-10));
83 hugetlb_report_usage(m
, mm
);
86 unsigned long task_vsize(struct mm_struct
*mm
)
88 return PAGE_SIZE
* mm
->total_vm
;
91 unsigned long task_statm(struct mm_struct
*mm
,
92 unsigned long *shared
, unsigned long *text
,
93 unsigned long *data
, unsigned long *resident
)
95 *shared
= get_mm_counter(mm
, MM_FILEPAGES
) +
96 get_mm_counter(mm
, MM_SHMEMPAGES
);
97 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
99 *data
= mm
->data_vm
+ mm
->stack_vm
;
100 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
106 * Save get_task_policy() for show_numa_map().
108 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
110 struct task_struct
*task
= priv
->task
;
113 priv
->task_mempolicy
= get_task_policy(task
);
114 mpol_get(priv
->task_mempolicy
);
117 static void release_task_mempolicy(struct proc_maps_private
*priv
)
119 mpol_put(priv
->task_mempolicy
);
122 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
125 static void release_task_mempolicy(struct proc_maps_private
*priv
)
130 static void vma_stop(struct proc_maps_private
*priv
)
132 struct mm_struct
*mm
= priv
->mm
;
134 release_task_mempolicy(priv
);
135 up_read(&mm
->mmap_sem
);
139 static struct vm_area_struct
*
140 m_next_vma(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
142 if (vma
== priv
->tail_vma
)
144 return vma
->vm_next
?: priv
->tail_vma
;
147 static void m_cache_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
149 if (m
->count
< m
->size
) /* vma is copied successfully */
150 m
->version
= m_next_vma(m
->private, vma
) ? vma
->vm_start
: -1UL;
153 static void *m_start(struct seq_file
*m
, loff_t
*ppos
)
155 struct proc_maps_private
*priv
= m
->private;
156 unsigned long last_addr
= m
->version
;
157 struct mm_struct
*mm
;
158 struct vm_area_struct
*vma
;
159 unsigned int pos
= *ppos
;
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr
== -1UL)
165 priv
->task
= get_proc_task(priv
->inode
);
167 return ERR_PTR(-ESRCH
);
170 if (!mm
|| !atomic_inc_not_zero(&mm
->mm_users
))
173 down_read(&mm
->mmap_sem
);
174 hold_task_mempolicy(priv
);
175 priv
->tail_vma
= get_gate_vma(mm
);
178 vma
= find_vma(mm
, last_addr
);
179 if (vma
&& (vma
= m_next_vma(priv
, vma
)))
184 if (pos
< mm
->map_count
) {
185 for (vma
= mm
->mmap
; pos
; pos
--) {
186 m
->version
= vma
->vm_start
;
192 /* we do not bother to update m->version in this case */
193 if (pos
== mm
->map_count
&& priv
->tail_vma
)
194 return priv
->tail_vma
;
200 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
202 struct proc_maps_private
*priv
= m
->private;
203 struct vm_area_struct
*next
;
206 next
= m_next_vma(priv
, v
);
212 static void m_stop(struct seq_file
*m
, void *v
)
214 struct proc_maps_private
*priv
= m
->private;
216 if (!IS_ERR_OR_NULL(v
))
219 put_task_struct(priv
->task
);
224 static int proc_maps_open(struct inode
*inode
, struct file
*file
,
225 const struct seq_operations
*ops
, int psize
)
227 struct proc_maps_private
*priv
= __seq_open_private(file
, ops
, psize
);
233 priv
->mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
234 if (IS_ERR(priv
->mm
)) {
235 int err
= PTR_ERR(priv
->mm
);
237 seq_release_private(inode
, file
);
244 static int proc_map_release(struct inode
*inode
, struct file
*file
)
246 struct seq_file
*seq
= file
->private_data
;
247 struct proc_maps_private
*priv
= seq
->private;
252 return seq_release_private(inode
, file
);
255 static int do_maps_open(struct inode
*inode
, struct file
*file
,
256 const struct seq_operations
*ops
)
258 return proc_maps_open(inode
, file
, ops
,
259 sizeof(struct proc_maps_private
));
263 * Indicate if the VMA is a stack for the given task; for
264 * /proc/PID/maps that is the stack of the main task.
266 static int is_stack(struct proc_maps_private
*priv
,
267 struct vm_area_struct
*vma
, int is_pid
)
272 stack
= vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
273 vma
->vm_end
>= vma
->vm_mm
->start_stack
;
275 struct inode
*inode
= priv
->inode
;
276 struct task_struct
*task
;
279 task
= pid_task(proc_pid(inode
), PIDTYPE_PID
);
281 stack
= vma_is_stack_for_task(vma
, task
);
288 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
290 struct mm_struct
*mm
= vma
->vm_mm
;
291 struct file
*file
= vma
->vm_file
;
292 struct proc_maps_private
*priv
= m
->private;
293 vm_flags_t flags
= vma
->vm_flags
;
294 unsigned long ino
= 0;
295 unsigned long long pgoff
= 0;
296 unsigned long start
, end
;
298 const char *name
= NULL
;
301 struct inode
*inode
= file_inode(vma
->vm_file
);
302 dev
= inode
->i_sb
->s_dev
;
304 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
307 /* We don't show the stack guard page in /proc/maps */
308 start
= vma
->vm_start
;
309 if (stack_guard_page_start(vma
, start
))
312 if (stack_guard_page_end(vma
, end
))
315 seq_setwidth(m
, 25 + sizeof(void *) * 6 - 1);
316 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
319 flags
& VM_READ
? 'r' : '-',
320 flags
& VM_WRITE
? 'w' : '-',
321 flags
& VM_EXEC
? 'x' : '-',
322 flags
& VM_MAYSHARE
? 's' : 'p',
324 MAJOR(dev
), MINOR(dev
), ino
);
327 * Print the dentry name for named mappings, and a
328 * special [heap] marker for the heap:
332 seq_file_path(m
, file
, "\n");
336 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
337 name
= vma
->vm_ops
->name(vma
);
342 name
= arch_vma_name(vma
);
349 if (vma
->vm_start
<= mm
->brk
&&
350 vma
->vm_end
>= mm
->start_brk
) {
355 if (is_stack(priv
, vma
, is_pid
))
367 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
369 show_map_vma(m
, v
, is_pid
);
374 static int show_pid_map(struct seq_file
*m
, void *v
)
376 return show_map(m
, v
, 1);
379 static int show_tid_map(struct seq_file
*m
, void *v
)
381 return show_map(m
, v
, 0);
384 static const struct seq_operations proc_pid_maps_op
= {
391 static const struct seq_operations proc_tid_maps_op
= {
398 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
400 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
403 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
405 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
408 const struct file_operations proc_pid_maps_operations
= {
409 .open
= pid_maps_open
,
412 .release
= proc_map_release
,
415 const struct file_operations proc_tid_maps_operations
= {
416 .open
= tid_maps_open
,
419 .release
= proc_map_release
,
423 * Proportional Set Size(PSS): my share of RSS.
425 * PSS of a process is the count of pages it has in memory, where each
426 * page is divided by the number of processes sharing it. So if a
427 * process has 1000 pages all to itself, and 1000 shared with one other
428 * process, its PSS will be 1500.
430 * To keep (accumulated) division errors low, we adopt a 64bit
431 * fixed-point pss counter to minimize division errors. So (pss >>
432 * PSS_SHIFT) would be the real byte count.
434 * A shift of 12 before division means (assuming 4K page size):
435 * - 1M 3-user-pages add up to 8KB errors;
436 * - supports mapcount up to 2^24, or 16M;
437 * - supports PSS up to 2^52 bytes, or 4PB.
441 #ifdef CONFIG_PROC_PAGE_MONITOR
442 struct mem_size_stats
{
443 unsigned long resident
;
444 unsigned long shared_clean
;
445 unsigned long shared_dirty
;
446 unsigned long private_clean
;
447 unsigned long private_dirty
;
448 unsigned long referenced
;
449 unsigned long anonymous
;
450 unsigned long anonymous_thp
;
452 unsigned long shared_hugetlb
;
453 unsigned long private_hugetlb
;
456 bool check_shmem_swap
;
459 static void smaps_account(struct mem_size_stats
*mss
, struct page
*page
,
460 bool compound
, bool young
, bool dirty
)
462 int i
, nr
= compound
? 1 << compound_order(page
) : 1;
463 unsigned long size
= nr
* PAGE_SIZE
;
466 mss
->anonymous
+= size
;
468 mss
->resident
+= size
;
469 /* Accumulate the size in pages that have been accessed. */
470 if (young
|| page_is_young(page
) || PageReferenced(page
))
471 mss
->referenced
+= size
;
474 * page_count(page) == 1 guarantees the page is mapped exactly once.
475 * If any subpage of the compound page mapped with PTE it would elevate
478 if (page_count(page
) == 1) {
479 if (dirty
|| PageDirty(page
))
480 mss
->private_dirty
+= size
;
482 mss
->private_clean
+= size
;
483 mss
->pss
+= (u64
)size
<< PSS_SHIFT
;
487 for (i
= 0; i
< nr
; i
++, page
++) {
488 int mapcount
= page_mapcount(page
);
491 if (dirty
|| PageDirty(page
))
492 mss
->shared_dirty
+= PAGE_SIZE
;
494 mss
->shared_clean
+= PAGE_SIZE
;
495 mss
->pss
+= (PAGE_SIZE
<< PSS_SHIFT
) / mapcount
;
497 if (dirty
|| PageDirty(page
))
498 mss
->private_dirty
+= PAGE_SIZE
;
500 mss
->private_clean
+= PAGE_SIZE
;
501 mss
->pss
+= PAGE_SIZE
<< PSS_SHIFT
;
507 static int smaps_pte_hole(unsigned long addr
, unsigned long end
,
508 struct mm_walk
*walk
)
510 struct mem_size_stats
*mss
= walk
->private;
512 mss
->swap
+= shmem_partial_swap_usage(
513 walk
->vma
->vm_file
->f_mapping
, addr
, end
);
519 static void smaps_pte_entry(pte_t
*pte
, unsigned long addr
,
520 struct mm_walk
*walk
)
522 struct mem_size_stats
*mss
= walk
->private;
523 struct vm_area_struct
*vma
= walk
->vma
;
524 struct page
*page
= NULL
;
526 if (pte_present(*pte
)) {
527 page
= vm_normal_page(vma
, addr
, *pte
);
528 } else if (is_swap_pte(*pte
)) {
529 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
531 if (!non_swap_entry(swpent
)) {
534 mss
->swap
+= PAGE_SIZE
;
535 mapcount
= swp_swapcount(swpent
);
537 u64 pss_delta
= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
539 do_div(pss_delta
, mapcount
);
540 mss
->swap_pss
+= pss_delta
;
542 mss
->swap_pss
+= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
544 } else if (is_migration_entry(swpent
))
545 page
= migration_entry_to_page(swpent
);
546 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM
) && mss
->check_shmem_swap
547 && pte_none(*pte
))) {
548 page
= find_get_entry(vma
->vm_file
->f_mapping
,
549 linear_page_index(vma
, addr
));
553 if (radix_tree_exceptional_entry(page
))
554 mss
->swap
+= PAGE_SIZE
;
564 smaps_account(mss
, page
, false, pte_young(*pte
), pte_dirty(*pte
));
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
569 struct mm_walk
*walk
)
571 struct mem_size_stats
*mss
= walk
->private;
572 struct vm_area_struct
*vma
= walk
->vma
;
575 /* FOLL_DUMP will return -EFAULT on huge zero page */
576 page
= follow_trans_huge_pmd(vma
, addr
, pmd
, FOLL_DUMP
);
577 if (IS_ERR_OR_NULL(page
))
579 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
580 smaps_account(mss
, page
, true, pmd_young(*pmd
), pmd_dirty(*pmd
));
583 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
584 struct mm_walk
*walk
)
589 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
590 struct mm_walk
*walk
)
592 struct vm_area_struct
*vma
= walk
->vma
;
596 ptl
= pmd_trans_huge_lock(pmd
, vma
);
598 smaps_pmd_entry(pmd
, addr
, walk
);
603 if (pmd_trans_unstable(pmd
))
606 * The mmap_sem held all the way back in m_start() is what
607 * keeps khugepaged out of here and from collapsing things
610 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
611 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
612 smaps_pte_entry(pte
, addr
, walk
);
613 pte_unmap_unlock(pte
- 1, ptl
);
618 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
621 * Don't forget to update Documentation/ on changes.
623 static const char mnemonics
[BITS_PER_LONG
][2] = {
625 * In case if we meet a flag we don't know about.
627 [0 ... (BITS_PER_LONG
-1)] = "??",
629 [ilog2(VM_READ
)] = "rd",
630 [ilog2(VM_WRITE
)] = "wr",
631 [ilog2(VM_EXEC
)] = "ex",
632 [ilog2(VM_SHARED
)] = "sh",
633 [ilog2(VM_MAYREAD
)] = "mr",
634 [ilog2(VM_MAYWRITE
)] = "mw",
635 [ilog2(VM_MAYEXEC
)] = "me",
636 [ilog2(VM_MAYSHARE
)] = "ms",
637 [ilog2(VM_GROWSDOWN
)] = "gd",
638 [ilog2(VM_PFNMAP
)] = "pf",
639 [ilog2(VM_DENYWRITE
)] = "dw",
640 #ifdef CONFIG_X86_INTEL_MPX
641 [ilog2(VM_MPX
)] = "mp",
643 [ilog2(VM_LOCKED
)] = "lo",
644 [ilog2(VM_IO
)] = "io",
645 [ilog2(VM_SEQ_READ
)] = "sr",
646 [ilog2(VM_RAND_READ
)] = "rr",
647 [ilog2(VM_DONTCOPY
)] = "dc",
648 [ilog2(VM_DONTEXPAND
)] = "de",
649 [ilog2(VM_ACCOUNT
)] = "ac",
650 [ilog2(VM_NORESERVE
)] = "nr",
651 [ilog2(VM_HUGETLB
)] = "ht",
652 [ilog2(VM_ARCH_1
)] = "ar",
653 [ilog2(VM_DONTDUMP
)] = "dd",
654 #ifdef CONFIG_MEM_SOFT_DIRTY
655 [ilog2(VM_SOFTDIRTY
)] = "sd",
657 [ilog2(VM_MIXEDMAP
)] = "mm",
658 [ilog2(VM_HUGEPAGE
)] = "hg",
659 [ilog2(VM_NOHUGEPAGE
)] = "nh",
660 [ilog2(VM_MERGEABLE
)] = "mg",
661 [ilog2(VM_UFFD_MISSING
)]= "um",
662 [ilog2(VM_UFFD_WP
)] = "uw",
663 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
664 /* These come out via ProtectionKey: */
665 [ilog2(VM_PKEY_BIT0
)] = "",
666 [ilog2(VM_PKEY_BIT1
)] = "",
667 [ilog2(VM_PKEY_BIT2
)] = "",
668 [ilog2(VM_PKEY_BIT3
)] = "",
673 seq_puts(m
, "VmFlags: ");
674 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
675 if (!mnemonics
[i
][0])
677 if (vma
->vm_flags
& (1UL << i
)) {
678 seq_printf(m
, "%c%c ",
679 mnemonics
[i
][0], mnemonics
[i
][1]);
685 #ifdef CONFIG_HUGETLB_PAGE
686 static int smaps_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
687 unsigned long addr
, unsigned long end
,
688 struct mm_walk
*walk
)
690 struct mem_size_stats
*mss
= walk
->private;
691 struct vm_area_struct
*vma
= walk
->vma
;
692 struct page
*page
= NULL
;
694 if (pte_present(*pte
)) {
695 page
= vm_normal_page(vma
, addr
, *pte
);
696 } else if (is_swap_pte(*pte
)) {
697 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
699 if (is_migration_entry(swpent
))
700 page
= migration_entry_to_page(swpent
);
703 int mapcount
= page_mapcount(page
);
706 mss
->shared_hugetlb
+= huge_page_size(hstate_vma(vma
));
708 mss
->private_hugetlb
+= huge_page_size(hstate_vma(vma
));
712 #endif /* HUGETLB_PAGE */
714 void __weak
arch_show_smap(struct seq_file
*m
, struct vm_area_struct
*vma
)
718 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
720 struct vm_area_struct
*vma
= v
;
721 struct mem_size_stats mss
;
722 struct mm_walk smaps_walk
= {
723 .pmd_entry
= smaps_pte_range
,
724 #ifdef CONFIG_HUGETLB_PAGE
725 .hugetlb_entry
= smaps_hugetlb_range
,
731 memset(&mss
, 0, sizeof mss
);
734 if (vma
->vm_file
&& shmem_mapping(vma
->vm_file
->f_mapping
)) {
736 * For shared or readonly shmem mappings we know that all
737 * swapped out pages belong to the shmem object, and we can
738 * obtain the swap value much more efficiently. For private
739 * writable mappings, we might have COW pages that are
740 * not affected by the parent swapped out pages of the shmem
741 * object, so we have to distinguish them during the page walk.
742 * Unless we know that the shmem object (or the part mapped by
743 * our VMA) has no swapped out pages at all.
745 unsigned long shmem_swapped
= shmem_swap_usage(vma
);
747 if (!shmem_swapped
|| (vma
->vm_flags
& VM_SHARED
) ||
748 !(vma
->vm_flags
& VM_WRITE
)) {
749 mss
.swap
= shmem_swapped
;
751 mss
.check_shmem_swap
= true;
752 smaps_walk
.pte_hole
= smaps_pte_hole
;
757 /* mmap_sem is held in m_start */
758 walk_page_vma(vma
, &smaps_walk
);
760 show_map_vma(m
, vma
, is_pid
);
766 "Shared_Clean: %8lu kB\n"
767 "Shared_Dirty: %8lu kB\n"
768 "Private_Clean: %8lu kB\n"
769 "Private_Dirty: %8lu kB\n"
770 "Referenced: %8lu kB\n"
771 "Anonymous: %8lu kB\n"
772 "AnonHugePages: %8lu kB\n"
773 "Shared_Hugetlb: %8lu kB\n"
774 "Private_Hugetlb: %7lu kB\n"
777 "KernelPageSize: %8lu kB\n"
778 "MMUPageSize: %8lu kB\n"
780 (vma
->vm_end
- vma
->vm_start
) >> 10,
782 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
783 mss
.shared_clean
>> 10,
784 mss
.shared_dirty
>> 10,
785 mss
.private_clean
>> 10,
786 mss
.private_dirty
>> 10,
787 mss
.referenced
>> 10,
789 mss
.anonymous_thp
>> 10,
790 mss
.shared_hugetlb
>> 10,
791 mss
.private_hugetlb
>> 10,
793 (unsigned long)(mss
.swap_pss
>> (10 + PSS_SHIFT
)),
794 vma_kernel_pagesize(vma
) >> 10,
795 vma_mmu_pagesize(vma
) >> 10,
796 (vma
->vm_flags
& VM_LOCKED
) ?
797 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
799 arch_show_smap(m
, vma
);
800 show_smap_vma_flags(m
, vma
);
805 static int show_pid_smap(struct seq_file
*m
, void *v
)
807 return show_smap(m
, v
, 1);
810 static int show_tid_smap(struct seq_file
*m
, void *v
)
812 return show_smap(m
, v
, 0);
815 static const struct seq_operations proc_pid_smaps_op
= {
819 .show
= show_pid_smap
822 static const struct seq_operations proc_tid_smaps_op
= {
826 .show
= show_tid_smap
829 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
831 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
834 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
836 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
839 const struct file_operations proc_pid_smaps_operations
= {
840 .open
= pid_smaps_open
,
843 .release
= proc_map_release
,
846 const struct file_operations proc_tid_smaps_operations
= {
847 .open
= tid_smaps_open
,
850 .release
= proc_map_release
,
853 enum clear_refs_types
{
857 CLEAR_REFS_SOFT_DIRTY
,
858 CLEAR_REFS_MM_HIWATER_RSS
,
862 struct clear_refs_private
{
863 enum clear_refs_types type
;
866 #ifdef CONFIG_MEM_SOFT_DIRTY
867 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
868 unsigned long addr
, pte_t
*pte
)
871 * The soft-dirty tracker uses #PF-s to catch writes
872 * to pages, so write-protect the pte as well. See the
873 * Documentation/vm/soft-dirty.txt for full description
874 * of how soft-dirty works.
878 if (pte_present(ptent
)) {
879 ptent
= ptep_modify_prot_start(vma
->vm_mm
, addr
, pte
);
880 ptent
= pte_wrprotect(ptent
);
881 ptent
= pte_clear_soft_dirty(ptent
);
882 ptep_modify_prot_commit(vma
->vm_mm
, addr
, pte
, ptent
);
883 } else if (is_swap_pte(ptent
)) {
884 ptent
= pte_swp_clear_soft_dirty(ptent
);
885 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
889 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
890 unsigned long addr
, pte_t
*pte
)
895 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
896 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
897 unsigned long addr
, pmd_t
*pmdp
)
899 pmd_t pmd
= pmdp_huge_get_and_clear(vma
->vm_mm
, addr
, pmdp
);
901 pmd
= pmd_wrprotect(pmd
);
902 pmd
= pmd_clear_soft_dirty(pmd
);
904 set_pmd_at(vma
->vm_mm
, addr
, pmdp
, pmd
);
907 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
908 unsigned long addr
, pmd_t
*pmdp
)
913 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
914 unsigned long end
, struct mm_walk
*walk
)
916 struct clear_refs_private
*cp
= walk
->private;
917 struct vm_area_struct
*vma
= walk
->vma
;
922 ptl
= pmd_trans_huge_lock(pmd
, vma
);
924 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
925 clear_soft_dirty_pmd(vma
, addr
, pmd
);
929 page
= pmd_page(*pmd
);
931 /* Clear accessed and referenced bits. */
932 pmdp_test_and_clear_young(vma
, addr
, pmd
);
933 test_and_clear_page_young(page
);
934 ClearPageReferenced(page
);
940 if (pmd_trans_unstable(pmd
))
943 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
944 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
947 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
948 clear_soft_dirty(vma
, addr
, pte
);
952 if (!pte_present(ptent
))
955 page
= vm_normal_page(vma
, addr
, ptent
);
959 /* Clear accessed and referenced bits. */
960 ptep_test_and_clear_young(vma
, addr
, pte
);
961 test_and_clear_page_young(page
);
962 ClearPageReferenced(page
);
964 pte_unmap_unlock(pte
- 1, ptl
);
969 static int clear_refs_test_walk(unsigned long start
, unsigned long end
,
970 struct mm_walk
*walk
)
972 struct clear_refs_private
*cp
= walk
->private;
973 struct vm_area_struct
*vma
= walk
->vma
;
975 if (vma
->vm_flags
& VM_PFNMAP
)
979 * Writing 1 to /proc/pid/clear_refs affects all pages.
980 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
981 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
982 * Writing 4 to /proc/pid/clear_refs affects all pages.
984 if (cp
->type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
986 if (cp
->type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
991 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
992 size_t count
, loff_t
*ppos
)
994 struct task_struct
*task
;
995 char buffer
[PROC_NUMBUF
];
996 struct mm_struct
*mm
;
997 struct vm_area_struct
*vma
;
998 enum clear_refs_types type
;
1002 memset(buffer
, 0, sizeof(buffer
));
1003 if (count
> sizeof(buffer
) - 1)
1004 count
= sizeof(buffer
) - 1;
1005 if (copy_from_user(buffer
, buf
, count
))
1007 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
1010 type
= (enum clear_refs_types
)itype
;
1011 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
1014 task
= get_proc_task(file_inode(file
));
1017 mm
= get_task_mm(task
);
1019 struct clear_refs_private cp
= {
1022 struct mm_walk clear_refs_walk
= {
1023 .pmd_entry
= clear_refs_pte_range
,
1024 .test_walk
= clear_refs_test_walk
,
1029 if (type
== CLEAR_REFS_MM_HIWATER_RSS
) {
1031 * Writing 5 to /proc/pid/clear_refs resets the peak
1032 * resident set size to this mm's current rss value.
1034 down_write(&mm
->mmap_sem
);
1035 reset_mm_hiwater_rss(mm
);
1036 up_write(&mm
->mmap_sem
);
1040 down_read(&mm
->mmap_sem
);
1041 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
1042 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1043 if (!(vma
->vm_flags
& VM_SOFTDIRTY
))
1045 up_read(&mm
->mmap_sem
);
1046 down_write(&mm
->mmap_sem
);
1047 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1048 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
1049 vma_set_page_prot(vma
);
1051 downgrade_write(&mm
->mmap_sem
);
1054 mmu_notifier_invalidate_range_start(mm
, 0, -1);
1056 walk_page_range(0, ~0UL, &clear_refs_walk
);
1057 if (type
== CLEAR_REFS_SOFT_DIRTY
)
1058 mmu_notifier_invalidate_range_end(mm
, 0, -1);
1060 up_read(&mm
->mmap_sem
);
1064 put_task_struct(task
);
1069 const struct file_operations proc_clear_refs_operations
= {
1070 .write
= clear_refs_write
,
1071 .llseek
= noop_llseek
,
1078 struct pagemapread
{
1079 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
1080 pagemap_entry_t
*buffer
;
1084 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1085 #define PAGEMAP_WALK_MASK (PMD_MASK)
1087 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1088 #define PM_PFRAME_BITS 55
1089 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1090 #define PM_SOFT_DIRTY BIT_ULL(55)
1091 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1092 #define PM_FILE BIT_ULL(61)
1093 #define PM_SWAP BIT_ULL(62)
1094 #define PM_PRESENT BIT_ULL(63)
1096 #define PM_END_OF_BUFFER 1
1098 static inline pagemap_entry_t
make_pme(u64 frame
, u64 flags
)
1100 return (pagemap_entry_t
) { .pme
= (frame
& PM_PFRAME_MASK
) | flags
};
1103 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
1104 struct pagemapread
*pm
)
1106 pm
->buffer
[pm
->pos
++] = *pme
;
1107 if (pm
->pos
>= pm
->len
)
1108 return PM_END_OF_BUFFER
;
1112 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
1113 struct mm_walk
*walk
)
1115 struct pagemapread
*pm
= walk
->private;
1116 unsigned long addr
= start
;
1119 while (addr
< end
) {
1120 struct vm_area_struct
*vma
= find_vma(walk
->mm
, addr
);
1121 pagemap_entry_t pme
= make_pme(0, 0);
1122 /* End of address space hole, which we mark as non-present. */
1123 unsigned long hole_end
;
1126 hole_end
= min(end
, vma
->vm_start
);
1130 for (; addr
< hole_end
; addr
+= PAGE_SIZE
) {
1131 err
= add_to_pagemap(addr
, &pme
, pm
);
1139 /* Addresses in the VMA. */
1140 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1141 pme
= make_pme(0, PM_SOFT_DIRTY
);
1142 for (; addr
< min(end
, vma
->vm_end
); addr
+= PAGE_SIZE
) {
1143 err
= add_to_pagemap(addr
, &pme
, pm
);
1152 static pagemap_entry_t
pte_to_pagemap_entry(struct pagemapread
*pm
,
1153 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
1155 u64 frame
= 0, flags
= 0;
1156 struct page
*page
= NULL
;
1158 if (pte_present(pte
)) {
1160 frame
= pte_pfn(pte
);
1161 flags
|= PM_PRESENT
;
1162 page
= vm_normal_page(vma
, addr
, pte
);
1163 if (pte_soft_dirty(pte
))
1164 flags
|= PM_SOFT_DIRTY
;
1165 } else if (is_swap_pte(pte
)) {
1167 if (pte_swp_soft_dirty(pte
))
1168 flags
|= PM_SOFT_DIRTY
;
1169 entry
= pte_to_swp_entry(pte
);
1170 frame
= swp_type(entry
) |
1171 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
1173 if (is_migration_entry(entry
))
1174 page
= migration_entry_to_page(entry
);
1177 if (page
&& !PageAnon(page
))
1179 if (page
&& page_mapcount(page
) == 1)
1180 flags
|= PM_MMAP_EXCLUSIVE
;
1181 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1182 flags
|= PM_SOFT_DIRTY
;
1184 return make_pme(frame
, flags
);
1187 static int pagemap_pmd_range(pmd_t
*pmdp
, unsigned long addr
, unsigned long end
,
1188 struct mm_walk
*walk
)
1190 struct vm_area_struct
*vma
= walk
->vma
;
1191 struct pagemapread
*pm
= walk
->private;
1193 pte_t
*pte
, *orig_pte
;
1196 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1197 ptl
= pmd_trans_huge_lock(pmdp
, vma
);
1199 u64 flags
= 0, frame
= 0;
1202 if ((vma
->vm_flags
& VM_SOFTDIRTY
) || pmd_soft_dirty(pmd
))
1203 flags
|= PM_SOFT_DIRTY
;
1206 * Currently pmd for thp is always present because thp
1207 * can not be swapped-out, migrated, or HWPOISONed
1208 * (split in such cases instead.)
1209 * This if-check is just to prepare for future implementation.
1211 if (pmd_present(pmd
)) {
1212 struct page
*page
= pmd_page(pmd
);
1214 if (page_mapcount(page
) == 1)
1215 flags
|= PM_MMAP_EXCLUSIVE
;
1217 flags
|= PM_PRESENT
;
1219 frame
= pmd_pfn(pmd
) +
1220 ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1223 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1224 pagemap_entry_t pme
= make_pme(frame
, flags
);
1226 err
= add_to_pagemap(addr
, &pme
, pm
);
1229 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1236 if (pmd_trans_unstable(pmdp
))
1238 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1241 * We can assume that @vma always points to a valid one and @end never
1242 * goes beyond vma->vm_end.
1244 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmdp
, addr
, &ptl
);
1245 for (; addr
< end
; pte
++, addr
+= PAGE_SIZE
) {
1246 pagemap_entry_t pme
;
1248 pme
= pte_to_pagemap_entry(pm
, vma
, addr
, *pte
);
1249 err
= add_to_pagemap(addr
, &pme
, pm
);
1253 pte_unmap_unlock(orig_pte
, ptl
);
1260 #ifdef CONFIG_HUGETLB_PAGE
1261 /* This function walks within one hugetlb entry in the single call */
1262 static int pagemap_hugetlb_range(pte_t
*ptep
, unsigned long hmask
,
1263 unsigned long addr
, unsigned long end
,
1264 struct mm_walk
*walk
)
1266 struct pagemapread
*pm
= walk
->private;
1267 struct vm_area_struct
*vma
= walk
->vma
;
1268 u64 flags
= 0, frame
= 0;
1272 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1273 flags
|= PM_SOFT_DIRTY
;
1275 pte
= huge_ptep_get(ptep
);
1276 if (pte_present(pte
)) {
1277 struct page
*page
= pte_page(pte
);
1279 if (!PageAnon(page
))
1282 if (page_mapcount(page
) == 1)
1283 flags
|= PM_MMAP_EXCLUSIVE
;
1285 flags
|= PM_PRESENT
;
1287 frame
= pte_pfn(pte
) +
1288 ((addr
& ~hmask
) >> PAGE_SHIFT
);
1291 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1292 pagemap_entry_t pme
= make_pme(frame
, flags
);
1294 err
= add_to_pagemap(addr
, &pme
, pm
);
1297 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1305 #endif /* HUGETLB_PAGE */
1308 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1310 * For each page in the address space, this file contains one 64-bit entry
1311 * consisting of the following:
1313 * Bits 0-54 page frame number (PFN) if present
1314 * Bits 0-4 swap type if swapped
1315 * Bits 5-54 swap offset if swapped
1316 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1317 * Bit 56 page exclusively mapped
1319 * Bit 61 page is file-page or shared-anon
1320 * Bit 62 page swapped
1321 * Bit 63 page present
1323 * If the page is not present but in swap, then the PFN contains an
1324 * encoding of the swap file number and the page's offset into the
1325 * swap. Unmapped pages return a null PFN. This allows determining
1326 * precisely which pages are mapped (or in swap) and comparing mapped
1327 * pages between processes.
1329 * Efficient users of this interface will use /proc/pid/maps to
1330 * determine which areas of memory are actually mapped and llseek to
1331 * skip over unmapped regions.
1333 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1334 size_t count
, loff_t
*ppos
)
1336 struct mm_struct
*mm
= file
->private_data
;
1337 struct pagemapread pm
;
1338 struct mm_walk pagemap_walk
= {};
1340 unsigned long svpfn
;
1341 unsigned long start_vaddr
;
1342 unsigned long end_vaddr
;
1343 int ret
= 0, copied
= 0;
1345 if (!mm
|| !atomic_inc_not_zero(&mm
->mm_users
))
1349 /* file position must be aligned */
1350 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1357 /* do not disclose physical addresses: attack vector */
1358 pm
.show_pfn
= file_ns_capable(file
, &init_user_ns
, CAP_SYS_ADMIN
);
1360 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1361 pm
.buffer
= kmalloc(pm
.len
* PM_ENTRY_BYTES
, GFP_TEMPORARY
);
1366 pagemap_walk
.pmd_entry
= pagemap_pmd_range
;
1367 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1368 #ifdef CONFIG_HUGETLB_PAGE
1369 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1371 pagemap_walk
.mm
= mm
;
1372 pagemap_walk
.private = &pm
;
1375 svpfn
= src
/ PM_ENTRY_BYTES
;
1376 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1377 end_vaddr
= mm
->task_size
;
1379 /* watch out for wraparound */
1380 if (svpfn
> mm
->task_size
>> PAGE_SHIFT
)
1381 start_vaddr
= end_vaddr
;
1384 * The odds are that this will stop walking way
1385 * before end_vaddr, because the length of the
1386 * user buffer is tracked in "pm", and the walk
1387 * will stop when we hit the end of the buffer.
1390 while (count
&& (start_vaddr
< end_vaddr
)) {
1395 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1397 if (end
< start_vaddr
|| end
> end_vaddr
)
1399 down_read(&mm
->mmap_sem
);
1400 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1401 up_read(&mm
->mmap_sem
);
1404 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1405 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1414 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1425 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1427 struct mm_struct
*mm
;
1429 mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
1432 file
->private_data
= mm
;
1436 static int pagemap_release(struct inode
*inode
, struct file
*file
)
1438 struct mm_struct
*mm
= file
->private_data
;
1445 const struct file_operations proc_pagemap_operations
= {
1446 .llseek
= mem_lseek
, /* borrow this */
1447 .read
= pagemap_read
,
1448 .open
= pagemap_open
,
1449 .release
= pagemap_release
,
1451 #endif /* CONFIG_PROC_PAGE_MONITOR */
1456 unsigned long pages
;
1458 unsigned long active
;
1459 unsigned long writeback
;
1460 unsigned long mapcount_max
;
1461 unsigned long dirty
;
1462 unsigned long swapcache
;
1463 unsigned long node
[MAX_NUMNODES
];
1466 struct numa_maps_private
{
1467 struct proc_maps_private proc_maps
;
1468 struct numa_maps md
;
1471 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1472 unsigned long nr_pages
)
1474 int count
= page_mapcount(page
);
1476 md
->pages
+= nr_pages
;
1477 if (pte_dirty
|| PageDirty(page
))
1478 md
->dirty
+= nr_pages
;
1480 if (PageSwapCache(page
))
1481 md
->swapcache
+= nr_pages
;
1483 if (PageActive(page
) || PageUnevictable(page
))
1484 md
->active
+= nr_pages
;
1486 if (PageWriteback(page
))
1487 md
->writeback
+= nr_pages
;
1490 md
->anon
+= nr_pages
;
1492 if (count
> md
->mapcount_max
)
1493 md
->mapcount_max
= count
;
1495 md
->node
[page_to_nid(page
)] += nr_pages
;
1498 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1504 if (!pte_present(pte
))
1507 page
= vm_normal_page(vma
, addr
, pte
);
1511 if (PageReserved(page
))
1514 nid
= page_to_nid(page
);
1515 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1521 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1522 unsigned long end
, struct mm_walk
*walk
)
1524 struct numa_maps
*md
= walk
->private;
1525 struct vm_area_struct
*vma
= walk
->vma
;
1530 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1532 pte_t huge_pte
= *(pte_t
*)pmd
;
1535 page
= can_gather_numa_stats(huge_pte
, vma
, addr
);
1537 gather_stats(page
, md
, pte_dirty(huge_pte
),
1538 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1543 if (pmd_trans_unstable(pmd
))
1545 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1547 struct page
*page
= can_gather_numa_stats(*pte
, vma
, addr
);
1550 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1552 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1553 pte_unmap_unlock(orig_pte
, ptl
);
1556 #ifdef CONFIG_HUGETLB_PAGE
1557 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1558 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1560 pte_t huge_pte
= huge_ptep_get(pte
);
1561 struct numa_maps
*md
;
1564 if (!pte_present(huge_pte
))
1567 page
= pte_page(huge_pte
);
1572 gather_stats(page
, md
, pte_dirty(huge_pte
), 1);
1577 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1578 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1585 * Display pages allocated per node and memory policy via /proc.
1587 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1589 struct numa_maps_private
*numa_priv
= m
->private;
1590 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1591 struct vm_area_struct
*vma
= v
;
1592 struct numa_maps
*md
= &numa_priv
->md
;
1593 struct file
*file
= vma
->vm_file
;
1594 struct mm_struct
*mm
= vma
->vm_mm
;
1595 struct mm_walk walk
= {
1596 .hugetlb_entry
= gather_hugetlb_stats
,
1597 .pmd_entry
= gather_pte_stats
,
1601 struct mempolicy
*pol
;
1608 /* Ensure we start with an empty set of numa_maps statistics. */
1609 memset(md
, 0, sizeof(*md
));
1611 pol
= __get_vma_policy(vma
, vma
->vm_start
);
1613 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1616 mpol_to_str(buffer
, sizeof(buffer
), proc_priv
->task_mempolicy
);
1619 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1622 seq_puts(m
, " file=");
1623 seq_file_path(m
, file
, "\n\t= ");
1624 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1625 seq_puts(m
, " heap");
1626 } else if (is_stack(proc_priv
, vma
, is_pid
)) {
1627 seq_puts(m
, " stack");
1630 if (is_vm_hugetlb_page(vma
))
1631 seq_puts(m
, " huge");
1633 /* mmap_sem is held by m_start */
1634 walk_page_vma(vma
, &walk
);
1640 seq_printf(m
, " anon=%lu", md
->anon
);
1643 seq_printf(m
, " dirty=%lu", md
->dirty
);
1645 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1646 seq_printf(m
, " mapped=%lu", md
->pages
);
1648 if (md
->mapcount_max
> 1)
1649 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1652 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1654 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1655 seq_printf(m
, " active=%lu", md
->active
);
1658 seq_printf(m
, " writeback=%lu", md
->writeback
);
1660 for_each_node_state(nid
, N_MEMORY
)
1662 seq_printf(m
, " N%d=%lu", nid
, md
->node
[nid
]);
1664 seq_printf(m
, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma
) >> 10);
1667 m_cache_vma(m
, vma
);
1671 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1673 return show_numa_map(m
, v
, 1);
1676 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1678 return show_numa_map(m
, v
, 0);
1681 static const struct seq_operations proc_pid_numa_maps_op
= {
1685 .show
= show_pid_numa_map
,
1688 static const struct seq_operations proc_tid_numa_maps_op
= {
1692 .show
= show_tid_numa_map
,
1695 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1696 const struct seq_operations
*ops
)
1698 return proc_maps_open(inode
, file
, ops
,
1699 sizeof(struct numa_maps_private
));
1702 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1704 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1707 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1709 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1712 const struct file_operations proc_pid_numa_maps_operations
= {
1713 .open
= pid_numa_maps_open
,
1715 .llseek
= seq_lseek
,
1716 .release
= proc_map_release
,
1719 const struct file_operations proc_tid_numa_maps_operations
= {
1720 .open
= tid_numa_maps_open
,
1722 .llseek
= seq_lseek
,
1723 .release
= proc_map_release
,
1725 #endif /* CONFIG_NUMA */