maps4: add /proc/pid/pagemap interface
[deliverable/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/ptrace.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12
13 #include <asm/elf.h>
14 #include <asm/uaccess.h>
15 #include <asm/tlbflush.h>
16 #include "internal.h"
17
18 char *task_mem(struct mm_struct *mm, char *buffer)
19 {
20 unsigned long data, text, lib;
21 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
22
23 /*
24 * Note: to minimize their overhead, mm maintains hiwater_vm and
25 * hiwater_rss only when about to *lower* total_vm or rss. Any
26 * collector of these hiwater stats must therefore get total_vm
27 * and rss too, which will usually be the higher. Barriers? not
28 * worth the effort, such snapshots can always be inconsistent.
29 */
30 hiwater_vm = total_vm = mm->total_vm;
31 if (hiwater_vm < mm->hiwater_vm)
32 hiwater_vm = mm->hiwater_vm;
33 hiwater_rss = total_rss = get_mm_rss(mm);
34 if (hiwater_rss < mm->hiwater_rss)
35 hiwater_rss = mm->hiwater_rss;
36
37 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
38 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
39 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
40 buffer += sprintf(buffer,
41 "VmPeak:\t%8lu kB\n"
42 "VmSize:\t%8lu kB\n"
43 "VmLck:\t%8lu kB\n"
44 "VmHWM:\t%8lu kB\n"
45 "VmRSS:\t%8lu kB\n"
46 "VmData:\t%8lu kB\n"
47 "VmStk:\t%8lu kB\n"
48 "VmExe:\t%8lu kB\n"
49 "VmLib:\t%8lu kB\n"
50 "VmPTE:\t%8lu kB\n",
51 hiwater_vm << (PAGE_SHIFT-10),
52 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
53 mm->locked_vm << (PAGE_SHIFT-10),
54 hiwater_rss << (PAGE_SHIFT-10),
55 total_rss << (PAGE_SHIFT-10),
56 data << (PAGE_SHIFT-10),
57 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
58 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
59 return buffer;
60 }
61
62 unsigned long task_vsize(struct mm_struct *mm)
63 {
64 return PAGE_SIZE * mm->total_vm;
65 }
66
67 int task_statm(struct mm_struct *mm, int *shared, int *text,
68 int *data, int *resident)
69 {
70 *shared = get_mm_counter(mm, file_rss);
71 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
72 >> PAGE_SHIFT;
73 *data = mm->total_vm - mm->shared_vm;
74 *resident = *shared + get_mm_counter(mm, anon_rss);
75 return mm->total_vm;
76 }
77
78 int proc_exe_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
79 {
80 struct vm_area_struct * vma;
81 int result = -ENOENT;
82 struct task_struct *task = get_proc_task(inode);
83 struct mm_struct * mm = NULL;
84
85 if (task) {
86 mm = get_task_mm(task);
87 put_task_struct(task);
88 }
89 if (!mm)
90 goto out;
91 down_read(&mm->mmap_sem);
92
93 vma = mm->mmap;
94 while (vma) {
95 if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file)
96 break;
97 vma = vma->vm_next;
98 }
99
100 if (vma) {
101 *mnt = mntget(vma->vm_file->f_path.mnt);
102 *dentry = dget(vma->vm_file->f_path.dentry);
103 result = 0;
104 }
105
106 up_read(&mm->mmap_sem);
107 mmput(mm);
108 out:
109 return result;
110 }
111
112 static void pad_len_spaces(struct seq_file *m, int len)
113 {
114 len = 25 + sizeof(void*) * 6 - len;
115 if (len < 1)
116 len = 1;
117 seq_printf(m, "%*c", len, ' ');
118 }
119
120 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
121 {
122 if (vma && vma != priv->tail_vma) {
123 struct mm_struct *mm = vma->vm_mm;
124 up_read(&mm->mmap_sem);
125 mmput(mm);
126 }
127 }
128
129 static void *m_start(struct seq_file *m, loff_t *pos)
130 {
131 struct proc_maps_private *priv = m->private;
132 unsigned long last_addr = m->version;
133 struct mm_struct *mm;
134 struct vm_area_struct *vma, *tail_vma = NULL;
135 loff_t l = *pos;
136
137 /* Clear the per syscall fields in priv */
138 priv->task = NULL;
139 priv->tail_vma = NULL;
140
141 /*
142 * We remember last_addr rather than next_addr to hit with
143 * mmap_cache most of the time. We have zero last_addr at
144 * the beginning and also after lseek. We will have -1 last_addr
145 * after the end of the vmas.
146 */
147
148 if (last_addr == -1UL)
149 return NULL;
150
151 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
152 if (!priv->task)
153 return NULL;
154
155 mm = mm_for_maps(priv->task);
156 if (!mm)
157 return NULL;
158
159 tail_vma = get_gate_vma(priv->task);
160 priv->tail_vma = tail_vma;
161
162 /* Start with last addr hint */
163 vma = find_vma(mm, last_addr);
164 if (last_addr && vma) {
165 vma = vma->vm_next;
166 goto out;
167 }
168
169 /*
170 * Check the vma index is within the range and do
171 * sequential scan until m_index.
172 */
173 vma = NULL;
174 if ((unsigned long)l < mm->map_count) {
175 vma = mm->mmap;
176 while (l-- && vma)
177 vma = vma->vm_next;
178 goto out;
179 }
180
181 if (l != mm->map_count)
182 tail_vma = NULL; /* After gate vma */
183
184 out:
185 if (vma)
186 return vma;
187
188 /* End of vmas has been reached */
189 m->version = (tail_vma != NULL)? 0: -1UL;
190 up_read(&mm->mmap_sem);
191 mmput(mm);
192 return tail_vma;
193 }
194
195 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
196 {
197 struct proc_maps_private *priv = m->private;
198 struct vm_area_struct *vma = v;
199 struct vm_area_struct *tail_vma = priv->tail_vma;
200
201 (*pos)++;
202 if (vma && (vma != tail_vma) && vma->vm_next)
203 return vma->vm_next;
204 vma_stop(priv, vma);
205 return (vma != tail_vma)? tail_vma: NULL;
206 }
207
208 static void m_stop(struct seq_file *m, void *v)
209 {
210 struct proc_maps_private *priv = m->private;
211 struct vm_area_struct *vma = v;
212
213 vma_stop(priv, vma);
214 if (priv->task)
215 put_task_struct(priv->task);
216 }
217
218 static int do_maps_open(struct inode *inode, struct file *file,
219 struct seq_operations *ops)
220 {
221 struct proc_maps_private *priv;
222 int ret = -ENOMEM;
223 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
224 if (priv) {
225 priv->pid = proc_pid(inode);
226 ret = seq_open(file, ops);
227 if (!ret) {
228 struct seq_file *m = file->private_data;
229 m->private = priv;
230 } else {
231 kfree(priv);
232 }
233 }
234 return ret;
235 }
236
237 static int show_map(struct seq_file *m, void *v)
238 {
239 struct proc_maps_private *priv = m->private;
240 struct task_struct *task = priv->task;
241 struct vm_area_struct *vma = v;
242 struct mm_struct *mm = vma->vm_mm;
243 struct file *file = vma->vm_file;
244 int flags = vma->vm_flags;
245 unsigned long ino = 0;
246 dev_t dev = 0;
247 int len;
248
249 if (maps_protect && !ptrace_may_attach(task))
250 return -EACCES;
251
252 if (file) {
253 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
254 dev = inode->i_sb->s_dev;
255 ino = inode->i_ino;
256 }
257
258 seq_printf(m, "%08lx-%08lx %c%c%c%c %08lx %02x:%02x %lu %n",
259 vma->vm_start,
260 vma->vm_end,
261 flags & VM_READ ? 'r' : '-',
262 flags & VM_WRITE ? 'w' : '-',
263 flags & VM_EXEC ? 'x' : '-',
264 flags & VM_MAYSHARE ? 's' : 'p',
265 vma->vm_pgoff << PAGE_SHIFT,
266 MAJOR(dev), MINOR(dev), ino, &len);
267
268 /*
269 * Print the dentry name for named mappings, and a
270 * special [heap] marker for the heap:
271 */
272 if (file) {
273 pad_len_spaces(m, len);
274 seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n");
275 } else {
276 const char *name = arch_vma_name(vma);
277 if (!name) {
278 if (mm) {
279 if (vma->vm_start <= mm->start_brk &&
280 vma->vm_end >= mm->brk) {
281 name = "[heap]";
282 } else if (vma->vm_start <= mm->start_stack &&
283 vma->vm_end >= mm->start_stack) {
284 name = "[stack]";
285 }
286 } else {
287 name = "[vdso]";
288 }
289 }
290 if (name) {
291 pad_len_spaces(m, len);
292 seq_puts(m, name);
293 }
294 }
295 seq_putc(m, '\n');
296
297 if (m->count < m->size) /* vma is copied successfully */
298 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
299 return 0;
300 }
301
302 static struct seq_operations proc_pid_maps_op = {
303 .start = m_start,
304 .next = m_next,
305 .stop = m_stop,
306 .show = show_map
307 };
308
309 static int maps_open(struct inode *inode, struct file *file)
310 {
311 return do_maps_open(inode, file, &proc_pid_maps_op);
312 }
313
314 const struct file_operations proc_maps_operations = {
315 .open = maps_open,
316 .read = seq_read,
317 .llseek = seq_lseek,
318 .release = seq_release_private,
319 };
320
321 /*
322 * Proportional Set Size(PSS): my share of RSS.
323 *
324 * PSS of a process is the count of pages it has in memory, where each
325 * page is divided by the number of processes sharing it. So if a
326 * process has 1000 pages all to itself, and 1000 shared with one other
327 * process, its PSS will be 1500.
328 *
329 * To keep (accumulated) division errors low, we adopt a 64bit
330 * fixed-point pss counter to minimize division errors. So (pss >>
331 * PSS_SHIFT) would be the real byte count.
332 *
333 * A shift of 12 before division means (assuming 4K page size):
334 * - 1M 3-user-pages add up to 8KB errors;
335 * - supports mapcount up to 2^24, or 16M;
336 * - supports PSS up to 2^52 bytes, or 4PB.
337 */
338 #define PSS_SHIFT 12
339
340 struct mem_size_stats
341 {
342 struct vm_area_struct *vma;
343 unsigned long resident;
344 unsigned long shared_clean;
345 unsigned long shared_dirty;
346 unsigned long private_clean;
347 unsigned long private_dirty;
348 unsigned long referenced;
349 u64 pss;
350 };
351
352 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
353 void *private)
354 {
355 struct mem_size_stats *mss = private;
356 struct vm_area_struct *vma = mss->vma;
357 pte_t *pte, ptent;
358 spinlock_t *ptl;
359 struct page *page;
360 int mapcount;
361
362 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
363 for (; addr != end; pte++, addr += PAGE_SIZE) {
364 ptent = *pte;
365 if (!pte_present(ptent))
366 continue;
367
368 mss->resident += PAGE_SIZE;
369
370 page = vm_normal_page(vma, addr, ptent);
371 if (!page)
372 continue;
373
374 /* Accumulate the size in pages that have been accessed. */
375 if (pte_young(ptent) || PageReferenced(page))
376 mss->referenced += PAGE_SIZE;
377 mapcount = page_mapcount(page);
378 if (mapcount >= 2) {
379 if (pte_dirty(ptent))
380 mss->shared_dirty += PAGE_SIZE;
381 else
382 mss->shared_clean += PAGE_SIZE;
383 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
384 } else {
385 if (pte_dirty(ptent))
386 mss->private_dirty += PAGE_SIZE;
387 else
388 mss->private_clean += PAGE_SIZE;
389 mss->pss += (PAGE_SIZE << PSS_SHIFT);
390 }
391 }
392 pte_unmap_unlock(pte - 1, ptl);
393 cond_resched();
394 return 0;
395 }
396
397 static struct mm_walk smaps_walk = { .pmd_entry = smaps_pte_range };
398
399 static int show_smap(struct seq_file *m, void *v)
400 {
401 struct vm_area_struct *vma = v;
402 struct mem_size_stats mss;
403 int ret;
404
405 memset(&mss, 0, sizeof mss);
406 mss.vma = vma;
407 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
408 walk_page_range(vma->vm_mm, vma->vm_start, vma->vm_end,
409 &smaps_walk, &mss);
410
411 ret = show_map(m, v);
412 if (ret)
413 return ret;
414
415 seq_printf(m,
416 "Size: %8lu kB\n"
417 "Rss: %8lu kB\n"
418 "Pss: %8lu kB\n"
419 "Shared_Clean: %8lu kB\n"
420 "Shared_Dirty: %8lu kB\n"
421 "Private_Clean: %8lu kB\n"
422 "Private_Dirty: %8lu kB\n"
423 "Referenced: %8lu kB\n",
424 (vma->vm_end - vma->vm_start) >> 10,
425 mss.resident >> 10,
426 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
427 mss.shared_clean >> 10,
428 mss.shared_dirty >> 10,
429 mss.private_clean >> 10,
430 mss.private_dirty >> 10,
431 mss.referenced >> 10);
432
433 return ret;
434 }
435
436 static struct seq_operations proc_pid_smaps_op = {
437 .start = m_start,
438 .next = m_next,
439 .stop = m_stop,
440 .show = show_smap
441 };
442
443 static int smaps_open(struct inode *inode, struct file *file)
444 {
445 return do_maps_open(inode, file, &proc_pid_smaps_op);
446 }
447
448 const struct file_operations proc_smaps_operations = {
449 .open = smaps_open,
450 .read = seq_read,
451 .llseek = seq_lseek,
452 .release = seq_release_private,
453 };
454
455 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
456 unsigned long end, void *private)
457 {
458 struct vm_area_struct *vma = private;
459 pte_t *pte, ptent;
460 spinlock_t *ptl;
461 struct page *page;
462
463 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
464 for (; addr != end; pte++, addr += PAGE_SIZE) {
465 ptent = *pte;
466 if (!pte_present(ptent))
467 continue;
468
469 page = vm_normal_page(vma, addr, ptent);
470 if (!page)
471 continue;
472
473 /* Clear accessed and referenced bits. */
474 ptep_test_and_clear_young(vma, addr, pte);
475 ClearPageReferenced(page);
476 }
477 pte_unmap_unlock(pte - 1, ptl);
478 cond_resched();
479 return 0;
480 }
481
482 static struct mm_walk clear_refs_walk = { .pmd_entry = clear_refs_pte_range };
483
484 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
485 size_t count, loff_t *ppos)
486 {
487 struct task_struct *task;
488 char buffer[PROC_NUMBUF], *end;
489 struct mm_struct *mm;
490 struct vm_area_struct *vma;
491
492 memset(buffer, 0, sizeof(buffer));
493 if (count > sizeof(buffer) - 1)
494 count = sizeof(buffer) - 1;
495 if (copy_from_user(buffer, buf, count))
496 return -EFAULT;
497 if (!simple_strtol(buffer, &end, 0))
498 return -EINVAL;
499 if (*end == '\n')
500 end++;
501 task = get_proc_task(file->f_path.dentry->d_inode);
502 if (!task)
503 return -ESRCH;
504 mm = get_task_mm(task);
505 if (mm) {
506 down_read(&mm->mmap_sem);
507 for (vma = mm->mmap; vma; vma = vma->vm_next)
508 if (!is_vm_hugetlb_page(vma))
509 walk_page_range(mm, vma->vm_start, vma->vm_end,
510 &clear_refs_walk, vma);
511 flush_tlb_mm(mm);
512 up_read(&mm->mmap_sem);
513 mmput(mm);
514 }
515 put_task_struct(task);
516 if (end - buffer == 0)
517 return -EIO;
518 return end - buffer;
519 }
520
521 const struct file_operations proc_clear_refs_operations = {
522 .write = clear_refs_write,
523 };
524
525 struct pagemapread {
526 char __user *out, *end;
527 };
528
529 #define PM_ENTRY_BYTES sizeof(u64)
530 #define PM_RESERVED_BITS 3
531 #define PM_RESERVED_OFFSET (64 - PM_RESERVED_BITS)
532 #define PM_RESERVED_MASK (((1LL<<PM_RESERVED_BITS)-1) << PM_RESERVED_OFFSET)
533 #define PM_SPECIAL(nr) (((nr) << PM_RESERVED_OFFSET) | PM_RESERVED_MASK)
534 #define PM_NOT_PRESENT PM_SPECIAL(1LL)
535 #define PM_SWAP PM_SPECIAL(2LL)
536 #define PM_END_OF_BUFFER 1
537
538 static int add_to_pagemap(unsigned long addr, u64 pfn,
539 struct pagemapread *pm)
540 {
541 /*
542 * Make sure there's room in the buffer for an
543 * entire entry. Otherwise, only copy part of
544 * the pfn.
545 */
546 if (pm->out + PM_ENTRY_BYTES >= pm->end) {
547 if (copy_to_user(pm->out, &pfn, pm->end - pm->out))
548 return -EFAULT;
549 pm->out = pm->end;
550 return PM_END_OF_BUFFER;
551 }
552
553 if (put_user(pfn, pm->out))
554 return -EFAULT;
555 pm->out += PM_ENTRY_BYTES;
556 return 0;
557 }
558
559 static int pagemap_pte_hole(unsigned long start, unsigned long end,
560 void *private)
561 {
562 struct pagemapread *pm = private;
563 unsigned long addr;
564 int err = 0;
565 for (addr = start; addr < end; addr += PAGE_SIZE) {
566 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
567 if (err)
568 break;
569 }
570 return err;
571 }
572
573 u64 swap_pte_to_pagemap_entry(pte_t pte)
574 {
575 swp_entry_t e = pte_to_swp_entry(pte);
576 return PM_SWAP | swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
577 }
578
579 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
580 void *private)
581 {
582 struct pagemapread *pm = private;
583 pte_t *pte;
584 int err = 0;
585
586 for (; addr != end; addr += PAGE_SIZE) {
587 u64 pfn = PM_NOT_PRESENT;
588 pte = pte_offset_map(pmd, addr);
589 if (is_swap_pte(*pte))
590 pfn = swap_pte_to_pagemap_entry(*pte);
591 else if (pte_present(*pte))
592 pfn = pte_pfn(*pte);
593 /* unmap so we're not in atomic when we copy to userspace */
594 pte_unmap(pte);
595 err = add_to_pagemap(addr, pfn, pm);
596 if (err)
597 return err;
598 }
599
600 cond_resched();
601
602 return err;
603 }
604
605 static struct mm_walk pagemap_walk = {
606 .pmd_entry = pagemap_pte_range,
607 .pte_hole = pagemap_pte_hole
608 };
609
610 /*
611 * /proc/pid/pagemap - an array mapping virtual pages to pfns
612 *
613 * For each page in the address space, this file contains one 64-bit
614 * entry representing the corresponding physical page frame number
615 * (PFN) if the page is present. If there is a swap entry for the
616 * physical page, then an encoding of the swap file number and the
617 * page's offset into the swap file are returned. If no page is
618 * present at all, PM_NOT_PRESENT is returned. This allows determining
619 * precisely which pages are mapped (or in swap) and comparing mapped
620 * pages between processes.
621 *
622 * Efficient users of this interface will use /proc/pid/maps to
623 * determine which areas of memory are actually mapped and llseek to
624 * skip over unmapped regions.
625 */
626 static ssize_t pagemap_read(struct file *file, char __user *buf,
627 size_t count, loff_t *ppos)
628 {
629 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
630 struct page **pages, *page;
631 unsigned long uaddr, uend;
632 struct mm_struct *mm;
633 struct pagemapread pm;
634 int pagecount;
635 int ret = -ESRCH;
636
637 if (!task)
638 goto out;
639
640 ret = -EACCES;
641 if (!ptrace_may_attach(task))
642 goto out;
643
644 ret = -EINVAL;
645 /* file position must be aligned */
646 if (*ppos % PM_ENTRY_BYTES)
647 goto out;
648
649 ret = 0;
650 mm = get_task_mm(task);
651 if (!mm)
652 goto out;
653
654 ret = -ENOMEM;
655 uaddr = (unsigned long)buf & PAGE_MASK;
656 uend = (unsigned long)(buf + count);
657 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE;
658 pages = kmalloc(pagecount * sizeof(struct page *), GFP_KERNEL);
659 if (!pages)
660 goto out_task;
661
662 down_read(&current->mm->mmap_sem);
663 ret = get_user_pages(current, current->mm, uaddr, pagecount,
664 1, 0, pages, NULL);
665 up_read(&current->mm->mmap_sem);
666
667 if (ret < 0)
668 goto out_free;
669
670 pm.out = buf;
671 pm.end = buf + count;
672
673 if (!ptrace_may_attach(task)) {
674 ret = -EIO;
675 } else {
676 unsigned long src = *ppos;
677 unsigned long svpfn = src / PM_ENTRY_BYTES;
678 unsigned long start_vaddr = svpfn << PAGE_SHIFT;
679 unsigned long end_vaddr = TASK_SIZE_OF(task);
680
681 /* watch out for wraparound */
682 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
683 start_vaddr = end_vaddr;
684
685 /*
686 * The odds are that this will stop walking way
687 * before end_vaddr, because the length of the
688 * user buffer is tracked in "pm", and the walk
689 * will stop when we hit the end of the buffer.
690 */
691 ret = walk_page_range(mm, start_vaddr, end_vaddr,
692 &pagemap_walk, &pm);
693 if (ret == PM_END_OF_BUFFER)
694 ret = 0;
695 /* don't need mmap_sem for these, but this looks cleaner */
696 *ppos += pm.out - buf;
697 if (!ret)
698 ret = pm.out - buf;
699 }
700
701 for (; pagecount; pagecount--) {
702 page = pages[pagecount-1];
703 if (!PageReserved(page))
704 SetPageDirty(page);
705 page_cache_release(page);
706 }
707 mmput(mm);
708 out_free:
709 kfree(pages);
710 out_task:
711 put_task_struct(task);
712 out:
713 return ret;
714 }
715
716 const struct file_operations proc_pagemap_operations = {
717 .llseek = mem_lseek, /* borrow this */
718 .read = pagemap_read,
719 };
720
721 #ifdef CONFIG_NUMA
722 extern int show_numa_map(struct seq_file *m, void *v);
723
724 static int show_numa_map_checked(struct seq_file *m, void *v)
725 {
726 struct proc_maps_private *priv = m->private;
727 struct task_struct *task = priv->task;
728
729 if (maps_protect && !ptrace_may_attach(task))
730 return -EACCES;
731
732 return show_numa_map(m, v);
733 }
734
735 static struct seq_operations proc_pid_numa_maps_op = {
736 .start = m_start,
737 .next = m_next,
738 .stop = m_stop,
739 .show = show_numa_map_checked
740 };
741
742 static int numa_maps_open(struct inode *inode, struct file *file)
743 {
744 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
745 }
746
747 const struct file_operations proc_numa_maps_operations = {
748 .open = numa_maps_open,
749 .read = seq_read,
750 .llseek = seq_lseek,
751 .release = seq_release_private,
752 };
753 #endif
This page took 0.061128 seconds and 5 git commands to generate.