mm: save soft-dirty bits on swapped pages
[deliverable/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/mmu_notifier.h>
15
16 #include <asm/elf.h>
17 #include <asm/uaccess.h>
18 #include <asm/tlbflush.h>
19 #include "internal.h"
20
21 void task_mem(struct seq_file *m, struct mm_struct *mm)
22 {
23 unsigned long data, text, lib, swap;
24 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
25
26 /*
27 * Note: to minimize their overhead, mm maintains hiwater_vm and
28 * hiwater_rss only when about to *lower* total_vm or rss. Any
29 * collector of these hiwater stats must therefore get total_vm
30 * and rss too, which will usually be the higher. Barriers? not
31 * worth the effort, such snapshots can always be inconsistent.
32 */
33 hiwater_vm = total_vm = mm->total_vm;
34 if (hiwater_vm < mm->hiwater_vm)
35 hiwater_vm = mm->hiwater_vm;
36 hiwater_rss = total_rss = get_mm_rss(mm);
37 if (hiwater_rss < mm->hiwater_rss)
38 hiwater_rss = mm->hiwater_rss;
39
40 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
41 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
42 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
43 swap = get_mm_counter(mm, MM_SWAPENTS);
44 seq_printf(m,
45 "VmPeak:\t%8lu kB\n"
46 "VmSize:\t%8lu kB\n"
47 "VmLck:\t%8lu kB\n"
48 "VmPin:\t%8lu kB\n"
49 "VmHWM:\t%8lu kB\n"
50 "VmRSS:\t%8lu kB\n"
51 "VmData:\t%8lu kB\n"
52 "VmStk:\t%8lu kB\n"
53 "VmExe:\t%8lu kB\n"
54 "VmLib:\t%8lu kB\n"
55 "VmPTE:\t%8lu kB\n"
56 "VmSwap:\t%8lu kB\n",
57 hiwater_vm << (PAGE_SHIFT-10),
58 total_vm << (PAGE_SHIFT-10),
59 mm->locked_vm << (PAGE_SHIFT-10),
60 mm->pinned_vm << (PAGE_SHIFT-10),
61 hiwater_rss << (PAGE_SHIFT-10),
62 total_rss << (PAGE_SHIFT-10),
63 data << (PAGE_SHIFT-10),
64 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
65 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
66 swap << (PAGE_SHIFT-10));
67 }
68
69 unsigned long task_vsize(struct mm_struct *mm)
70 {
71 return PAGE_SIZE * mm->total_vm;
72 }
73
74 unsigned long task_statm(struct mm_struct *mm,
75 unsigned long *shared, unsigned long *text,
76 unsigned long *data, unsigned long *resident)
77 {
78 *shared = get_mm_counter(mm, MM_FILEPAGES);
79 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
80 >> PAGE_SHIFT;
81 *data = mm->total_vm - mm->shared_vm;
82 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
83 return mm->total_vm;
84 }
85
86 static void pad_len_spaces(struct seq_file *m, int len)
87 {
88 len = 25 + sizeof(void*) * 6 - len;
89 if (len < 1)
90 len = 1;
91 seq_printf(m, "%*c", len, ' ');
92 }
93
94 #ifdef CONFIG_NUMA
95 /*
96 * These functions are for numa_maps but called in generic **maps seq_file
97 * ->start(), ->stop() ops.
98 *
99 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
100 * Each mempolicy object is controlled by reference counting. The problem here
101 * is how to avoid accessing dead mempolicy object.
102 *
103 * Because we're holding mmap_sem while reading seq_file, it's safe to access
104 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
105 *
106 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
107 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
108 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
109 * gurantee the task never exits under us. But taking task_lock() around
110 * get_vma_plicy() causes lock order problem.
111 *
112 * To access task->mempolicy without lock, we hold a reference count of an
113 * object pointed by task->mempolicy and remember it. This will guarantee
114 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
115 */
116 static void hold_task_mempolicy(struct proc_maps_private *priv)
117 {
118 struct task_struct *task = priv->task;
119
120 task_lock(task);
121 priv->task_mempolicy = task->mempolicy;
122 mpol_get(priv->task_mempolicy);
123 task_unlock(task);
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 mpol_put(priv->task_mempolicy);
128 }
129 #else
130 static void hold_task_mempolicy(struct proc_maps_private *priv)
131 {
132 }
133 static void release_task_mempolicy(struct proc_maps_private *priv)
134 {
135 }
136 #endif
137
138 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
139 {
140 if (vma && vma != priv->tail_vma) {
141 struct mm_struct *mm = vma->vm_mm;
142 release_task_mempolicy(priv);
143 up_read(&mm->mmap_sem);
144 mmput(mm);
145 }
146 }
147
148 static void *m_start(struct seq_file *m, loff_t *pos)
149 {
150 struct proc_maps_private *priv = m->private;
151 unsigned long last_addr = m->version;
152 struct mm_struct *mm;
153 struct vm_area_struct *vma, *tail_vma = NULL;
154 loff_t l = *pos;
155
156 /* Clear the per syscall fields in priv */
157 priv->task = NULL;
158 priv->tail_vma = NULL;
159
160 /*
161 * We remember last_addr rather than next_addr to hit with
162 * mmap_cache most of the time. We have zero last_addr at
163 * the beginning and also after lseek. We will have -1 last_addr
164 * after the end of the vmas.
165 */
166
167 if (last_addr == -1UL)
168 return NULL;
169
170 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
171 if (!priv->task)
172 return ERR_PTR(-ESRCH);
173
174 mm = mm_access(priv->task, PTRACE_MODE_READ);
175 if (!mm || IS_ERR(mm))
176 return mm;
177 down_read(&mm->mmap_sem);
178
179 tail_vma = get_gate_vma(priv->task->mm);
180 priv->tail_vma = tail_vma;
181 hold_task_mempolicy(priv);
182 /* Start with last addr hint */
183 vma = find_vma(mm, last_addr);
184 if (last_addr && vma) {
185 vma = vma->vm_next;
186 goto out;
187 }
188
189 /*
190 * Check the vma index is within the range and do
191 * sequential scan until m_index.
192 */
193 vma = NULL;
194 if ((unsigned long)l < mm->map_count) {
195 vma = mm->mmap;
196 while (l-- && vma)
197 vma = vma->vm_next;
198 goto out;
199 }
200
201 if (l != mm->map_count)
202 tail_vma = NULL; /* After gate vma */
203
204 out:
205 if (vma)
206 return vma;
207
208 release_task_mempolicy(priv);
209 /* End of vmas has been reached */
210 m->version = (tail_vma != NULL)? 0: -1UL;
211 up_read(&mm->mmap_sem);
212 mmput(mm);
213 return tail_vma;
214 }
215
216 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
217 {
218 struct proc_maps_private *priv = m->private;
219 struct vm_area_struct *vma = v;
220 struct vm_area_struct *tail_vma = priv->tail_vma;
221
222 (*pos)++;
223 if (vma && (vma != tail_vma) && vma->vm_next)
224 return vma->vm_next;
225 vma_stop(priv, vma);
226 return (vma != tail_vma)? tail_vma: NULL;
227 }
228
229 static void m_stop(struct seq_file *m, void *v)
230 {
231 struct proc_maps_private *priv = m->private;
232 struct vm_area_struct *vma = v;
233
234 if (!IS_ERR(vma))
235 vma_stop(priv, vma);
236 if (priv->task)
237 put_task_struct(priv->task);
238 }
239
240 static int do_maps_open(struct inode *inode, struct file *file,
241 const struct seq_operations *ops)
242 {
243 struct proc_maps_private *priv;
244 int ret = -ENOMEM;
245 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
246 if (priv) {
247 priv->pid = proc_pid(inode);
248 ret = seq_open(file, ops);
249 if (!ret) {
250 struct seq_file *m = file->private_data;
251 m->private = priv;
252 } else {
253 kfree(priv);
254 }
255 }
256 return ret;
257 }
258
259 static void
260 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
261 {
262 struct mm_struct *mm = vma->vm_mm;
263 struct file *file = vma->vm_file;
264 struct proc_maps_private *priv = m->private;
265 struct task_struct *task = priv->task;
266 vm_flags_t flags = vma->vm_flags;
267 unsigned long ino = 0;
268 unsigned long long pgoff = 0;
269 unsigned long start, end;
270 dev_t dev = 0;
271 int len;
272 const char *name = NULL;
273
274 if (file) {
275 struct inode *inode = file_inode(vma->vm_file);
276 dev = inode->i_sb->s_dev;
277 ino = inode->i_ino;
278 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
279 }
280
281 /* We don't show the stack guard page in /proc/maps */
282 start = vma->vm_start;
283 if (stack_guard_page_start(vma, start))
284 start += PAGE_SIZE;
285 end = vma->vm_end;
286 if (stack_guard_page_end(vma, end))
287 end -= PAGE_SIZE;
288
289 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
290 start,
291 end,
292 flags & VM_READ ? 'r' : '-',
293 flags & VM_WRITE ? 'w' : '-',
294 flags & VM_EXEC ? 'x' : '-',
295 flags & VM_MAYSHARE ? 's' : 'p',
296 pgoff,
297 MAJOR(dev), MINOR(dev), ino, &len);
298
299 /*
300 * Print the dentry name for named mappings, and a
301 * special [heap] marker for the heap:
302 */
303 if (file) {
304 pad_len_spaces(m, len);
305 seq_path(m, &file->f_path, "\n");
306 goto done;
307 }
308
309 name = arch_vma_name(vma);
310 if (!name) {
311 pid_t tid;
312
313 if (!mm) {
314 name = "[vdso]";
315 goto done;
316 }
317
318 if (vma->vm_start <= mm->brk &&
319 vma->vm_end >= mm->start_brk) {
320 name = "[heap]";
321 goto done;
322 }
323
324 tid = vm_is_stack(task, vma, is_pid);
325
326 if (tid != 0) {
327 /*
328 * Thread stack in /proc/PID/task/TID/maps or
329 * the main process stack.
330 */
331 if (!is_pid || (vma->vm_start <= mm->start_stack &&
332 vma->vm_end >= mm->start_stack)) {
333 name = "[stack]";
334 } else {
335 /* Thread stack in /proc/PID/maps */
336 pad_len_spaces(m, len);
337 seq_printf(m, "[stack:%d]", tid);
338 }
339 }
340 }
341
342 done:
343 if (name) {
344 pad_len_spaces(m, len);
345 seq_puts(m, name);
346 }
347 seq_putc(m, '\n');
348 }
349
350 static int show_map(struct seq_file *m, void *v, int is_pid)
351 {
352 struct vm_area_struct *vma = v;
353 struct proc_maps_private *priv = m->private;
354 struct task_struct *task = priv->task;
355
356 show_map_vma(m, vma, is_pid);
357
358 if (m->count < m->size) /* vma is copied successfully */
359 m->version = (vma != get_gate_vma(task->mm))
360 ? vma->vm_start : 0;
361 return 0;
362 }
363
364 static int show_pid_map(struct seq_file *m, void *v)
365 {
366 return show_map(m, v, 1);
367 }
368
369 static int show_tid_map(struct seq_file *m, void *v)
370 {
371 return show_map(m, v, 0);
372 }
373
374 static const struct seq_operations proc_pid_maps_op = {
375 .start = m_start,
376 .next = m_next,
377 .stop = m_stop,
378 .show = show_pid_map
379 };
380
381 static const struct seq_operations proc_tid_maps_op = {
382 .start = m_start,
383 .next = m_next,
384 .stop = m_stop,
385 .show = show_tid_map
386 };
387
388 static int pid_maps_open(struct inode *inode, struct file *file)
389 {
390 return do_maps_open(inode, file, &proc_pid_maps_op);
391 }
392
393 static int tid_maps_open(struct inode *inode, struct file *file)
394 {
395 return do_maps_open(inode, file, &proc_tid_maps_op);
396 }
397
398 const struct file_operations proc_pid_maps_operations = {
399 .open = pid_maps_open,
400 .read = seq_read,
401 .llseek = seq_lseek,
402 .release = seq_release_private,
403 };
404
405 const struct file_operations proc_tid_maps_operations = {
406 .open = tid_maps_open,
407 .read = seq_read,
408 .llseek = seq_lseek,
409 .release = seq_release_private,
410 };
411
412 /*
413 * Proportional Set Size(PSS): my share of RSS.
414 *
415 * PSS of a process is the count of pages it has in memory, where each
416 * page is divided by the number of processes sharing it. So if a
417 * process has 1000 pages all to itself, and 1000 shared with one other
418 * process, its PSS will be 1500.
419 *
420 * To keep (accumulated) division errors low, we adopt a 64bit
421 * fixed-point pss counter to minimize division errors. So (pss >>
422 * PSS_SHIFT) would be the real byte count.
423 *
424 * A shift of 12 before division means (assuming 4K page size):
425 * - 1M 3-user-pages add up to 8KB errors;
426 * - supports mapcount up to 2^24, or 16M;
427 * - supports PSS up to 2^52 bytes, or 4PB.
428 */
429 #define PSS_SHIFT 12
430
431 #ifdef CONFIG_PROC_PAGE_MONITOR
432 struct mem_size_stats {
433 struct vm_area_struct *vma;
434 unsigned long resident;
435 unsigned long shared_clean;
436 unsigned long shared_dirty;
437 unsigned long private_clean;
438 unsigned long private_dirty;
439 unsigned long referenced;
440 unsigned long anonymous;
441 unsigned long anonymous_thp;
442 unsigned long swap;
443 unsigned long nonlinear;
444 u64 pss;
445 };
446
447
448 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
449 unsigned long ptent_size, struct mm_walk *walk)
450 {
451 struct mem_size_stats *mss = walk->private;
452 struct vm_area_struct *vma = mss->vma;
453 pgoff_t pgoff = linear_page_index(vma, addr);
454 struct page *page = NULL;
455 int mapcount;
456
457 if (pte_present(ptent)) {
458 page = vm_normal_page(vma, addr, ptent);
459 } else if (is_swap_pte(ptent)) {
460 swp_entry_t swpent = pte_to_swp_entry(ptent);
461
462 if (!non_swap_entry(swpent))
463 mss->swap += ptent_size;
464 else if (is_migration_entry(swpent))
465 page = migration_entry_to_page(swpent);
466 } else if (pte_file(ptent)) {
467 if (pte_to_pgoff(ptent) != pgoff)
468 mss->nonlinear += ptent_size;
469 }
470
471 if (!page)
472 return;
473
474 if (PageAnon(page))
475 mss->anonymous += ptent_size;
476
477 if (page->index != pgoff)
478 mss->nonlinear += ptent_size;
479
480 mss->resident += ptent_size;
481 /* Accumulate the size in pages that have been accessed. */
482 if (pte_young(ptent) || PageReferenced(page))
483 mss->referenced += ptent_size;
484 mapcount = page_mapcount(page);
485 if (mapcount >= 2) {
486 if (pte_dirty(ptent) || PageDirty(page))
487 mss->shared_dirty += ptent_size;
488 else
489 mss->shared_clean += ptent_size;
490 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
491 } else {
492 if (pte_dirty(ptent) || PageDirty(page))
493 mss->private_dirty += ptent_size;
494 else
495 mss->private_clean += ptent_size;
496 mss->pss += (ptent_size << PSS_SHIFT);
497 }
498 }
499
500 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
501 struct mm_walk *walk)
502 {
503 struct mem_size_stats *mss = walk->private;
504 struct vm_area_struct *vma = mss->vma;
505 pte_t *pte;
506 spinlock_t *ptl;
507
508 if (pmd_trans_huge_lock(pmd, vma) == 1) {
509 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
510 spin_unlock(&walk->mm->page_table_lock);
511 mss->anonymous_thp += HPAGE_PMD_SIZE;
512 return 0;
513 }
514
515 if (pmd_trans_unstable(pmd))
516 return 0;
517 /*
518 * The mmap_sem held all the way back in m_start() is what
519 * keeps khugepaged out of here and from collapsing things
520 * in here.
521 */
522 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
523 for (; addr != end; pte++, addr += PAGE_SIZE)
524 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
525 pte_unmap_unlock(pte - 1, ptl);
526 cond_resched();
527 return 0;
528 }
529
530 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
531 {
532 /*
533 * Don't forget to update Documentation/ on changes.
534 */
535 static const char mnemonics[BITS_PER_LONG][2] = {
536 /*
537 * In case if we meet a flag we don't know about.
538 */
539 [0 ... (BITS_PER_LONG-1)] = "??",
540
541 [ilog2(VM_READ)] = "rd",
542 [ilog2(VM_WRITE)] = "wr",
543 [ilog2(VM_EXEC)] = "ex",
544 [ilog2(VM_SHARED)] = "sh",
545 [ilog2(VM_MAYREAD)] = "mr",
546 [ilog2(VM_MAYWRITE)] = "mw",
547 [ilog2(VM_MAYEXEC)] = "me",
548 [ilog2(VM_MAYSHARE)] = "ms",
549 [ilog2(VM_GROWSDOWN)] = "gd",
550 [ilog2(VM_PFNMAP)] = "pf",
551 [ilog2(VM_DENYWRITE)] = "dw",
552 [ilog2(VM_LOCKED)] = "lo",
553 [ilog2(VM_IO)] = "io",
554 [ilog2(VM_SEQ_READ)] = "sr",
555 [ilog2(VM_RAND_READ)] = "rr",
556 [ilog2(VM_DONTCOPY)] = "dc",
557 [ilog2(VM_DONTEXPAND)] = "de",
558 [ilog2(VM_ACCOUNT)] = "ac",
559 [ilog2(VM_NORESERVE)] = "nr",
560 [ilog2(VM_HUGETLB)] = "ht",
561 [ilog2(VM_NONLINEAR)] = "nl",
562 [ilog2(VM_ARCH_1)] = "ar",
563 [ilog2(VM_DONTDUMP)] = "dd",
564 [ilog2(VM_MIXEDMAP)] = "mm",
565 [ilog2(VM_HUGEPAGE)] = "hg",
566 [ilog2(VM_NOHUGEPAGE)] = "nh",
567 [ilog2(VM_MERGEABLE)] = "mg",
568 };
569 size_t i;
570
571 seq_puts(m, "VmFlags: ");
572 for (i = 0; i < BITS_PER_LONG; i++) {
573 if (vma->vm_flags & (1UL << i)) {
574 seq_printf(m, "%c%c ",
575 mnemonics[i][0], mnemonics[i][1]);
576 }
577 }
578 seq_putc(m, '\n');
579 }
580
581 static int show_smap(struct seq_file *m, void *v, int is_pid)
582 {
583 struct proc_maps_private *priv = m->private;
584 struct task_struct *task = priv->task;
585 struct vm_area_struct *vma = v;
586 struct mem_size_stats mss;
587 struct mm_walk smaps_walk = {
588 .pmd_entry = smaps_pte_range,
589 .mm = vma->vm_mm,
590 .private = &mss,
591 };
592
593 memset(&mss, 0, sizeof mss);
594 mss.vma = vma;
595 /* mmap_sem is held in m_start */
596 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
597 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
598
599 show_map_vma(m, vma, is_pid);
600
601 seq_printf(m,
602 "Size: %8lu kB\n"
603 "Rss: %8lu kB\n"
604 "Pss: %8lu kB\n"
605 "Shared_Clean: %8lu kB\n"
606 "Shared_Dirty: %8lu kB\n"
607 "Private_Clean: %8lu kB\n"
608 "Private_Dirty: %8lu kB\n"
609 "Referenced: %8lu kB\n"
610 "Anonymous: %8lu kB\n"
611 "AnonHugePages: %8lu kB\n"
612 "Swap: %8lu kB\n"
613 "KernelPageSize: %8lu kB\n"
614 "MMUPageSize: %8lu kB\n"
615 "Locked: %8lu kB\n",
616 (vma->vm_end - vma->vm_start) >> 10,
617 mss.resident >> 10,
618 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
619 mss.shared_clean >> 10,
620 mss.shared_dirty >> 10,
621 mss.private_clean >> 10,
622 mss.private_dirty >> 10,
623 mss.referenced >> 10,
624 mss.anonymous >> 10,
625 mss.anonymous_thp >> 10,
626 mss.swap >> 10,
627 vma_kernel_pagesize(vma) >> 10,
628 vma_mmu_pagesize(vma) >> 10,
629 (vma->vm_flags & VM_LOCKED) ?
630 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
631
632 if (vma->vm_flags & VM_NONLINEAR)
633 seq_printf(m, "Nonlinear: %8lu kB\n",
634 mss.nonlinear >> 10);
635
636 show_smap_vma_flags(m, vma);
637
638 if (m->count < m->size) /* vma is copied successfully */
639 m->version = (vma != get_gate_vma(task->mm))
640 ? vma->vm_start : 0;
641 return 0;
642 }
643
644 static int show_pid_smap(struct seq_file *m, void *v)
645 {
646 return show_smap(m, v, 1);
647 }
648
649 static int show_tid_smap(struct seq_file *m, void *v)
650 {
651 return show_smap(m, v, 0);
652 }
653
654 static const struct seq_operations proc_pid_smaps_op = {
655 .start = m_start,
656 .next = m_next,
657 .stop = m_stop,
658 .show = show_pid_smap
659 };
660
661 static const struct seq_operations proc_tid_smaps_op = {
662 .start = m_start,
663 .next = m_next,
664 .stop = m_stop,
665 .show = show_tid_smap
666 };
667
668 static int pid_smaps_open(struct inode *inode, struct file *file)
669 {
670 return do_maps_open(inode, file, &proc_pid_smaps_op);
671 }
672
673 static int tid_smaps_open(struct inode *inode, struct file *file)
674 {
675 return do_maps_open(inode, file, &proc_tid_smaps_op);
676 }
677
678 const struct file_operations proc_pid_smaps_operations = {
679 .open = pid_smaps_open,
680 .read = seq_read,
681 .llseek = seq_lseek,
682 .release = seq_release_private,
683 };
684
685 const struct file_operations proc_tid_smaps_operations = {
686 .open = tid_smaps_open,
687 .read = seq_read,
688 .llseek = seq_lseek,
689 .release = seq_release_private,
690 };
691
692 /*
693 * We do not want to have constant page-shift bits sitting in
694 * pagemap entries and are about to reuse them some time soon.
695 *
696 * Here's the "migration strategy":
697 * 1. when the system boots these bits remain what they are,
698 * but a warning about future change is printed in log;
699 * 2. once anyone clears soft-dirty bits via clear_refs file,
700 * these flag is set to denote, that user is aware of the
701 * new API and those page-shift bits change their meaning.
702 * The respective warning is printed in dmesg;
703 * 3. In a couple of releases we will remove all the mentions
704 * of page-shift in pagemap entries.
705 */
706
707 static bool soft_dirty_cleared __read_mostly;
708
709 enum clear_refs_types {
710 CLEAR_REFS_ALL = 1,
711 CLEAR_REFS_ANON,
712 CLEAR_REFS_MAPPED,
713 CLEAR_REFS_SOFT_DIRTY,
714 CLEAR_REFS_LAST,
715 };
716
717 struct clear_refs_private {
718 struct vm_area_struct *vma;
719 enum clear_refs_types type;
720 };
721
722 static inline void clear_soft_dirty(struct vm_area_struct *vma,
723 unsigned long addr, pte_t *pte)
724 {
725 #ifdef CONFIG_MEM_SOFT_DIRTY
726 /*
727 * The soft-dirty tracker uses #PF-s to catch writes
728 * to pages, so write-protect the pte as well. See the
729 * Documentation/vm/soft-dirty.txt for full description
730 * of how soft-dirty works.
731 */
732 pte_t ptent = *pte;
733
734 if (pte_present(ptent)) {
735 ptent = pte_wrprotect(ptent);
736 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
737 } else if (is_swap_pte(ptent)) {
738 ptent = pte_swp_clear_soft_dirty(ptent);
739 }
740
741 set_pte_at(vma->vm_mm, addr, pte, ptent);
742 #endif
743 }
744
745 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
746 unsigned long end, struct mm_walk *walk)
747 {
748 struct clear_refs_private *cp = walk->private;
749 struct vm_area_struct *vma = cp->vma;
750 pte_t *pte, ptent;
751 spinlock_t *ptl;
752 struct page *page;
753
754 split_huge_page_pmd(vma, addr, pmd);
755 if (pmd_trans_unstable(pmd))
756 return 0;
757
758 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
759 for (; addr != end; pte++, addr += PAGE_SIZE) {
760 ptent = *pte;
761
762 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
763 clear_soft_dirty(vma, addr, pte);
764 continue;
765 }
766
767 if (!pte_present(ptent))
768 continue;
769
770 page = vm_normal_page(vma, addr, ptent);
771 if (!page)
772 continue;
773
774 /* Clear accessed and referenced bits. */
775 ptep_test_and_clear_young(vma, addr, pte);
776 ClearPageReferenced(page);
777 }
778 pte_unmap_unlock(pte - 1, ptl);
779 cond_resched();
780 return 0;
781 }
782
783 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
784 size_t count, loff_t *ppos)
785 {
786 struct task_struct *task;
787 char buffer[PROC_NUMBUF];
788 struct mm_struct *mm;
789 struct vm_area_struct *vma;
790 enum clear_refs_types type;
791 int itype;
792 int rv;
793
794 memset(buffer, 0, sizeof(buffer));
795 if (count > sizeof(buffer) - 1)
796 count = sizeof(buffer) - 1;
797 if (copy_from_user(buffer, buf, count))
798 return -EFAULT;
799 rv = kstrtoint(strstrip(buffer), 10, &itype);
800 if (rv < 0)
801 return rv;
802 type = (enum clear_refs_types)itype;
803 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
804 return -EINVAL;
805
806 if (type == CLEAR_REFS_SOFT_DIRTY) {
807 soft_dirty_cleared = true;
808 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
809 "See the linux/Documentation/vm/pagemap.txt for details.\n");
810 }
811
812 task = get_proc_task(file_inode(file));
813 if (!task)
814 return -ESRCH;
815 mm = get_task_mm(task);
816 if (mm) {
817 struct clear_refs_private cp = {
818 .type = type,
819 };
820 struct mm_walk clear_refs_walk = {
821 .pmd_entry = clear_refs_pte_range,
822 .mm = mm,
823 .private = &cp,
824 };
825 down_read(&mm->mmap_sem);
826 if (type == CLEAR_REFS_SOFT_DIRTY)
827 mmu_notifier_invalidate_range_start(mm, 0, -1);
828 for (vma = mm->mmap; vma; vma = vma->vm_next) {
829 cp.vma = vma;
830 if (is_vm_hugetlb_page(vma))
831 continue;
832 /*
833 * Writing 1 to /proc/pid/clear_refs affects all pages.
834 *
835 * Writing 2 to /proc/pid/clear_refs only affects
836 * Anonymous pages.
837 *
838 * Writing 3 to /proc/pid/clear_refs only affects file
839 * mapped pages.
840 */
841 if (type == CLEAR_REFS_ANON && vma->vm_file)
842 continue;
843 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
844 continue;
845 walk_page_range(vma->vm_start, vma->vm_end,
846 &clear_refs_walk);
847 }
848 if (type == CLEAR_REFS_SOFT_DIRTY)
849 mmu_notifier_invalidate_range_end(mm, 0, -1);
850 flush_tlb_mm(mm);
851 up_read(&mm->mmap_sem);
852 mmput(mm);
853 }
854 put_task_struct(task);
855
856 return count;
857 }
858
859 const struct file_operations proc_clear_refs_operations = {
860 .write = clear_refs_write,
861 .llseek = noop_llseek,
862 };
863
864 typedef struct {
865 u64 pme;
866 } pagemap_entry_t;
867
868 struct pagemapread {
869 int pos, len;
870 pagemap_entry_t *buffer;
871 bool v2;
872 };
873
874 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
875 #define PAGEMAP_WALK_MASK (PMD_MASK)
876
877 #define PM_ENTRY_BYTES sizeof(u64)
878 #define PM_STATUS_BITS 3
879 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
880 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
881 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
882 #define PM_PSHIFT_BITS 6
883 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
884 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
885 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
886 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
887 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
888 /* in "new" pagemap pshift bits are occupied with more status bits */
889 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
890
891 #define __PM_SOFT_DIRTY (1LL)
892 #define PM_PRESENT PM_STATUS(4LL)
893 #define PM_SWAP PM_STATUS(2LL)
894 #define PM_FILE PM_STATUS(1LL)
895 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
896 #define PM_END_OF_BUFFER 1
897
898 static inline pagemap_entry_t make_pme(u64 val)
899 {
900 return (pagemap_entry_t) { .pme = val };
901 }
902
903 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
904 struct pagemapread *pm)
905 {
906 pm->buffer[pm->pos++] = *pme;
907 if (pm->pos >= pm->len)
908 return PM_END_OF_BUFFER;
909 return 0;
910 }
911
912 static int pagemap_pte_hole(unsigned long start, unsigned long end,
913 struct mm_walk *walk)
914 {
915 struct pagemapread *pm = walk->private;
916 unsigned long addr;
917 int err = 0;
918 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
919
920 for (addr = start; addr < end; addr += PAGE_SIZE) {
921 err = add_to_pagemap(addr, &pme, pm);
922 if (err)
923 break;
924 }
925 return err;
926 }
927
928 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
929 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
930 {
931 u64 frame, flags;
932 struct page *page = NULL;
933 int flags2 = 0;
934
935 if (pte_present(pte)) {
936 frame = pte_pfn(pte);
937 flags = PM_PRESENT;
938 page = vm_normal_page(vma, addr, pte);
939 } else if (is_swap_pte(pte)) {
940 swp_entry_t entry;
941 if (pte_swp_soft_dirty(pte))
942 flags2 |= __PM_SOFT_DIRTY;
943 entry = pte_to_swp_entry(pte);
944 frame = swp_type(entry) |
945 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
946 flags = PM_SWAP;
947 if (is_migration_entry(entry))
948 page = migration_entry_to_page(entry);
949 } else {
950 *pme = make_pme(PM_NOT_PRESENT(pm->v2));
951 return;
952 }
953
954 if (page && !PageAnon(page))
955 flags |= PM_FILE;
956 if (pte_soft_dirty(pte))
957 flags2 |= __PM_SOFT_DIRTY;
958
959 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
960 }
961
962 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
963 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
964 pmd_t pmd, int offset, int pmd_flags2)
965 {
966 /*
967 * Currently pmd for thp is always present because thp can not be
968 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
969 * This if-check is just to prepare for future implementation.
970 */
971 if (pmd_present(pmd))
972 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
973 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
974 else
975 *pme = make_pme(PM_NOT_PRESENT(pm->v2));
976 }
977 #else
978 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
979 pmd_t pmd, int offset, int pmd_flags2)
980 {
981 }
982 #endif
983
984 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
985 struct mm_walk *walk)
986 {
987 struct vm_area_struct *vma;
988 struct pagemapread *pm = walk->private;
989 pte_t *pte;
990 int err = 0;
991 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
992
993 /* find the first VMA at or above 'addr' */
994 vma = find_vma(walk->mm, addr);
995 if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
996 int pmd_flags2;
997
998 pmd_flags2 = (pmd_soft_dirty(*pmd) ? __PM_SOFT_DIRTY : 0);
999 for (; addr != end; addr += PAGE_SIZE) {
1000 unsigned long offset;
1001
1002 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1003 PAGE_SHIFT;
1004 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1005 err = add_to_pagemap(addr, &pme, pm);
1006 if (err)
1007 break;
1008 }
1009 spin_unlock(&walk->mm->page_table_lock);
1010 return err;
1011 }
1012
1013 if (pmd_trans_unstable(pmd))
1014 return 0;
1015 for (; addr != end; addr += PAGE_SIZE) {
1016
1017 /* check to see if we've left 'vma' behind
1018 * and need a new, higher one */
1019 if (vma && (addr >= vma->vm_end)) {
1020 vma = find_vma(walk->mm, addr);
1021 pme = make_pme(PM_NOT_PRESENT(pm->v2));
1022 }
1023
1024 /* check that 'vma' actually covers this address,
1025 * and that it isn't a huge page vma */
1026 if (vma && (vma->vm_start <= addr) &&
1027 !is_vm_hugetlb_page(vma)) {
1028 pte = pte_offset_map(pmd, addr);
1029 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1030 /* unmap before userspace copy */
1031 pte_unmap(pte);
1032 }
1033 err = add_to_pagemap(addr, &pme, pm);
1034 if (err)
1035 return err;
1036 }
1037
1038 cond_resched();
1039
1040 return err;
1041 }
1042
1043 #ifdef CONFIG_HUGETLB_PAGE
1044 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1045 pte_t pte, int offset)
1046 {
1047 if (pte_present(pte))
1048 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
1049 | PM_STATUS2(pm->v2, 0) | PM_PRESENT);
1050 else
1051 *pme = make_pme(PM_NOT_PRESENT(pm->v2));
1052 }
1053
1054 /* This function walks within one hugetlb entry in the single call */
1055 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1056 unsigned long addr, unsigned long end,
1057 struct mm_walk *walk)
1058 {
1059 struct pagemapread *pm = walk->private;
1060 int err = 0;
1061 pagemap_entry_t pme;
1062
1063 for (; addr != end; addr += PAGE_SIZE) {
1064 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1065 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset);
1066 err = add_to_pagemap(addr, &pme, pm);
1067 if (err)
1068 return err;
1069 }
1070
1071 cond_resched();
1072
1073 return err;
1074 }
1075 #endif /* HUGETLB_PAGE */
1076
1077 /*
1078 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1079 *
1080 * For each page in the address space, this file contains one 64-bit entry
1081 * consisting of the following:
1082 *
1083 * Bits 0-54 page frame number (PFN) if present
1084 * Bits 0-4 swap type if swapped
1085 * Bits 5-54 swap offset if swapped
1086 * Bits 55-60 page shift (page size = 1<<page shift)
1087 * Bit 61 page is file-page or shared-anon
1088 * Bit 62 page swapped
1089 * Bit 63 page present
1090 *
1091 * If the page is not present but in swap, then the PFN contains an
1092 * encoding of the swap file number and the page's offset into the
1093 * swap. Unmapped pages return a null PFN. This allows determining
1094 * precisely which pages are mapped (or in swap) and comparing mapped
1095 * pages between processes.
1096 *
1097 * Efficient users of this interface will use /proc/pid/maps to
1098 * determine which areas of memory are actually mapped and llseek to
1099 * skip over unmapped regions.
1100 */
1101 static ssize_t pagemap_read(struct file *file, char __user *buf,
1102 size_t count, loff_t *ppos)
1103 {
1104 struct task_struct *task = get_proc_task(file_inode(file));
1105 struct mm_struct *mm;
1106 struct pagemapread pm;
1107 int ret = -ESRCH;
1108 struct mm_walk pagemap_walk = {};
1109 unsigned long src;
1110 unsigned long svpfn;
1111 unsigned long start_vaddr;
1112 unsigned long end_vaddr;
1113 int copied = 0;
1114
1115 if (!task)
1116 goto out;
1117
1118 ret = -EINVAL;
1119 /* file position must be aligned */
1120 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1121 goto out_task;
1122
1123 ret = 0;
1124 if (!count)
1125 goto out_task;
1126
1127 pm.v2 = soft_dirty_cleared;
1128 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1129 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
1130 ret = -ENOMEM;
1131 if (!pm.buffer)
1132 goto out_task;
1133
1134 mm = mm_access(task, PTRACE_MODE_READ);
1135 ret = PTR_ERR(mm);
1136 if (!mm || IS_ERR(mm))
1137 goto out_free;
1138
1139 pagemap_walk.pmd_entry = pagemap_pte_range;
1140 pagemap_walk.pte_hole = pagemap_pte_hole;
1141 #ifdef CONFIG_HUGETLB_PAGE
1142 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1143 #endif
1144 pagemap_walk.mm = mm;
1145 pagemap_walk.private = &pm;
1146
1147 src = *ppos;
1148 svpfn = src / PM_ENTRY_BYTES;
1149 start_vaddr = svpfn << PAGE_SHIFT;
1150 end_vaddr = TASK_SIZE_OF(task);
1151
1152 /* watch out for wraparound */
1153 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1154 start_vaddr = end_vaddr;
1155
1156 /*
1157 * The odds are that this will stop walking way
1158 * before end_vaddr, because the length of the
1159 * user buffer is tracked in "pm", and the walk
1160 * will stop when we hit the end of the buffer.
1161 */
1162 ret = 0;
1163 while (count && (start_vaddr < end_vaddr)) {
1164 int len;
1165 unsigned long end;
1166
1167 pm.pos = 0;
1168 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1169 /* overflow ? */
1170 if (end < start_vaddr || end > end_vaddr)
1171 end = end_vaddr;
1172 down_read(&mm->mmap_sem);
1173 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1174 up_read(&mm->mmap_sem);
1175 start_vaddr = end;
1176
1177 len = min(count, PM_ENTRY_BYTES * pm.pos);
1178 if (copy_to_user(buf, pm.buffer, len)) {
1179 ret = -EFAULT;
1180 goto out_mm;
1181 }
1182 copied += len;
1183 buf += len;
1184 count -= len;
1185 }
1186 *ppos += copied;
1187 if (!ret || ret == PM_END_OF_BUFFER)
1188 ret = copied;
1189
1190 out_mm:
1191 mmput(mm);
1192 out_free:
1193 kfree(pm.buffer);
1194 out_task:
1195 put_task_struct(task);
1196 out:
1197 return ret;
1198 }
1199
1200 static int pagemap_open(struct inode *inode, struct file *file)
1201 {
1202 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1203 "to stop being page-shift some time soon. See the "
1204 "linux/Documentation/vm/pagemap.txt for details.\n");
1205 return 0;
1206 }
1207
1208 const struct file_operations proc_pagemap_operations = {
1209 .llseek = mem_lseek, /* borrow this */
1210 .read = pagemap_read,
1211 .open = pagemap_open,
1212 };
1213 #endif /* CONFIG_PROC_PAGE_MONITOR */
1214
1215 #ifdef CONFIG_NUMA
1216
1217 struct numa_maps {
1218 struct vm_area_struct *vma;
1219 unsigned long pages;
1220 unsigned long anon;
1221 unsigned long active;
1222 unsigned long writeback;
1223 unsigned long mapcount_max;
1224 unsigned long dirty;
1225 unsigned long swapcache;
1226 unsigned long node[MAX_NUMNODES];
1227 };
1228
1229 struct numa_maps_private {
1230 struct proc_maps_private proc_maps;
1231 struct numa_maps md;
1232 };
1233
1234 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1235 unsigned long nr_pages)
1236 {
1237 int count = page_mapcount(page);
1238
1239 md->pages += nr_pages;
1240 if (pte_dirty || PageDirty(page))
1241 md->dirty += nr_pages;
1242
1243 if (PageSwapCache(page))
1244 md->swapcache += nr_pages;
1245
1246 if (PageActive(page) || PageUnevictable(page))
1247 md->active += nr_pages;
1248
1249 if (PageWriteback(page))
1250 md->writeback += nr_pages;
1251
1252 if (PageAnon(page))
1253 md->anon += nr_pages;
1254
1255 if (count > md->mapcount_max)
1256 md->mapcount_max = count;
1257
1258 md->node[page_to_nid(page)] += nr_pages;
1259 }
1260
1261 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1262 unsigned long addr)
1263 {
1264 struct page *page;
1265 int nid;
1266
1267 if (!pte_present(pte))
1268 return NULL;
1269
1270 page = vm_normal_page(vma, addr, pte);
1271 if (!page)
1272 return NULL;
1273
1274 if (PageReserved(page))
1275 return NULL;
1276
1277 nid = page_to_nid(page);
1278 if (!node_isset(nid, node_states[N_MEMORY]))
1279 return NULL;
1280
1281 return page;
1282 }
1283
1284 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1285 unsigned long end, struct mm_walk *walk)
1286 {
1287 struct numa_maps *md;
1288 spinlock_t *ptl;
1289 pte_t *orig_pte;
1290 pte_t *pte;
1291
1292 md = walk->private;
1293
1294 if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1295 pte_t huge_pte = *(pte_t *)pmd;
1296 struct page *page;
1297
1298 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1299 if (page)
1300 gather_stats(page, md, pte_dirty(huge_pte),
1301 HPAGE_PMD_SIZE/PAGE_SIZE);
1302 spin_unlock(&walk->mm->page_table_lock);
1303 return 0;
1304 }
1305
1306 if (pmd_trans_unstable(pmd))
1307 return 0;
1308 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1309 do {
1310 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1311 if (!page)
1312 continue;
1313 gather_stats(page, md, pte_dirty(*pte), 1);
1314
1315 } while (pte++, addr += PAGE_SIZE, addr != end);
1316 pte_unmap_unlock(orig_pte, ptl);
1317 return 0;
1318 }
1319 #ifdef CONFIG_HUGETLB_PAGE
1320 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1321 unsigned long addr, unsigned long end, struct mm_walk *walk)
1322 {
1323 struct numa_maps *md;
1324 struct page *page;
1325
1326 if (pte_none(*pte))
1327 return 0;
1328
1329 page = pte_page(*pte);
1330 if (!page)
1331 return 0;
1332
1333 md = walk->private;
1334 gather_stats(page, md, pte_dirty(*pte), 1);
1335 return 0;
1336 }
1337
1338 #else
1339 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1340 unsigned long addr, unsigned long end, struct mm_walk *walk)
1341 {
1342 return 0;
1343 }
1344 #endif
1345
1346 /*
1347 * Display pages allocated per node and memory policy via /proc.
1348 */
1349 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1350 {
1351 struct numa_maps_private *numa_priv = m->private;
1352 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1353 struct vm_area_struct *vma = v;
1354 struct numa_maps *md = &numa_priv->md;
1355 struct file *file = vma->vm_file;
1356 struct task_struct *task = proc_priv->task;
1357 struct mm_struct *mm = vma->vm_mm;
1358 struct mm_walk walk = {};
1359 struct mempolicy *pol;
1360 int n;
1361 char buffer[50];
1362
1363 if (!mm)
1364 return 0;
1365
1366 /* Ensure we start with an empty set of numa_maps statistics. */
1367 memset(md, 0, sizeof(*md));
1368
1369 md->vma = vma;
1370
1371 walk.hugetlb_entry = gather_hugetbl_stats;
1372 walk.pmd_entry = gather_pte_stats;
1373 walk.private = md;
1374 walk.mm = mm;
1375
1376 pol = get_vma_policy(task, vma, vma->vm_start);
1377 mpol_to_str(buffer, sizeof(buffer), pol);
1378 mpol_cond_put(pol);
1379
1380 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1381
1382 if (file) {
1383 seq_printf(m, " file=");
1384 seq_path(m, &file->f_path, "\n\t= ");
1385 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1386 seq_printf(m, " heap");
1387 } else {
1388 pid_t tid = vm_is_stack(task, vma, is_pid);
1389 if (tid != 0) {
1390 /*
1391 * Thread stack in /proc/PID/task/TID/maps or
1392 * the main process stack.
1393 */
1394 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1395 vma->vm_end >= mm->start_stack))
1396 seq_printf(m, " stack");
1397 else
1398 seq_printf(m, " stack:%d", tid);
1399 }
1400 }
1401
1402 if (is_vm_hugetlb_page(vma))
1403 seq_printf(m, " huge");
1404
1405 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1406
1407 if (!md->pages)
1408 goto out;
1409
1410 if (md->anon)
1411 seq_printf(m, " anon=%lu", md->anon);
1412
1413 if (md->dirty)
1414 seq_printf(m, " dirty=%lu", md->dirty);
1415
1416 if (md->pages != md->anon && md->pages != md->dirty)
1417 seq_printf(m, " mapped=%lu", md->pages);
1418
1419 if (md->mapcount_max > 1)
1420 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1421
1422 if (md->swapcache)
1423 seq_printf(m, " swapcache=%lu", md->swapcache);
1424
1425 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1426 seq_printf(m, " active=%lu", md->active);
1427
1428 if (md->writeback)
1429 seq_printf(m, " writeback=%lu", md->writeback);
1430
1431 for_each_node_state(n, N_MEMORY)
1432 if (md->node[n])
1433 seq_printf(m, " N%d=%lu", n, md->node[n]);
1434 out:
1435 seq_putc(m, '\n');
1436
1437 if (m->count < m->size)
1438 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1439 return 0;
1440 }
1441
1442 static int show_pid_numa_map(struct seq_file *m, void *v)
1443 {
1444 return show_numa_map(m, v, 1);
1445 }
1446
1447 static int show_tid_numa_map(struct seq_file *m, void *v)
1448 {
1449 return show_numa_map(m, v, 0);
1450 }
1451
1452 static const struct seq_operations proc_pid_numa_maps_op = {
1453 .start = m_start,
1454 .next = m_next,
1455 .stop = m_stop,
1456 .show = show_pid_numa_map,
1457 };
1458
1459 static const struct seq_operations proc_tid_numa_maps_op = {
1460 .start = m_start,
1461 .next = m_next,
1462 .stop = m_stop,
1463 .show = show_tid_numa_map,
1464 };
1465
1466 static int numa_maps_open(struct inode *inode, struct file *file,
1467 const struct seq_operations *ops)
1468 {
1469 struct numa_maps_private *priv;
1470 int ret = -ENOMEM;
1471 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1472 if (priv) {
1473 priv->proc_maps.pid = proc_pid(inode);
1474 ret = seq_open(file, ops);
1475 if (!ret) {
1476 struct seq_file *m = file->private_data;
1477 m->private = priv;
1478 } else {
1479 kfree(priv);
1480 }
1481 }
1482 return ret;
1483 }
1484
1485 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1486 {
1487 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1488 }
1489
1490 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1491 {
1492 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1493 }
1494
1495 const struct file_operations proc_pid_numa_maps_operations = {
1496 .open = pid_numa_maps_open,
1497 .read = seq_read,
1498 .llseek = seq_lseek,
1499 .release = seq_release_private,
1500 };
1501
1502 const struct file_operations proc_tid_numa_maps_operations = {
1503 .open = tid_numa_maps_open,
1504 .read = seq_read,
1505 .llseek = seq_lseek,
1506 .release = seq_release_private,
1507 };
1508 #endif /* CONFIG_NUMA */
This page took 0.063531 seconds and 5 git commands to generate.