maps4: simplify interdependence of maps and smaps
[deliverable/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/mempolicy.h>
9
10 #include <asm/elf.h>
11 #include <asm/uaccess.h>
12 #include <asm/tlbflush.h>
13 #include "internal.h"
14
15 char *task_mem(struct mm_struct *mm, char *buffer)
16 {
17 unsigned long data, text, lib;
18 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
19
20 /*
21 * Note: to minimize their overhead, mm maintains hiwater_vm and
22 * hiwater_rss only when about to *lower* total_vm or rss. Any
23 * collector of these hiwater stats must therefore get total_vm
24 * and rss too, which will usually be the higher. Barriers? not
25 * worth the effort, such snapshots can always be inconsistent.
26 */
27 hiwater_vm = total_vm = mm->total_vm;
28 if (hiwater_vm < mm->hiwater_vm)
29 hiwater_vm = mm->hiwater_vm;
30 hiwater_rss = total_rss = get_mm_rss(mm);
31 if (hiwater_rss < mm->hiwater_rss)
32 hiwater_rss = mm->hiwater_rss;
33
34 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
35 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
36 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
37 buffer += sprintf(buffer,
38 "VmPeak:\t%8lu kB\n"
39 "VmSize:\t%8lu kB\n"
40 "VmLck:\t%8lu kB\n"
41 "VmHWM:\t%8lu kB\n"
42 "VmRSS:\t%8lu kB\n"
43 "VmData:\t%8lu kB\n"
44 "VmStk:\t%8lu kB\n"
45 "VmExe:\t%8lu kB\n"
46 "VmLib:\t%8lu kB\n"
47 "VmPTE:\t%8lu kB\n",
48 hiwater_vm << (PAGE_SHIFT-10),
49 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
50 mm->locked_vm << (PAGE_SHIFT-10),
51 hiwater_rss << (PAGE_SHIFT-10),
52 total_rss << (PAGE_SHIFT-10),
53 data << (PAGE_SHIFT-10),
54 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
55 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
56 return buffer;
57 }
58
59 unsigned long task_vsize(struct mm_struct *mm)
60 {
61 return PAGE_SIZE * mm->total_vm;
62 }
63
64 int task_statm(struct mm_struct *mm, int *shared, int *text,
65 int *data, int *resident)
66 {
67 *shared = get_mm_counter(mm, file_rss);
68 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
69 >> PAGE_SHIFT;
70 *data = mm->total_vm - mm->shared_vm;
71 *resident = *shared + get_mm_counter(mm, anon_rss);
72 return mm->total_vm;
73 }
74
75 int proc_exe_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
76 {
77 struct vm_area_struct * vma;
78 int result = -ENOENT;
79 struct task_struct *task = get_proc_task(inode);
80 struct mm_struct * mm = NULL;
81
82 if (task) {
83 mm = get_task_mm(task);
84 put_task_struct(task);
85 }
86 if (!mm)
87 goto out;
88 down_read(&mm->mmap_sem);
89
90 vma = mm->mmap;
91 while (vma) {
92 if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file)
93 break;
94 vma = vma->vm_next;
95 }
96
97 if (vma) {
98 *mnt = mntget(vma->vm_file->f_path.mnt);
99 *dentry = dget(vma->vm_file->f_path.dentry);
100 result = 0;
101 }
102
103 up_read(&mm->mmap_sem);
104 mmput(mm);
105 out:
106 return result;
107 }
108
109 static void pad_len_spaces(struct seq_file *m, int len)
110 {
111 len = 25 + sizeof(void*) * 6 - len;
112 if (len < 1)
113 len = 1;
114 seq_printf(m, "%*c", len, ' ');
115 }
116
117 /*
118 * Proportional Set Size(PSS): my share of RSS.
119 *
120 * PSS of a process is the count of pages it has in memory, where each
121 * page is divided by the number of processes sharing it. So if a
122 * process has 1000 pages all to itself, and 1000 shared with one other
123 * process, its PSS will be 1500.
124 *
125 * To keep (accumulated) division errors low, we adopt a 64bit
126 * fixed-point pss counter to minimize division errors. So (pss >>
127 * PSS_SHIFT) would be the real byte count.
128 *
129 * A shift of 12 before division means (assuming 4K page size):
130 * - 1M 3-user-pages add up to 8KB errors;
131 * - supports mapcount up to 2^24, or 16M;
132 * - supports PSS up to 2^52 bytes, or 4PB.
133 */
134 #define PSS_SHIFT 12
135
136 struct mem_size_stats
137 {
138 struct vm_area_struct *vma;
139 unsigned long resident;
140 unsigned long shared_clean;
141 unsigned long shared_dirty;
142 unsigned long private_clean;
143 unsigned long private_dirty;
144 unsigned long referenced;
145 u64 pss;
146 };
147
148 static int show_map(struct seq_file *m, void *v)
149 {
150 struct proc_maps_private *priv = m->private;
151 struct task_struct *task = priv->task;
152 struct vm_area_struct *vma = v;
153 struct mm_struct *mm = vma->vm_mm;
154 struct file *file = vma->vm_file;
155 int flags = vma->vm_flags;
156 unsigned long ino = 0;
157 dev_t dev = 0;
158 int len;
159
160 if (maps_protect && !ptrace_may_attach(task))
161 return -EACCES;
162
163 if (file) {
164 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
165 dev = inode->i_sb->s_dev;
166 ino = inode->i_ino;
167 }
168
169 seq_printf(m, "%08lx-%08lx %c%c%c%c %08lx %02x:%02x %lu %n",
170 vma->vm_start,
171 vma->vm_end,
172 flags & VM_READ ? 'r' : '-',
173 flags & VM_WRITE ? 'w' : '-',
174 flags & VM_EXEC ? 'x' : '-',
175 flags & VM_MAYSHARE ? 's' : 'p',
176 vma->vm_pgoff << PAGE_SHIFT,
177 MAJOR(dev), MINOR(dev), ino, &len);
178
179 /*
180 * Print the dentry name for named mappings, and a
181 * special [heap] marker for the heap:
182 */
183 if (file) {
184 pad_len_spaces(m, len);
185 seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n");
186 } else {
187 const char *name = arch_vma_name(vma);
188 if (!name) {
189 if (mm) {
190 if (vma->vm_start <= mm->start_brk &&
191 vma->vm_end >= mm->brk) {
192 name = "[heap]";
193 } else if (vma->vm_start <= mm->start_stack &&
194 vma->vm_end >= mm->start_stack) {
195 name = "[stack]";
196 }
197 } else {
198 name = "[vdso]";
199 }
200 }
201 if (name) {
202 pad_len_spaces(m, len);
203 seq_puts(m, name);
204 }
205 }
206 seq_putc(m, '\n');
207
208 if (m->count < m->size) /* vma is copied successfully */
209 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
210 return 0;
211 }
212
213 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
214 void *private)
215 {
216 struct mem_size_stats *mss = private;
217 struct vm_area_struct *vma = mss->vma;
218 pte_t *pte, ptent;
219 spinlock_t *ptl;
220 struct page *page;
221 int mapcount;
222
223 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
224 for (; addr != end; pte++, addr += PAGE_SIZE) {
225 ptent = *pte;
226 if (!pte_present(ptent))
227 continue;
228
229 mss->resident += PAGE_SIZE;
230
231 page = vm_normal_page(vma, addr, ptent);
232 if (!page)
233 continue;
234
235 /* Accumulate the size in pages that have been accessed. */
236 if (pte_young(ptent) || PageReferenced(page))
237 mss->referenced += PAGE_SIZE;
238 mapcount = page_mapcount(page);
239 if (mapcount >= 2) {
240 if (pte_dirty(ptent))
241 mss->shared_dirty += PAGE_SIZE;
242 else
243 mss->shared_clean += PAGE_SIZE;
244 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
245 } else {
246 if (pte_dirty(ptent))
247 mss->private_dirty += PAGE_SIZE;
248 else
249 mss->private_clean += PAGE_SIZE;
250 mss->pss += (PAGE_SIZE << PSS_SHIFT);
251 }
252 }
253 pte_unmap_unlock(pte - 1, ptl);
254 cond_resched();
255 return 0;
256 }
257
258 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
259 unsigned long end, void *private)
260 {
261 struct vm_area_struct *vma = private;
262 pte_t *pte, ptent;
263 spinlock_t *ptl;
264 struct page *page;
265
266 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
267 for (; addr != end; pte++, addr += PAGE_SIZE) {
268 ptent = *pte;
269 if (!pte_present(ptent))
270 continue;
271
272 page = vm_normal_page(vma, addr, ptent);
273 if (!page)
274 continue;
275
276 /* Clear accessed and referenced bits. */
277 ptep_test_and_clear_young(vma, addr, pte);
278 ClearPageReferenced(page);
279 }
280 pte_unmap_unlock(pte - 1, ptl);
281 cond_resched();
282 return 0;
283 }
284
285 static struct mm_walk smaps_walk = { .pmd_entry = smaps_pte_range };
286
287 static int show_smap(struct seq_file *m, void *v)
288 {
289 struct vm_area_struct *vma = v;
290 struct mem_size_stats mss;
291 int ret;
292
293 memset(&mss, 0, sizeof mss);
294 mss.vma = vma;
295 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
296 walk_page_range(vma->vm_mm, vma->vm_start, vma->vm_end,
297 &smaps_walk, &mss);
298
299 ret = show_map(m, v);
300 if (ret)
301 return ret;
302
303 seq_printf(m,
304 "Size: %8lu kB\n"
305 "Rss: %8lu kB\n"
306 "Pss: %8lu kB\n"
307 "Shared_Clean: %8lu kB\n"
308 "Shared_Dirty: %8lu kB\n"
309 "Private_Clean: %8lu kB\n"
310 "Private_Dirty: %8lu kB\n"
311 "Referenced: %8lu kB\n",
312 (vma->vm_end - vma->vm_start) >> 10,
313 mss.resident >> 10,
314 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
315 mss.shared_clean >> 10,
316 mss.shared_dirty >> 10,
317 mss.private_clean >> 10,
318 mss.private_dirty >> 10,
319 mss.referenced >> 10);
320
321 return ret;
322 }
323
324 static struct mm_walk clear_refs_walk = { .pmd_entry = clear_refs_pte_range };
325
326 void clear_refs_smap(struct mm_struct *mm)
327 {
328 struct vm_area_struct *vma;
329
330 down_read(&mm->mmap_sem);
331 for (vma = mm->mmap; vma; vma = vma->vm_next)
332 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
333 walk_page_range(vma->vm_mm, vma->vm_start, vma->vm_end,
334 &clear_refs_walk, vma);
335 flush_tlb_mm(mm);
336 up_read(&mm->mmap_sem);
337 }
338
339 static void *m_start(struct seq_file *m, loff_t *pos)
340 {
341 struct proc_maps_private *priv = m->private;
342 unsigned long last_addr = m->version;
343 struct mm_struct *mm;
344 struct vm_area_struct *vma, *tail_vma = NULL;
345 loff_t l = *pos;
346
347 /* Clear the per syscall fields in priv */
348 priv->task = NULL;
349 priv->tail_vma = NULL;
350
351 /*
352 * We remember last_addr rather than next_addr to hit with
353 * mmap_cache most of the time. We have zero last_addr at
354 * the beginning and also after lseek. We will have -1 last_addr
355 * after the end of the vmas.
356 */
357
358 if (last_addr == -1UL)
359 return NULL;
360
361 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
362 if (!priv->task)
363 return NULL;
364
365 mm = mm_for_maps(priv->task);
366 if (!mm)
367 return NULL;
368
369 priv->tail_vma = tail_vma = get_gate_vma(priv->task);
370
371 /* Start with last addr hint */
372 if (last_addr && (vma = find_vma(mm, last_addr))) {
373 vma = vma->vm_next;
374 goto out;
375 }
376
377 /*
378 * Check the vma index is within the range and do
379 * sequential scan until m_index.
380 */
381 vma = NULL;
382 if ((unsigned long)l < mm->map_count) {
383 vma = mm->mmap;
384 while (l-- && vma)
385 vma = vma->vm_next;
386 goto out;
387 }
388
389 if (l != mm->map_count)
390 tail_vma = NULL; /* After gate vma */
391
392 out:
393 if (vma)
394 return vma;
395
396 /* End of vmas has been reached */
397 m->version = (tail_vma != NULL)? 0: -1UL;
398 up_read(&mm->mmap_sem);
399 mmput(mm);
400 return tail_vma;
401 }
402
403 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
404 {
405 if (vma && vma != priv->tail_vma) {
406 struct mm_struct *mm = vma->vm_mm;
407 up_read(&mm->mmap_sem);
408 mmput(mm);
409 }
410 }
411
412 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
413 {
414 struct proc_maps_private *priv = m->private;
415 struct vm_area_struct *vma = v;
416 struct vm_area_struct *tail_vma = priv->tail_vma;
417
418 (*pos)++;
419 if (vma && (vma != tail_vma) && vma->vm_next)
420 return vma->vm_next;
421 vma_stop(priv, vma);
422 return (vma != tail_vma)? tail_vma: NULL;
423 }
424
425 static void m_stop(struct seq_file *m, void *v)
426 {
427 struct proc_maps_private *priv = m->private;
428 struct vm_area_struct *vma = v;
429
430 vma_stop(priv, vma);
431 if (priv->task)
432 put_task_struct(priv->task);
433 }
434
435 static struct seq_operations proc_pid_maps_op = {
436 .start = m_start,
437 .next = m_next,
438 .stop = m_stop,
439 .show = show_map
440 };
441
442 static struct seq_operations proc_pid_smaps_op = {
443 .start = m_start,
444 .next = m_next,
445 .stop = m_stop,
446 .show = show_smap
447 };
448
449 static int do_maps_open(struct inode *inode, struct file *file,
450 struct seq_operations *ops)
451 {
452 struct proc_maps_private *priv;
453 int ret = -ENOMEM;
454 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
455 if (priv) {
456 priv->pid = proc_pid(inode);
457 ret = seq_open(file, ops);
458 if (!ret) {
459 struct seq_file *m = file->private_data;
460 m->private = priv;
461 } else {
462 kfree(priv);
463 }
464 }
465 return ret;
466 }
467
468 static int maps_open(struct inode *inode, struct file *file)
469 {
470 return do_maps_open(inode, file, &proc_pid_maps_op);
471 }
472
473 const struct file_operations proc_maps_operations = {
474 .open = maps_open,
475 .read = seq_read,
476 .llseek = seq_lseek,
477 .release = seq_release_private,
478 };
479
480 #ifdef CONFIG_NUMA
481 extern int show_numa_map(struct seq_file *m, void *v);
482
483 static int show_numa_map_checked(struct seq_file *m, void *v)
484 {
485 struct proc_maps_private *priv = m->private;
486 struct task_struct *task = priv->task;
487
488 if (maps_protect && !ptrace_may_attach(task))
489 return -EACCES;
490
491 return show_numa_map(m, v);
492 }
493
494 static struct seq_operations proc_pid_numa_maps_op = {
495 .start = m_start,
496 .next = m_next,
497 .stop = m_stop,
498 .show = show_numa_map_checked
499 };
500
501 static int numa_maps_open(struct inode *inode, struct file *file)
502 {
503 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
504 }
505
506 const struct file_operations proc_numa_maps_operations = {
507 .open = numa_maps_open,
508 .read = seq_read,
509 .llseek = seq_lseek,
510 .release = seq_release_private,
511 };
512 #endif
513
514 static int smaps_open(struct inode *inode, struct file *file)
515 {
516 return do_maps_open(inode, file, &proc_pid_smaps_op);
517 }
518
519 const struct file_operations proc_smaps_operations = {
520 .open = smaps_open,
521 .read = seq_read,
522 .llseek = seq_lseek,
523 .release = seq_release_private,
524 };
This page took 0.354894 seconds and 6 git commands to generate.