ocfs2/dlm: do not get resource spinlock if lockres is new
[deliverable/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16
17 #include <asm/elf.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
20 #include "internal.h"
21
22 void task_mem(struct seq_file *m, struct mm_struct *mm)
23 {
24 unsigned long data, text, lib, swap;
25 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26
27 /*
28 * Note: to minimize their overhead, mm maintains hiwater_vm and
29 * hiwater_rss only when about to *lower* total_vm or rss. Any
30 * collector of these hiwater stats must therefore get total_vm
31 * and rss too, which will usually be the higher. Barriers? not
32 * worth the effort, such snapshots can always be inconsistent.
33 */
34 hiwater_vm = total_vm = mm->total_vm;
35 if (hiwater_vm < mm->hiwater_vm)
36 hiwater_vm = mm->hiwater_vm;
37 hiwater_rss = total_rss = get_mm_rss(mm);
38 if (hiwater_rss < mm->hiwater_rss)
39 hiwater_rss = mm->hiwater_rss;
40
41 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44 swap = get_mm_counter(mm, MM_SWAPENTS);
45 seq_printf(m,
46 "VmPeak:\t%8lu kB\n"
47 "VmSize:\t%8lu kB\n"
48 "VmLck:\t%8lu kB\n"
49 "VmPin:\t%8lu kB\n"
50 "VmHWM:\t%8lu kB\n"
51 "VmRSS:\t%8lu kB\n"
52 "VmData:\t%8lu kB\n"
53 "VmStk:\t%8lu kB\n"
54 "VmExe:\t%8lu kB\n"
55 "VmLib:\t%8lu kB\n"
56 "VmPTE:\t%8lu kB\n"
57 "VmSwap:\t%8lu kB\n",
58 hiwater_vm << (PAGE_SHIFT-10),
59 total_vm << (PAGE_SHIFT-10),
60 mm->locked_vm << (PAGE_SHIFT-10),
61 mm->pinned_vm << (PAGE_SHIFT-10),
62 hiwater_rss << (PAGE_SHIFT-10),
63 total_rss << (PAGE_SHIFT-10),
64 data << (PAGE_SHIFT-10),
65 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
66 (PTRS_PER_PTE * sizeof(pte_t) *
67 atomic_long_read(&mm->nr_ptes)) >> 10,
68 swap << (PAGE_SHIFT-10));
69 }
70
71 unsigned long task_vsize(struct mm_struct *mm)
72 {
73 return PAGE_SIZE * mm->total_vm;
74 }
75
76 unsigned long task_statm(struct mm_struct *mm,
77 unsigned long *shared, unsigned long *text,
78 unsigned long *data, unsigned long *resident)
79 {
80 *shared = get_mm_counter(mm, MM_FILEPAGES);
81 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
82 >> PAGE_SHIFT;
83 *data = mm->total_vm - mm->shared_vm;
84 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
85 return mm->total_vm;
86 }
87
88 #ifdef CONFIG_NUMA
89 /*
90 * These functions are for numa_maps but called in generic **maps seq_file
91 * ->start(), ->stop() ops.
92 *
93 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
94 * Each mempolicy object is controlled by reference counting. The problem here
95 * is how to avoid accessing dead mempolicy object.
96 *
97 * Because we're holding mmap_sem while reading seq_file, it's safe to access
98 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
99 *
100 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
101 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
102 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
103 * gurantee the task never exits under us. But taking task_lock() around
104 * get_vma_plicy() causes lock order problem.
105 *
106 * To access task->mempolicy without lock, we hold a reference count of an
107 * object pointed by task->mempolicy and remember it. This will guarantee
108 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
109 */
110 static void hold_task_mempolicy(struct proc_maps_private *priv)
111 {
112 struct task_struct *task = priv->task;
113
114 task_lock(task);
115 priv->task_mempolicy = task->mempolicy;
116 mpol_get(priv->task_mempolicy);
117 task_unlock(task);
118 }
119 static void release_task_mempolicy(struct proc_maps_private *priv)
120 {
121 mpol_put(priv->task_mempolicy);
122 }
123 #else
124 static void hold_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 static void release_task_mempolicy(struct proc_maps_private *priv)
128 {
129 }
130 #endif
131
132 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
133 {
134 if (vma && vma != priv->tail_vma) {
135 struct mm_struct *mm = vma->vm_mm;
136 release_task_mempolicy(priv);
137 up_read(&mm->mmap_sem);
138 mmput(mm);
139 }
140 }
141
142 static void *m_start(struct seq_file *m, loff_t *pos)
143 {
144 struct proc_maps_private *priv = m->private;
145 unsigned long last_addr = m->version;
146 struct mm_struct *mm;
147 struct vm_area_struct *vma, *tail_vma = NULL;
148 loff_t l = *pos;
149
150 /* Clear the per syscall fields in priv */
151 priv->task = NULL;
152 priv->tail_vma = NULL;
153
154 /*
155 * We remember last_addr rather than next_addr to hit with
156 * vmacache most of the time. We have zero last_addr at
157 * the beginning and also after lseek. We will have -1 last_addr
158 * after the end of the vmas.
159 */
160
161 if (last_addr == -1UL)
162 return NULL;
163
164 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
165 if (!priv->task)
166 return ERR_PTR(-ESRCH);
167
168 mm = mm_access(priv->task, PTRACE_MODE_READ);
169 if (!mm || IS_ERR(mm))
170 return mm;
171 down_read(&mm->mmap_sem);
172
173 tail_vma = get_gate_vma(priv->task->mm);
174 priv->tail_vma = tail_vma;
175 hold_task_mempolicy(priv);
176 /* Start with last addr hint */
177 vma = find_vma(mm, last_addr);
178 if (last_addr && vma) {
179 vma = vma->vm_next;
180 goto out;
181 }
182
183 /*
184 * Check the vma index is within the range and do
185 * sequential scan until m_index.
186 */
187 vma = NULL;
188 if ((unsigned long)l < mm->map_count) {
189 vma = mm->mmap;
190 while (l-- && vma)
191 vma = vma->vm_next;
192 goto out;
193 }
194
195 if (l != mm->map_count)
196 tail_vma = NULL; /* After gate vma */
197
198 out:
199 if (vma)
200 return vma;
201
202 release_task_mempolicy(priv);
203 /* End of vmas has been reached */
204 m->version = (tail_vma != NULL)? 0: -1UL;
205 up_read(&mm->mmap_sem);
206 mmput(mm);
207 return tail_vma;
208 }
209
210 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
211 {
212 struct proc_maps_private *priv = m->private;
213 struct vm_area_struct *vma = v;
214 struct vm_area_struct *tail_vma = priv->tail_vma;
215
216 (*pos)++;
217 if (vma && (vma != tail_vma) && vma->vm_next)
218 return vma->vm_next;
219 vma_stop(priv, vma);
220 return (vma != tail_vma)? tail_vma: NULL;
221 }
222
223 static void m_stop(struct seq_file *m, void *v)
224 {
225 struct proc_maps_private *priv = m->private;
226 struct vm_area_struct *vma = v;
227
228 if (!IS_ERR(vma))
229 vma_stop(priv, vma);
230 if (priv->task)
231 put_task_struct(priv->task);
232 }
233
234 static int do_maps_open(struct inode *inode, struct file *file,
235 const struct seq_operations *ops)
236 {
237 struct proc_maps_private *priv;
238 int ret = -ENOMEM;
239 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
240 if (priv) {
241 priv->pid = proc_pid(inode);
242 ret = seq_open(file, ops);
243 if (!ret) {
244 struct seq_file *m = file->private_data;
245 m->private = priv;
246 } else {
247 kfree(priv);
248 }
249 }
250 return ret;
251 }
252
253 static void
254 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
255 {
256 struct mm_struct *mm = vma->vm_mm;
257 struct file *file = vma->vm_file;
258 struct proc_maps_private *priv = m->private;
259 struct task_struct *task = priv->task;
260 vm_flags_t flags = vma->vm_flags;
261 unsigned long ino = 0;
262 unsigned long long pgoff = 0;
263 unsigned long start, end;
264 dev_t dev = 0;
265 const char *name = NULL;
266
267 if (file) {
268 struct inode *inode = file_inode(vma->vm_file);
269 dev = inode->i_sb->s_dev;
270 ino = inode->i_ino;
271 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
272 }
273
274 /* We don't show the stack guard page in /proc/maps */
275 start = vma->vm_start;
276 if (stack_guard_page_start(vma, start))
277 start += PAGE_SIZE;
278 end = vma->vm_end;
279 if (stack_guard_page_end(vma, end))
280 end -= PAGE_SIZE;
281
282 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
283 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
284 start,
285 end,
286 flags & VM_READ ? 'r' : '-',
287 flags & VM_WRITE ? 'w' : '-',
288 flags & VM_EXEC ? 'x' : '-',
289 flags & VM_MAYSHARE ? 's' : 'p',
290 pgoff,
291 MAJOR(dev), MINOR(dev), ino);
292
293 /*
294 * Print the dentry name for named mappings, and a
295 * special [heap] marker for the heap:
296 */
297 if (file) {
298 seq_pad(m, ' ');
299 seq_path(m, &file->f_path, "\n");
300 goto done;
301 }
302
303 if (vma->vm_ops && vma->vm_ops->name) {
304 name = vma->vm_ops->name(vma);
305 if (name)
306 goto done;
307 }
308
309 name = arch_vma_name(vma);
310 if (!name) {
311 pid_t tid;
312
313 if (!mm) {
314 name = "[vdso]";
315 goto done;
316 }
317
318 if (vma->vm_start <= mm->brk &&
319 vma->vm_end >= mm->start_brk) {
320 name = "[heap]";
321 goto done;
322 }
323
324 tid = vm_is_stack(task, vma, is_pid);
325
326 if (tid != 0) {
327 /*
328 * Thread stack in /proc/PID/task/TID/maps or
329 * the main process stack.
330 */
331 if (!is_pid || (vma->vm_start <= mm->start_stack &&
332 vma->vm_end >= mm->start_stack)) {
333 name = "[stack]";
334 } else {
335 /* Thread stack in /proc/PID/maps */
336 seq_pad(m, ' ');
337 seq_printf(m, "[stack:%d]", tid);
338 }
339 }
340 }
341
342 done:
343 if (name) {
344 seq_pad(m, ' ');
345 seq_puts(m, name);
346 }
347 seq_putc(m, '\n');
348 }
349
350 static int show_map(struct seq_file *m, void *v, int is_pid)
351 {
352 struct vm_area_struct *vma = v;
353 struct proc_maps_private *priv = m->private;
354 struct task_struct *task = priv->task;
355
356 show_map_vma(m, vma, is_pid);
357
358 if (m->count < m->size) /* vma is copied successfully */
359 m->version = (vma != get_gate_vma(task->mm))
360 ? vma->vm_start : 0;
361 return 0;
362 }
363
364 static int show_pid_map(struct seq_file *m, void *v)
365 {
366 return show_map(m, v, 1);
367 }
368
369 static int show_tid_map(struct seq_file *m, void *v)
370 {
371 return show_map(m, v, 0);
372 }
373
374 static const struct seq_operations proc_pid_maps_op = {
375 .start = m_start,
376 .next = m_next,
377 .stop = m_stop,
378 .show = show_pid_map
379 };
380
381 static const struct seq_operations proc_tid_maps_op = {
382 .start = m_start,
383 .next = m_next,
384 .stop = m_stop,
385 .show = show_tid_map
386 };
387
388 static int pid_maps_open(struct inode *inode, struct file *file)
389 {
390 return do_maps_open(inode, file, &proc_pid_maps_op);
391 }
392
393 static int tid_maps_open(struct inode *inode, struct file *file)
394 {
395 return do_maps_open(inode, file, &proc_tid_maps_op);
396 }
397
398 const struct file_operations proc_pid_maps_operations = {
399 .open = pid_maps_open,
400 .read = seq_read,
401 .llseek = seq_lseek,
402 .release = seq_release_private,
403 };
404
405 const struct file_operations proc_tid_maps_operations = {
406 .open = tid_maps_open,
407 .read = seq_read,
408 .llseek = seq_lseek,
409 .release = seq_release_private,
410 };
411
412 /*
413 * Proportional Set Size(PSS): my share of RSS.
414 *
415 * PSS of a process is the count of pages it has in memory, where each
416 * page is divided by the number of processes sharing it. So if a
417 * process has 1000 pages all to itself, and 1000 shared with one other
418 * process, its PSS will be 1500.
419 *
420 * To keep (accumulated) division errors low, we adopt a 64bit
421 * fixed-point pss counter to minimize division errors. So (pss >>
422 * PSS_SHIFT) would be the real byte count.
423 *
424 * A shift of 12 before division means (assuming 4K page size):
425 * - 1M 3-user-pages add up to 8KB errors;
426 * - supports mapcount up to 2^24, or 16M;
427 * - supports PSS up to 2^52 bytes, or 4PB.
428 */
429 #define PSS_SHIFT 12
430
431 #ifdef CONFIG_PROC_PAGE_MONITOR
432 struct mem_size_stats {
433 struct vm_area_struct *vma;
434 unsigned long resident;
435 unsigned long shared_clean;
436 unsigned long shared_dirty;
437 unsigned long private_clean;
438 unsigned long private_dirty;
439 unsigned long referenced;
440 unsigned long anonymous;
441 unsigned long anonymous_thp;
442 unsigned long swap;
443 unsigned long nonlinear;
444 u64 pss;
445 };
446
447
448 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
449 unsigned long ptent_size, struct mm_walk *walk)
450 {
451 struct mem_size_stats *mss = walk->private;
452 struct vm_area_struct *vma = mss->vma;
453 pgoff_t pgoff = linear_page_index(vma, addr);
454 struct page *page = NULL;
455 int mapcount;
456
457 if (pte_present(ptent)) {
458 page = vm_normal_page(vma, addr, ptent);
459 } else if (is_swap_pte(ptent)) {
460 swp_entry_t swpent = pte_to_swp_entry(ptent);
461
462 if (!non_swap_entry(swpent))
463 mss->swap += ptent_size;
464 else if (is_migration_entry(swpent))
465 page = migration_entry_to_page(swpent);
466 } else if (pte_file(ptent)) {
467 if (pte_to_pgoff(ptent) != pgoff)
468 mss->nonlinear += ptent_size;
469 }
470
471 if (!page)
472 return;
473
474 if (PageAnon(page))
475 mss->anonymous += ptent_size;
476
477 if (page->index != pgoff)
478 mss->nonlinear += ptent_size;
479
480 mss->resident += ptent_size;
481 /* Accumulate the size in pages that have been accessed. */
482 if (pte_young(ptent) || PageReferenced(page))
483 mss->referenced += ptent_size;
484 mapcount = page_mapcount(page);
485 if (mapcount >= 2) {
486 if (pte_dirty(ptent) || PageDirty(page))
487 mss->shared_dirty += ptent_size;
488 else
489 mss->shared_clean += ptent_size;
490 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
491 } else {
492 if (pte_dirty(ptent) || PageDirty(page))
493 mss->private_dirty += ptent_size;
494 else
495 mss->private_clean += ptent_size;
496 mss->pss += (ptent_size << PSS_SHIFT);
497 }
498 }
499
500 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
501 struct mm_walk *walk)
502 {
503 struct mem_size_stats *mss = walk->private;
504 struct vm_area_struct *vma = mss->vma;
505 pte_t *pte;
506 spinlock_t *ptl;
507
508 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
509 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
510 spin_unlock(ptl);
511 mss->anonymous_thp += HPAGE_PMD_SIZE;
512 return 0;
513 }
514
515 if (pmd_trans_unstable(pmd))
516 return 0;
517 /*
518 * The mmap_sem held all the way back in m_start() is what
519 * keeps khugepaged out of here and from collapsing things
520 * in here.
521 */
522 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
523 for (; addr != end; pte++, addr += PAGE_SIZE)
524 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
525 pte_unmap_unlock(pte - 1, ptl);
526 cond_resched();
527 return 0;
528 }
529
530 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
531 {
532 /*
533 * Don't forget to update Documentation/ on changes.
534 */
535 static const char mnemonics[BITS_PER_LONG][2] = {
536 /*
537 * In case if we meet a flag we don't know about.
538 */
539 [0 ... (BITS_PER_LONG-1)] = "??",
540
541 [ilog2(VM_READ)] = "rd",
542 [ilog2(VM_WRITE)] = "wr",
543 [ilog2(VM_EXEC)] = "ex",
544 [ilog2(VM_SHARED)] = "sh",
545 [ilog2(VM_MAYREAD)] = "mr",
546 [ilog2(VM_MAYWRITE)] = "mw",
547 [ilog2(VM_MAYEXEC)] = "me",
548 [ilog2(VM_MAYSHARE)] = "ms",
549 [ilog2(VM_GROWSDOWN)] = "gd",
550 [ilog2(VM_PFNMAP)] = "pf",
551 [ilog2(VM_DENYWRITE)] = "dw",
552 [ilog2(VM_LOCKED)] = "lo",
553 [ilog2(VM_IO)] = "io",
554 [ilog2(VM_SEQ_READ)] = "sr",
555 [ilog2(VM_RAND_READ)] = "rr",
556 [ilog2(VM_DONTCOPY)] = "dc",
557 [ilog2(VM_DONTEXPAND)] = "de",
558 [ilog2(VM_ACCOUNT)] = "ac",
559 [ilog2(VM_NORESERVE)] = "nr",
560 [ilog2(VM_HUGETLB)] = "ht",
561 [ilog2(VM_NONLINEAR)] = "nl",
562 [ilog2(VM_ARCH_1)] = "ar",
563 [ilog2(VM_DONTDUMP)] = "dd",
564 #ifdef CONFIG_MEM_SOFT_DIRTY
565 [ilog2(VM_SOFTDIRTY)] = "sd",
566 #endif
567 [ilog2(VM_MIXEDMAP)] = "mm",
568 [ilog2(VM_HUGEPAGE)] = "hg",
569 [ilog2(VM_NOHUGEPAGE)] = "nh",
570 [ilog2(VM_MERGEABLE)] = "mg",
571 };
572 size_t i;
573
574 seq_puts(m, "VmFlags: ");
575 for (i = 0; i < BITS_PER_LONG; i++) {
576 if (vma->vm_flags & (1UL << i)) {
577 seq_printf(m, "%c%c ",
578 mnemonics[i][0], mnemonics[i][1]);
579 }
580 }
581 seq_putc(m, '\n');
582 }
583
584 static int show_smap(struct seq_file *m, void *v, int is_pid)
585 {
586 struct proc_maps_private *priv = m->private;
587 struct task_struct *task = priv->task;
588 struct vm_area_struct *vma = v;
589 struct mem_size_stats mss;
590 struct mm_walk smaps_walk = {
591 .pmd_entry = smaps_pte_range,
592 .mm = vma->vm_mm,
593 .private = &mss,
594 };
595
596 memset(&mss, 0, sizeof mss);
597 mss.vma = vma;
598 /* mmap_sem is held in m_start */
599 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
600 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
601
602 show_map_vma(m, vma, is_pid);
603
604 seq_printf(m,
605 "Size: %8lu kB\n"
606 "Rss: %8lu kB\n"
607 "Pss: %8lu kB\n"
608 "Shared_Clean: %8lu kB\n"
609 "Shared_Dirty: %8lu kB\n"
610 "Private_Clean: %8lu kB\n"
611 "Private_Dirty: %8lu kB\n"
612 "Referenced: %8lu kB\n"
613 "Anonymous: %8lu kB\n"
614 "AnonHugePages: %8lu kB\n"
615 "Swap: %8lu kB\n"
616 "KernelPageSize: %8lu kB\n"
617 "MMUPageSize: %8lu kB\n"
618 "Locked: %8lu kB\n",
619 (vma->vm_end - vma->vm_start) >> 10,
620 mss.resident >> 10,
621 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
622 mss.shared_clean >> 10,
623 mss.shared_dirty >> 10,
624 mss.private_clean >> 10,
625 mss.private_dirty >> 10,
626 mss.referenced >> 10,
627 mss.anonymous >> 10,
628 mss.anonymous_thp >> 10,
629 mss.swap >> 10,
630 vma_kernel_pagesize(vma) >> 10,
631 vma_mmu_pagesize(vma) >> 10,
632 (vma->vm_flags & VM_LOCKED) ?
633 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
634
635 if (vma->vm_flags & VM_NONLINEAR)
636 seq_printf(m, "Nonlinear: %8lu kB\n",
637 mss.nonlinear >> 10);
638
639 show_smap_vma_flags(m, vma);
640
641 if (m->count < m->size) /* vma is copied successfully */
642 m->version = (vma != get_gate_vma(task->mm))
643 ? vma->vm_start : 0;
644 return 0;
645 }
646
647 static int show_pid_smap(struct seq_file *m, void *v)
648 {
649 return show_smap(m, v, 1);
650 }
651
652 static int show_tid_smap(struct seq_file *m, void *v)
653 {
654 return show_smap(m, v, 0);
655 }
656
657 static const struct seq_operations proc_pid_smaps_op = {
658 .start = m_start,
659 .next = m_next,
660 .stop = m_stop,
661 .show = show_pid_smap
662 };
663
664 static const struct seq_operations proc_tid_smaps_op = {
665 .start = m_start,
666 .next = m_next,
667 .stop = m_stop,
668 .show = show_tid_smap
669 };
670
671 static int pid_smaps_open(struct inode *inode, struct file *file)
672 {
673 return do_maps_open(inode, file, &proc_pid_smaps_op);
674 }
675
676 static int tid_smaps_open(struct inode *inode, struct file *file)
677 {
678 return do_maps_open(inode, file, &proc_tid_smaps_op);
679 }
680
681 const struct file_operations proc_pid_smaps_operations = {
682 .open = pid_smaps_open,
683 .read = seq_read,
684 .llseek = seq_lseek,
685 .release = seq_release_private,
686 };
687
688 const struct file_operations proc_tid_smaps_operations = {
689 .open = tid_smaps_open,
690 .read = seq_read,
691 .llseek = seq_lseek,
692 .release = seq_release_private,
693 };
694
695 /*
696 * We do not want to have constant page-shift bits sitting in
697 * pagemap entries and are about to reuse them some time soon.
698 *
699 * Here's the "migration strategy":
700 * 1. when the system boots these bits remain what they are,
701 * but a warning about future change is printed in log;
702 * 2. once anyone clears soft-dirty bits via clear_refs file,
703 * these flag is set to denote, that user is aware of the
704 * new API and those page-shift bits change their meaning.
705 * The respective warning is printed in dmesg;
706 * 3. In a couple of releases we will remove all the mentions
707 * of page-shift in pagemap entries.
708 */
709
710 static bool soft_dirty_cleared __read_mostly;
711
712 enum clear_refs_types {
713 CLEAR_REFS_ALL = 1,
714 CLEAR_REFS_ANON,
715 CLEAR_REFS_MAPPED,
716 CLEAR_REFS_SOFT_DIRTY,
717 CLEAR_REFS_LAST,
718 };
719
720 struct clear_refs_private {
721 struct vm_area_struct *vma;
722 enum clear_refs_types type;
723 };
724
725 static inline void clear_soft_dirty(struct vm_area_struct *vma,
726 unsigned long addr, pte_t *pte)
727 {
728 #ifdef CONFIG_MEM_SOFT_DIRTY
729 /*
730 * The soft-dirty tracker uses #PF-s to catch writes
731 * to pages, so write-protect the pte as well. See the
732 * Documentation/vm/soft-dirty.txt for full description
733 * of how soft-dirty works.
734 */
735 pte_t ptent = *pte;
736
737 if (pte_present(ptent)) {
738 ptent = pte_wrprotect(ptent);
739 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
740 } else if (is_swap_pte(ptent)) {
741 ptent = pte_swp_clear_soft_dirty(ptent);
742 } else if (pte_file(ptent)) {
743 ptent = pte_file_clear_soft_dirty(ptent);
744 }
745
746 set_pte_at(vma->vm_mm, addr, pte, ptent);
747 #endif
748 }
749
750 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
751 unsigned long end, struct mm_walk *walk)
752 {
753 struct clear_refs_private *cp = walk->private;
754 struct vm_area_struct *vma = cp->vma;
755 pte_t *pte, ptent;
756 spinlock_t *ptl;
757 struct page *page;
758
759 split_huge_page_pmd(vma, addr, pmd);
760 if (pmd_trans_unstable(pmd))
761 return 0;
762
763 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
764 for (; addr != end; pte++, addr += PAGE_SIZE) {
765 ptent = *pte;
766
767 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
768 clear_soft_dirty(vma, addr, pte);
769 continue;
770 }
771
772 if (!pte_present(ptent))
773 continue;
774
775 page = vm_normal_page(vma, addr, ptent);
776 if (!page)
777 continue;
778
779 /* Clear accessed and referenced bits. */
780 ptep_test_and_clear_young(vma, addr, pte);
781 ClearPageReferenced(page);
782 }
783 pte_unmap_unlock(pte - 1, ptl);
784 cond_resched();
785 return 0;
786 }
787
788 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
789 size_t count, loff_t *ppos)
790 {
791 struct task_struct *task;
792 char buffer[PROC_NUMBUF];
793 struct mm_struct *mm;
794 struct vm_area_struct *vma;
795 enum clear_refs_types type;
796 int itype;
797 int rv;
798
799 memset(buffer, 0, sizeof(buffer));
800 if (count > sizeof(buffer) - 1)
801 count = sizeof(buffer) - 1;
802 if (copy_from_user(buffer, buf, count))
803 return -EFAULT;
804 rv = kstrtoint(strstrip(buffer), 10, &itype);
805 if (rv < 0)
806 return rv;
807 type = (enum clear_refs_types)itype;
808 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
809 return -EINVAL;
810
811 if (type == CLEAR_REFS_SOFT_DIRTY) {
812 soft_dirty_cleared = true;
813 pr_warn_once("The pagemap bits 55-60 has changed their meaning!"
814 " See the linux/Documentation/vm/pagemap.txt for "
815 "details.\n");
816 }
817
818 task = get_proc_task(file_inode(file));
819 if (!task)
820 return -ESRCH;
821 mm = get_task_mm(task);
822 if (mm) {
823 struct clear_refs_private cp = {
824 .type = type,
825 };
826 struct mm_walk clear_refs_walk = {
827 .pmd_entry = clear_refs_pte_range,
828 .mm = mm,
829 .private = &cp,
830 };
831 down_read(&mm->mmap_sem);
832 if (type == CLEAR_REFS_SOFT_DIRTY)
833 mmu_notifier_invalidate_range_start(mm, 0, -1);
834 for (vma = mm->mmap; vma; vma = vma->vm_next) {
835 cp.vma = vma;
836 if (is_vm_hugetlb_page(vma))
837 continue;
838 /*
839 * Writing 1 to /proc/pid/clear_refs affects all pages.
840 *
841 * Writing 2 to /proc/pid/clear_refs only affects
842 * Anonymous pages.
843 *
844 * Writing 3 to /proc/pid/clear_refs only affects file
845 * mapped pages.
846 *
847 * Writing 4 to /proc/pid/clear_refs affects all pages.
848 */
849 if (type == CLEAR_REFS_ANON && vma->vm_file)
850 continue;
851 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
852 continue;
853 if (type == CLEAR_REFS_SOFT_DIRTY) {
854 if (vma->vm_flags & VM_SOFTDIRTY)
855 vma->vm_flags &= ~VM_SOFTDIRTY;
856 }
857 walk_page_range(vma->vm_start, vma->vm_end,
858 &clear_refs_walk);
859 }
860 if (type == CLEAR_REFS_SOFT_DIRTY)
861 mmu_notifier_invalidate_range_end(mm, 0, -1);
862 flush_tlb_mm(mm);
863 up_read(&mm->mmap_sem);
864 mmput(mm);
865 }
866 put_task_struct(task);
867
868 return count;
869 }
870
871 const struct file_operations proc_clear_refs_operations = {
872 .write = clear_refs_write,
873 .llseek = noop_llseek,
874 };
875
876 typedef struct {
877 u64 pme;
878 } pagemap_entry_t;
879
880 struct pagemapread {
881 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
882 pagemap_entry_t *buffer;
883 bool v2;
884 };
885
886 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
887 #define PAGEMAP_WALK_MASK (PMD_MASK)
888
889 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
890 #define PM_STATUS_BITS 3
891 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
892 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
893 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
894 #define PM_PSHIFT_BITS 6
895 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
896 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
897 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
898 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
899 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
900 /* in "new" pagemap pshift bits are occupied with more status bits */
901 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
902
903 #define __PM_SOFT_DIRTY (1LL)
904 #define PM_PRESENT PM_STATUS(4LL)
905 #define PM_SWAP PM_STATUS(2LL)
906 #define PM_FILE PM_STATUS(1LL)
907 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
908 #define PM_END_OF_BUFFER 1
909
910 static inline pagemap_entry_t make_pme(u64 val)
911 {
912 return (pagemap_entry_t) { .pme = val };
913 }
914
915 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
916 struct pagemapread *pm)
917 {
918 pm->buffer[pm->pos++] = *pme;
919 if (pm->pos >= pm->len)
920 return PM_END_OF_BUFFER;
921 return 0;
922 }
923
924 static int pagemap_pte_hole(unsigned long start, unsigned long end,
925 struct mm_walk *walk)
926 {
927 struct pagemapread *pm = walk->private;
928 unsigned long addr = start;
929 int err = 0;
930
931 while (addr < end) {
932 struct vm_area_struct *vma = find_vma(walk->mm, addr);
933 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
934 unsigned long vm_end;
935
936 if (!vma) {
937 vm_end = end;
938 } else {
939 vm_end = min(end, vma->vm_end);
940 if (vma->vm_flags & VM_SOFTDIRTY)
941 pme.pme |= PM_STATUS2(pm->v2, __PM_SOFT_DIRTY);
942 }
943
944 for (; addr < vm_end; addr += PAGE_SIZE) {
945 err = add_to_pagemap(addr, &pme, pm);
946 if (err)
947 goto out;
948 }
949 }
950
951 out:
952 return err;
953 }
954
955 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
956 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
957 {
958 u64 frame, flags;
959 struct page *page = NULL;
960 int flags2 = 0;
961
962 if (pte_present(pte)) {
963 frame = pte_pfn(pte);
964 flags = PM_PRESENT;
965 page = vm_normal_page(vma, addr, pte);
966 if (pte_soft_dirty(pte))
967 flags2 |= __PM_SOFT_DIRTY;
968 } else if (is_swap_pte(pte)) {
969 swp_entry_t entry;
970 if (pte_swp_soft_dirty(pte))
971 flags2 |= __PM_SOFT_DIRTY;
972 entry = pte_to_swp_entry(pte);
973 frame = swp_type(entry) |
974 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
975 flags = PM_SWAP;
976 if (is_migration_entry(entry))
977 page = migration_entry_to_page(entry);
978 } else {
979 if (vma->vm_flags & VM_SOFTDIRTY)
980 flags2 |= __PM_SOFT_DIRTY;
981 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
982 return;
983 }
984
985 if (page && !PageAnon(page))
986 flags |= PM_FILE;
987 if ((vma->vm_flags & VM_SOFTDIRTY))
988 flags2 |= __PM_SOFT_DIRTY;
989
990 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
991 }
992
993 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
994 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
995 pmd_t pmd, int offset, int pmd_flags2)
996 {
997 /*
998 * Currently pmd for thp is always present because thp can not be
999 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
1000 * This if-check is just to prepare for future implementation.
1001 */
1002 if (pmd_present(pmd))
1003 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
1004 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
1005 else
1006 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
1007 }
1008 #else
1009 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1010 pmd_t pmd, int offset, int pmd_flags2)
1011 {
1012 }
1013 #endif
1014
1015 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1016 struct mm_walk *walk)
1017 {
1018 struct vm_area_struct *vma;
1019 struct pagemapread *pm = walk->private;
1020 spinlock_t *ptl;
1021 pte_t *pte;
1022 int err = 0;
1023 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1024
1025 /* find the first VMA at or above 'addr' */
1026 vma = find_vma(walk->mm, addr);
1027 if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1028 int pmd_flags2;
1029
1030 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1031 pmd_flags2 = __PM_SOFT_DIRTY;
1032 else
1033 pmd_flags2 = 0;
1034
1035 for (; addr != end; addr += PAGE_SIZE) {
1036 unsigned long offset;
1037
1038 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1039 PAGE_SHIFT;
1040 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1041 err = add_to_pagemap(addr, &pme, pm);
1042 if (err)
1043 break;
1044 }
1045 spin_unlock(ptl);
1046 return err;
1047 }
1048
1049 if (pmd_trans_unstable(pmd))
1050 return 0;
1051 for (; addr != end; addr += PAGE_SIZE) {
1052 int flags2;
1053
1054 /* check to see if we've left 'vma' behind
1055 * and need a new, higher one */
1056 if (vma && (addr >= vma->vm_end)) {
1057 vma = find_vma(walk->mm, addr);
1058 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1059 flags2 = __PM_SOFT_DIRTY;
1060 else
1061 flags2 = 0;
1062 pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1063 }
1064
1065 /* check that 'vma' actually covers this address,
1066 * and that it isn't a huge page vma */
1067 if (vma && (vma->vm_start <= addr) &&
1068 !is_vm_hugetlb_page(vma)) {
1069 pte = pte_offset_map(pmd, addr);
1070 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1071 /* unmap before userspace copy */
1072 pte_unmap(pte);
1073 }
1074 err = add_to_pagemap(addr, &pme, pm);
1075 if (err)
1076 return err;
1077 }
1078
1079 cond_resched();
1080
1081 return err;
1082 }
1083
1084 #ifdef CONFIG_HUGETLB_PAGE
1085 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1086 pte_t pte, int offset, int flags2)
1087 {
1088 if (pte_present(pte))
1089 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
1090 PM_STATUS2(pm->v2, flags2) |
1091 PM_PRESENT);
1092 else
1093 *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
1094 PM_STATUS2(pm->v2, flags2));
1095 }
1096
1097 /* This function walks within one hugetlb entry in the single call */
1098 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1099 unsigned long addr, unsigned long end,
1100 struct mm_walk *walk)
1101 {
1102 struct pagemapread *pm = walk->private;
1103 struct vm_area_struct *vma;
1104 int err = 0;
1105 int flags2;
1106 pagemap_entry_t pme;
1107
1108 vma = find_vma(walk->mm, addr);
1109 WARN_ON_ONCE(!vma);
1110
1111 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1112 flags2 = __PM_SOFT_DIRTY;
1113 else
1114 flags2 = 0;
1115
1116 for (; addr != end; addr += PAGE_SIZE) {
1117 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1118 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1119 err = add_to_pagemap(addr, &pme, pm);
1120 if (err)
1121 return err;
1122 }
1123
1124 cond_resched();
1125
1126 return err;
1127 }
1128 #endif /* HUGETLB_PAGE */
1129
1130 /*
1131 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1132 *
1133 * For each page in the address space, this file contains one 64-bit entry
1134 * consisting of the following:
1135 *
1136 * Bits 0-54 page frame number (PFN) if present
1137 * Bits 0-4 swap type if swapped
1138 * Bits 5-54 swap offset if swapped
1139 * Bits 55-60 page shift (page size = 1<<page shift)
1140 * Bit 61 page is file-page or shared-anon
1141 * Bit 62 page swapped
1142 * Bit 63 page present
1143 *
1144 * If the page is not present but in swap, then the PFN contains an
1145 * encoding of the swap file number and the page's offset into the
1146 * swap. Unmapped pages return a null PFN. This allows determining
1147 * precisely which pages are mapped (or in swap) and comparing mapped
1148 * pages between processes.
1149 *
1150 * Efficient users of this interface will use /proc/pid/maps to
1151 * determine which areas of memory are actually mapped and llseek to
1152 * skip over unmapped regions.
1153 */
1154 static ssize_t pagemap_read(struct file *file, char __user *buf,
1155 size_t count, loff_t *ppos)
1156 {
1157 struct task_struct *task = get_proc_task(file_inode(file));
1158 struct mm_struct *mm;
1159 struct pagemapread pm;
1160 int ret = -ESRCH;
1161 struct mm_walk pagemap_walk = {};
1162 unsigned long src;
1163 unsigned long svpfn;
1164 unsigned long start_vaddr;
1165 unsigned long end_vaddr;
1166 int copied = 0;
1167
1168 if (!task)
1169 goto out;
1170
1171 ret = -EINVAL;
1172 /* file position must be aligned */
1173 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1174 goto out_task;
1175
1176 ret = 0;
1177 if (!count)
1178 goto out_task;
1179
1180 pm.v2 = soft_dirty_cleared;
1181 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1182 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1183 ret = -ENOMEM;
1184 if (!pm.buffer)
1185 goto out_task;
1186
1187 mm = mm_access(task, PTRACE_MODE_READ);
1188 ret = PTR_ERR(mm);
1189 if (!mm || IS_ERR(mm))
1190 goto out_free;
1191
1192 pagemap_walk.pmd_entry = pagemap_pte_range;
1193 pagemap_walk.pte_hole = pagemap_pte_hole;
1194 #ifdef CONFIG_HUGETLB_PAGE
1195 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1196 #endif
1197 pagemap_walk.mm = mm;
1198 pagemap_walk.private = &pm;
1199
1200 src = *ppos;
1201 svpfn = src / PM_ENTRY_BYTES;
1202 start_vaddr = svpfn << PAGE_SHIFT;
1203 end_vaddr = TASK_SIZE_OF(task);
1204
1205 /* watch out for wraparound */
1206 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1207 start_vaddr = end_vaddr;
1208
1209 /*
1210 * The odds are that this will stop walking way
1211 * before end_vaddr, because the length of the
1212 * user buffer is tracked in "pm", and the walk
1213 * will stop when we hit the end of the buffer.
1214 */
1215 ret = 0;
1216 while (count && (start_vaddr < end_vaddr)) {
1217 int len;
1218 unsigned long end;
1219
1220 pm.pos = 0;
1221 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1222 /* overflow ? */
1223 if (end < start_vaddr || end > end_vaddr)
1224 end = end_vaddr;
1225 down_read(&mm->mmap_sem);
1226 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1227 up_read(&mm->mmap_sem);
1228 start_vaddr = end;
1229
1230 len = min(count, PM_ENTRY_BYTES * pm.pos);
1231 if (copy_to_user(buf, pm.buffer, len)) {
1232 ret = -EFAULT;
1233 goto out_mm;
1234 }
1235 copied += len;
1236 buf += len;
1237 count -= len;
1238 }
1239 *ppos += copied;
1240 if (!ret || ret == PM_END_OF_BUFFER)
1241 ret = copied;
1242
1243 out_mm:
1244 mmput(mm);
1245 out_free:
1246 kfree(pm.buffer);
1247 out_task:
1248 put_task_struct(task);
1249 out:
1250 return ret;
1251 }
1252
1253 static int pagemap_open(struct inode *inode, struct file *file)
1254 {
1255 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1256 "to stop being page-shift some time soon. See the "
1257 "linux/Documentation/vm/pagemap.txt for details.\n");
1258 return 0;
1259 }
1260
1261 const struct file_operations proc_pagemap_operations = {
1262 .llseek = mem_lseek, /* borrow this */
1263 .read = pagemap_read,
1264 .open = pagemap_open,
1265 };
1266 #endif /* CONFIG_PROC_PAGE_MONITOR */
1267
1268 #ifdef CONFIG_NUMA
1269
1270 struct numa_maps {
1271 struct vm_area_struct *vma;
1272 unsigned long pages;
1273 unsigned long anon;
1274 unsigned long active;
1275 unsigned long writeback;
1276 unsigned long mapcount_max;
1277 unsigned long dirty;
1278 unsigned long swapcache;
1279 unsigned long node[MAX_NUMNODES];
1280 };
1281
1282 struct numa_maps_private {
1283 struct proc_maps_private proc_maps;
1284 struct numa_maps md;
1285 };
1286
1287 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1288 unsigned long nr_pages)
1289 {
1290 int count = page_mapcount(page);
1291
1292 md->pages += nr_pages;
1293 if (pte_dirty || PageDirty(page))
1294 md->dirty += nr_pages;
1295
1296 if (PageSwapCache(page))
1297 md->swapcache += nr_pages;
1298
1299 if (PageActive(page) || PageUnevictable(page))
1300 md->active += nr_pages;
1301
1302 if (PageWriteback(page))
1303 md->writeback += nr_pages;
1304
1305 if (PageAnon(page))
1306 md->anon += nr_pages;
1307
1308 if (count > md->mapcount_max)
1309 md->mapcount_max = count;
1310
1311 md->node[page_to_nid(page)] += nr_pages;
1312 }
1313
1314 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1315 unsigned long addr)
1316 {
1317 struct page *page;
1318 int nid;
1319
1320 if (!pte_present(pte))
1321 return NULL;
1322
1323 page = vm_normal_page(vma, addr, pte);
1324 if (!page)
1325 return NULL;
1326
1327 if (PageReserved(page))
1328 return NULL;
1329
1330 nid = page_to_nid(page);
1331 if (!node_isset(nid, node_states[N_MEMORY]))
1332 return NULL;
1333
1334 return page;
1335 }
1336
1337 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1338 unsigned long end, struct mm_walk *walk)
1339 {
1340 struct numa_maps *md;
1341 spinlock_t *ptl;
1342 pte_t *orig_pte;
1343 pte_t *pte;
1344
1345 md = walk->private;
1346
1347 if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
1348 pte_t huge_pte = *(pte_t *)pmd;
1349 struct page *page;
1350
1351 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1352 if (page)
1353 gather_stats(page, md, pte_dirty(huge_pte),
1354 HPAGE_PMD_SIZE/PAGE_SIZE);
1355 spin_unlock(ptl);
1356 return 0;
1357 }
1358
1359 if (pmd_trans_unstable(pmd))
1360 return 0;
1361 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1362 do {
1363 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1364 if (!page)
1365 continue;
1366 gather_stats(page, md, pte_dirty(*pte), 1);
1367
1368 } while (pte++, addr += PAGE_SIZE, addr != end);
1369 pte_unmap_unlock(orig_pte, ptl);
1370 return 0;
1371 }
1372 #ifdef CONFIG_HUGETLB_PAGE
1373 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1374 unsigned long addr, unsigned long end, struct mm_walk *walk)
1375 {
1376 struct numa_maps *md;
1377 struct page *page;
1378
1379 if (!pte_present(*pte))
1380 return 0;
1381
1382 page = pte_page(*pte);
1383 if (!page)
1384 return 0;
1385
1386 md = walk->private;
1387 gather_stats(page, md, pte_dirty(*pte), 1);
1388 return 0;
1389 }
1390
1391 #else
1392 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1393 unsigned long addr, unsigned long end, struct mm_walk *walk)
1394 {
1395 return 0;
1396 }
1397 #endif
1398
1399 /*
1400 * Display pages allocated per node and memory policy via /proc.
1401 */
1402 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1403 {
1404 struct numa_maps_private *numa_priv = m->private;
1405 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1406 struct vm_area_struct *vma = v;
1407 struct numa_maps *md = &numa_priv->md;
1408 struct file *file = vma->vm_file;
1409 struct task_struct *task = proc_priv->task;
1410 struct mm_struct *mm = vma->vm_mm;
1411 struct mm_walk walk = {};
1412 struct mempolicy *pol;
1413 char buffer[64];
1414 int nid;
1415
1416 if (!mm)
1417 return 0;
1418
1419 /* Ensure we start with an empty set of numa_maps statistics. */
1420 memset(md, 0, sizeof(*md));
1421
1422 md->vma = vma;
1423
1424 walk.hugetlb_entry = gather_hugetbl_stats;
1425 walk.pmd_entry = gather_pte_stats;
1426 walk.private = md;
1427 walk.mm = mm;
1428
1429 pol = get_vma_policy(task, vma, vma->vm_start);
1430 mpol_to_str(buffer, sizeof(buffer), pol);
1431 mpol_cond_put(pol);
1432
1433 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1434
1435 if (file) {
1436 seq_puts(m, " file=");
1437 seq_path(m, &file->f_path, "\n\t= ");
1438 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1439 seq_puts(m, " heap");
1440 } else {
1441 pid_t tid = vm_is_stack(task, vma, is_pid);
1442 if (tid != 0) {
1443 /*
1444 * Thread stack in /proc/PID/task/TID/maps or
1445 * the main process stack.
1446 */
1447 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1448 vma->vm_end >= mm->start_stack))
1449 seq_puts(m, " stack");
1450 else
1451 seq_printf(m, " stack:%d", tid);
1452 }
1453 }
1454
1455 if (is_vm_hugetlb_page(vma))
1456 seq_puts(m, " huge");
1457
1458 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1459
1460 if (!md->pages)
1461 goto out;
1462
1463 if (md->anon)
1464 seq_printf(m, " anon=%lu", md->anon);
1465
1466 if (md->dirty)
1467 seq_printf(m, " dirty=%lu", md->dirty);
1468
1469 if (md->pages != md->anon && md->pages != md->dirty)
1470 seq_printf(m, " mapped=%lu", md->pages);
1471
1472 if (md->mapcount_max > 1)
1473 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1474
1475 if (md->swapcache)
1476 seq_printf(m, " swapcache=%lu", md->swapcache);
1477
1478 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1479 seq_printf(m, " active=%lu", md->active);
1480
1481 if (md->writeback)
1482 seq_printf(m, " writeback=%lu", md->writeback);
1483
1484 for_each_node_state(nid, N_MEMORY)
1485 if (md->node[nid])
1486 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1487 out:
1488 seq_putc(m, '\n');
1489
1490 if (m->count < m->size)
1491 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1492 return 0;
1493 }
1494
1495 static int show_pid_numa_map(struct seq_file *m, void *v)
1496 {
1497 return show_numa_map(m, v, 1);
1498 }
1499
1500 static int show_tid_numa_map(struct seq_file *m, void *v)
1501 {
1502 return show_numa_map(m, v, 0);
1503 }
1504
1505 static const struct seq_operations proc_pid_numa_maps_op = {
1506 .start = m_start,
1507 .next = m_next,
1508 .stop = m_stop,
1509 .show = show_pid_numa_map,
1510 };
1511
1512 static const struct seq_operations proc_tid_numa_maps_op = {
1513 .start = m_start,
1514 .next = m_next,
1515 .stop = m_stop,
1516 .show = show_tid_numa_map,
1517 };
1518
1519 static int numa_maps_open(struct inode *inode, struct file *file,
1520 const struct seq_operations *ops)
1521 {
1522 struct numa_maps_private *priv;
1523 int ret = -ENOMEM;
1524 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1525 if (priv) {
1526 priv->proc_maps.pid = proc_pid(inode);
1527 ret = seq_open(file, ops);
1528 if (!ret) {
1529 struct seq_file *m = file->private_data;
1530 m->private = priv;
1531 } else {
1532 kfree(priv);
1533 }
1534 }
1535 return ret;
1536 }
1537
1538 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1539 {
1540 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1541 }
1542
1543 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1544 {
1545 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1546 }
1547
1548 const struct file_operations proc_pid_numa_maps_operations = {
1549 .open = pid_numa_maps_open,
1550 .read = seq_read,
1551 .llseek = seq_lseek,
1552 .release = seq_release_private,
1553 };
1554
1555 const struct file_operations proc_tid_numa_maps_operations = {
1556 .open = tid_numa_maps_open,
1557 .read = seq_read,
1558 .llseek = seq_lseek,
1559 .release = seq_release_private,
1560 };
1561 #endif /* CONFIG_NUMA */
This page took 0.098694 seconds and 6 git commands to generate.