Merge branch 'pm-cpufreq'
[deliverable/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/mmu_notifier.h>
15
16 #include <asm/elf.h>
17 #include <asm/uaccess.h>
18 #include <asm/tlbflush.h>
19 #include "internal.h"
20
21 void task_mem(struct seq_file *m, struct mm_struct *mm)
22 {
23 unsigned long data, text, lib, swap;
24 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
25
26 /*
27 * Note: to minimize their overhead, mm maintains hiwater_vm and
28 * hiwater_rss only when about to *lower* total_vm or rss. Any
29 * collector of these hiwater stats must therefore get total_vm
30 * and rss too, which will usually be the higher. Barriers? not
31 * worth the effort, such snapshots can always be inconsistent.
32 */
33 hiwater_vm = total_vm = mm->total_vm;
34 if (hiwater_vm < mm->hiwater_vm)
35 hiwater_vm = mm->hiwater_vm;
36 hiwater_rss = total_rss = get_mm_rss(mm);
37 if (hiwater_rss < mm->hiwater_rss)
38 hiwater_rss = mm->hiwater_rss;
39
40 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
41 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
42 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
43 swap = get_mm_counter(mm, MM_SWAPENTS);
44 seq_printf(m,
45 "VmPeak:\t%8lu kB\n"
46 "VmSize:\t%8lu kB\n"
47 "VmLck:\t%8lu kB\n"
48 "VmPin:\t%8lu kB\n"
49 "VmHWM:\t%8lu kB\n"
50 "VmRSS:\t%8lu kB\n"
51 "VmData:\t%8lu kB\n"
52 "VmStk:\t%8lu kB\n"
53 "VmExe:\t%8lu kB\n"
54 "VmLib:\t%8lu kB\n"
55 "VmPTE:\t%8lu kB\n"
56 "VmSwap:\t%8lu kB\n",
57 hiwater_vm << (PAGE_SHIFT-10),
58 total_vm << (PAGE_SHIFT-10),
59 mm->locked_vm << (PAGE_SHIFT-10),
60 mm->pinned_vm << (PAGE_SHIFT-10),
61 hiwater_rss << (PAGE_SHIFT-10),
62 total_rss << (PAGE_SHIFT-10),
63 data << (PAGE_SHIFT-10),
64 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
65 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
66 swap << (PAGE_SHIFT-10));
67 }
68
69 unsigned long task_vsize(struct mm_struct *mm)
70 {
71 return PAGE_SIZE * mm->total_vm;
72 }
73
74 unsigned long task_statm(struct mm_struct *mm,
75 unsigned long *shared, unsigned long *text,
76 unsigned long *data, unsigned long *resident)
77 {
78 *shared = get_mm_counter(mm, MM_FILEPAGES);
79 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
80 >> PAGE_SHIFT;
81 *data = mm->total_vm - mm->shared_vm;
82 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
83 return mm->total_vm;
84 }
85
86 static void pad_len_spaces(struct seq_file *m, int len)
87 {
88 len = 25 + sizeof(void*) * 6 - len;
89 if (len < 1)
90 len = 1;
91 seq_printf(m, "%*c", len, ' ');
92 }
93
94 #ifdef CONFIG_NUMA
95 /*
96 * These functions are for numa_maps but called in generic **maps seq_file
97 * ->start(), ->stop() ops.
98 *
99 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
100 * Each mempolicy object is controlled by reference counting. The problem here
101 * is how to avoid accessing dead mempolicy object.
102 *
103 * Because we're holding mmap_sem while reading seq_file, it's safe to access
104 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
105 *
106 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
107 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
108 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
109 * gurantee the task never exits under us. But taking task_lock() around
110 * get_vma_plicy() causes lock order problem.
111 *
112 * To access task->mempolicy without lock, we hold a reference count of an
113 * object pointed by task->mempolicy and remember it. This will guarantee
114 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
115 */
116 static void hold_task_mempolicy(struct proc_maps_private *priv)
117 {
118 struct task_struct *task = priv->task;
119
120 task_lock(task);
121 priv->task_mempolicy = task->mempolicy;
122 mpol_get(priv->task_mempolicy);
123 task_unlock(task);
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 mpol_put(priv->task_mempolicy);
128 }
129 #else
130 static void hold_task_mempolicy(struct proc_maps_private *priv)
131 {
132 }
133 static void release_task_mempolicy(struct proc_maps_private *priv)
134 {
135 }
136 #endif
137
138 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
139 {
140 if (vma && vma != priv->tail_vma) {
141 struct mm_struct *mm = vma->vm_mm;
142 release_task_mempolicy(priv);
143 up_read(&mm->mmap_sem);
144 mmput(mm);
145 }
146 }
147
148 static void *m_start(struct seq_file *m, loff_t *pos)
149 {
150 struct proc_maps_private *priv = m->private;
151 unsigned long last_addr = m->version;
152 struct mm_struct *mm;
153 struct vm_area_struct *vma, *tail_vma = NULL;
154 loff_t l = *pos;
155
156 /* Clear the per syscall fields in priv */
157 priv->task = NULL;
158 priv->tail_vma = NULL;
159
160 /*
161 * We remember last_addr rather than next_addr to hit with
162 * mmap_cache most of the time. We have zero last_addr at
163 * the beginning and also after lseek. We will have -1 last_addr
164 * after the end of the vmas.
165 */
166
167 if (last_addr == -1UL)
168 return NULL;
169
170 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
171 if (!priv->task)
172 return ERR_PTR(-ESRCH);
173
174 mm = mm_access(priv->task, PTRACE_MODE_READ);
175 if (!mm || IS_ERR(mm))
176 return mm;
177 down_read(&mm->mmap_sem);
178
179 tail_vma = get_gate_vma(priv->task->mm);
180 priv->tail_vma = tail_vma;
181 hold_task_mempolicy(priv);
182 /* Start with last addr hint */
183 vma = find_vma(mm, last_addr);
184 if (last_addr && vma) {
185 vma = vma->vm_next;
186 goto out;
187 }
188
189 /*
190 * Check the vma index is within the range and do
191 * sequential scan until m_index.
192 */
193 vma = NULL;
194 if ((unsigned long)l < mm->map_count) {
195 vma = mm->mmap;
196 while (l-- && vma)
197 vma = vma->vm_next;
198 goto out;
199 }
200
201 if (l != mm->map_count)
202 tail_vma = NULL; /* After gate vma */
203
204 out:
205 if (vma)
206 return vma;
207
208 release_task_mempolicy(priv);
209 /* End of vmas has been reached */
210 m->version = (tail_vma != NULL)? 0: -1UL;
211 up_read(&mm->mmap_sem);
212 mmput(mm);
213 return tail_vma;
214 }
215
216 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
217 {
218 struct proc_maps_private *priv = m->private;
219 struct vm_area_struct *vma = v;
220 struct vm_area_struct *tail_vma = priv->tail_vma;
221
222 (*pos)++;
223 if (vma && (vma != tail_vma) && vma->vm_next)
224 return vma->vm_next;
225 vma_stop(priv, vma);
226 return (vma != tail_vma)? tail_vma: NULL;
227 }
228
229 static void m_stop(struct seq_file *m, void *v)
230 {
231 struct proc_maps_private *priv = m->private;
232 struct vm_area_struct *vma = v;
233
234 if (!IS_ERR(vma))
235 vma_stop(priv, vma);
236 if (priv->task)
237 put_task_struct(priv->task);
238 }
239
240 static int do_maps_open(struct inode *inode, struct file *file,
241 const struct seq_operations *ops)
242 {
243 struct proc_maps_private *priv;
244 int ret = -ENOMEM;
245 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
246 if (priv) {
247 priv->pid = proc_pid(inode);
248 ret = seq_open(file, ops);
249 if (!ret) {
250 struct seq_file *m = file->private_data;
251 m->private = priv;
252 } else {
253 kfree(priv);
254 }
255 }
256 return ret;
257 }
258
259 static void
260 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
261 {
262 struct mm_struct *mm = vma->vm_mm;
263 struct file *file = vma->vm_file;
264 struct proc_maps_private *priv = m->private;
265 struct task_struct *task = priv->task;
266 vm_flags_t flags = vma->vm_flags;
267 unsigned long ino = 0;
268 unsigned long long pgoff = 0;
269 unsigned long start, end;
270 dev_t dev = 0;
271 int len;
272 const char *name = NULL;
273
274 if (file) {
275 struct inode *inode = file_inode(vma->vm_file);
276 dev = inode->i_sb->s_dev;
277 ino = inode->i_ino;
278 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
279 }
280
281 /* We don't show the stack guard page in /proc/maps */
282 start = vma->vm_start;
283 if (stack_guard_page_start(vma, start))
284 start += PAGE_SIZE;
285 end = vma->vm_end;
286 if (stack_guard_page_end(vma, end))
287 end -= PAGE_SIZE;
288
289 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
290 start,
291 end,
292 flags & VM_READ ? 'r' : '-',
293 flags & VM_WRITE ? 'w' : '-',
294 flags & VM_EXEC ? 'x' : '-',
295 flags & VM_MAYSHARE ? 's' : 'p',
296 pgoff,
297 MAJOR(dev), MINOR(dev), ino, &len);
298
299 /*
300 * Print the dentry name for named mappings, and a
301 * special [heap] marker for the heap:
302 */
303 if (file) {
304 pad_len_spaces(m, len);
305 seq_path(m, &file->f_path, "\n");
306 goto done;
307 }
308
309 name = arch_vma_name(vma);
310 if (!name) {
311 pid_t tid;
312
313 if (!mm) {
314 name = "[vdso]";
315 goto done;
316 }
317
318 if (vma->vm_start <= mm->brk &&
319 vma->vm_end >= mm->start_brk) {
320 name = "[heap]";
321 goto done;
322 }
323
324 tid = vm_is_stack(task, vma, is_pid);
325
326 if (tid != 0) {
327 /*
328 * Thread stack in /proc/PID/task/TID/maps or
329 * the main process stack.
330 */
331 if (!is_pid || (vma->vm_start <= mm->start_stack &&
332 vma->vm_end >= mm->start_stack)) {
333 name = "[stack]";
334 } else {
335 /* Thread stack in /proc/PID/maps */
336 pad_len_spaces(m, len);
337 seq_printf(m, "[stack:%d]", tid);
338 }
339 }
340 }
341
342 done:
343 if (name) {
344 pad_len_spaces(m, len);
345 seq_puts(m, name);
346 }
347 seq_putc(m, '\n');
348 }
349
350 static int show_map(struct seq_file *m, void *v, int is_pid)
351 {
352 struct vm_area_struct *vma = v;
353 struct proc_maps_private *priv = m->private;
354 struct task_struct *task = priv->task;
355
356 show_map_vma(m, vma, is_pid);
357
358 if (m->count < m->size) /* vma is copied successfully */
359 m->version = (vma != get_gate_vma(task->mm))
360 ? vma->vm_start : 0;
361 return 0;
362 }
363
364 static int show_pid_map(struct seq_file *m, void *v)
365 {
366 return show_map(m, v, 1);
367 }
368
369 static int show_tid_map(struct seq_file *m, void *v)
370 {
371 return show_map(m, v, 0);
372 }
373
374 static const struct seq_operations proc_pid_maps_op = {
375 .start = m_start,
376 .next = m_next,
377 .stop = m_stop,
378 .show = show_pid_map
379 };
380
381 static const struct seq_operations proc_tid_maps_op = {
382 .start = m_start,
383 .next = m_next,
384 .stop = m_stop,
385 .show = show_tid_map
386 };
387
388 static int pid_maps_open(struct inode *inode, struct file *file)
389 {
390 return do_maps_open(inode, file, &proc_pid_maps_op);
391 }
392
393 static int tid_maps_open(struct inode *inode, struct file *file)
394 {
395 return do_maps_open(inode, file, &proc_tid_maps_op);
396 }
397
398 const struct file_operations proc_pid_maps_operations = {
399 .open = pid_maps_open,
400 .read = seq_read,
401 .llseek = seq_lseek,
402 .release = seq_release_private,
403 };
404
405 const struct file_operations proc_tid_maps_operations = {
406 .open = tid_maps_open,
407 .read = seq_read,
408 .llseek = seq_lseek,
409 .release = seq_release_private,
410 };
411
412 /*
413 * Proportional Set Size(PSS): my share of RSS.
414 *
415 * PSS of a process is the count of pages it has in memory, where each
416 * page is divided by the number of processes sharing it. So if a
417 * process has 1000 pages all to itself, and 1000 shared with one other
418 * process, its PSS will be 1500.
419 *
420 * To keep (accumulated) division errors low, we adopt a 64bit
421 * fixed-point pss counter to minimize division errors. So (pss >>
422 * PSS_SHIFT) would be the real byte count.
423 *
424 * A shift of 12 before division means (assuming 4K page size):
425 * - 1M 3-user-pages add up to 8KB errors;
426 * - supports mapcount up to 2^24, or 16M;
427 * - supports PSS up to 2^52 bytes, or 4PB.
428 */
429 #define PSS_SHIFT 12
430
431 #ifdef CONFIG_PROC_PAGE_MONITOR
432 struct mem_size_stats {
433 struct vm_area_struct *vma;
434 unsigned long resident;
435 unsigned long shared_clean;
436 unsigned long shared_dirty;
437 unsigned long private_clean;
438 unsigned long private_dirty;
439 unsigned long referenced;
440 unsigned long anonymous;
441 unsigned long anonymous_thp;
442 unsigned long swap;
443 unsigned long nonlinear;
444 u64 pss;
445 };
446
447
448 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
449 unsigned long ptent_size, struct mm_walk *walk)
450 {
451 struct mem_size_stats *mss = walk->private;
452 struct vm_area_struct *vma = mss->vma;
453 pgoff_t pgoff = linear_page_index(vma, addr);
454 struct page *page = NULL;
455 int mapcount;
456
457 if (pte_present(ptent)) {
458 page = vm_normal_page(vma, addr, ptent);
459 } else if (is_swap_pte(ptent)) {
460 swp_entry_t swpent = pte_to_swp_entry(ptent);
461
462 if (!non_swap_entry(swpent))
463 mss->swap += ptent_size;
464 else if (is_migration_entry(swpent))
465 page = migration_entry_to_page(swpent);
466 } else if (pte_file(ptent)) {
467 if (pte_to_pgoff(ptent) != pgoff)
468 mss->nonlinear += ptent_size;
469 }
470
471 if (!page)
472 return;
473
474 if (PageAnon(page))
475 mss->anonymous += ptent_size;
476
477 if (page->index != pgoff)
478 mss->nonlinear += ptent_size;
479
480 mss->resident += ptent_size;
481 /* Accumulate the size in pages that have been accessed. */
482 if (pte_young(ptent) || PageReferenced(page))
483 mss->referenced += ptent_size;
484 mapcount = page_mapcount(page);
485 if (mapcount >= 2) {
486 if (pte_dirty(ptent) || PageDirty(page))
487 mss->shared_dirty += ptent_size;
488 else
489 mss->shared_clean += ptent_size;
490 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
491 } else {
492 if (pte_dirty(ptent) || PageDirty(page))
493 mss->private_dirty += ptent_size;
494 else
495 mss->private_clean += ptent_size;
496 mss->pss += (ptent_size << PSS_SHIFT);
497 }
498 }
499
500 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
501 struct mm_walk *walk)
502 {
503 struct mem_size_stats *mss = walk->private;
504 struct vm_area_struct *vma = mss->vma;
505 pte_t *pte;
506 spinlock_t *ptl;
507
508 if (pmd_trans_huge_lock(pmd, vma) == 1) {
509 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
510 spin_unlock(&walk->mm->page_table_lock);
511 mss->anonymous_thp += HPAGE_PMD_SIZE;
512 return 0;
513 }
514
515 if (pmd_trans_unstable(pmd))
516 return 0;
517 /*
518 * The mmap_sem held all the way back in m_start() is what
519 * keeps khugepaged out of here and from collapsing things
520 * in here.
521 */
522 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
523 for (; addr != end; pte++, addr += PAGE_SIZE)
524 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
525 pte_unmap_unlock(pte - 1, ptl);
526 cond_resched();
527 return 0;
528 }
529
530 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
531 {
532 /*
533 * Don't forget to update Documentation/ on changes.
534 */
535 static const char mnemonics[BITS_PER_LONG][2] = {
536 /*
537 * In case if we meet a flag we don't know about.
538 */
539 [0 ... (BITS_PER_LONG-1)] = "??",
540
541 [ilog2(VM_READ)] = "rd",
542 [ilog2(VM_WRITE)] = "wr",
543 [ilog2(VM_EXEC)] = "ex",
544 [ilog2(VM_SHARED)] = "sh",
545 [ilog2(VM_MAYREAD)] = "mr",
546 [ilog2(VM_MAYWRITE)] = "mw",
547 [ilog2(VM_MAYEXEC)] = "me",
548 [ilog2(VM_MAYSHARE)] = "ms",
549 [ilog2(VM_GROWSDOWN)] = "gd",
550 [ilog2(VM_PFNMAP)] = "pf",
551 [ilog2(VM_DENYWRITE)] = "dw",
552 [ilog2(VM_LOCKED)] = "lo",
553 [ilog2(VM_IO)] = "io",
554 [ilog2(VM_SEQ_READ)] = "sr",
555 [ilog2(VM_RAND_READ)] = "rr",
556 [ilog2(VM_DONTCOPY)] = "dc",
557 [ilog2(VM_DONTEXPAND)] = "de",
558 [ilog2(VM_ACCOUNT)] = "ac",
559 [ilog2(VM_NORESERVE)] = "nr",
560 [ilog2(VM_HUGETLB)] = "ht",
561 [ilog2(VM_NONLINEAR)] = "nl",
562 [ilog2(VM_ARCH_1)] = "ar",
563 [ilog2(VM_DONTDUMP)] = "dd",
564 #ifdef CONFIG_MEM_SOFT_DIRTY
565 [ilog2(VM_SOFTDIRTY)] = "sd",
566 #endif
567 [ilog2(VM_MIXEDMAP)] = "mm",
568 [ilog2(VM_HUGEPAGE)] = "hg",
569 [ilog2(VM_NOHUGEPAGE)] = "nh",
570 [ilog2(VM_MERGEABLE)] = "mg",
571 };
572 size_t i;
573
574 seq_puts(m, "VmFlags: ");
575 for (i = 0; i < BITS_PER_LONG; i++) {
576 if (vma->vm_flags & (1UL << i)) {
577 seq_printf(m, "%c%c ",
578 mnemonics[i][0], mnemonics[i][1]);
579 }
580 }
581 seq_putc(m, '\n');
582 }
583
584 static int show_smap(struct seq_file *m, void *v, int is_pid)
585 {
586 struct proc_maps_private *priv = m->private;
587 struct task_struct *task = priv->task;
588 struct vm_area_struct *vma = v;
589 struct mem_size_stats mss;
590 struct mm_walk smaps_walk = {
591 .pmd_entry = smaps_pte_range,
592 .mm = vma->vm_mm,
593 .private = &mss,
594 };
595
596 memset(&mss, 0, sizeof mss);
597 mss.vma = vma;
598 /* mmap_sem is held in m_start */
599 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
600 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
601
602 show_map_vma(m, vma, is_pid);
603
604 seq_printf(m,
605 "Size: %8lu kB\n"
606 "Rss: %8lu kB\n"
607 "Pss: %8lu kB\n"
608 "Shared_Clean: %8lu kB\n"
609 "Shared_Dirty: %8lu kB\n"
610 "Private_Clean: %8lu kB\n"
611 "Private_Dirty: %8lu kB\n"
612 "Referenced: %8lu kB\n"
613 "Anonymous: %8lu kB\n"
614 "AnonHugePages: %8lu kB\n"
615 "Swap: %8lu kB\n"
616 "KernelPageSize: %8lu kB\n"
617 "MMUPageSize: %8lu kB\n"
618 "Locked: %8lu kB\n",
619 (vma->vm_end - vma->vm_start) >> 10,
620 mss.resident >> 10,
621 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
622 mss.shared_clean >> 10,
623 mss.shared_dirty >> 10,
624 mss.private_clean >> 10,
625 mss.private_dirty >> 10,
626 mss.referenced >> 10,
627 mss.anonymous >> 10,
628 mss.anonymous_thp >> 10,
629 mss.swap >> 10,
630 vma_kernel_pagesize(vma) >> 10,
631 vma_mmu_pagesize(vma) >> 10,
632 (vma->vm_flags & VM_LOCKED) ?
633 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
634
635 if (vma->vm_flags & VM_NONLINEAR)
636 seq_printf(m, "Nonlinear: %8lu kB\n",
637 mss.nonlinear >> 10);
638
639 show_smap_vma_flags(m, vma);
640
641 if (m->count < m->size) /* vma is copied successfully */
642 m->version = (vma != get_gate_vma(task->mm))
643 ? vma->vm_start : 0;
644 return 0;
645 }
646
647 static int show_pid_smap(struct seq_file *m, void *v)
648 {
649 return show_smap(m, v, 1);
650 }
651
652 static int show_tid_smap(struct seq_file *m, void *v)
653 {
654 return show_smap(m, v, 0);
655 }
656
657 static const struct seq_operations proc_pid_smaps_op = {
658 .start = m_start,
659 .next = m_next,
660 .stop = m_stop,
661 .show = show_pid_smap
662 };
663
664 static const struct seq_operations proc_tid_smaps_op = {
665 .start = m_start,
666 .next = m_next,
667 .stop = m_stop,
668 .show = show_tid_smap
669 };
670
671 static int pid_smaps_open(struct inode *inode, struct file *file)
672 {
673 return do_maps_open(inode, file, &proc_pid_smaps_op);
674 }
675
676 static int tid_smaps_open(struct inode *inode, struct file *file)
677 {
678 return do_maps_open(inode, file, &proc_tid_smaps_op);
679 }
680
681 const struct file_operations proc_pid_smaps_operations = {
682 .open = pid_smaps_open,
683 .read = seq_read,
684 .llseek = seq_lseek,
685 .release = seq_release_private,
686 };
687
688 const struct file_operations proc_tid_smaps_operations = {
689 .open = tid_smaps_open,
690 .read = seq_read,
691 .llseek = seq_lseek,
692 .release = seq_release_private,
693 };
694
695 /*
696 * We do not want to have constant page-shift bits sitting in
697 * pagemap entries and are about to reuse them some time soon.
698 *
699 * Here's the "migration strategy":
700 * 1. when the system boots these bits remain what they are,
701 * but a warning about future change is printed in log;
702 * 2. once anyone clears soft-dirty bits via clear_refs file,
703 * these flag is set to denote, that user is aware of the
704 * new API and those page-shift bits change their meaning.
705 * The respective warning is printed in dmesg;
706 * 3. In a couple of releases we will remove all the mentions
707 * of page-shift in pagemap entries.
708 */
709
710 static bool soft_dirty_cleared __read_mostly;
711
712 enum clear_refs_types {
713 CLEAR_REFS_ALL = 1,
714 CLEAR_REFS_ANON,
715 CLEAR_REFS_MAPPED,
716 CLEAR_REFS_SOFT_DIRTY,
717 CLEAR_REFS_LAST,
718 };
719
720 struct clear_refs_private {
721 struct vm_area_struct *vma;
722 enum clear_refs_types type;
723 };
724
725 static inline void clear_soft_dirty(struct vm_area_struct *vma,
726 unsigned long addr, pte_t *pte)
727 {
728 #ifdef CONFIG_MEM_SOFT_DIRTY
729 /*
730 * The soft-dirty tracker uses #PF-s to catch writes
731 * to pages, so write-protect the pte as well. See the
732 * Documentation/vm/soft-dirty.txt for full description
733 * of how soft-dirty works.
734 */
735 pte_t ptent = *pte;
736
737 if (pte_present(ptent)) {
738 ptent = pte_wrprotect(ptent);
739 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
740 } else if (is_swap_pte(ptent)) {
741 ptent = pte_swp_clear_soft_dirty(ptent);
742 } else if (pte_file(ptent)) {
743 ptent = pte_file_clear_soft_dirty(ptent);
744 }
745
746 if (vma->vm_flags & VM_SOFTDIRTY)
747 vma->vm_flags &= ~VM_SOFTDIRTY;
748
749 set_pte_at(vma->vm_mm, addr, pte, ptent);
750 #endif
751 }
752
753 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
754 unsigned long end, struct mm_walk *walk)
755 {
756 struct clear_refs_private *cp = walk->private;
757 struct vm_area_struct *vma = cp->vma;
758 pte_t *pte, ptent;
759 spinlock_t *ptl;
760 struct page *page;
761
762 split_huge_page_pmd(vma, addr, pmd);
763 if (pmd_trans_unstable(pmd))
764 return 0;
765
766 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
767 for (; addr != end; pte++, addr += PAGE_SIZE) {
768 ptent = *pte;
769
770 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
771 clear_soft_dirty(vma, addr, pte);
772 continue;
773 }
774
775 if (!pte_present(ptent))
776 continue;
777
778 page = vm_normal_page(vma, addr, ptent);
779 if (!page)
780 continue;
781
782 /* Clear accessed and referenced bits. */
783 ptep_test_and_clear_young(vma, addr, pte);
784 ClearPageReferenced(page);
785 }
786 pte_unmap_unlock(pte - 1, ptl);
787 cond_resched();
788 return 0;
789 }
790
791 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
792 size_t count, loff_t *ppos)
793 {
794 struct task_struct *task;
795 char buffer[PROC_NUMBUF];
796 struct mm_struct *mm;
797 struct vm_area_struct *vma;
798 enum clear_refs_types type;
799 int itype;
800 int rv;
801
802 memset(buffer, 0, sizeof(buffer));
803 if (count > sizeof(buffer) - 1)
804 count = sizeof(buffer) - 1;
805 if (copy_from_user(buffer, buf, count))
806 return -EFAULT;
807 rv = kstrtoint(strstrip(buffer), 10, &itype);
808 if (rv < 0)
809 return rv;
810 type = (enum clear_refs_types)itype;
811 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
812 return -EINVAL;
813
814 if (type == CLEAR_REFS_SOFT_DIRTY) {
815 soft_dirty_cleared = true;
816 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
817 "See the linux/Documentation/vm/pagemap.txt for details.\n");
818 }
819
820 task = get_proc_task(file_inode(file));
821 if (!task)
822 return -ESRCH;
823 mm = get_task_mm(task);
824 if (mm) {
825 struct clear_refs_private cp = {
826 .type = type,
827 };
828 struct mm_walk clear_refs_walk = {
829 .pmd_entry = clear_refs_pte_range,
830 .mm = mm,
831 .private = &cp,
832 };
833 down_read(&mm->mmap_sem);
834 if (type == CLEAR_REFS_SOFT_DIRTY)
835 mmu_notifier_invalidate_range_start(mm, 0, -1);
836 for (vma = mm->mmap; vma; vma = vma->vm_next) {
837 cp.vma = vma;
838 if (is_vm_hugetlb_page(vma))
839 continue;
840 /*
841 * Writing 1 to /proc/pid/clear_refs affects all pages.
842 *
843 * Writing 2 to /proc/pid/clear_refs only affects
844 * Anonymous pages.
845 *
846 * Writing 3 to /proc/pid/clear_refs only affects file
847 * mapped pages.
848 */
849 if (type == CLEAR_REFS_ANON && vma->vm_file)
850 continue;
851 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
852 continue;
853 walk_page_range(vma->vm_start, vma->vm_end,
854 &clear_refs_walk);
855 }
856 if (type == CLEAR_REFS_SOFT_DIRTY)
857 mmu_notifier_invalidate_range_end(mm, 0, -1);
858 flush_tlb_mm(mm);
859 up_read(&mm->mmap_sem);
860 mmput(mm);
861 }
862 put_task_struct(task);
863
864 return count;
865 }
866
867 const struct file_operations proc_clear_refs_operations = {
868 .write = clear_refs_write,
869 .llseek = noop_llseek,
870 };
871
872 typedef struct {
873 u64 pme;
874 } pagemap_entry_t;
875
876 struct pagemapread {
877 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
878 pagemap_entry_t *buffer;
879 bool v2;
880 };
881
882 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
883 #define PAGEMAP_WALK_MASK (PMD_MASK)
884
885 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
886 #define PM_STATUS_BITS 3
887 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
888 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
889 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
890 #define PM_PSHIFT_BITS 6
891 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
892 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
893 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
894 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
895 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
896 /* in "new" pagemap pshift bits are occupied with more status bits */
897 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
898
899 #define __PM_SOFT_DIRTY (1LL)
900 #define PM_PRESENT PM_STATUS(4LL)
901 #define PM_SWAP PM_STATUS(2LL)
902 #define PM_FILE PM_STATUS(1LL)
903 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
904 #define PM_END_OF_BUFFER 1
905
906 static inline pagemap_entry_t make_pme(u64 val)
907 {
908 return (pagemap_entry_t) { .pme = val };
909 }
910
911 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
912 struct pagemapread *pm)
913 {
914 pm->buffer[pm->pos++] = *pme;
915 if (pm->pos >= pm->len)
916 return PM_END_OF_BUFFER;
917 return 0;
918 }
919
920 static int pagemap_pte_hole(unsigned long start, unsigned long end,
921 struct mm_walk *walk)
922 {
923 struct pagemapread *pm = walk->private;
924 unsigned long addr;
925 int err = 0;
926 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
927
928 for (addr = start; addr < end; addr += PAGE_SIZE) {
929 err = add_to_pagemap(addr, &pme, pm);
930 if (err)
931 break;
932 }
933 return err;
934 }
935
936 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
937 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
938 {
939 u64 frame, flags;
940 struct page *page = NULL;
941 int flags2 = 0;
942
943 if (pte_present(pte)) {
944 frame = pte_pfn(pte);
945 flags = PM_PRESENT;
946 page = vm_normal_page(vma, addr, pte);
947 if (pte_soft_dirty(pte))
948 flags2 |= __PM_SOFT_DIRTY;
949 } else if (is_swap_pte(pte)) {
950 swp_entry_t entry;
951 if (pte_swp_soft_dirty(pte))
952 flags2 |= __PM_SOFT_DIRTY;
953 entry = pte_to_swp_entry(pte);
954 frame = swp_type(entry) |
955 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
956 flags = PM_SWAP;
957 if (is_migration_entry(entry))
958 page = migration_entry_to_page(entry);
959 } else {
960 if (vma->vm_flags & VM_SOFTDIRTY)
961 flags2 |= __PM_SOFT_DIRTY;
962 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
963 return;
964 }
965
966 if (page && !PageAnon(page))
967 flags |= PM_FILE;
968 if ((vma->vm_flags & VM_SOFTDIRTY))
969 flags2 |= __PM_SOFT_DIRTY;
970
971 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
972 }
973
974 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
975 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
976 pmd_t pmd, int offset, int pmd_flags2)
977 {
978 /*
979 * Currently pmd for thp is always present because thp can not be
980 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
981 * This if-check is just to prepare for future implementation.
982 */
983 if (pmd_present(pmd))
984 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
985 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
986 else
987 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
988 }
989 #else
990 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
991 pmd_t pmd, int offset, int pmd_flags2)
992 {
993 }
994 #endif
995
996 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
997 struct mm_walk *walk)
998 {
999 struct vm_area_struct *vma;
1000 struct pagemapread *pm = walk->private;
1001 pte_t *pte;
1002 int err = 0;
1003 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1004
1005 /* find the first VMA at or above 'addr' */
1006 vma = find_vma(walk->mm, addr);
1007 if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
1008 int pmd_flags2;
1009
1010 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1011 pmd_flags2 = __PM_SOFT_DIRTY;
1012 else
1013 pmd_flags2 = 0;
1014
1015 for (; addr != end; addr += PAGE_SIZE) {
1016 unsigned long offset;
1017
1018 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1019 PAGE_SHIFT;
1020 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1021 err = add_to_pagemap(addr, &pme, pm);
1022 if (err)
1023 break;
1024 }
1025 spin_unlock(&walk->mm->page_table_lock);
1026 return err;
1027 }
1028
1029 if (pmd_trans_unstable(pmd))
1030 return 0;
1031 for (; addr != end; addr += PAGE_SIZE) {
1032 int flags2;
1033
1034 /* check to see if we've left 'vma' behind
1035 * and need a new, higher one */
1036 if (vma && (addr >= vma->vm_end)) {
1037 vma = find_vma(walk->mm, addr);
1038 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1039 flags2 = __PM_SOFT_DIRTY;
1040 else
1041 flags2 = 0;
1042 pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1043 }
1044
1045 /* check that 'vma' actually covers this address,
1046 * and that it isn't a huge page vma */
1047 if (vma && (vma->vm_start <= addr) &&
1048 !is_vm_hugetlb_page(vma)) {
1049 pte = pte_offset_map(pmd, addr);
1050 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1051 /* unmap before userspace copy */
1052 pte_unmap(pte);
1053 }
1054 err = add_to_pagemap(addr, &pme, pm);
1055 if (err)
1056 return err;
1057 }
1058
1059 cond_resched();
1060
1061 return err;
1062 }
1063
1064 #ifdef CONFIG_HUGETLB_PAGE
1065 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1066 pte_t pte, int offset, int flags2)
1067 {
1068 if (pte_present(pte))
1069 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
1070 PM_STATUS2(pm->v2, flags2) |
1071 PM_PRESENT);
1072 else
1073 *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
1074 PM_STATUS2(pm->v2, flags2));
1075 }
1076
1077 /* This function walks within one hugetlb entry in the single call */
1078 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1079 unsigned long addr, unsigned long end,
1080 struct mm_walk *walk)
1081 {
1082 struct pagemapread *pm = walk->private;
1083 struct vm_area_struct *vma;
1084 int err = 0;
1085 int flags2;
1086 pagemap_entry_t pme;
1087
1088 vma = find_vma(walk->mm, addr);
1089 WARN_ON_ONCE(!vma);
1090
1091 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1092 flags2 = __PM_SOFT_DIRTY;
1093 else
1094 flags2 = 0;
1095
1096 for (; addr != end; addr += PAGE_SIZE) {
1097 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1098 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1099 err = add_to_pagemap(addr, &pme, pm);
1100 if (err)
1101 return err;
1102 }
1103
1104 cond_resched();
1105
1106 return err;
1107 }
1108 #endif /* HUGETLB_PAGE */
1109
1110 /*
1111 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1112 *
1113 * For each page in the address space, this file contains one 64-bit entry
1114 * consisting of the following:
1115 *
1116 * Bits 0-54 page frame number (PFN) if present
1117 * Bits 0-4 swap type if swapped
1118 * Bits 5-54 swap offset if swapped
1119 * Bits 55-60 page shift (page size = 1<<page shift)
1120 * Bit 61 page is file-page or shared-anon
1121 * Bit 62 page swapped
1122 * Bit 63 page present
1123 *
1124 * If the page is not present but in swap, then the PFN contains an
1125 * encoding of the swap file number and the page's offset into the
1126 * swap. Unmapped pages return a null PFN. This allows determining
1127 * precisely which pages are mapped (or in swap) and comparing mapped
1128 * pages between processes.
1129 *
1130 * Efficient users of this interface will use /proc/pid/maps to
1131 * determine which areas of memory are actually mapped and llseek to
1132 * skip over unmapped regions.
1133 */
1134 static ssize_t pagemap_read(struct file *file, char __user *buf,
1135 size_t count, loff_t *ppos)
1136 {
1137 struct task_struct *task = get_proc_task(file_inode(file));
1138 struct mm_struct *mm;
1139 struct pagemapread pm;
1140 int ret = -ESRCH;
1141 struct mm_walk pagemap_walk = {};
1142 unsigned long src;
1143 unsigned long svpfn;
1144 unsigned long start_vaddr;
1145 unsigned long end_vaddr;
1146 int copied = 0;
1147
1148 if (!task)
1149 goto out;
1150
1151 ret = -EINVAL;
1152 /* file position must be aligned */
1153 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1154 goto out_task;
1155
1156 ret = 0;
1157 if (!count)
1158 goto out_task;
1159
1160 pm.v2 = soft_dirty_cleared;
1161 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1162 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1163 ret = -ENOMEM;
1164 if (!pm.buffer)
1165 goto out_task;
1166
1167 mm = mm_access(task, PTRACE_MODE_READ);
1168 ret = PTR_ERR(mm);
1169 if (!mm || IS_ERR(mm))
1170 goto out_free;
1171
1172 pagemap_walk.pmd_entry = pagemap_pte_range;
1173 pagemap_walk.pte_hole = pagemap_pte_hole;
1174 #ifdef CONFIG_HUGETLB_PAGE
1175 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1176 #endif
1177 pagemap_walk.mm = mm;
1178 pagemap_walk.private = &pm;
1179
1180 src = *ppos;
1181 svpfn = src / PM_ENTRY_BYTES;
1182 start_vaddr = svpfn << PAGE_SHIFT;
1183 end_vaddr = TASK_SIZE_OF(task);
1184
1185 /* watch out for wraparound */
1186 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1187 start_vaddr = end_vaddr;
1188
1189 /*
1190 * The odds are that this will stop walking way
1191 * before end_vaddr, because the length of the
1192 * user buffer is tracked in "pm", and the walk
1193 * will stop when we hit the end of the buffer.
1194 */
1195 ret = 0;
1196 while (count && (start_vaddr < end_vaddr)) {
1197 int len;
1198 unsigned long end;
1199
1200 pm.pos = 0;
1201 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1202 /* overflow ? */
1203 if (end < start_vaddr || end > end_vaddr)
1204 end = end_vaddr;
1205 down_read(&mm->mmap_sem);
1206 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1207 up_read(&mm->mmap_sem);
1208 start_vaddr = end;
1209
1210 len = min(count, PM_ENTRY_BYTES * pm.pos);
1211 if (copy_to_user(buf, pm.buffer, len)) {
1212 ret = -EFAULT;
1213 goto out_mm;
1214 }
1215 copied += len;
1216 buf += len;
1217 count -= len;
1218 }
1219 *ppos += copied;
1220 if (!ret || ret == PM_END_OF_BUFFER)
1221 ret = copied;
1222
1223 out_mm:
1224 mmput(mm);
1225 out_free:
1226 kfree(pm.buffer);
1227 out_task:
1228 put_task_struct(task);
1229 out:
1230 return ret;
1231 }
1232
1233 static int pagemap_open(struct inode *inode, struct file *file)
1234 {
1235 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1236 "to stop being page-shift some time soon. See the "
1237 "linux/Documentation/vm/pagemap.txt for details.\n");
1238 return 0;
1239 }
1240
1241 const struct file_operations proc_pagemap_operations = {
1242 .llseek = mem_lseek, /* borrow this */
1243 .read = pagemap_read,
1244 .open = pagemap_open,
1245 };
1246 #endif /* CONFIG_PROC_PAGE_MONITOR */
1247
1248 #ifdef CONFIG_NUMA
1249
1250 struct numa_maps {
1251 struct vm_area_struct *vma;
1252 unsigned long pages;
1253 unsigned long anon;
1254 unsigned long active;
1255 unsigned long writeback;
1256 unsigned long mapcount_max;
1257 unsigned long dirty;
1258 unsigned long swapcache;
1259 unsigned long node[MAX_NUMNODES];
1260 };
1261
1262 struct numa_maps_private {
1263 struct proc_maps_private proc_maps;
1264 struct numa_maps md;
1265 };
1266
1267 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1268 unsigned long nr_pages)
1269 {
1270 int count = page_mapcount(page);
1271
1272 md->pages += nr_pages;
1273 if (pte_dirty || PageDirty(page))
1274 md->dirty += nr_pages;
1275
1276 if (PageSwapCache(page))
1277 md->swapcache += nr_pages;
1278
1279 if (PageActive(page) || PageUnevictable(page))
1280 md->active += nr_pages;
1281
1282 if (PageWriteback(page))
1283 md->writeback += nr_pages;
1284
1285 if (PageAnon(page))
1286 md->anon += nr_pages;
1287
1288 if (count > md->mapcount_max)
1289 md->mapcount_max = count;
1290
1291 md->node[page_to_nid(page)] += nr_pages;
1292 }
1293
1294 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1295 unsigned long addr)
1296 {
1297 struct page *page;
1298 int nid;
1299
1300 if (!pte_present(pte))
1301 return NULL;
1302
1303 page = vm_normal_page(vma, addr, pte);
1304 if (!page)
1305 return NULL;
1306
1307 if (PageReserved(page))
1308 return NULL;
1309
1310 nid = page_to_nid(page);
1311 if (!node_isset(nid, node_states[N_MEMORY]))
1312 return NULL;
1313
1314 return page;
1315 }
1316
1317 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1318 unsigned long end, struct mm_walk *walk)
1319 {
1320 struct numa_maps *md;
1321 spinlock_t *ptl;
1322 pte_t *orig_pte;
1323 pte_t *pte;
1324
1325 md = walk->private;
1326
1327 if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1328 pte_t huge_pte = *(pte_t *)pmd;
1329 struct page *page;
1330
1331 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1332 if (page)
1333 gather_stats(page, md, pte_dirty(huge_pte),
1334 HPAGE_PMD_SIZE/PAGE_SIZE);
1335 spin_unlock(&walk->mm->page_table_lock);
1336 return 0;
1337 }
1338
1339 if (pmd_trans_unstable(pmd))
1340 return 0;
1341 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1342 do {
1343 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1344 if (!page)
1345 continue;
1346 gather_stats(page, md, pte_dirty(*pte), 1);
1347
1348 } while (pte++, addr += PAGE_SIZE, addr != end);
1349 pte_unmap_unlock(orig_pte, ptl);
1350 return 0;
1351 }
1352 #ifdef CONFIG_HUGETLB_PAGE
1353 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1354 unsigned long addr, unsigned long end, struct mm_walk *walk)
1355 {
1356 struct numa_maps *md;
1357 struct page *page;
1358
1359 if (pte_none(*pte))
1360 return 0;
1361
1362 page = pte_page(*pte);
1363 if (!page)
1364 return 0;
1365
1366 md = walk->private;
1367 gather_stats(page, md, pte_dirty(*pte), 1);
1368 return 0;
1369 }
1370
1371 #else
1372 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1373 unsigned long addr, unsigned long end, struct mm_walk *walk)
1374 {
1375 return 0;
1376 }
1377 #endif
1378
1379 /*
1380 * Display pages allocated per node and memory policy via /proc.
1381 */
1382 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1383 {
1384 struct numa_maps_private *numa_priv = m->private;
1385 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1386 struct vm_area_struct *vma = v;
1387 struct numa_maps *md = &numa_priv->md;
1388 struct file *file = vma->vm_file;
1389 struct task_struct *task = proc_priv->task;
1390 struct mm_struct *mm = vma->vm_mm;
1391 struct mm_walk walk = {};
1392 struct mempolicy *pol;
1393 char buffer[64];
1394 int nid;
1395
1396 if (!mm)
1397 return 0;
1398
1399 /* Ensure we start with an empty set of numa_maps statistics. */
1400 memset(md, 0, sizeof(*md));
1401
1402 md->vma = vma;
1403
1404 walk.hugetlb_entry = gather_hugetbl_stats;
1405 walk.pmd_entry = gather_pte_stats;
1406 walk.private = md;
1407 walk.mm = mm;
1408
1409 pol = get_vma_policy(task, vma, vma->vm_start);
1410 mpol_to_str(buffer, sizeof(buffer), pol);
1411 mpol_cond_put(pol);
1412
1413 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1414
1415 if (file) {
1416 seq_printf(m, " file=");
1417 seq_path(m, &file->f_path, "\n\t= ");
1418 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1419 seq_printf(m, " heap");
1420 } else {
1421 pid_t tid = vm_is_stack(task, vma, is_pid);
1422 if (tid != 0) {
1423 /*
1424 * Thread stack in /proc/PID/task/TID/maps or
1425 * the main process stack.
1426 */
1427 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1428 vma->vm_end >= mm->start_stack))
1429 seq_printf(m, " stack");
1430 else
1431 seq_printf(m, " stack:%d", tid);
1432 }
1433 }
1434
1435 if (is_vm_hugetlb_page(vma))
1436 seq_printf(m, " huge");
1437
1438 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1439
1440 if (!md->pages)
1441 goto out;
1442
1443 if (md->anon)
1444 seq_printf(m, " anon=%lu", md->anon);
1445
1446 if (md->dirty)
1447 seq_printf(m, " dirty=%lu", md->dirty);
1448
1449 if (md->pages != md->anon && md->pages != md->dirty)
1450 seq_printf(m, " mapped=%lu", md->pages);
1451
1452 if (md->mapcount_max > 1)
1453 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1454
1455 if (md->swapcache)
1456 seq_printf(m, " swapcache=%lu", md->swapcache);
1457
1458 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1459 seq_printf(m, " active=%lu", md->active);
1460
1461 if (md->writeback)
1462 seq_printf(m, " writeback=%lu", md->writeback);
1463
1464 for_each_node_state(nid, N_MEMORY)
1465 if (md->node[nid])
1466 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1467 out:
1468 seq_putc(m, '\n');
1469
1470 if (m->count < m->size)
1471 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1472 return 0;
1473 }
1474
1475 static int show_pid_numa_map(struct seq_file *m, void *v)
1476 {
1477 return show_numa_map(m, v, 1);
1478 }
1479
1480 static int show_tid_numa_map(struct seq_file *m, void *v)
1481 {
1482 return show_numa_map(m, v, 0);
1483 }
1484
1485 static const struct seq_operations proc_pid_numa_maps_op = {
1486 .start = m_start,
1487 .next = m_next,
1488 .stop = m_stop,
1489 .show = show_pid_numa_map,
1490 };
1491
1492 static const struct seq_operations proc_tid_numa_maps_op = {
1493 .start = m_start,
1494 .next = m_next,
1495 .stop = m_stop,
1496 .show = show_tid_numa_map,
1497 };
1498
1499 static int numa_maps_open(struct inode *inode, struct file *file,
1500 const struct seq_operations *ops)
1501 {
1502 struct numa_maps_private *priv;
1503 int ret = -ENOMEM;
1504 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1505 if (priv) {
1506 priv->proc_maps.pid = proc_pid(inode);
1507 ret = seq_open(file, ops);
1508 if (!ret) {
1509 struct seq_file *m = file->private_data;
1510 m->private = priv;
1511 } else {
1512 kfree(priv);
1513 }
1514 }
1515 return ret;
1516 }
1517
1518 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1519 {
1520 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1521 }
1522
1523 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1524 {
1525 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1526 }
1527
1528 const struct file_operations proc_pid_numa_maps_operations = {
1529 .open = pid_numa_maps_open,
1530 .read = seq_read,
1531 .llseek = seq_lseek,
1532 .release = seq_release_private,
1533 };
1534
1535 const struct file_operations proc_tid_numa_maps_operations = {
1536 .open = tid_numa_maps_open,
1537 .read = seq_read,
1538 .llseek = seq_lseek,
1539 .release = seq_release_private,
1540 };
1541 #endif /* CONFIG_NUMA */
This page took 0.061222 seconds and 6 git commands to generate.