mm: convert mm->nr_ptes to atomic_long_t
[deliverable/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/mmu_notifier.h>
15
16 #include <asm/elf.h>
17 #include <asm/uaccess.h>
18 #include <asm/tlbflush.h>
19 #include "internal.h"
20
21 void task_mem(struct seq_file *m, struct mm_struct *mm)
22 {
23 unsigned long data, text, lib, swap;
24 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
25
26 /*
27 * Note: to minimize their overhead, mm maintains hiwater_vm and
28 * hiwater_rss only when about to *lower* total_vm or rss. Any
29 * collector of these hiwater stats must therefore get total_vm
30 * and rss too, which will usually be the higher. Barriers? not
31 * worth the effort, such snapshots can always be inconsistent.
32 */
33 hiwater_vm = total_vm = mm->total_vm;
34 if (hiwater_vm < mm->hiwater_vm)
35 hiwater_vm = mm->hiwater_vm;
36 hiwater_rss = total_rss = get_mm_rss(mm);
37 if (hiwater_rss < mm->hiwater_rss)
38 hiwater_rss = mm->hiwater_rss;
39
40 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
41 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
42 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
43 swap = get_mm_counter(mm, MM_SWAPENTS);
44 seq_printf(m,
45 "VmPeak:\t%8lu kB\n"
46 "VmSize:\t%8lu kB\n"
47 "VmLck:\t%8lu kB\n"
48 "VmPin:\t%8lu kB\n"
49 "VmHWM:\t%8lu kB\n"
50 "VmRSS:\t%8lu kB\n"
51 "VmData:\t%8lu kB\n"
52 "VmStk:\t%8lu kB\n"
53 "VmExe:\t%8lu kB\n"
54 "VmLib:\t%8lu kB\n"
55 "VmPTE:\t%8lu kB\n"
56 "VmSwap:\t%8lu kB\n",
57 hiwater_vm << (PAGE_SHIFT-10),
58 total_vm << (PAGE_SHIFT-10),
59 mm->locked_vm << (PAGE_SHIFT-10),
60 mm->pinned_vm << (PAGE_SHIFT-10),
61 hiwater_rss << (PAGE_SHIFT-10),
62 total_rss << (PAGE_SHIFT-10),
63 data << (PAGE_SHIFT-10),
64 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
65 (PTRS_PER_PTE * sizeof(pte_t) *
66 atomic_long_read(&mm->nr_ptes)) >> 10,
67 swap << (PAGE_SHIFT-10));
68 }
69
70 unsigned long task_vsize(struct mm_struct *mm)
71 {
72 return PAGE_SIZE * mm->total_vm;
73 }
74
75 unsigned long task_statm(struct mm_struct *mm,
76 unsigned long *shared, unsigned long *text,
77 unsigned long *data, unsigned long *resident)
78 {
79 *shared = get_mm_counter(mm, MM_FILEPAGES);
80 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
81 >> PAGE_SHIFT;
82 *data = mm->total_vm - mm->shared_vm;
83 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
84 return mm->total_vm;
85 }
86
87 static void pad_len_spaces(struct seq_file *m, int len)
88 {
89 len = 25 + sizeof(void*) * 6 - len;
90 if (len < 1)
91 len = 1;
92 seq_printf(m, "%*c", len, ' ');
93 }
94
95 #ifdef CONFIG_NUMA
96 /*
97 * These functions are for numa_maps but called in generic **maps seq_file
98 * ->start(), ->stop() ops.
99 *
100 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
101 * Each mempolicy object is controlled by reference counting. The problem here
102 * is how to avoid accessing dead mempolicy object.
103 *
104 * Because we're holding mmap_sem while reading seq_file, it's safe to access
105 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
106 *
107 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
108 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
109 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
110 * gurantee the task never exits under us. But taking task_lock() around
111 * get_vma_plicy() causes lock order problem.
112 *
113 * To access task->mempolicy without lock, we hold a reference count of an
114 * object pointed by task->mempolicy and remember it. This will guarantee
115 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
116 */
117 static void hold_task_mempolicy(struct proc_maps_private *priv)
118 {
119 struct task_struct *task = priv->task;
120
121 task_lock(task);
122 priv->task_mempolicy = task->mempolicy;
123 mpol_get(priv->task_mempolicy);
124 task_unlock(task);
125 }
126 static void release_task_mempolicy(struct proc_maps_private *priv)
127 {
128 mpol_put(priv->task_mempolicy);
129 }
130 #else
131 static void hold_task_mempolicy(struct proc_maps_private *priv)
132 {
133 }
134 static void release_task_mempolicy(struct proc_maps_private *priv)
135 {
136 }
137 #endif
138
139 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
140 {
141 if (vma && vma != priv->tail_vma) {
142 struct mm_struct *mm = vma->vm_mm;
143 release_task_mempolicy(priv);
144 up_read(&mm->mmap_sem);
145 mmput(mm);
146 }
147 }
148
149 static void *m_start(struct seq_file *m, loff_t *pos)
150 {
151 struct proc_maps_private *priv = m->private;
152 unsigned long last_addr = m->version;
153 struct mm_struct *mm;
154 struct vm_area_struct *vma, *tail_vma = NULL;
155 loff_t l = *pos;
156
157 /* Clear the per syscall fields in priv */
158 priv->task = NULL;
159 priv->tail_vma = NULL;
160
161 /*
162 * We remember last_addr rather than next_addr to hit with
163 * mmap_cache most of the time. We have zero last_addr at
164 * the beginning and also after lseek. We will have -1 last_addr
165 * after the end of the vmas.
166 */
167
168 if (last_addr == -1UL)
169 return NULL;
170
171 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
172 if (!priv->task)
173 return ERR_PTR(-ESRCH);
174
175 mm = mm_access(priv->task, PTRACE_MODE_READ);
176 if (!mm || IS_ERR(mm))
177 return mm;
178 down_read(&mm->mmap_sem);
179
180 tail_vma = get_gate_vma(priv->task->mm);
181 priv->tail_vma = tail_vma;
182 hold_task_mempolicy(priv);
183 /* Start with last addr hint */
184 vma = find_vma(mm, last_addr);
185 if (last_addr && vma) {
186 vma = vma->vm_next;
187 goto out;
188 }
189
190 /*
191 * Check the vma index is within the range and do
192 * sequential scan until m_index.
193 */
194 vma = NULL;
195 if ((unsigned long)l < mm->map_count) {
196 vma = mm->mmap;
197 while (l-- && vma)
198 vma = vma->vm_next;
199 goto out;
200 }
201
202 if (l != mm->map_count)
203 tail_vma = NULL; /* After gate vma */
204
205 out:
206 if (vma)
207 return vma;
208
209 release_task_mempolicy(priv);
210 /* End of vmas has been reached */
211 m->version = (tail_vma != NULL)? 0: -1UL;
212 up_read(&mm->mmap_sem);
213 mmput(mm);
214 return tail_vma;
215 }
216
217 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
218 {
219 struct proc_maps_private *priv = m->private;
220 struct vm_area_struct *vma = v;
221 struct vm_area_struct *tail_vma = priv->tail_vma;
222
223 (*pos)++;
224 if (vma && (vma != tail_vma) && vma->vm_next)
225 return vma->vm_next;
226 vma_stop(priv, vma);
227 return (vma != tail_vma)? tail_vma: NULL;
228 }
229
230 static void m_stop(struct seq_file *m, void *v)
231 {
232 struct proc_maps_private *priv = m->private;
233 struct vm_area_struct *vma = v;
234
235 if (!IS_ERR(vma))
236 vma_stop(priv, vma);
237 if (priv->task)
238 put_task_struct(priv->task);
239 }
240
241 static int do_maps_open(struct inode *inode, struct file *file,
242 const struct seq_operations *ops)
243 {
244 struct proc_maps_private *priv;
245 int ret = -ENOMEM;
246 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
247 if (priv) {
248 priv->pid = proc_pid(inode);
249 ret = seq_open(file, ops);
250 if (!ret) {
251 struct seq_file *m = file->private_data;
252 m->private = priv;
253 } else {
254 kfree(priv);
255 }
256 }
257 return ret;
258 }
259
260 static void
261 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
262 {
263 struct mm_struct *mm = vma->vm_mm;
264 struct file *file = vma->vm_file;
265 struct proc_maps_private *priv = m->private;
266 struct task_struct *task = priv->task;
267 vm_flags_t flags = vma->vm_flags;
268 unsigned long ino = 0;
269 unsigned long long pgoff = 0;
270 unsigned long start, end;
271 dev_t dev = 0;
272 int len;
273 const char *name = NULL;
274
275 if (file) {
276 struct inode *inode = file_inode(vma->vm_file);
277 dev = inode->i_sb->s_dev;
278 ino = inode->i_ino;
279 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
280 }
281
282 /* We don't show the stack guard page in /proc/maps */
283 start = vma->vm_start;
284 if (stack_guard_page_start(vma, start))
285 start += PAGE_SIZE;
286 end = vma->vm_end;
287 if (stack_guard_page_end(vma, end))
288 end -= PAGE_SIZE;
289
290 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
291 start,
292 end,
293 flags & VM_READ ? 'r' : '-',
294 flags & VM_WRITE ? 'w' : '-',
295 flags & VM_EXEC ? 'x' : '-',
296 flags & VM_MAYSHARE ? 's' : 'p',
297 pgoff,
298 MAJOR(dev), MINOR(dev), ino, &len);
299
300 /*
301 * Print the dentry name for named mappings, and a
302 * special [heap] marker for the heap:
303 */
304 if (file) {
305 pad_len_spaces(m, len);
306 seq_path(m, &file->f_path, "\n");
307 goto done;
308 }
309
310 name = arch_vma_name(vma);
311 if (!name) {
312 pid_t tid;
313
314 if (!mm) {
315 name = "[vdso]";
316 goto done;
317 }
318
319 if (vma->vm_start <= mm->brk &&
320 vma->vm_end >= mm->start_brk) {
321 name = "[heap]";
322 goto done;
323 }
324
325 tid = vm_is_stack(task, vma, is_pid);
326
327 if (tid != 0) {
328 /*
329 * Thread stack in /proc/PID/task/TID/maps or
330 * the main process stack.
331 */
332 if (!is_pid || (vma->vm_start <= mm->start_stack &&
333 vma->vm_end >= mm->start_stack)) {
334 name = "[stack]";
335 } else {
336 /* Thread stack in /proc/PID/maps */
337 pad_len_spaces(m, len);
338 seq_printf(m, "[stack:%d]", tid);
339 }
340 }
341 }
342
343 done:
344 if (name) {
345 pad_len_spaces(m, len);
346 seq_puts(m, name);
347 }
348 seq_putc(m, '\n');
349 }
350
351 static int show_map(struct seq_file *m, void *v, int is_pid)
352 {
353 struct vm_area_struct *vma = v;
354 struct proc_maps_private *priv = m->private;
355 struct task_struct *task = priv->task;
356
357 show_map_vma(m, vma, is_pid);
358
359 if (m->count < m->size) /* vma is copied successfully */
360 m->version = (vma != get_gate_vma(task->mm))
361 ? vma->vm_start : 0;
362 return 0;
363 }
364
365 static int show_pid_map(struct seq_file *m, void *v)
366 {
367 return show_map(m, v, 1);
368 }
369
370 static int show_tid_map(struct seq_file *m, void *v)
371 {
372 return show_map(m, v, 0);
373 }
374
375 static const struct seq_operations proc_pid_maps_op = {
376 .start = m_start,
377 .next = m_next,
378 .stop = m_stop,
379 .show = show_pid_map
380 };
381
382 static const struct seq_operations proc_tid_maps_op = {
383 .start = m_start,
384 .next = m_next,
385 .stop = m_stop,
386 .show = show_tid_map
387 };
388
389 static int pid_maps_open(struct inode *inode, struct file *file)
390 {
391 return do_maps_open(inode, file, &proc_pid_maps_op);
392 }
393
394 static int tid_maps_open(struct inode *inode, struct file *file)
395 {
396 return do_maps_open(inode, file, &proc_tid_maps_op);
397 }
398
399 const struct file_operations proc_pid_maps_operations = {
400 .open = pid_maps_open,
401 .read = seq_read,
402 .llseek = seq_lseek,
403 .release = seq_release_private,
404 };
405
406 const struct file_operations proc_tid_maps_operations = {
407 .open = tid_maps_open,
408 .read = seq_read,
409 .llseek = seq_lseek,
410 .release = seq_release_private,
411 };
412
413 /*
414 * Proportional Set Size(PSS): my share of RSS.
415 *
416 * PSS of a process is the count of pages it has in memory, where each
417 * page is divided by the number of processes sharing it. So if a
418 * process has 1000 pages all to itself, and 1000 shared with one other
419 * process, its PSS will be 1500.
420 *
421 * To keep (accumulated) division errors low, we adopt a 64bit
422 * fixed-point pss counter to minimize division errors. So (pss >>
423 * PSS_SHIFT) would be the real byte count.
424 *
425 * A shift of 12 before division means (assuming 4K page size):
426 * - 1M 3-user-pages add up to 8KB errors;
427 * - supports mapcount up to 2^24, or 16M;
428 * - supports PSS up to 2^52 bytes, or 4PB.
429 */
430 #define PSS_SHIFT 12
431
432 #ifdef CONFIG_PROC_PAGE_MONITOR
433 struct mem_size_stats {
434 struct vm_area_struct *vma;
435 unsigned long resident;
436 unsigned long shared_clean;
437 unsigned long shared_dirty;
438 unsigned long private_clean;
439 unsigned long private_dirty;
440 unsigned long referenced;
441 unsigned long anonymous;
442 unsigned long anonymous_thp;
443 unsigned long swap;
444 unsigned long nonlinear;
445 u64 pss;
446 };
447
448
449 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
450 unsigned long ptent_size, struct mm_walk *walk)
451 {
452 struct mem_size_stats *mss = walk->private;
453 struct vm_area_struct *vma = mss->vma;
454 pgoff_t pgoff = linear_page_index(vma, addr);
455 struct page *page = NULL;
456 int mapcount;
457
458 if (pte_present(ptent)) {
459 page = vm_normal_page(vma, addr, ptent);
460 } else if (is_swap_pte(ptent)) {
461 swp_entry_t swpent = pte_to_swp_entry(ptent);
462
463 if (!non_swap_entry(swpent))
464 mss->swap += ptent_size;
465 else if (is_migration_entry(swpent))
466 page = migration_entry_to_page(swpent);
467 } else if (pte_file(ptent)) {
468 if (pte_to_pgoff(ptent) != pgoff)
469 mss->nonlinear += ptent_size;
470 }
471
472 if (!page)
473 return;
474
475 if (PageAnon(page))
476 mss->anonymous += ptent_size;
477
478 if (page->index != pgoff)
479 mss->nonlinear += ptent_size;
480
481 mss->resident += ptent_size;
482 /* Accumulate the size in pages that have been accessed. */
483 if (pte_young(ptent) || PageReferenced(page))
484 mss->referenced += ptent_size;
485 mapcount = page_mapcount(page);
486 if (mapcount >= 2) {
487 if (pte_dirty(ptent) || PageDirty(page))
488 mss->shared_dirty += ptent_size;
489 else
490 mss->shared_clean += ptent_size;
491 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
492 } else {
493 if (pte_dirty(ptent) || PageDirty(page))
494 mss->private_dirty += ptent_size;
495 else
496 mss->private_clean += ptent_size;
497 mss->pss += (ptent_size << PSS_SHIFT);
498 }
499 }
500
501 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
502 struct mm_walk *walk)
503 {
504 struct mem_size_stats *mss = walk->private;
505 struct vm_area_struct *vma = mss->vma;
506 pte_t *pte;
507 spinlock_t *ptl;
508
509 if (pmd_trans_huge_lock(pmd, vma) == 1) {
510 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
511 spin_unlock(&walk->mm->page_table_lock);
512 mss->anonymous_thp += HPAGE_PMD_SIZE;
513 return 0;
514 }
515
516 if (pmd_trans_unstable(pmd))
517 return 0;
518 /*
519 * The mmap_sem held all the way back in m_start() is what
520 * keeps khugepaged out of here and from collapsing things
521 * in here.
522 */
523 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
524 for (; addr != end; pte++, addr += PAGE_SIZE)
525 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
526 pte_unmap_unlock(pte - 1, ptl);
527 cond_resched();
528 return 0;
529 }
530
531 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
532 {
533 /*
534 * Don't forget to update Documentation/ on changes.
535 */
536 static const char mnemonics[BITS_PER_LONG][2] = {
537 /*
538 * In case if we meet a flag we don't know about.
539 */
540 [0 ... (BITS_PER_LONG-1)] = "??",
541
542 [ilog2(VM_READ)] = "rd",
543 [ilog2(VM_WRITE)] = "wr",
544 [ilog2(VM_EXEC)] = "ex",
545 [ilog2(VM_SHARED)] = "sh",
546 [ilog2(VM_MAYREAD)] = "mr",
547 [ilog2(VM_MAYWRITE)] = "mw",
548 [ilog2(VM_MAYEXEC)] = "me",
549 [ilog2(VM_MAYSHARE)] = "ms",
550 [ilog2(VM_GROWSDOWN)] = "gd",
551 [ilog2(VM_PFNMAP)] = "pf",
552 [ilog2(VM_DENYWRITE)] = "dw",
553 [ilog2(VM_LOCKED)] = "lo",
554 [ilog2(VM_IO)] = "io",
555 [ilog2(VM_SEQ_READ)] = "sr",
556 [ilog2(VM_RAND_READ)] = "rr",
557 [ilog2(VM_DONTCOPY)] = "dc",
558 [ilog2(VM_DONTEXPAND)] = "de",
559 [ilog2(VM_ACCOUNT)] = "ac",
560 [ilog2(VM_NORESERVE)] = "nr",
561 [ilog2(VM_HUGETLB)] = "ht",
562 [ilog2(VM_NONLINEAR)] = "nl",
563 [ilog2(VM_ARCH_1)] = "ar",
564 [ilog2(VM_DONTDUMP)] = "dd",
565 #ifdef CONFIG_MEM_SOFT_DIRTY
566 [ilog2(VM_SOFTDIRTY)] = "sd",
567 #endif
568 [ilog2(VM_MIXEDMAP)] = "mm",
569 [ilog2(VM_HUGEPAGE)] = "hg",
570 [ilog2(VM_NOHUGEPAGE)] = "nh",
571 [ilog2(VM_MERGEABLE)] = "mg",
572 };
573 size_t i;
574
575 seq_puts(m, "VmFlags: ");
576 for (i = 0; i < BITS_PER_LONG; i++) {
577 if (vma->vm_flags & (1UL << i)) {
578 seq_printf(m, "%c%c ",
579 mnemonics[i][0], mnemonics[i][1]);
580 }
581 }
582 seq_putc(m, '\n');
583 }
584
585 static int show_smap(struct seq_file *m, void *v, int is_pid)
586 {
587 struct proc_maps_private *priv = m->private;
588 struct task_struct *task = priv->task;
589 struct vm_area_struct *vma = v;
590 struct mem_size_stats mss;
591 struct mm_walk smaps_walk = {
592 .pmd_entry = smaps_pte_range,
593 .mm = vma->vm_mm,
594 .private = &mss,
595 };
596
597 memset(&mss, 0, sizeof mss);
598 mss.vma = vma;
599 /* mmap_sem is held in m_start */
600 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
601 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
602
603 show_map_vma(m, vma, is_pid);
604
605 seq_printf(m,
606 "Size: %8lu kB\n"
607 "Rss: %8lu kB\n"
608 "Pss: %8lu kB\n"
609 "Shared_Clean: %8lu kB\n"
610 "Shared_Dirty: %8lu kB\n"
611 "Private_Clean: %8lu kB\n"
612 "Private_Dirty: %8lu kB\n"
613 "Referenced: %8lu kB\n"
614 "Anonymous: %8lu kB\n"
615 "AnonHugePages: %8lu kB\n"
616 "Swap: %8lu kB\n"
617 "KernelPageSize: %8lu kB\n"
618 "MMUPageSize: %8lu kB\n"
619 "Locked: %8lu kB\n",
620 (vma->vm_end - vma->vm_start) >> 10,
621 mss.resident >> 10,
622 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
623 mss.shared_clean >> 10,
624 mss.shared_dirty >> 10,
625 mss.private_clean >> 10,
626 mss.private_dirty >> 10,
627 mss.referenced >> 10,
628 mss.anonymous >> 10,
629 mss.anonymous_thp >> 10,
630 mss.swap >> 10,
631 vma_kernel_pagesize(vma) >> 10,
632 vma_mmu_pagesize(vma) >> 10,
633 (vma->vm_flags & VM_LOCKED) ?
634 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
635
636 if (vma->vm_flags & VM_NONLINEAR)
637 seq_printf(m, "Nonlinear: %8lu kB\n",
638 mss.nonlinear >> 10);
639
640 show_smap_vma_flags(m, vma);
641
642 if (m->count < m->size) /* vma is copied successfully */
643 m->version = (vma != get_gate_vma(task->mm))
644 ? vma->vm_start : 0;
645 return 0;
646 }
647
648 static int show_pid_smap(struct seq_file *m, void *v)
649 {
650 return show_smap(m, v, 1);
651 }
652
653 static int show_tid_smap(struct seq_file *m, void *v)
654 {
655 return show_smap(m, v, 0);
656 }
657
658 static const struct seq_operations proc_pid_smaps_op = {
659 .start = m_start,
660 .next = m_next,
661 .stop = m_stop,
662 .show = show_pid_smap
663 };
664
665 static const struct seq_operations proc_tid_smaps_op = {
666 .start = m_start,
667 .next = m_next,
668 .stop = m_stop,
669 .show = show_tid_smap
670 };
671
672 static int pid_smaps_open(struct inode *inode, struct file *file)
673 {
674 return do_maps_open(inode, file, &proc_pid_smaps_op);
675 }
676
677 static int tid_smaps_open(struct inode *inode, struct file *file)
678 {
679 return do_maps_open(inode, file, &proc_tid_smaps_op);
680 }
681
682 const struct file_operations proc_pid_smaps_operations = {
683 .open = pid_smaps_open,
684 .read = seq_read,
685 .llseek = seq_lseek,
686 .release = seq_release_private,
687 };
688
689 const struct file_operations proc_tid_smaps_operations = {
690 .open = tid_smaps_open,
691 .read = seq_read,
692 .llseek = seq_lseek,
693 .release = seq_release_private,
694 };
695
696 /*
697 * We do not want to have constant page-shift bits sitting in
698 * pagemap entries and are about to reuse them some time soon.
699 *
700 * Here's the "migration strategy":
701 * 1. when the system boots these bits remain what they are,
702 * but a warning about future change is printed in log;
703 * 2. once anyone clears soft-dirty bits via clear_refs file,
704 * these flag is set to denote, that user is aware of the
705 * new API and those page-shift bits change their meaning.
706 * The respective warning is printed in dmesg;
707 * 3. In a couple of releases we will remove all the mentions
708 * of page-shift in pagemap entries.
709 */
710
711 static bool soft_dirty_cleared __read_mostly;
712
713 enum clear_refs_types {
714 CLEAR_REFS_ALL = 1,
715 CLEAR_REFS_ANON,
716 CLEAR_REFS_MAPPED,
717 CLEAR_REFS_SOFT_DIRTY,
718 CLEAR_REFS_LAST,
719 };
720
721 struct clear_refs_private {
722 struct vm_area_struct *vma;
723 enum clear_refs_types type;
724 };
725
726 static inline void clear_soft_dirty(struct vm_area_struct *vma,
727 unsigned long addr, pte_t *pte)
728 {
729 #ifdef CONFIG_MEM_SOFT_DIRTY
730 /*
731 * The soft-dirty tracker uses #PF-s to catch writes
732 * to pages, so write-protect the pte as well. See the
733 * Documentation/vm/soft-dirty.txt for full description
734 * of how soft-dirty works.
735 */
736 pte_t ptent = *pte;
737
738 if (pte_present(ptent)) {
739 ptent = pte_wrprotect(ptent);
740 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
741 } else if (is_swap_pte(ptent)) {
742 ptent = pte_swp_clear_soft_dirty(ptent);
743 } else if (pte_file(ptent)) {
744 ptent = pte_file_clear_soft_dirty(ptent);
745 }
746
747 if (vma->vm_flags & VM_SOFTDIRTY)
748 vma->vm_flags &= ~VM_SOFTDIRTY;
749
750 set_pte_at(vma->vm_mm, addr, pte, ptent);
751 #endif
752 }
753
754 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
755 unsigned long end, struct mm_walk *walk)
756 {
757 struct clear_refs_private *cp = walk->private;
758 struct vm_area_struct *vma = cp->vma;
759 pte_t *pte, ptent;
760 spinlock_t *ptl;
761 struct page *page;
762
763 split_huge_page_pmd(vma, addr, pmd);
764 if (pmd_trans_unstable(pmd))
765 return 0;
766
767 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
768 for (; addr != end; pte++, addr += PAGE_SIZE) {
769 ptent = *pte;
770
771 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
772 clear_soft_dirty(vma, addr, pte);
773 continue;
774 }
775
776 if (!pte_present(ptent))
777 continue;
778
779 page = vm_normal_page(vma, addr, ptent);
780 if (!page)
781 continue;
782
783 /* Clear accessed and referenced bits. */
784 ptep_test_and_clear_young(vma, addr, pte);
785 ClearPageReferenced(page);
786 }
787 pte_unmap_unlock(pte - 1, ptl);
788 cond_resched();
789 return 0;
790 }
791
792 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
793 size_t count, loff_t *ppos)
794 {
795 struct task_struct *task;
796 char buffer[PROC_NUMBUF];
797 struct mm_struct *mm;
798 struct vm_area_struct *vma;
799 enum clear_refs_types type;
800 int itype;
801 int rv;
802
803 memset(buffer, 0, sizeof(buffer));
804 if (count > sizeof(buffer) - 1)
805 count = sizeof(buffer) - 1;
806 if (copy_from_user(buffer, buf, count))
807 return -EFAULT;
808 rv = kstrtoint(strstrip(buffer), 10, &itype);
809 if (rv < 0)
810 return rv;
811 type = (enum clear_refs_types)itype;
812 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
813 return -EINVAL;
814
815 if (type == CLEAR_REFS_SOFT_DIRTY) {
816 soft_dirty_cleared = true;
817 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
818 "See the linux/Documentation/vm/pagemap.txt for details.\n");
819 }
820
821 task = get_proc_task(file_inode(file));
822 if (!task)
823 return -ESRCH;
824 mm = get_task_mm(task);
825 if (mm) {
826 struct clear_refs_private cp = {
827 .type = type,
828 };
829 struct mm_walk clear_refs_walk = {
830 .pmd_entry = clear_refs_pte_range,
831 .mm = mm,
832 .private = &cp,
833 };
834 down_read(&mm->mmap_sem);
835 if (type == CLEAR_REFS_SOFT_DIRTY)
836 mmu_notifier_invalidate_range_start(mm, 0, -1);
837 for (vma = mm->mmap; vma; vma = vma->vm_next) {
838 cp.vma = vma;
839 if (is_vm_hugetlb_page(vma))
840 continue;
841 /*
842 * Writing 1 to /proc/pid/clear_refs affects all pages.
843 *
844 * Writing 2 to /proc/pid/clear_refs only affects
845 * Anonymous pages.
846 *
847 * Writing 3 to /proc/pid/clear_refs only affects file
848 * mapped pages.
849 */
850 if (type == CLEAR_REFS_ANON && vma->vm_file)
851 continue;
852 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
853 continue;
854 walk_page_range(vma->vm_start, vma->vm_end,
855 &clear_refs_walk);
856 }
857 if (type == CLEAR_REFS_SOFT_DIRTY)
858 mmu_notifier_invalidate_range_end(mm, 0, -1);
859 flush_tlb_mm(mm);
860 up_read(&mm->mmap_sem);
861 mmput(mm);
862 }
863 put_task_struct(task);
864
865 return count;
866 }
867
868 const struct file_operations proc_clear_refs_operations = {
869 .write = clear_refs_write,
870 .llseek = noop_llseek,
871 };
872
873 typedef struct {
874 u64 pme;
875 } pagemap_entry_t;
876
877 struct pagemapread {
878 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
879 pagemap_entry_t *buffer;
880 bool v2;
881 };
882
883 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
884 #define PAGEMAP_WALK_MASK (PMD_MASK)
885
886 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
887 #define PM_STATUS_BITS 3
888 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
889 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
890 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
891 #define PM_PSHIFT_BITS 6
892 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
893 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
894 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
895 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
896 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
897 /* in "new" pagemap pshift bits are occupied with more status bits */
898 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
899
900 #define __PM_SOFT_DIRTY (1LL)
901 #define PM_PRESENT PM_STATUS(4LL)
902 #define PM_SWAP PM_STATUS(2LL)
903 #define PM_FILE PM_STATUS(1LL)
904 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
905 #define PM_END_OF_BUFFER 1
906
907 static inline pagemap_entry_t make_pme(u64 val)
908 {
909 return (pagemap_entry_t) { .pme = val };
910 }
911
912 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
913 struct pagemapread *pm)
914 {
915 pm->buffer[pm->pos++] = *pme;
916 if (pm->pos >= pm->len)
917 return PM_END_OF_BUFFER;
918 return 0;
919 }
920
921 static int pagemap_pte_hole(unsigned long start, unsigned long end,
922 struct mm_walk *walk)
923 {
924 struct pagemapread *pm = walk->private;
925 unsigned long addr;
926 int err = 0;
927 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
928
929 for (addr = start; addr < end; addr += PAGE_SIZE) {
930 err = add_to_pagemap(addr, &pme, pm);
931 if (err)
932 break;
933 }
934 return err;
935 }
936
937 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
938 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
939 {
940 u64 frame, flags;
941 struct page *page = NULL;
942 int flags2 = 0;
943
944 if (pte_present(pte)) {
945 frame = pte_pfn(pte);
946 flags = PM_PRESENT;
947 page = vm_normal_page(vma, addr, pte);
948 if (pte_soft_dirty(pte))
949 flags2 |= __PM_SOFT_DIRTY;
950 } else if (is_swap_pte(pte)) {
951 swp_entry_t entry;
952 if (pte_swp_soft_dirty(pte))
953 flags2 |= __PM_SOFT_DIRTY;
954 entry = pte_to_swp_entry(pte);
955 frame = swp_type(entry) |
956 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
957 flags = PM_SWAP;
958 if (is_migration_entry(entry))
959 page = migration_entry_to_page(entry);
960 } else {
961 if (vma->vm_flags & VM_SOFTDIRTY)
962 flags2 |= __PM_SOFT_DIRTY;
963 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
964 return;
965 }
966
967 if (page && !PageAnon(page))
968 flags |= PM_FILE;
969 if ((vma->vm_flags & VM_SOFTDIRTY))
970 flags2 |= __PM_SOFT_DIRTY;
971
972 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
973 }
974
975 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
976 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
977 pmd_t pmd, int offset, int pmd_flags2)
978 {
979 /*
980 * Currently pmd for thp is always present because thp can not be
981 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
982 * This if-check is just to prepare for future implementation.
983 */
984 if (pmd_present(pmd))
985 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
986 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
987 else
988 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
989 }
990 #else
991 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
992 pmd_t pmd, int offset, int pmd_flags2)
993 {
994 }
995 #endif
996
997 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
998 struct mm_walk *walk)
999 {
1000 struct vm_area_struct *vma;
1001 struct pagemapread *pm = walk->private;
1002 pte_t *pte;
1003 int err = 0;
1004 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1005
1006 /* find the first VMA at or above 'addr' */
1007 vma = find_vma(walk->mm, addr);
1008 if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
1009 int pmd_flags2;
1010
1011 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1012 pmd_flags2 = __PM_SOFT_DIRTY;
1013 else
1014 pmd_flags2 = 0;
1015
1016 for (; addr != end; addr += PAGE_SIZE) {
1017 unsigned long offset;
1018
1019 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1020 PAGE_SHIFT;
1021 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1022 err = add_to_pagemap(addr, &pme, pm);
1023 if (err)
1024 break;
1025 }
1026 spin_unlock(&walk->mm->page_table_lock);
1027 return err;
1028 }
1029
1030 if (pmd_trans_unstable(pmd))
1031 return 0;
1032 for (; addr != end; addr += PAGE_SIZE) {
1033 int flags2;
1034
1035 /* check to see if we've left 'vma' behind
1036 * and need a new, higher one */
1037 if (vma && (addr >= vma->vm_end)) {
1038 vma = find_vma(walk->mm, addr);
1039 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1040 flags2 = __PM_SOFT_DIRTY;
1041 else
1042 flags2 = 0;
1043 pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1044 }
1045
1046 /* check that 'vma' actually covers this address,
1047 * and that it isn't a huge page vma */
1048 if (vma && (vma->vm_start <= addr) &&
1049 !is_vm_hugetlb_page(vma)) {
1050 pte = pte_offset_map(pmd, addr);
1051 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1052 /* unmap before userspace copy */
1053 pte_unmap(pte);
1054 }
1055 err = add_to_pagemap(addr, &pme, pm);
1056 if (err)
1057 return err;
1058 }
1059
1060 cond_resched();
1061
1062 return err;
1063 }
1064
1065 #ifdef CONFIG_HUGETLB_PAGE
1066 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1067 pte_t pte, int offset, int flags2)
1068 {
1069 if (pte_present(pte))
1070 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
1071 PM_STATUS2(pm->v2, flags2) |
1072 PM_PRESENT);
1073 else
1074 *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
1075 PM_STATUS2(pm->v2, flags2));
1076 }
1077
1078 /* This function walks within one hugetlb entry in the single call */
1079 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1080 unsigned long addr, unsigned long end,
1081 struct mm_walk *walk)
1082 {
1083 struct pagemapread *pm = walk->private;
1084 struct vm_area_struct *vma;
1085 int err = 0;
1086 int flags2;
1087 pagemap_entry_t pme;
1088
1089 vma = find_vma(walk->mm, addr);
1090 WARN_ON_ONCE(!vma);
1091
1092 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1093 flags2 = __PM_SOFT_DIRTY;
1094 else
1095 flags2 = 0;
1096
1097 for (; addr != end; addr += PAGE_SIZE) {
1098 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1099 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1100 err = add_to_pagemap(addr, &pme, pm);
1101 if (err)
1102 return err;
1103 }
1104
1105 cond_resched();
1106
1107 return err;
1108 }
1109 #endif /* HUGETLB_PAGE */
1110
1111 /*
1112 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1113 *
1114 * For each page in the address space, this file contains one 64-bit entry
1115 * consisting of the following:
1116 *
1117 * Bits 0-54 page frame number (PFN) if present
1118 * Bits 0-4 swap type if swapped
1119 * Bits 5-54 swap offset if swapped
1120 * Bits 55-60 page shift (page size = 1<<page shift)
1121 * Bit 61 page is file-page or shared-anon
1122 * Bit 62 page swapped
1123 * Bit 63 page present
1124 *
1125 * If the page is not present but in swap, then the PFN contains an
1126 * encoding of the swap file number and the page's offset into the
1127 * swap. Unmapped pages return a null PFN. This allows determining
1128 * precisely which pages are mapped (or in swap) and comparing mapped
1129 * pages between processes.
1130 *
1131 * Efficient users of this interface will use /proc/pid/maps to
1132 * determine which areas of memory are actually mapped and llseek to
1133 * skip over unmapped regions.
1134 */
1135 static ssize_t pagemap_read(struct file *file, char __user *buf,
1136 size_t count, loff_t *ppos)
1137 {
1138 struct task_struct *task = get_proc_task(file_inode(file));
1139 struct mm_struct *mm;
1140 struct pagemapread pm;
1141 int ret = -ESRCH;
1142 struct mm_walk pagemap_walk = {};
1143 unsigned long src;
1144 unsigned long svpfn;
1145 unsigned long start_vaddr;
1146 unsigned long end_vaddr;
1147 int copied = 0;
1148
1149 if (!task)
1150 goto out;
1151
1152 ret = -EINVAL;
1153 /* file position must be aligned */
1154 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1155 goto out_task;
1156
1157 ret = 0;
1158 if (!count)
1159 goto out_task;
1160
1161 pm.v2 = soft_dirty_cleared;
1162 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1163 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1164 ret = -ENOMEM;
1165 if (!pm.buffer)
1166 goto out_task;
1167
1168 mm = mm_access(task, PTRACE_MODE_READ);
1169 ret = PTR_ERR(mm);
1170 if (!mm || IS_ERR(mm))
1171 goto out_free;
1172
1173 pagemap_walk.pmd_entry = pagemap_pte_range;
1174 pagemap_walk.pte_hole = pagemap_pte_hole;
1175 #ifdef CONFIG_HUGETLB_PAGE
1176 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1177 #endif
1178 pagemap_walk.mm = mm;
1179 pagemap_walk.private = &pm;
1180
1181 src = *ppos;
1182 svpfn = src / PM_ENTRY_BYTES;
1183 start_vaddr = svpfn << PAGE_SHIFT;
1184 end_vaddr = TASK_SIZE_OF(task);
1185
1186 /* watch out for wraparound */
1187 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1188 start_vaddr = end_vaddr;
1189
1190 /*
1191 * The odds are that this will stop walking way
1192 * before end_vaddr, because the length of the
1193 * user buffer is tracked in "pm", and the walk
1194 * will stop when we hit the end of the buffer.
1195 */
1196 ret = 0;
1197 while (count && (start_vaddr < end_vaddr)) {
1198 int len;
1199 unsigned long end;
1200
1201 pm.pos = 0;
1202 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1203 /* overflow ? */
1204 if (end < start_vaddr || end > end_vaddr)
1205 end = end_vaddr;
1206 down_read(&mm->mmap_sem);
1207 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1208 up_read(&mm->mmap_sem);
1209 start_vaddr = end;
1210
1211 len = min(count, PM_ENTRY_BYTES * pm.pos);
1212 if (copy_to_user(buf, pm.buffer, len)) {
1213 ret = -EFAULT;
1214 goto out_mm;
1215 }
1216 copied += len;
1217 buf += len;
1218 count -= len;
1219 }
1220 *ppos += copied;
1221 if (!ret || ret == PM_END_OF_BUFFER)
1222 ret = copied;
1223
1224 out_mm:
1225 mmput(mm);
1226 out_free:
1227 kfree(pm.buffer);
1228 out_task:
1229 put_task_struct(task);
1230 out:
1231 return ret;
1232 }
1233
1234 static int pagemap_open(struct inode *inode, struct file *file)
1235 {
1236 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1237 "to stop being page-shift some time soon. See the "
1238 "linux/Documentation/vm/pagemap.txt for details.\n");
1239 return 0;
1240 }
1241
1242 const struct file_operations proc_pagemap_operations = {
1243 .llseek = mem_lseek, /* borrow this */
1244 .read = pagemap_read,
1245 .open = pagemap_open,
1246 };
1247 #endif /* CONFIG_PROC_PAGE_MONITOR */
1248
1249 #ifdef CONFIG_NUMA
1250
1251 struct numa_maps {
1252 struct vm_area_struct *vma;
1253 unsigned long pages;
1254 unsigned long anon;
1255 unsigned long active;
1256 unsigned long writeback;
1257 unsigned long mapcount_max;
1258 unsigned long dirty;
1259 unsigned long swapcache;
1260 unsigned long node[MAX_NUMNODES];
1261 };
1262
1263 struct numa_maps_private {
1264 struct proc_maps_private proc_maps;
1265 struct numa_maps md;
1266 };
1267
1268 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1269 unsigned long nr_pages)
1270 {
1271 int count = page_mapcount(page);
1272
1273 md->pages += nr_pages;
1274 if (pte_dirty || PageDirty(page))
1275 md->dirty += nr_pages;
1276
1277 if (PageSwapCache(page))
1278 md->swapcache += nr_pages;
1279
1280 if (PageActive(page) || PageUnevictable(page))
1281 md->active += nr_pages;
1282
1283 if (PageWriteback(page))
1284 md->writeback += nr_pages;
1285
1286 if (PageAnon(page))
1287 md->anon += nr_pages;
1288
1289 if (count > md->mapcount_max)
1290 md->mapcount_max = count;
1291
1292 md->node[page_to_nid(page)] += nr_pages;
1293 }
1294
1295 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1296 unsigned long addr)
1297 {
1298 struct page *page;
1299 int nid;
1300
1301 if (!pte_present(pte))
1302 return NULL;
1303
1304 page = vm_normal_page(vma, addr, pte);
1305 if (!page)
1306 return NULL;
1307
1308 if (PageReserved(page))
1309 return NULL;
1310
1311 nid = page_to_nid(page);
1312 if (!node_isset(nid, node_states[N_MEMORY]))
1313 return NULL;
1314
1315 return page;
1316 }
1317
1318 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1319 unsigned long end, struct mm_walk *walk)
1320 {
1321 struct numa_maps *md;
1322 spinlock_t *ptl;
1323 pte_t *orig_pte;
1324 pte_t *pte;
1325
1326 md = walk->private;
1327
1328 if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1329 pte_t huge_pte = *(pte_t *)pmd;
1330 struct page *page;
1331
1332 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1333 if (page)
1334 gather_stats(page, md, pte_dirty(huge_pte),
1335 HPAGE_PMD_SIZE/PAGE_SIZE);
1336 spin_unlock(&walk->mm->page_table_lock);
1337 return 0;
1338 }
1339
1340 if (pmd_trans_unstable(pmd))
1341 return 0;
1342 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1343 do {
1344 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1345 if (!page)
1346 continue;
1347 gather_stats(page, md, pte_dirty(*pte), 1);
1348
1349 } while (pte++, addr += PAGE_SIZE, addr != end);
1350 pte_unmap_unlock(orig_pte, ptl);
1351 return 0;
1352 }
1353 #ifdef CONFIG_HUGETLB_PAGE
1354 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1355 unsigned long addr, unsigned long end, struct mm_walk *walk)
1356 {
1357 struct numa_maps *md;
1358 struct page *page;
1359
1360 if (pte_none(*pte))
1361 return 0;
1362
1363 page = pte_page(*pte);
1364 if (!page)
1365 return 0;
1366
1367 md = walk->private;
1368 gather_stats(page, md, pte_dirty(*pte), 1);
1369 return 0;
1370 }
1371
1372 #else
1373 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1374 unsigned long addr, unsigned long end, struct mm_walk *walk)
1375 {
1376 return 0;
1377 }
1378 #endif
1379
1380 /*
1381 * Display pages allocated per node and memory policy via /proc.
1382 */
1383 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1384 {
1385 struct numa_maps_private *numa_priv = m->private;
1386 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1387 struct vm_area_struct *vma = v;
1388 struct numa_maps *md = &numa_priv->md;
1389 struct file *file = vma->vm_file;
1390 struct task_struct *task = proc_priv->task;
1391 struct mm_struct *mm = vma->vm_mm;
1392 struct mm_walk walk = {};
1393 struct mempolicy *pol;
1394 char buffer[64];
1395 int nid;
1396
1397 if (!mm)
1398 return 0;
1399
1400 /* Ensure we start with an empty set of numa_maps statistics. */
1401 memset(md, 0, sizeof(*md));
1402
1403 md->vma = vma;
1404
1405 walk.hugetlb_entry = gather_hugetbl_stats;
1406 walk.pmd_entry = gather_pte_stats;
1407 walk.private = md;
1408 walk.mm = mm;
1409
1410 pol = get_vma_policy(task, vma, vma->vm_start);
1411 mpol_to_str(buffer, sizeof(buffer), pol);
1412 mpol_cond_put(pol);
1413
1414 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1415
1416 if (file) {
1417 seq_printf(m, " file=");
1418 seq_path(m, &file->f_path, "\n\t= ");
1419 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1420 seq_printf(m, " heap");
1421 } else {
1422 pid_t tid = vm_is_stack(task, vma, is_pid);
1423 if (tid != 0) {
1424 /*
1425 * Thread stack in /proc/PID/task/TID/maps or
1426 * the main process stack.
1427 */
1428 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1429 vma->vm_end >= mm->start_stack))
1430 seq_printf(m, " stack");
1431 else
1432 seq_printf(m, " stack:%d", tid);
1433 }
1434 }
1435
1436 if (is_vm_hugetlb_page(vma))
1437 seq_printf(m, " huge");
1438
1439 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1440
1441 if (!md->pages)
1442 goto out;
1443
1444 if (md->anon)
1445 seq_printf(m, " anon=%lu", md->anon);
1446
1447 if (md->dirty)
1448 seq_printf(m, " dirty=%lu", md->dirty);
1449
1450 if (md->pages != md->anon && md->pages != md->dirty)
1451 seq_printf(m, " mapped=%lu", md->pages);
1452
1453 if (md->mapcount_max > 1)
1454 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1455
1456 if (md->swapcache)
1457 seq_printf(m, " swapcache=%lu", md->swapcache);
1458
1459 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1460 seq_printf(m, " active=%lu", md->active);
1461
1462 if (md->writeback)
1463 seq_printf(m, " writeback=%lu", md->writeback);
1464
1465 for_each_node_state(nid, N_MEMORY)
1466 if (md->node[nid])
1467 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1468 out:
1469 seq_putc(m, '\n');
1470
1471 if (m->count < m->size)
1472 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1473 return 0;
1474 }
1475
1476 static int show_pid_numa_map(struct seq_file *m, void *v)
1477 {
1478 return show_numa_map(m, v, 1);
1479 }
1480
1481 static int show_tid_numa_map(struct seq_file *m, void *v)
1482 {
1483 return show_numa_map(m, v, 0);
1484 }
1485
1486 static const struct seq_operations proc_pid_numa_maps_op = {
1487 .start = m_start,
1488 .next = m_next,
1489 .stop = m_stop,
1490 .show = show_pid_numa_map,
1491 };
1492
1493 static const struct seq_operations proc_tid_numa_maps_op = {
1494 .start = m_start,
1495 .next = m_next,
1496 .stop = m_stop,
1497 .show = show_tid_numa_map,
1498 };
1499
1500 static int numa_maps_open(struct inode *inode, struct file *file,
1501 const struct seq_operations *ops)
1502 {
1503 struct numa_maps_private *priv;
1504 int ret = -ENOMEM;
1505 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1506 if (priv) {
1507 priv->proc_maps.pid = proc_pid(inode);
1508 ret = seq_open(file, ops);
1509 if (!ret) {
1510 struct seq_file *m = file->private_data;
1511 m->private = priv;
1512 } else {
1513 kfree(priv);
1514 }
1515 }
1516 return ret;
1517 }
1518
1519 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1520 {
1521 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1522 }
1523
1524 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1525 {
1526 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1527 }
1528
1529 const struct file_operations proc_pid_numa_maps_operations = {
1530 .open = pid_numa_maps_open,
1531 .read = seq_read,
1532 .llseek = seq_lseek,
1533 .release = seq_release_private,
1534 };
1535
1536 const struct file_operations proc_tid_numa_maps_operations = {
1537 .open = tid_numa_maps_open,
1538 .read = seq_read,
1539 .llseek = seq_lseek,
1540 .release = seq_release_private,
1541 };
1542 #endif /* CONFIG_NUMA */
This page took 0.062427 seconds and 6 git commands to generate.