splice: fix leak of pages on short splice to pipe
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
35 };
36
37 /*
38 * Passed to splice_to_pipe
39 */
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
53 */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
56 {
57 struct page *page = buf->page;
58 struct address_space *mapping;
59
60 lock_page(page);
61
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
65
66 /*
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
73 */
74 wait_on_page_writeback(page);
75
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
78
79 /*
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
82 */
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
86 }
87 }
88
89 /*
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
92 */
93 unlock_page(page);
94 return 1;
95 }
96
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
106 {
107 struct page *page = buf->page;
108 int err;
109
110 if (!PageUptodate(page)) {
111 lock_page(page);
112
113 /*
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
116 */
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
120 }
121
122 /*
123 * Uh oh, read-error from disk.
124 */
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
128 }
129
130 /*
131 * Page is ok afterall, we are done.
132 */
133 unlock_page(page);
134 }
135
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
140 }
141
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
150 };
151
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
154 {
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
157
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
160 }
161
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
170 };
171
172 /*
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175 */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 unsigned int spd_pages = spd->nr_pages;
180 int ret, do_wakeup, page_nr;
181
182 ret = 0;
183 do_wakeup = 0;
184 page_nr = 0;
185
186 if (pipe->inode)
187 mutex_lock(&pipe->inode->i_mutex);
188
189 for (;;) {
190 if (!pipe->readers) {
191 send_sig(SIGPIPE, current, 0);
192 if (!ret)
193 ret = -EPIPE;
194 break;
195 }
196
197 if (pipe->nrbufs < PIPE_BUFFERS) {
198 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
199 struct pipe_buffer *buf = pipe->bufs + newbuf;
200
201 buf->page = spd->pages[page_nr];
202 buf->offset = spd->partial[page_nr].offset;
203 buf->len = spd->partial[page_nr].len;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
211
212 if (pipe->inode)
213 do_wakeup = 1;
214
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < PIPE_BUFFERS)
218 continue;
219
220 break;
221 }
222
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
227 }
228
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
233 }
234
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
241 }
242
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
246 }
247
248 if (pipe->inode)
249 mutex_unlock(&pipe->inode->i_mutex);
250
251 if (do_wakeup) {
252 smp_mb();
253 if (waitqueue_active(&pipe->wait))
254 wake_up_interruptible(&pipe->wait);
255 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256 }
257
258 while (page_nr < spd_pages)
259 page_cache_release(spd->pages[page_nr++]);
260
261 return ret;
262 }
263
264 static int
265 __generic_file_splice_read(struct file *in, loff_t *ppos,
266 struct pipe_inode_info *pipe, size_t len,
267 unsigned int flags)
268 {
269 struct address_space *mapping = in->f_mapping;
270 unsigned int loff, nr_pages;
271 struct page *pages[PIPE_BUFFERS];
272 struct partial_page partial[PIPE_BUFFERS];
273 struct page *page;
274 pgoff_t index, end_index;
275 loff_t isize;
276 int error, page_nr;
277 struct splice_pipe_desc spd = {
278 .pages = pages,
279 .partial = partial,
280 .flags = flags,
281 .ops = &page_cache_pipe_buf_ops,
282 };
283
284 index = *ppos >> PAGE_CACHE_SHIFT;
285 loff = *ppos & ~PAGE_CACHE_MASK;
286 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287
288 if (nr_pages > PIPE_BUFFERS)
289 nr_pages = PIPE_BUFFERS;
290
291 /*
292 * Don't try to 2nd guess the read-ahead logic, call into
293 * page_cache_readahead() like the page cache reads would do.
294 */
295 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
296
297 /*
298 * Now fill in the holes:
299 */
300 error = 0;
301
302 /*
303 * Lookup the (hopefully) full range of pages we need.
304 */
305 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
306
307 /*
308 * If find_get_pages_contig() returned fewer pages than we needed,
309 * allocate the rest.
310 */
311 index += spd.nr_pages;
312 while (spd.nr_pages < nr_pages) {
313 /*
314 * Page could be there, find_get_pages_contig() breaks on
315 * the first hole.
316 */
317 page = find_get_page(mapping, index);
318 if (!page) {
319 /*
320 * Make sure the read-ahead engine is notified
321 * about this failure.
322 */
323 handle_ra_miss(mapping, &in->f_ra, index);
324
325 /*
326 * page didn't exist, allocate one.
327 */
328 page = page_cache_alloc_cold(mapping);
329 if (!page)
330 break;
331
332 error = add_to_page_cache_lru(page, mapping, index,
333 GFP_KERNEL);
334 if (unlikely(error)) {
335 page_cache_release(page);
336 if (error == -EEXIST)
337 continue;
338 break;
339 }
340 /*
341 * add_to_page_cache() locks the page, unlock it
342 * to avoid convoluting the logic below even more.
343 */
344 unlock_page(page);
345 }
346
347 pages[spd.nr_pages++] = page;
348 index++;
349 }
350
351 /*
352 * Now loop over the map and see if we need to start IO on any
353 * pages, fill in the partial map, etc.
354 */
355 index = *ppos >> PAGE_CACHE_SHIFT;
356 nr_pages = spd.nr_pages;
357 spd.nr_pages = 0;
358 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
359 unsigned int this_len;
360
361 if (!len)
362 break;
363
364 /*
365 * this_len is the max we'll use from this page
366 */
367 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
368 page = pages[page_nr];
369
370 /*
371 * If the page isn't uptodate, we may need to start io on it
372 */
373 if (!PageUptodate(page)) {
374 /*
375 * If in nonblock mode then dont block on waiting
376 * for an in-flight io page
377 */
378 if (flags & SPLICE_F_NONBLOCK) {
379 if (TestSetPageLocked(page))
380 break;
381 } else
382 lock_page(page);
383
384 /*
385 * page was truncated, stop here. if this isn't the
386 * first page, we'll just complete what we already
387 * added
388 */
389 if (!page->mapping) {
390 unlock_page(page);
391 break;
392 }
393 /*
394 * page was already under io and is now done, great
395 */
396 if (PageUptodate(page)) {
397 unlock_page(page);
398 goto fill_it;
399 }
400
401 /*
402 * need to read in the page
403 */
404 error = mapping->a_ops->readpage(in, page);
405 if (unlikely(error)) {
406 /*
407 * We really should re-lookup the page here,
408 * but it complicates things a lot. Instead
409 * lets just do what we already stored, and
410 * we'll get it the next time we are called.
411 */
412 if (error == AOP_TRUNCATED_PAGE)
413 error = 0;
414
415 break;
416 }
417 }
418 fill_it:
419 /*
420 * i_size must be checked after PageUptodate.
421 */
422 isize = i_size_read(mapping->host);
423 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
424 if (unlikely(!isize || index > end_index))
425 break;
426
427 /*
428 * if this is the last page, see if we need to shrink
429 * the length and stop
430 */
431 if (end_index == index) {
432 unsigned int plen;
433
434 /*
435 * max good bytes in this page
436 */
437 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
438 if (plen <= loff)
439 break;
440
441 /*
442 * force quit after adding this page
443 */
444 this_len = min(this_len, plen - loff);
445 len = this_len;
446 }
447
448 partial[page_nr].offset = loff;
449 partial[page_nr].len = this_len;
450 len -= this_len;
451 loff = 0;
452 spd.nr_pages++;
453 index++;
454 }
455
456 /*
457 * Release any pages at the end, if we quit early. 'page_nr' is how far
458 * we got, 'nr_pages' is how many pages are in the map.
459 */
460 while (page_nr < nr_pages)
461 page_cache_release(pages[page_nr++]);
462
463 if (spd.nr_pages)
464 return splice_to_pipe(pipe, &spd);
465
466 return error;
467 }
468
469 /**
470 * generic_file_splice_read - splice data from file to a pipe
471 * @in: file to splice from
472 * @pipe: pipe to splice to
473 * @len: number of bytes to splice
474 * @flags: splice modifier flags
475 *
476 * Will read pages from given file and fill them into a pipe.
477 */
478 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
479 struct pipe_inode_info *pipe, size_t len,
480 unsigned int flags)
481 {
482 ssize_t spliced;
483 int ret;
484 loff_t isize, left;
485
486 isize = i_size_read(in->f_mapping->host);
487 if (unlikely(*ppos >= isize))
488 return 0;
489
490 left = isize - *ppos;
491 if (unlikely(left < len))
492 len = left;
493
494 ret = 0;
495 spliced = 0;
496 while (len) {
497 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
498
499 if (ret < 0)
500 break;
501 else if (!ret) {
502 if (spliced)
503 break;
504 if (flags & SPLICE_F_NONBLOCK) {
505 ret = -EAGAIN;
506 break;
507 }
508 }
509
510 *ppos += ret;
511 len -= ret;
512 spliced += ret;
513 }
514
515 if (spliced)
516 return spliced;
517
518 return ret;
519 }
520
521 EXPORT_SYMBOL(generic_file_splice_read);
522
523 /*
524 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
525 * using sendpage(). Return the number of bytes sent.
526 */
527 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
528 struct pipe_buffer *buf, struct splice_desc *sd)
529 {
530 struct file *file = sd->file;
531 loff_t pos = sd->pos;
532 int ret, more;
533
534 ret = buf->ops->pin(pipe, buf);
535 if (!ret) {
536 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
537
538 ret = file->f_op->sendpage(file, buf->page, buf->offset,
539 sd->len, &pos, more);
540 }
541
542 return ret;
543 }
544
545 /*
546 * This is a little more tricky than the file -> pipe splicing. There are
547 * basically three cases:
548 *
549 * - Destination page already exists in the address space and there
550 * are users of it. For that case we have no other option that
551 * copying the data. Tough luck.
552 * - Destination page already exists in the address space, but there
553 * are no users of it. Make sure it's uptodate, then drop it. Fall
554 * through to last case.
555 * - Destination page does not exist, we can add the pipe page to
556 * the page cache and avoid the copy.
557 *
558 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
559 * sd->flags), we attempt to migrate pages from the pipe to the output
560 * file address space page cache. This is possible if no one else has
561 * the pipe page referenced outside of the pipe and page cache. If
562 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
563 * a new page in the output file page cache and fill/dirty that.
564 */
565 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
566 struct splice_desc *sd)
567 {
568 struct file *file = sd->file;
569 struct address_space *mapping = file->f_mapping;
570 unsigned int offset, this_len;
571 struct page *page;
572 pgoff_t index;
573 int ret;
574
575 /*
576 * make sure the data in this buffer is uptodate
577 */
578 ret = buf->ops->pin(pipe, buf);
579 if (unlikely(ret))
580 return ret;
581
582 index = sd->pos >> PAGE_CACHE_SHIFT;
583 offset = sd->pos & ~PAGE_CACHE_MASK;
584
585 this_len = sd->len;
586 if (this_len + offset > PAGE_CACHE_SIZE)
587 this_len = PAGE_CACHE_SIZE - offset;
588
589 find_page:
590 page = find_lock_page(mapping, index);
591 if (!page) {
592 ret = -ENOMEM;
593 page = page_cache_alloc_cold(mapping);
594 if (unlikely(!page))
595 goto out_ret;
596
597 /*
598 * This will also lock the page
599 */
600 ret = add_to_page_cache_lru(page, mapping, index,
601 GFP_KERNEL);
602 if (unlikely(ret))
603 goto out;
604 }
605
606 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
607 if (unlikely(ret)) {
608 loff_t isize = i_size_read(mapping->host);
609
610 if (ret != AOP_TRUNCATED_PAGE)
611 unlock_page(page);
612 page_cache_release(page);
613 if (ret == AOP_TRUNCATED_PAGE)
614 goto find_page;
615
616 /*
617 * prepare_write() may have instantiated a few blocks
618 * outside i_size. Trim these off again.
619 */
620 if (sd->pos + this_len > isize)
621 vmtruncate(mapping->host, isize);
622
623 goto out_ret;
624 }
625
626 if (buf->page != page) {
627 /*
628 * Careful, ->map() uses KM_USER0!
629 */
630 char *src = buf->ops->map(pipe, buf, 1);
631 char *dst = kmap_atomic(page, KM_USER1);
632
633 memcpy(dst + offset, src + buf->offset, this_len);
634 flush_dcache_page(page);
635 kunmap_atomic(dst, KM_USER1);
636 buf->ops->unmap(pipe, buf, src);
637 }
638
639 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
640 if (ret) {
641 if (ret == AOP_TRUNCATED_PAGE) {
642 page_cache_release(page);
643 goto find_page;
644 }
645 if (ret < 0)
646 goto out;
647 /*
648 * Partial write has happened, so 'ret' already initialized by
649 * number of bytes written, Where is nothing we have to do here.
650 */
651 } else
652 ret = this_len;
653 /*
654 * Return the number of bytes written and mark page as
655 * accessed, we are now done!
656 */
657 mark_page_accessed(page);
658 out:
659 page_cache_release(page);
660 unlock_page(page);
661 out_ret:
662 return ret;
663 }
664
665 /*
666 * Pipe input worker. Most of this logic works like a regular pipe, the
667 * key here is the 'actor' worker passed in that actually moves the data
668 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
669 */
670 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
671 struct file *out, loff_t *ppos, size_t len,
672 unsigned int flags, splice_actor *actor)
673 {
674 int ret, do_wakeup, err;
675 struct splice_desc sd;
676
677 ret = 0;
678 do_wakeup = 0;
679
680 sd.total_len = len;
681 sd.flags = flags;
682 sd.file = out;
683 sd.pos = *ppos;
684
685 for (;;) {
686 if (pipe->nrbufs) {
687 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
688 const struct pipe_buf_operations *ops = buf->ops;
689
690 sd.len = buf->len;
691 if (sd.len > sd.total_len)
692 sd.len = sd.total_len;
693
694 err = actor(pipe, buf, &sd);
695 if (err <= 0) {
696 if (!ret && err != -ENODATA)
697 ret = err;
698
699 break;
700 }
701
702 ret += err;
703 buf->offset += err;
704 buf->len -= err;
705
706 sd.len -= err;
707 sd.pos += err;
708 sd.total_len -= err;
709 if (sd.len)
710 continue;
711
712 if (!buf->len) {
713 buf->ops = NULL;
714 ops->release(pipe, buf);
715 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
716 pipe->nrbufs--;
717 if (pipe->inode)
718 do_wakeup = 1;
719 }
720
721 if (!sd.total_len)
722 break;
723 }
724
725 if (pipe->nrbufs)
726 continue;
727 if (!pipe->writers)
728 break;
729 if (!pipe->waiting_writers) {
730 if (ret)
731 break;
732 }
733
734 if (flags & SPLICE_F_NONBLOCK) {
735 if (!ret)
736 ret = -EAGAIN;
737 break;
738 }
739
740 if (signal_pending(current)) {
741 if (!ret)
742 ret = -ERESTARTSYS;
743 break;
744 }
745
746 if (do_wakeup) {
747 smp_mb();
748 if (waitqueue_active(&pipe->wait))
749 wake_up_interruptible_sync(&pipe->wait);
750 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
751 do_wakeup = 0;
752 }
753
754 pipe_wait(pipe);
755 }
756
757 if (do_wakeup) {
758 smp_mb();
759 if (waitqueue_active(&pipe->wait))
760 wake_up_interruptible(&pipe->wait);
761 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
762 }
763
764 return ret;
765 }
766 EXPORT_SYMBOL(__splice_from_pipe);
767
768 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
769 loff_t *ppos, size_t len, unsigned int flags,
770 splice_actor *actor)
771 {
772 ssize_t ret;
773 struct inode *inode = out->f_mapping->host;
774
775 /*
776 * The actor worker might be calling ->prepare_write and
777 * ->commit_write. Most of the time, these expect i_mutex to
778 * be held. Since this may result in an ABBA deadlock with
779 * pipe->inode, we have to order lock acquiry here.
780 */
781 inode_double_lock(inode, pipe->inode);
782 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
783 inode_double_unlock(inode, pipe->inode);
784
785 return ret;
786 }
787
788 /**
789 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
790 * @pipe: pipe info
791 * @out: file to write to
792 * @len: number of bytes to splice
793 * @flags: splice modifier flags
794 *
795 * Will either move or copy pages (determined by @flags options) from
796 * the given pipe inode to the given file. The caller is responsible
797 * for acquiring i_mutex on both inodes.
798 *
799 */
800 ssize_t
801 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
802 loff_t *ppos, size_t len, unsigned int flags)
803 {
804 struct address_space *mapping = out->f_mapping;
805 struct inode *inode = mapping->host;
806 ssize_t ret;
807 int err;
808
809 err = remove_suid(out->f_path.dentry);
810 if (unlikely(err))
811 return err;
812
813 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
814 if (ret > 0) {
815 unsigned long nr_pages;
816
817 *ppos += ret;
818 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
819
820 /*
821 * If file or inode is SYNC and we actually wrote some data,
822 * sync it.
823 */
824 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
825 err = generic_osync_inode(inode, mapping,
826 OSYNC_METADATA|OSYNC_DATA);
827
828 if (err)
829 ret = err;
830 }
831 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
832 }
833
834 return ret;
835 }
836
837 EXPORT_SYMBOL(generic_file_splice_write_nolock);
838
839 /**
840 * generic_file_splice_write - splice data from a pipe to a file
841 * @pipe: pipe info
842 * @out: file to write to
843 * @len: number of bytes to splice
844 * @flags: splice modifier flags
845 *
846 * Will either move or copy pages (determined by @flags options) from
847 * the given pipe inode to the given file.
848 *
849 */
850 ssize_t
851 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
852 loff_t *ppos, size_t len, unsigned int flags)
853 {
854 struct address_space *mapping = out->f_mapping;
855 struct inode *inode = mapping->host;
856 ssize_t ret;
857 int err;
858
859 err = should_remove_suid(out->f_path.dentry);
860 if (unlikely(err)) {
861 mutex_lock(&inode->i_mutex);
862 err = __remove_suid(out->f_path.dentry, err);
863 mutex_unlock(&inode->i_mutex);
864 if (err)
865 return err;
866 }
867
868 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
869 if (ret > 0) {
870 unsigned long nr_pages;
871
872 *ppos += ret;
873 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
874
875 /*
876 * If file or inode is SYNC and we actually wrote some data,
877 * sync it.
878 */
879 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
880 mutex_lock(&inode->i_mutex);
881 err = generic_osync_inode(inode, mapping,
882 OSYNC_METADATA|OSYNC_DATA);
883 mutex_unlock(&inode->i_mutex);
884
885 if (err)
886 ret = err;
887 }
888 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
889 }
890
891 return ret;
892 }
893
894 EXPORT_SYMBOL(generic_file_splice_write);
895
896 /**
897 * generic_splice_sendpage - splice data from a pipe to a socket
898 * @inode: pipe inode
899 * @out: socket to write to
900 * @len: number of bytes to splice
901 * @flags: splice modifier flags
902 *
903 * Will send @len bytes from the pipe to a network socket. No data copying
904 * is involved.
905 *
906 */
907 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
908 loff_t *ppos, size_t len, unsigned int flags)
909 {
910 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
911 }
912
913 EXPORT_SYMBOL(generic_splice_sendpage);
914
915 /*
916 * Attempt to initiate a splice from pipe to file.
917 */
918 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
919 loff_t *ppos, size_t len, unsigned int flags)
920 {
921 int ret;
922
923 if (unlikely(!out->f_op || !out->f_op->splice_write))
924 return -EINVAL;
925
926 if (unlikely(!(out->f_mode & FMODE_WRITE)))
927 return -EBADF;
928
929 ret = rw_verify_area(WRITE, out, ppos, len);
930 if (unlikely(ret < 0))
931 return ret;
932
933 return out->f_op->splice_write(pipe, out, ppos, len, flags);
934 }
935
936 /*
937 * Attempt to initiate a splice from a file to a pipe.
938 */
939 static long do_splice_to(struct file *in, loff_t *ppos,
940 struct pipe_inode_info *pipe, size_t len,
941 unsigned int flags)
942 {
943 int ret;
944
945 if (unlikely(!in->f_op || !in->f_op->splice_read))
946 return -EINVAL;
947
948 if (unlikely(!(in->f_mode & FMODE_READ)))
949 return -EBADF;
950
951 ret = rw_verify_area(READ, in, ppos, len);
952 if (unlikely(ret < 0))
953 return ret;
954
955 return in->f_op->splice_read(in, ppos, pipe, len, flags);
956 }
957
958 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
959 size_t len, unsigned int flags)
960 {
961 struct pipe_inode_info *pipe;
962 long ret, bytes;
963 loff_t out_off;
964 umode_t i_mode;
965 int i;
966
967 /*
968 * We require the input being a regular file, as we don't want to
969 * randomly drop data for eg socket -> socket splicing. Use the
970 * piped splicing for that!
971 */
972 i_mode = in->f_path.dentry->d_inode->i_mode;
973 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
974 return -EINVAL;
975
976 /*
977 * neither in nor out is a pipe, setup an internal pipe attached to
978 * 'out' and transfer the wanted data from 'in' to 'out' through that
979 */
980 pipe = current->splice_pipe;
981 if (unlikely(!pipe)) {
982 pipe = alloc_pipe_info(NULL);
983 if (!pipe)
984 return -ENOMEM;
985
986 /*
987 * We don't have an immediate reader, but we'll read the stuff
988 * out of the pipe right after the splice_to_pipe(). So set
989 * PIPE_READERS appropriately.
990 */
991 pipe->readers = 1;
992
993 current->splice_pipe = pipe;
994 }
995
996 /*
997 * Do the splice.
998 */
999 ret = 0;
1000 bytes = 0;
1001 out_off = 0;
1002
1003 while (len) {
1004 size_t read_len, max_read_len;
1005
1006 /*
1007 * Do at most PIPE_BUFFERS pages worth of transfer:
1008 */
1009 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1010
1011 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1012 if (unlikely(ret < 0))
1013 goto out_release;
1014
1015 read_len = ret;
1016
1017 /*
1018 * NOTE: nonblocking mode only applies to the input. We
1019 * must not do the output in nonblocking mode as then we
1020 * could get stuck data in the internal pipe:
1021 */
1022 ret = do_splice_from(pipe, out, &out_off, read_len,
1023 flags & ~SPLICE_F_NONBLOCK);
1024 if (unlikely(ret < 0))
1025 goto out_release;
1026
1027 bytes += ret;
1028 len -= ret;
1029
1030 /*
1031 * In nonblocking mode, if we got back a short read then
1032 * that was due to either an IO error or due to the
1033 * pagecache entry not being there. In the IO error case
1034 * the _next_ splice attempt will produce a clean IO error
1035 * return value (not a short read), so in both cases it's
1036 * correct to break out of the loop here:
1037 */
1038 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1039 break;
1040 }
1041
1042 pipe->nrbufs = pipe->curbuf = 0;
1043
1044 return bytes;
1045
1046 out_release:
1047 /*
1048 * If we did an incomplete transfer we must release
1049 * the pipe buffers in question:
1050 */
1051 for (i = 0; i < PIPE_BUFFERS; i++) {
1052 struct pipe_buffer *buf = pipe->bufs + i;
1053
1054 if (buf->ops) {
1055 buf->ops->release(pipe, buf);
1056 buf->ops = NULL;
1057 }
1058 }
1059 pipe->nrbufs = pipe->curbuf = 0;
1060
1061 /*
1062 * If we transferred some data, return the number of bytes:
1063 */
1064 if (bytes > 0)
1065 return bytes;
1066
1067 return ret;
1068 }
1069
1070 /*
1071 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1072 * location, so checking ->i_pipe is not enough to verify that this is a
1073 * pipe.
1074 */
1075 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1076 {
1077 if (S_ISFIFO(inode->i_mode))
1078 return inode->i_pipe;
1079
1080 return NULL;
1081 }
1082
1083 /*
1084 * Determine where to splice to/from.
1085 */
1086 static long do_splice(struct file *in, loff_t __user *off_in,
1087 struct file *out, loff_t __user *off_out,
1088 size_t len, unsigned int flags)
1089 {
1090 struct pipe_inode_info *pipe;
1091 loff_t offset, *off;
1092 long ret;
1093
1094 pipe = pipe_info(in->f_path.dentry->d_inode);
1095 if (pipe) {
1096 if (off_in)
1097 return -ESPIPE;
1098 if (off_out) {
1099 if (out->f_op->llseek == no_llseek)
1100 return -EINVAL;
1101 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1102 return -EFAULT;
1103 off = &offset;
1104 } else
1105 off = &out->f_pos;
1106
1107 ret = do_splice_from(pipe, out, off, len, flags);
1108
1109 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1110 ret = -EFAULT;
1111
1112 return ret;
1113 }
1114
1115 pipe = pipe_info(out->f_path.dentry->d_inode);
1116 if (pipe) {
1117 if (off_out)
1118 return -ESPIPE;
1119 if (off_in) {
1120 if (in->f_op->llseek == no_llseek)
1121 return -EINVAL;
1122 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1123 return -EFAULT;
1124 off = &offset;
1125 } else
1126 off = &in->f_pos;
1127
1128 ret = do_splice_to(in, off, pipe, len, flags);
1129
1130 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1131 ret = -EFAULT;
1132
1133 return ret;
1134 }
1135
1136 return -EINVAL;
1137 }
1138
1139 /*
1140 * Map an iov into an array of pages and offset/length tupples. With the
1141 * partial_page structure, we can map several non-contiguous ranges into
1142 * our ones pages[] map instead of splitting that operation into pieces.
1143 * Could easily be exported as a generic helper for other users, in which
1144 * case one would probably want to add a 'max_nr_pages' parameter as well.
1145 */
1146 static int get_iovec_page_array(const struct iovec __user *iov,
1147 unsigned int nr_vecs, struct page **pages,
1148 struct partial_page *partial, int aligned)
1149 {
1150 int buffers = 0, error = 0;
1151
1152 /*
1153 * It's ok to take the mmap_sem for reading, even
1154 * across a "get_user()".
1155 */
1156 down_read(&current->mm->mmap_sem);
1157
1158 while (nr_vecs) {
1159 unsigned long off, npages;
1160 void __user *base;
1161 size_t len;
1162 int i;
1163
1164 /*
1165 * Get user address base and length for this iovec.
1166 */
1167 error = get_user(base, &iov->iov_base);
1168 if (unlikely(error))
1169 break;
1170 error = get_user(len, &iov->iov_len);
1171 if (unlikely(error))
1172 break;
1173
1174 /*
1175 * Sanity check this iovec. 0 read succeeds.
1176 */
1177 if (unlikely(!len))
1178 break;
1179 error = -EFAULT;
1180 if (unlikely(!base))
1181 break;
1182
1183 /*
1184 * Get this base offset and number of pages, then map
1185 * in the user pages.
1186 */
1187 off = (unsigned long) base & ~PAGE_MASK;
1188
1189 /*
1190 * If asked for alignment, the offset must be zero and the
1191 * length a multiple of the PAGE_SIZE.
1192 */
1193 error = -EINVAL;
1194 if (aligned && (off || len & ~PAGE_MASK))
1195 break;
1196
1197 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1198 if (npages > PIPE_BUFFERS - buffers)
1199 npages = PIPE_BUFFERS - buffers;
1200
1201 error = get_user_pages(current, current->mm,
1202 (unsigned long) base, npages, 0, 0,
1203 &pages[buffers], NULL);
1204
1205 if (unlikely(error <= 0))
1206 break;
1207
1208 /*
1209 * Fill this contiguous range into the partial page map.
1210 */
1211 for (i = 0; i < error; i++) {
1212 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1213
1214 partial[buffers].offset = off;
1215 partial[buffers].len = plen;
1216
1217 off = 0;
1218 len -= plen;
1219 buffers++;
1220 }
1221
1222 /*
1223 * We didn't complete this iov, stop here since it probably
1224 * means we have to move some of this into a pipe to
1225 * be able to continue.
1226 */
1227 if (len)
1228 break;
1229
1230 /*
1231 * Don't continue if we mapped fewer pages than we asked for,
1232 * or if we mapped the max number of pages that we have
1233 * room for.
1234 */
1235 if (error < npages || buffers == PIPE_BUFFERS)
1236 break;
1237
1238 nr_vecs--;
1239 iov++;
1240 }
1241
1242 up_read(&current->mm->mmap_sem);
1243
1244 if (buffers)
1245 return buffers;
1246
1247 return error;
1248 }
1249
1250 /*
1251 * vmsplice splices a user address range into a pipe. It can be thought of
1252 * as splice-from-memory, where the regular splice is splice-from-file (or
1253 * to file). In both cases the output is a pipe, naturally.
1254 *
1255 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1256 * not the other way around. Splicing from user memory is a simple operation
1257 * that can be supported without any funky alignment restrictions or nasty
1258 * vm tricks. We simply map in the user memory and fill them into a pipe.
1259 * The reverse isn't quite as easy, though. There are two possible solutions
1260 * for that:
1261 *
1262 * - memcpy() the data internally, at which point we might as well just
1263 * do a regular read() on the buffer anyway.
1264 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1265 * has restriction limitations on both ends of the pipe).
1266 *
1267 * Alas, it isn't here.
1268 *
1269 */
1270 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1271 unsigned long nr_segs, unsigned int flags)
1272 {
1273 struct pipe_inode_info *pipe;
1274 struct page *pages[PIPE_BUFFERS];
1275 struct partial_page partial[PIPE_BUFFERS];
1276 struct splice_pipe_desc spd = {
1277 .pages = pages,
1278 .partial = partial,
1279 .flags = flags,
1280 .ops = &user_page_pipe_buf_ops,
1281 };
1282
1283 pipe = pipe_info(file->f_path.dentry->d_inode);
1284 if (!pipe)
1285 return -EBADF;
1286 if (unlikely(nr_segs > UIO_MAXIOV))
1287 return -EINVAL;
1288 else if (unlikely(!nr_segs))
1289 return 0;
1290
1291 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1292 flags & SPLICE_F_GIFT);
1293 if (spd.nr_pages <= 0)
1294 return spd.nr_pages;
1295
1296 return splice_to_pipe(pipe, &spd);
1297 }
1298
1299 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1300 unsigned long nr_segs, unsigned int flags)
1301 {
1302 struct file *file;
1303 long error;
1304 int fput;
1305
1306 error = -EBADF;
1307 file = fget_light(fd, &fput);
1308 if (file) {
1309 if (file->f_mode & FMODE_WRITE)
1310 error = do_vmsplice(file, iov, nr_segs, flags);
1311
1312 fput_light(file, fput);
1313 }
1314
1315 return error;
1316 }
1317
1318 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1319 int fd_out, loff_t __user *off_out,
1320 size_t len, unsigned int flags)
1321 {
1322 long error;
1323 struct file *in, *out;
1324 int fput_in, fput_out;
1325
1326 if (unlikely(!len))
1327 return 0;
1328
1329 error = -EBADF;
1330 in = fget_light(fd_in, &fput_in);
1331 if (in) {
1332 if (in->f_mode & FMODE_READ) {
1333 out = fget_light(fd_out, &fput_out);
1334 if (out) {
1335 if (out->f_mode & FMODE_WRITE)
1336 error = do_splice(in, off_in,
1337 out, off_out,
1338 len, flags);
1339 fput_light(out, fput_out);
1340 }
1341 }
1342
1343 fput_light(in, fput_in);
1344 }
1345
1346 return error;
1347 }
1348
1349 /*
1350 * Make sure there's data to read. Wait for input if we can, otherwise
1351 * return an appropriate error.
1352 */
1353 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1354 {
1355 int ret;
1356
1357 /*
1358 * Check ->nrbufs without the inode lock first. This function
1359 * is speculative anyways, so missing one is ok.
1360 */
1361 if (pipe->nrbufs)
1362 return 0;
1363
1364 ret = 0;
1365 mutex_lock(&pipe->inode->i_mutex);
1366
1367 while (!pipe->nrbufs) {
1368 if (signal_pending(current)) {
1369 ret = -ERESTARTSYS;
1370 break;
1371 }
1372 if (!pipe->writers)
1373 break;
1374 if (!pipe->waiting_writers) {
1375 if (flags & SPLICE_F_NONBLOCK) {
1376 ret = -EAGAIN;
1377 break;
1378 }
1379 }
1380 pipe_wait(pipe);
1381 }
1382
1383 mutex_unlock(&pipe->inode->i_mutex);
1384 return ret;
1385 }
1386
1387 /*
1388 * Make sure there's writeable room. Wait for room if we can, otherwise
1389 * return an appropriate error.
1390 */
1391 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1392 {
1393 int ret;
1394
1395 /*
1396 * Check ->nrbufs without the inode lock first. This function
1397 * is speculative anyways, so missing one is ok.
1398 */
1399 if (pipe->nrbufs < PIPE_BUFFERS)
1400 return 0;
1401
1402 ret = 0;
1403 mutex_lock(&pipe->inode->i_mutex);
1404
1405 while (pipe->nrbufs >= PIPE_BUFFERS) {
1406 if (!pipe->readers) {
1407 send_sig(SIGPIPE, current, 0);
1408 ret = -EPIPE;
1409 break;
1410 }
1411 if (flags & SPLICE_F_NONBLOCK) {
1412 ret = -EAGAIN;
1413 break;
1414 }
1415 if (signal_pending(current)) {
1416 ret = -ERESTARTSYS;
1417 break;
1418 }
1419 pipe->waiting_writers++;
1420 pipe_wait(pipe);
1421 pipe->waiting_writers--;
1422 }
1423
1424 mutex_unlock(&pipe->inode->i_mutex);
1425 return ret;
1426 }
1427
1428 /*
1429 * Link contents of ipipe to opipe.
1430 */
1431 static int link_pipe(struct pipe_inode_info *ipipe,
1432 struct pipe_inode_info *opipe,
1433 size_t len, unsigned int flags)
1434 {
1435 struct pipe_buffer *ibuf, *obuf;
1436 int ret = 0, i = 0, nbuf;
1437
1438 /*
1439 * Potential ABBA deadlock, work around it by ordering lock
1440 * grabbing by inode address. Otherwise two different processes
1441 * could deadlock (one doing tee from A -> B, the other from B -> A).
1442 */
1443 inode_double_lock(ipipe->inode, opipe->inode);
1444
1445 do {
1446 if (!opipe->readers) {
1447 send_sig(SIGPIPE, current, 0);
1448 if (!ret)
1449 ret = -EPIPE;
1450 break;
1451 }
1452
1453 /*
1454 * If we have iterated all input buffers or ran out of
1455 * output room, break.
1456 */
1457 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1458 break;
1459
1460 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1461 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1462
1463 /*
1464 * Get a reference to this pipe buffer,
1465 * so we can copy the contents over.
1466 */
1467 ibuf->ops->get(ipipe, ibuf);
1468
1469 obuf = opipe->bufs + nbuf;
1470 *obuf = *ibuf;
1471
1472 /*
1473 * Don't inherit the gift flag, we need to
1474 * prevent multiple steals of this page.
1475 */
1476 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1477
1478 if (obuf->len > len)
1479 obuf->len = len;
1480
1481 opipe->nrbufs++;
1482 ret += obuf->len;
1483 len -= obuf->len;
1484 i++;
1485 } while (len);
1486
1487 inode_double_unlock(ipipe->inode, opipe->inode);
1488
1489 /*
1490 * If we put data in the output pipe, wakeup any potential readers.
1491 */
1492 if (ret > 0) {
1493 smp_mb();
1494 if (waitqueue_active(&opipe->wait))
1495 wake_up_interruptible(&opipe->wait);
1496 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1497 }
1498
1499 return ret;
1500 }
1501
1502 /*
1503 * This is a tee(1) implementation that works on pipes. It doesn't copy
1504 * any data, it simply references the 'in' pages on the 'out' pipe.
1505 * The 'flags' used are the SPLICE_F_* variants, currently the only
1506 * applicable one is SPLICE_F_NONBLOCK.
1507 */
1508 static long do_tee(struct file *in, struct file *out, size_t len,
1509 unsigned int flags)
1510 {
1511 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1512 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1513 int ret = -EINVAL;
1514
1515 /*
1516 * Duplicate the contents of ipipe to opipe without actually
1517 * copying the data.
1518 */
1519 if (ipipe && opipe && ipipe != opipe) {
1520 /*
1521 * Keep going, unless we encounter an error. The ipipe/opipe
1522 * ordering doesn't really matter.
1523 */
1524 ret = link_ipipe_prep(ipipe, flags);
1525 if (!ret) {
1526 ret = link_opipe_prep(opipe, flags);
1527 if (!ret) {
1528 ret = link_pipe(ipipe, opipe, len, flags);
1529 if (!ret && (flags & SPLICE_F_NONBLOCK))
1530 ret = -EAGAIN;
1531 }
1532 }
1533 }
1534
1535 return ret;
1536 }
1537
1538 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1539 {
1540 struct file *in;
1541 int error, fput_in;
1542
1543 if (unlikely(!len))
1544 return 0;
1545
1546 error = -EBADF;
1547 in = fget_light(fdin, &fput_in);
1548 if (in) {
1549 if (in->f_mode & FMODE_READ) {
1550 int fput_out;
1551 struct file *out = fget_light(fdout, &fput_out);
1552
1553 if (out) {
1554 if (out->f_mode & FMODE_WRITE)
1555 error = do_tee(in, out, len, flags);
1556 fput_light(out, fput_out);
1557 }
1558 }
1559 fput_light(in, fput_in);
1560 }
1561
1562 return error;
1563 }
This page took 0.089764 seconds and 6 git commands to generate.