Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 /*
33 * Attempt to steal a page from a pipe buffer. This should perhaps go into
34 * a vm helper function, it's already simplified quite a bit by the
35 * addition of remove_mapping(). If success is returned, the caller may
36 * attempt to reuse this page for another destination.
37 */
38 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
39 struct pipe_buffer *buf)
40 {
41 struct page *page = buf->page;
42 struct address_space *mapping;
43
44 lock_page(page);
45
46 mapping = page_mapping(page);
47 if (mapping) {
48 WARN_ON(!PageUptodate(page));
49
50 /*
51 * At least for ext2 with nobh option, we need to wait on
52 * writeback completing on this page, since we'll remove it
53 * from the pagecache. Otherwise truncate wont wait on the
54 * page, allowing the disk blocks to be reused by someone else
55 * before we actually wrote our data to them. fs corruption
56 * ensues.
57 */
58 wait_on_page_writeback(page);
59
60 if (PagePrivate(page))
61 try_to_release_page(page, GFP_KERNEL);
62
63 /*
64 * If we succeeded in removing the mapping, set LRU flag
65 * and return good.
66 */
67 if (remove_mapping(mapping, page)) {
68 buf->flags |= PIPE_BUF_FLAG_LRU;
69 return 0;
70 }
71 }
72
73 /*
74 * Raced with truncate or failed to remove page from current
75 * address space, unlock and return failure.
76 */
77 unlock_page(page);
78 return 1;
79 }
80
81 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
82 struct pipe_buffer *buf)
83 {
84 page_cache_release(buf->page);
85 buf->flags &= ~PIPE_BUF_FLAG_LRU;
86 }
87
88 /*
89 * Check whether the contents of buf is OK to access. Since the content
90 * is a page cache page, IO may be in flight.
91 */
92 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
93 struct pipe_buffer *buf)
94 {
95 struct page *page = buf->page;
96 int err;
97
98 if (!PageUptodate(page)) {
99 lock_page(page);
100
101 /*
102 * Page got truncated/unhashed. This will cause a 0-byte
103 * splice, if this is the first page.
104 */
105 if (!page->mapping) {
106 err = -ENODATA;
107 goto error;
108 }
109
110 /*
111 * Uh oh, read-error from disk.
112 */
113 if (!PageUptodate(page)) {
114 err = -EIO;
115 goto error;
116 }
117
118 /*
119 * Page is ok afterall, we are done.
120 */
121 unlock_page(page);
122 }
123
124 return 0;
125 error:
126 unlock_page(page);
127 return err;
128 }
129
130 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
131 .can_merge = 0,
132 .map = generic_pipe_buf_map,
133 .unmap = generic_pipe_buf_unmap,
134 .confirm = page_cache_pipe_buf_confirm,
135 .release = page_cache_pipe_buf_release,
136 .steal = page_cache_pipe_buf_steal,
137 .get = generic_pipe_buf_get,
138 };
139
140 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
141 struct pipe_buffer *buf)
142 {
143 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
144 return 1;
145
146 buf->flags |= PIPE_BUF_FLAG_LRU;
147 return generic_pipe_buf_steal(pipe, buf);
148 }
149
150 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
151 .can_merge = 0,
152 .map = generic_pipe_buf_map,
153 .unmap = generic_pipe_buf_unmap,
154 .confirm = generic_pipe_buf_confirm,
155 .release = page_cache_pipe_buf_release,
156 .steal = user_page_pipe_buf_steal,
157 .get = generic_pipe_buf_get,
158 };
159
160 /**
161 * splice_to_pipe - fill passed data into a pipe
162 * @pipe: pipe to fill
163 * @spd: data to fill
164 *
165 * Description:
166 * @spd contains a map of pages and len/offset tupples, a long with
167 * the struct pipe_buf_operations associated with these pages. This
168 * function will link that data to the pipe.
169 *
170 */
171 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
172 struct splice_pipe_desc *spd)
173 {
174 unsigned int spd_pages = spd->nr_pages;
175 int ret, do_wakeup, page_nr;
176
177 ret = 0;
178 do_wakeup = 0;
179 page_nr = 0;
180
181 if (pipe->inode)
182 mutex_lock(&pipe->inode->i_mutex);
183
184 for (;;) {
185 if (!pipe->readers) {
186 send_sig(SIGPIPE, current, 0);
187 if (!ret)
188 ret = -EPIPE;
189 break;
190 }
191
192 if (pipe->nrbufs < PIPE_BUFFERS) {
193 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
194 struct pipe_buffer *buf = pipe->bufs + newbuf;
195
196 buf->page = spd->pages[page_nr];
197 buf->offset = spd->partial[page_nr].offset;
198 buf->len = spd->partial[page_nr].len;
199 buf->private = spd->partial[page_nr].private;
200 buf->ops = spd->ops;
201 if (spd->flags & SPLICE_F_GIFT)
202 buf->flags |= PIPE_BUF_FLAG_GIFT;
203
204 pipe->nrbufs++;
205 page_nr++;
206 ret += buf->len;
207
208 if (pipe->inode)
209 do_wakeup = 1;
210
211 if (!--spd->nr_pages)
212 break;
213 if (pipe->nrbufs < PIPE_BUFFERS)
214 continue;
215
216 break;
217 }
218
219 if (spd->flags & SPLICE_F_NONBLOCK) {
220 if (!ret)
221 ret = -EAGAIN;
222 break;
223 }
224
225 if (signal_pending(current)) {
226 if (!ret)
227 ret = -ERESTARTSYS;
228 break;
229 }
230
231 if (do_wakeup) {
232 smp_mb();
233 if (waitqueue_active(&pipe->wait))
234 wake_up_interruptible_sync(&pipe->wait);
235 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
236 do_wakeup = 0;
237 }
238
239 pipe->waiting_writers++;
240 pipe_wait(pipe);
241 pipe->waiting_writers--;
242 }
243
244 if (pipe->inode) {
245 mutex_unlock(&pipe->inode->i_mutex);
246
247 if (do_wakeup) {
248 smp_mb();
249 if (waitqueue_active(&pipe->wait))
250 wake_up_interruptible(&pipe->wait);
251 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
252 }
253 }
254
255 while (page_nr < spd_pages)
256 page_cache_release(spd->pages[page_nr++]);
257
258 return ret;
259 }
260
261 static int
262 __generic_file_splice_read(struct file *in, loff_t *ppos,
263 struct pipe_inode_info *pipe, size_t len,
264 unsigned int flags)
265 {
266 struct address_space *mapping = in->f_mapping;
267 unsigned int loff, nr_pages;
268 struct page *pages[PIPE_BUFFERS];
269 struct partial_page partial[PIPE_BUFFERS];
270 struct page *page;
271 pgoff_t index, end_index;
272 loff_t isize;
273 int error, page_nr;
274 struct splice_pipe_desc spd = {
275 .pages = pages,
276 .partial = partial,
277 .flags = flags,
278 .ops = &page_cache_pipe_buf_ops,
279 };
280
281 index = *ppos >> PAGE_CACHE_SHIFT;
282 loff = *ppos & ~PAGE_CACHE_MASK;
283 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
284
285 if (nr_pages > PIPE_BUFFERS)
286 nr_pages = PIPE_BUFFERS;
287
288 /*
289 * Don't try to 2nd guess the read-ahead logic, call into
290 * page_cache_readahead() like the page cache reads would do.
291 */
292 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
293
294 /*
295 * Lookup the (hopefully) full range of pages we need.
296 */
297 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
298
299 /*
300 * If find_get_pages_contig() returned fewer pages than we needed,
301 * allocate the rest and fill in the holes.
302 */
303 error = 0;
304 index += spd.nr_pages;
305 while (spd.nr_pages < nr_pages) {
306 /*
307 * Page could be there, find_get_pages_contig() breaks on
308 * the first hole.
309 */
310 page = find_get_page(mapping, index);
311 if (!page) {
312 /*
313 * Make sure the read-ahead engine is notified
314 * about this failure.
315 */
316 handle_ra_miss(mapping, &in->f_ra, index);
317
318 /*
319 * page didn't exist, allocate one.
320 */
321 page = page_cache_alloc_cold(mapping);
322 if (!page)
323 break;
324
325 error = add_to_page_cache_lru(page, mapping, index,
326 GFP_KERNEL);
327 if (unlikely(error)) {
328 page_cache_release(page);
329 if (error == -EEXIST)
330 continue;
331 break;
332 }
333 /*
334 * add_to_page_cache() locks the page, unlock it
335 * to avoid convoluting the logic below even more.
336 */
337 unlock_page(page);
338 }
339
340 pages[spd.nr_pages++] = page;
341 index++;
342 }
343
344 /*
345 * Now loop over the map and see if we need to start IO on any
346 * pages, fill in the partial map, etc.
347 */
348 index = *ppos >> PAGE_CACHE_SHIFT;
349 nr_pages = spd.nr_pages;
350 spd.nr_pages = 0;
351 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
352 unsigned int this_len;
353
354 if (!len)
355 break;
356
357 /*
358 * this_len is the max we'll use from this page
359 */
360 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
361 page = pages[page_nr];
362
363 /*
364 * If the page isn't uptodate, we may need to start io on it
365 */
366 if (!PageUptodate(page)) {
367 /*
368 * If in nonblock mode then dont block on waiting
369 * for an in-flight io page
370 */
371 if (flags & SPLICE_F_NONBLOCK) {
372 if (TestSetPageLocked(page))
373 break;
374 } else
375 lock_page(page);
376
377 /*
378 * page was truncated, stop here. if this isn't the
379 * first page, we'll just complete what we already
380 * added
381 */
382 if (!page->mapping) {
383 unlock_page(page);
384 break;
385 }
386 /*
387 * page was already under io and is now done, great
388 */
389 if (PageUptodate(page)) {
390 unlock_page(page);
391 goto fill_it;
392 }
393
394 /*
395 * need to read in the page
396 */
397 error = mapping->a_ops->readpage(in, page);
398 if (unlikely(error)) {
399 /*
400 * We really should re-lookup the page here,
401 * but it complicates things a lot. Instead
402 * lets just do what we already stored, and
403 * we'll get it the next time we are called.
404 */
405 if (error == AOP_TRUNCATED_PAGE)
406 error = 0;
407
408 break;
409 }
410 }
411 fill_it:
412 /*
413 * i_size must be checked after PageUptodate.
414 */
415 isize = i_size_read(mapping->host);
416 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
417 if (unlikely(!isize || index > end_index))
418 break;
419
420 /*
421 * if this is the last page, see if we need to shrink
422 * the length and stop
423 */
424 if (end_index == index) {
425 unsigned int plen;
426
427 /*
428 * max good bytes in this page
429 */
430 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
431 if (plen <= loff)
432 break;
433
434 /*
435 * force quit after adding this page
436 */
437 this_len = min(this_len, plen - loff);
438 len = this_len;
439 }
440
441 partial[page_nr].offset = loff;
442 partial[page_nr].len = this_len;
443 len -= this_len;
444 loff = 0;
445 spd.nr_pages++;
446 index++;
447 }
448
449 /*
450 * Release any pages at the end, if we quit early. 'page_nr' is how far
451 * we got, 'nr_pages' is how many pages are in the map.
452 */
453 while (page_nr < nr_pages)
454 page_cache_release(pages[page_nr++]);
455
456 if (spd.nr_pages)
457 return splice_to_pipe(pipe, &spd);
458
459 return error;
460 }
461
462 /**
463 * generic_file_splice_read - splice data from file to a pipe
464 * @in: file to splice from
465 * @ppos: position in @in
466 * @pipe: pipe to splice to
467 * @len: number of bytes to splice
468 * @flags: splice modifier flags
469 *
470 * Description:
471 * Will read pages from given file and fill them into a pipe. Can be
472 * used as long as the address_space operations for the source implements
473 * a readpage() hook.
474 *
475 */
476 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
477 struct pipe_inode_info *pipe, size_t len,
478 unsigned int flags)
479 {
480 ssize_t spliced;
481 int ret;
482 loff_t isize, left;
483
484 isize = i_size_read(in->f_mapping->host);
485 if (unlikely(*ppos >= isize))
486 return 0;
487
488 left = isize - *ppos;
489 if (unlikely(left < len))
490 len = left;
491
492 ret = 0;
493 spliced = 0;
494 while (len) {
495 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
496
497 if (ret < 0)
498 break;
499 else if (!ret) {
500 if (spliced)
501 break;
502 if (flags & SPLICE_F_NONBLOCK) {
503 ret = -EAGAIN;
504 break;
505 }
506 }
507
508 *ppos += ret;
509 len -= ret;
510 spliced += ret;
511 }
512
513 if (spliced)
514 return spliced;
515
516 return ret;
517 }
518
519 EXPORT_SYMBOL(generic_file_splice_read);
520
521 /*
522 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
523 * using sendpage(). Return the number of bytes sent.
524 */
525 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
526 struct pipe_buffer *buf, struct splice_desc *sd)
527 {
528 struct file *file = sd->u.file;
529 loff_t pos = sd->pos;
530 int ret, more;
531
532 ret = buf->ops->confirm(pipe, buf);
533 if (!ret) {
534 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
535
536 ret = file->f_op->sendpage(file, buf->page, buf->offset,
537 sd->len, &pos, more);
538 }
539
540 return ret;
541 }
542
543 /*
544 * This is a little more tricky than the file -> pipe splicing. There are
545 * basically three cases:
546 *
547 * - Destination page already exists in the address space and there
548 * are users of it. For that case we have no other option that
549 * copying the data. Tough luck.
550 * - Destination page already exists in the address space, but there
551 * are no users of it. Make sure it's uptodate, then drop it. Fall
552 * through to last case.
553 * - Destination page does not exist, we can add the pipe page to
554 * the page cache and avoid the copy.
555 *
556 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
557 * sd->flags), we attempt to migrate pages from the pipe to the output
558 * file address space page cache. This is possible if no one else has
559 * the pipe page referenced outside of the pipe and page cache. If
560 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
561 * a new page in the output file page cache and fill/dirty that.
562 */
563 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
564 struct splice_desc *sd)
565 {
566 struct file *file = sd->u.file;
567 struct address_space *mapping = file->f_mapping;
568 unsigned int offset, this_len;
569 struct page *page;
570 pgoff_t index;
571 int ret;
572
573 /*
574 * make sure the data in this buffer is uptodate
575 */
576 ret = buf->ops->confirm(pipe, buf);
577 if (unlikely(ret))
578 return ret;
579
580 index = sd->pos >> PAGE_CACHE_SHIFT;
581 offset = sd->pos & ~PAGE_CACHE_MASK;
582
583 this_len = sd->len;
584 if (this_len + offset > PAGE_CACHE_SIZE)
585 this_len = PAGE_CACHE_SIZE - offset;
586
587 find_page:
588 page = find_lock_page(mapping, index);
589 if (!page) {
590 ret = -ENOMEM;
591 page = page_cache_alloc_cold(mapping);
592 if (unlikely(!page))
593 goto out_ret;
594
595 /*
596 * This will also lock the page
597 */
598 ret = add_to_page_cache_lru(page, mapping, index,
599 GFP_KERNEL);
600 if (unlikely(ret))
601 goto out;
602 }
603
604 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
605 if (unlikely(ret)) {
606 loff_t isize = i_size_read(mapping->host);
607
608 if (ret != AOP_TRUNCATED_PAGE)
609 unlock_page(page);
610 page_cache_release(page);
611 if (ret == AOP_TRUNCATED_PAGE)
612 goto find_page;
613
614 /*
615 * prepare_write() may have instantiated a few blocks
616 * outside i_size. Trim these off again.
617 */
618 if (sd->pos + this_len > isize)
619 vmtruncate(mapping->host, isize);
620
621 goto out_ret;
622 }
623
624 if (buf->page != page) {
625 /*
626 * Careful, ->map() uses KM_USER0!
627 */
628 char *src = buf->ops->map(pipe, buf, 1);
629 char *dst = kmap_atomic(page, KM_USER1);
630
631 memcpy(dst + offset, src + buf->offset, this_len);
632 flush_dcache_page(page);
633 kunmap_atomic(dst, KM_USER1);
634 buf->ops->unmap(pipe, buf, src);
635 }
636
637 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
638 if (ret) {
639 if (ret == AOP_TRUNCATED_PAGE) {
640 page_cache_release(page);
641 goto find_page;
642 }
643 if (ret < 0)
644 goto out;
645 /*
646 * Partial write has happened, so 'ret' already initialized by
647 * number of bytes written, Where is nothing we have to do here.
648 */
649 } else
650 ret = this_len;
651 /*
652 * Return the number of bytes written and mark page as
653 * accessed, we are now done!
654 */
655 mark_page_accessed(page);
656 out:
657 page_cache_release(page);
658 unlock_page(page);
659 out_ret:
660 return ret;
661 }
662
663 /**
664 * __splice_from_pipe - splice data from a pipe to given actor
665 * @pipe: pipe to splice from
666 * @sd: information to @actor
667 * @actor: handler that splices the data
668 *
669 * Description:
670 * This function does little more than loop over the pipe and call
671 * @actor to do the actual moving of a single struct pipe_buffer to
672 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
673 * pipe_to_user.
674 *
675 */
676 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
677 splice_actor *actor)
678 {
679 int ret, do_wakeup, err;
680
681 ret = 0;
682 do_wakeup = 0;
683
684 for (;;) {
685 if (pipe->nrbufs) {
686 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
687 const struct pipe_buf_operations *ops = buf->ops;
688
689 sd->len = buf->len;
690 if (sd->len > sd->total_len)
691 sd->len = sd->total_len;
692
693 err = actor(pipe, buf, sd);
694 if (err <= 0) {
695 if (!ret && err != -ENODATA)
696 ret = err;
697
698 break;
699 }
700
701 ret += err;
702 buf->offset += err;
703 buf->len -= err;
704
705 sd->len -= err;
706 sd->pos += err;
707 sd->total_len -= err;
708 if (sd->len)
709 continue;
710
711 if (!buf->len) {
712 buf->ops = NULL;
713 ops->release(pipe, buf);
714 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
715 pipe->nrbufs--;
716 if (pipe->inode)
717 do_wakeup = 1;
718 }
719
720 if (!sd->total_len)
721 break;
722 }
723
724 if (pipe->nrbufs)
725 continue;
726 if (!pipe->writers)
727 break;
728 if (!pipe->waiting_writers) {
729 if (ret)
730 break;
731 }
732
733 if (sd->flags & SPLICE_F_NONBLOCK) {
734 if (!ret)
735 ret = -EAGAIN;
736 break;
737 }
738
739 if (signal_pending(current)) {
740 if (!ret)
741 ret = -ERESTARTSYS;
742 break;
743 }
744
745 if (do_wakeup) {
746 smp_mb();
747 if (waitqueue_active(&pipe->wait))
748 wake_up_interruptible_sync(&pipe->wait);
749 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
750 do_wakeup = 0;
751 }
752
753 pipe_wait(pipe);
754 }
755
756 if (do_wakeup) {
757 smp_mb();
758 if (waitqueue_active(&pipe->wait))
759 wake_up_interruptible(&pipe->wait);
760 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
761 }
762
763 return ret;
764 }
765 EXPORT_SYMBOL(__splice_from_pipe);
766
767 /**
768 * splice_from_pipe - splice data from a pipe to a file
769 * @pipe: pipe to splice from
770 * @out: file to splice to
771 * @ppos: position in @out
772 * @len: how many bytes to splice
773 * @flags: splice modifier flags
774 * @actor: handler that splices the data
775 *
776 * Description:
777 * See __splice_from_pipe. This function locks the input and output inodes,
778 * otherwise it's identical to __splice_from_pipe().
779 *
780 */
781 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
782 loff_t *ppos, size_t len, unsigned int flags,
783 splice_actor *actor)
784 {
785 ssize_t ret;
786 struct inode *inode = out->f_mapping->host;
787 struct splice_desc sd = {
788 .total_len = len,
789 .flags = flags,
790 .pos = *ppos,
791 .u.file = out,
792 };
793
794 /*
795 * The actor worker might be calling ->prepare_write and
796 * ->commit_write. Most of the time, these expect i_mutex to
797 * be held. Since this may result in an ABBA deadlock with
798 * pipe->inode, we have to order lock acquiry here.
799 */
800 inode_double_lock(inode, pipe->inode);
801 ret = __splice_from_pipe(pipe, &sd, actor);
802 inode_double_unlock(inode, pipe->inode);
803
804 return ret;
805 }
806
807 /**
808 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
809 * @pipe: pipe info
810 * @out: file to write to
811 * @ppos: position in @out
812 * @len: number of bytes to splice
813 * @flags: splice modifier flags
814 *
815 * Description:
816 * Will either move or copy pages (determined by @flags options) from
817 * the given pipe inode to the given file. The caller is responsible
818 * for acquiring i_mutex on both inodes.
819 *
820 */
821 ssize_t
822 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
823 loff_t *ppos, size_t len, unsigned int flags)
824 {
825 struct address_space *mapping = out->f_mapping;
826 struct inode *inode = mapping->host;
827 struct splice_desc sd = {
828 .total_len = len,
829 .flags = flags,
830 .pos = *ppos,
831 .u.file = out,
832 };
833 ssize_t ret;
834 int err;
835
836 err = remove_suid(out->f_path.dentry);
837 if (unlikely(err))
838 return err;
839
840 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
841 if (ret > 0) {
842 unsigned long nr_pages;
843
844 *ppos += ret;
845 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
846
847 /*
848 * If file or inode is SYNC and we actually wrote some data,
849 * sync it.
850 */
851 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
852 err = generic_osync_inode(inode, mapping,
853 OSYNC_METADATA|OSYNC_DATA);
854
855 if (err)
856 ret = err;
857 }
858 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
859 }
860
861 return ret;
862 }
863
864 EXPORT_SYMBOL(generic_file_splice_write_nolock);
865
866 /**
867 * generic_file_splice_write - splice data from a pipe to a file
868 * @pipe: pipe info
869 * @out: file to write to
870 * @ppos: position in @out
871 * @len: number of bytes to splice
872 * @flags: splice modifier flags
873 *
874 * Description:
875 * Will either move or copy pages (determined by @flags options) from
876 * the given pipe inode to the given file.
877 *
878 */
879 ssize_t
880 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
881 loff_t *ppos, size_t len, unsigned int flags)
882 {
883 struct address_space *mapping = out->f_mapping;
884 struct inode *inode = mapping->host;
885 ssize_t ret;
886 int err;
887
888 err = should_remove_suid(out->f_path.dentry);
889 if (unlikely(err)) {
890 mutex_lock(&inode->i_mutex);
891 err = __remove_suid(out->f_path.dentry, err);
892 mutex_unlock(&inode->i_mutex);
893 if (err)
894 return err;
895 }
896
897 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
898 if (ret > 0) {
899 unsigned long nr_pages;
900
901 *ppos += ret;
902 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
903
904 /*
905 * If file or inode is SYNC and we actually wrote some data,
906 * sync it.
907 */
908 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
909 mutex_lock(&inode->i_mutex);
910 err = generic_osync_inode(inode, mapping,
911 OSYNC_METADATA|OSYNC_DATA);
912 mutex_unlock(&inode->i_mutex);
913
914 if (err)
915 ret = err;
916 }
917 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
918 }
919
920 return ret;
921 }
922
923 EXPORT_SYMBOL(generic_file_splice_write);
924
925 /**
926 * generic_splice_sendpage - splice data from a pipe to a socket
927 * @pipe: pipe to splice from
928 * @out: socket to write to
929 * @ppos: position in @out
930 * @len: number of bytes to splice
931 * @flags: splice modifier flags
932 *
933 * Description:
934 * Will send @len bytes from the pipe to a network socket. No data copying
935 * is involved.
936 *
937 */
938 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
939 loff_t *ppos, size_t len, unsigned int flags)
940 {
941 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
942 }
943
944 EXPORT_SYMBOL(generic_splice_sendpage);
945
946 /*
947 * Attempt to initiate a splice from pipe to file.
948 */
949 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
950 loff_t *ppos, size_t len, unsigned int flags)
951 {
952 int ret;
953
954 if (unlikely(!out->f_op || !out->f_op->splice_write))
955 return -EINVAL;
956
957 if (unlikely(!(out->f_mode & FMODE_WRITE)))
958 return -EBADF;
959
960 ret = rw_verify_area(WRITE, out, ppos, len);
961 if (unlikely(ret < 0))
962 return ret;
963
964 return out->f_op->splice_write(pipe, out, ppos, len, flags);
965 }
966
967 /*
968 * Attempt to initiate a splice from a file to a pipe.
969 */
970 static long do_splice_to(struct file *in, loff_t *ppos,
971 struct pipe_inode_info *pipe, size_t len,
972 unsigned int flags)
973 {
974 int ret;
975
976 if (unlikely(!in->f_op || !in->f_op->splice_read))
977 return -EINVAL;
978
979 if (unlikely(!(in->f_mode & FMODE_READ)))
980 return -EBADF;
981
982 ret = rw_verify_area(READ, in, ppos, len);
983 if (unlikely(ret < 0))
984 return ret;
985
986 return in->f_op->splice_read(in, ppos, pipe, len, flags);
987 }
988
989 /**
990 * splice_direct_to_actor - splices data directly between two non-pipes
991 * @in: file to splice from
992 * @sd: actor information on where to splice to
993 * @actor: handles the data splicing
994 *
995 * Description:
996 * This is a special case helper to splice directly between two
997 * points, without requiring an explicit pipe. Internally an allocated
998 * pipe is cached in the process, and reused during the life time of
999 * that process.
1000 *
1001 */
1002 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1003 splice_direct_actor *actor)
1004 {
1005 struct pipe_inode_info *pipe;
1006 long ret, bytes;
1007 umode_t i_mode;
1008 size_t len;
1009 int i, flags;
1010
1011 /*
1012 * We require the input being a regular file, as we don't want to
1013 * randomly drop data for eg socket -> socket splicing. Use the
1014 * piped splicing for that!
1015 */
1016 i_mode = in->f_path.dentry->d_inode->i_mode;
1017 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1018 return -EINVAL;
1019
1020 /*
1021 * neither in nor out is a pipe, setup an internal pipe attached to
1022 * 'out' and transfer the wanted data from 'in' to 'out' through that
1023 */
1024 pipe = current->splice_pipe;
1025 if (unlikely(!pipe)) {
1026 pipe = alloc_pipe_info(NULL);
1027 if (!pipe)
1028 return -ENOMEM;
1029
1030 /*
1031 * We don't have an immediate reader, but we'll read the stuff
1032 * out of the pipe right after the splice_to_pipe(). So set
1033 * PIPE_READERS appropriately.
1034 */
1035 pipe->readers = 1;
1036
1037 current->splice_pipe = pipe;
1038 }
1039
1040 /*
1041 * Do the splice.
1042 */
1043 ret = 0;
1044 bytes = 0;
1045 len = sd->total_len;
1046 flags = sd->flags;
1047
1048 /*
1049 * Don't block on output, we have to drain the direct pipe.
1050 */
1051 sd->flags &= ~SPLICE_F_NONBLOCK;
1052
1053 while (len) {
1054 size_t read_len, max_read_len;
1055
1056 /*
1057 * Do at most PIPE_BUFFERS pages worth of transfer:
1058 */
1059 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1060
1061 ret = do_splice_to(in, &sd->pos, pipe, max_read_len, flags);
1062 if (unlikely(ret < 0))
1063 goto out_release;
1064
1065 read_len = ret;
1066 sd->total_len = read_len;
1067
1068 /*
1069 * NOTE: nonblocking mode only applies to the input. We
1070 * must not do the output in nonblocking mode as then we
1071 * could get stuck data in the internal pipe:
1072 */
1073 ret = actor(pipe, sd);
1074 if (unlikely(ret < 0))
1075 goto out_release;
1076
1077 bytes += ret;
1078 len -= ret;
1079
1080 /*
1081 * In nonblocking mode, if we got back a short read then
1082 * that was due to either an IO error or due to the
1083 * pagecache entry not being there. In the IO error case
1084 * the _next_ splice attempt will produce a clean IO error
1085 * return value (not a short read), so in both cases it's
1086 * correct to break out of the loop here:
1087 */
1088 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1089 break;
1090 }
1091
1092 pipe->nrbufs = pipe->curbuf = 0;
1093
1094 return bytes;
1095
1096 out_release:
1097 /*
1098 * If we did an incomplete transfer we must release
1099 * the pipe buffers in question:
1100 */
1101 for (i = 0; i < PIPE_BUFFERS; i++) {
1102 struct pipe_buffer *buf = pipe->bufs + i;
1103
1104 if (buf->ops) {
1105 buf->ops->release(pipe, buf);
1106 buf->ops = NULL;
1107 }
1108 }
1109 pipe->nrbufs = pipe->curbuf = 0;
1110
1111 /*
1112 * If we transferred some data, return the number of bytes:
1113 */
1114 if (bytes > 0)
1115 return bytes;
1116
1117 return ret;
1118
1119 }
1120 EXPORT_SYMBOL(splice_direct_to_actor);
1121
1122 static int direct_splice_actor(struct pipe_inode_info *pipe,
1123 struct splice_desc *sd)
1124 {
1125 struct file *file = sd->u.file;
1126
1127 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1128 }
1129
1130 /**
1131 * do_splice_direct - splices data directly between two files
1132 * @in: file to splice from
1133 * @ppos: input file offset
1134 * @out: file to splice to
1135 * @len: number of bytes to splice
1136 * @flags: splice modifier flags
1137 *
1138 * Description:
1139 * For use by do_sendfile(). splice can easily emulate sendfile, but
1140 * doing it in the application would incur an extra system call
1141 * (splice in + splice out, as compared to just sendfile()). So this helper
1142 * can splice directly through a process-private pipe.
1143 *
1144 */
1145 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1146 size_t len, unsigned int flags)
1147 {
1148 struct splice_desc sd = {
1149 .len = len,
1150 .total_len = len,
1151 .flags = flags,
1152 .pos = *ppos,
1153 .u.file = out,
1154 };
1155 size_t ret;
1156
1157 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1158 *ppos = sd.pos;
1159 return ret;
1160 }
1161
1162 /*
1163 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1164 * location, so checking ->i_pipe is not enough to verify that this is a
1165 * pipe.
1166 */
1167 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1168 {
1169 if (S_ISFIFO(inode->i_mode))
1170 return inode->i_pipe;
1171
1172 return NULL;
1173 }
1174
1175 /*
1176 * Determine where to splice to/from.
1177 */
1178 static long do_splice(struct file *in, loff_t __user *off_in,
1179 struct file *out, loff_t __user *off_out,
1180 size_t len, unsigned int flags)
1181 {
1182 struct pipe_inode_info *pipe;
1183 loff_t offset, *off;
1184 long ret;
1185
1186 pipe = pipe_info(in->f_path.dentry->d_inode);
1187 if (pipe) {
1188 if (off_in)
1189 return -ESPIPE;
1190 if (off_out) {
1191 if (out->f_op->llseek == no_llseek)
1192 return -EINVAL;
1193 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1194 return -EFAULT;
1195 off = &offset;
1196 } else
1197 off = &out->f_pos;
1198
1199 ret = do_splice_from(pipe, out, off, len, flags);
1200
1201 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1202 ret = -EFAULT;
1203
1204 return ret;
1205 }
1206
1207 pipe = pipe_info(out->f_path.dentry->d_inode);
1208 if (pipe) {
1209 if (off_out)
1210 return -ESPIPE;
1211 if (off_in) {
1212 if (in->f_op->llseek == no_llseek)
1213 return -EINVAL;
1214 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1215 return -EFAULT;
1216 off = &offset;
1217 } else
1218 off = &in->f_pos;
1219
1220 ret = do_splice_to(in, off, pipe, len, flags);
1221
1222 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1223 ret = -EFAULT;
1224
1225 return ret;
1226 }
1227
1228 return -EINVAL;
1229 }
1230
1231 /*
1232 * Map an iov into an array of pages and offset/length tupples. With the
1233 * partial_page structure, we can map several non-contiguous ranges into
1234 * our ones pages[] map instead of splitting that operation into pieces.
1235 * Could easily be exported as a generic helper for other users, in which
1236 * case one would probably want to add a 'max_nr_pages' parameter as well.
1237 */
1238 static int get_iovec_page_array(const struct iovec __user *iov,
1239 unsigned int nr_vecs, struct page **pages,
1240 struct partial_page *partial, int aligned)
1241 {
1242 int buffers = 0, error = 0;
1243
1244 /*
1245 * It's ok to take the mmap_sem for reading, even
1246 * across a "get_user()".
1247 */
1248 down_read(&current->mm->mmap_sem);
1249
1250 while (nr_vecs) {
1251 unsigned long off, npages;
1252 void __user *base;
1253 size_t len;
1254 int i;
1255
1256 /*
1257 * Get user address base and length for this iovec.
1258 */
1259 error = get_user(base, &iov->iov_base);
1260 if (unlikely(error))
1261 break;
1262 error = get_user(len, &iov->iov_len);
1263 if (unlikely(error))
1264 break;
1265
1266 /*
1267 * Sanity check this iovec. 0 read succeeds.
1268 */
1269 if (unlikely(!len))
1270 break;
1271 error = -EFAULT;
1272 if (unlikely(!base))
1273 break;
1274
1275 /*
1276 * Get this base offset and number of pages, then map
1277 * in the user pages.
1278 */
1279 off = (unsigned long) base & ~PAGE_MASK;
1280
1281 /*
1282 * If asked for alignment, the offset must be zero and the
1283 * length a multiple of the PAGE_SIZE.
1284 */
1285 error = -EINVAL;
1286 if (aligned && (off || len & ~PAGE_MASK))
1287 break;
1288
1289 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1290 if (npages > PIPE_BUFFERS - buffers)
1291 npages = PIPE_BUFFERS - buffers;
1292
1293 error = get_user_pages(current, current->mm,
1294 (unsigned long) base, npages, 0, 0,
1295 &pages[buffers], NULL);
1296
1297 if (unlikely(error <= 0))
1298 break;
1299
1300 /*
1301 * Fill this contiguous range into the partial page map.
1302 */
1303 for (i = 0; i < error; i++) {
1304 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1305
1306 partial[buffers].offset = off;
1307 partial[buffers].len = plen;
1308
1309 off = 0;
1310 len -= plen;
1311 buffers++;
1312 }
1313
1314 /*
1315 * We didn't complete this iov, stop here since it probably
1316 * means we have to move some of this into a pipe to
1317 * be able to continue.
1318 */
1319 if (len)
1320 break;
1321
1322 /*
1323 * Don't continue if we mapped fewer pages than we asked for,
1324 * or if we mapped the max number of pages that we have
1325 * room for.
1326 */
1327 if (error < npages || buffers == PIPE_BUFFERS)
1328 break;
1329
1330 nr_vecs--;
1331 iov++;
1332 }
1333
1334 up_read(&current->mm->mmap_sem);
1335
1336 if (buffers)
1337 return buffers;
1338
1339 return error;
1340 }
1341
1342 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1343 struct splice_desc *sd)
1344 {
1345 char *src;
1346 int ret;
1347
1348 ret = buf->ops->confirm(pipe, buf);
1349 if (unlikely(ret))
1350 return ret;
1351
1352 /*
1353 * See if we can use the atomic maps, by prefaulting in the
1354 * pages and doing an atomic copy
1355 */
1356 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1357 src = buf->ops->map(pipe, buf, 1);
1358 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1359 sd->len);
1360 buf->ops->unmap(pipe, buf, src);
1361 if (!ret) {
1362 ret = sd->len;
1363 goto out;
1364 }
1365 }
1366
1367 /*
1368 * No dice, use slow non-atomic map and copy
1369 */
1370 src = buf->ops->map(pipe, buf, 0);
1371
1372 ret = sd->len;
1373 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1374 ret = -EFAULT;
1375
1376 out:
1377 if (ret > 0)
1378 sd->u.userptr += ret;
1379 buf->ops->unmap(pipe, buf, src);
1380 return ret;
1381 }
1382
1383 /*
1384 * For lack of a better implementation, implement vmsplice() to userspace
1385 * as a simple copy of the pipes pages to the user iov.
1386 */
1387 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1388 unsigned long nr_segs, unsigned int flags)
1389 {
1390 struct pipe_inode_info *pipe;
1391 struct splice_desc sd;
1392 ssize_t size;
1393 int error;
1394 long ret;
1395
1396 pipe = pipe_info(file->f_path.dentry->d_inode);
1397 if (!pipe)
1398 return -EBADF;
1399
1400 if (pipe->inode)
1401 mutex_lock(&pipe->inode->i_mutex);
1402
1403 error = ret = 0;
1404 while (nr_segs) {
1405 void __user *base;
1406 size_t len;
1407
1408 /*
1409 * Get user address base and length for this iovec.
1410 */
1411 error = get_user(base, &iov->iov_base);
1412 if (unlikely(error))
1413 break;
1414 error = get_user(len, &iov->iov_len);
1415 if (unlikely(error))
1416 break;
1417
1418 /*
1419 * Sanity check this iovec. 0 read succeeds.
1420 */
1421 if (unlikely(!len))
1422 break;
1423 if (unlikely(!base)) {
1424 error = -EFAULT;
1425 break;
1426 }
1427
1428 sd.len = 0;
1429 sd.total_len = len;
1430 sd.flags = flags;
1431 sd.u.userptr = base;
1432 sd.pos = 0;
1433
1434 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1435 if (size < 0) {
1436 if (!ret)
1437 ret = size;
1438
1439 break;
1440 }
1441
1442 ret += size;
1443
1444 if (size < len)
1445 break;
1446
1447 nr_segs--;
1448 iov++;
1449 }
1450
1451 if (pipe->inode)
1452 mutex_unlock(&pipe->inode->i_mutex);
1453
1454 if (!ret)
1455 ret = error;
1456
1457 return ret;
1458 }
1459
1460 /*
1461 * vmsplice splices a user address range into a pipe. It can be thought of
1462 * as splice-from-memory, where the regular splice is splice-from-file (or
1463 * to file). In both cases the output is a pipe, naturally.
1464 */
1465 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1466 unsigned long nr_segs, unsigned int flags)
1467 {
1468 struct pipe_inode_info *pipe;
1469 struct page *pages[PIPE_BUFFERS];
1470 struct partial_page partial[PIPE_BUFFERS];
1471 struct splice_pipe_desc spd = {
1472 .pages = pages,
1473 .partial = partial,
1474 .flags = flags,
1475 .ops = &user_page_pipe_buf_ops,
1476 };
1477
1478 pipe = pipe_info(file->f_path.dentry->d_inode);
1479 if (!pipe)
1480 return -EBADF;
1481
1482 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1483 flags & SPLICE_F_GIFT);
1484 if (spd.nr_pages <= 0)
1485 return spd.nr_pages;
1486
1487 return splice_to_pipe(pipe, &spd);
1488 }
1489
1490 /*
1491 * Note that vmsplice only really supports true splicing _from_ user memory
1492 * to a pipe, not the other way around. Splicing from user memory is a simple
1493 * operation that can be supported without any funky alignment restrictions
1494 * or nasty vm tricks. We simply map in the user memory and fill them into
1495 * a pipe. The reverse isn't quite as easy, though. There are two possible
1496 * solutions for that:
1497 *
1498 * - memcpy() the data internally, at which point we might as well just
1499 * do a regular read() on the buffer anyway.
1500 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1501 * has restriction limitations on both ends of the pipe).
1502 *
1503 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1504 *
1505 */
1506 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1507 unsigned long nr_segs, unsigned int flags)
1508 {
1509 struct file *file;
1510 long error;
1511 int fput;
1512
1513 if (unlikely(nr_segs > UIO_MAXIOV))
1514 return -EINVAL;
1515 else if (unlikely(!nr_segs))
1516 return 0;
1517
1518 error = -EBADF;
1519 file = fget_light(fd, &fput);
1520 if (file) {
1521 if (file->f_mode & FMODE_WRITE)
1522 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1523 else if (file->f_mode & FMODE_READ)
1524 error = vmsplice_to_user(file, iov, nr_segs, flags);
1525
1526 fput_light(file, fput);
1527 }
1528
1529 return error;
1530 }
1531
1532 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1533 int fd_out, loff_t __user *off_out,
1534 size_t len, unsigned int flags)
1535 {
1536 long error;
1537 struct file *in, *out;
1538 int fput_in, fput_out;
1539
1540 if (unlikely(!len))
1541 return 0;
1542
1543 error = -EBADF;
1544 in = fget_light(fd_in, &fput_in);
1545 if (in) {
1546 if (in->f_mode & FMODE_READ) {
1547 out = fget_light(fd_out, &fput_out);
1548 if (out) {
1549 if (out->f_mode & FMODE_WRITE)
1550 error = do_splice(in, off_in,
1551 out, off_out,
1552 len, flags);
1553 fput_light(out, fput_out);
1554 }
1555 }
1556
1557 fput_light(in, fput_in);
1558 }
1559
1560 return error;
1561 }
1562
1563 /*
1564 * Make sure there's data to read. Wait for input if we can, otherwise
1565 * return an appropriate error.
1566 */
1567 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1568 {
1569 int ret;
1570
1571 /*
1572 * Check ->nrbufs without the inode lock first. This function
1573 * is speculative anyways, so missing one is ok.
1574 */
1575 if (pipe->nrbufs)
1576 return 0;
1577
1578 ret = 0;
1579 mutex_lock(&pipe->inode->i_mutex);
1580
1581 while (!pipe->nrbufs) {
1582 if (signal_pending(current)) {
1583 ret = -ERESTARTSYS;
1584 break;
1585 }
1586 if (!pipe->writers)
1587 break;
1588 if (!pipe->waiting_writers) {
1589 if (flags & SPLICE_F_NONBLOCK) {
1590 ret = -EAGAIN;
1591 break;
1592 }
1593 }
1594 pipe_wait(pipe);
1595 }
1596
1597 mutex_unlock(&pipe->inode->i_mutex);
1598 return ret;
1599 }
1600
1601 /*
1602 * Make sure there's writeable room. Wait for room if we can, otherwise
1603 * return an appropriate error.
1604 */
1605 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1606 {
1607 int ret;
1608
1609 /*
1610 * Check ->nrbufs without the inode lock first. This function
1611 * is speculative anyways, so missing one is ok.
1612 */
1613 if (pipe->nrbufs < PIPE_BUFFERS)
1614 return 0;
1615
1616 ret = 0;
1617 mutex_lock(&pipe->inode->i_mutex);
1618
1619 while (pipe->nrbufs >= PIPE_BUFFERS) {
1620 if (!pipe->readers) {
1621 send_sig(SIGPIPE, current, 0);
1622 ret = -EPIPE;
1623 break;
1624 }
1625 if (flags & SPLICE_F_NONBLOCK) {
1626 ret = -EAGAIN;
1627 break;
1628 }
1629 if (signal_pending(current)) {
1630 ret = -ERESTARTSYS;
1631 break;
1632 }
1633 pipe->waiting_writers++;
1634 pipe_wait(pipe);
1635 pipe->waiting_writers--;
1636 }
1637
1638 mutex_unlock(&pipe->inode->i_mutex);
1639 return ret;
1640 }
1641
1642 /*
1643 * Link contents of ipipe to opipe.
1644 */
1645 static int link_pipe(struct pipe_inode_info *ipipe,
1646 struct pipe_inode_info *opipe,
1647 size_t len, unsigned int flags)
1648 {
1649 struct pipe_buffer *ibuf, *obuf;
1650 int ret = 0, i = 0, nbuf;
1651
1652 /*
1653 * Potential ABBA deadlock, work around it by ordering lock
1654 * grabbing by inode address. Otherwise two different processes
1655 * could deadlock (one doing tee from A -> B, the other from B -> A).
1656 */
1657 inode_double_lock(ipipe->inode, opipe->inode);
1658
1659 do {
1660 if (!opipe->readers) {
1661 send_sig(SIGPIPE, current, 0);
1662 if (!ret)
1663 ret = -EPIPE;
1664 break;
1665 }
1666
1667 /*
1668 * If we have iterated all input buffers or ran out of
1669 * output room, break.
1670 */
1671 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1672 break;
1673
1674 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1675 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1676
1677 /*
1678 * Get a reference to this pipe buffer,
1679 * so we can copy the contents over.
1680 */
1681 ibuf->ops->get(ipipe, ibuf);
1682
1683 obuf = opipe->bufs + nbuf;
1684 *obuf = *ibuf;
1685
1686 /*
1687 * Don't inherit the gift flag, we need to
1688 * prevent multiple steals of this page.
1689 */
1690 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1691
1692 if (obuf->len > len)
1693 obuf->len = len;
1694
1695 opipe->nrbufs++;
1696 ret += obuf->len;
1697 len -= obuf->len;
1698 i++;
1699 } while (len);
1700
1701 inode_double_unlock(ipipe->inode, opipe->inode);
1702
1703 /*
1704 * If we put data in the output pipe, wakeup any potential readers.
1705 */
1706 if (ret > 0) {
1707 smp_mb();
1708 if (waitqueue_active(&opipe->wait))
1709 wake_up_interruptible(&opipe->wait);
1710 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1711 }
1712
1713 return ret;
1714 }
1715
1716 /*
1717 * This is a tee(1) implementation that works on pipes. It doesn't copy
1718 * any data, it simply references the 'in' pages on the 'out' pipe.
1719 * The 'flags' used are the SPLICE_F_* variants, currently the only
1720 * applicable one is SPLICE_F_NONBLOCK.
1721 */
1722 static long do_tee(struct file *in, struct file *out, size_t len,
1723 unsigned int flags)
1724 {
1725 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1726 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1727 int ret = -EINVAL;
1728
1729 /*
1730 * Duplicate the contents of ipipe to opipe without actually
1731 * copying the data.
1732 */
1733 if (ipipe && opipe && ipipe != opipe) {
1734 /*
1735 * Keep going, unless we encounter an error. The ipipe/opipe
1736 * ordering doesn't really matter.
1737 */
1738 ret = link_ipipe_prep(ipipe, flags);
1739 if (!ret) {
1740 ret = link_opipe_prep(opipe, flags);
1741 if (!ret) {
1742 ret = link_pipe(ipipe, opipe, len, flags);
1743 if (!ret && (flags & SPLICE_F_NONBLOCK))
1744 ret = -EAGAIN;
1745 }
1746 }
1747 }
1748
1749 return ret;
1750 }
1751
1752 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1753 {
1754 struct file *in;
1755 int error, fput_in;
1756
1757 if (unlikely(!len))
1758 return 0;
1759
1760 error = -EBADF;
1761 in = fget_light(fdin, &fput_in);
1762 if (in) {
1763 if (in->f_mode & FMODE_READ) {
1764 int fput_out;
1765 struct file *out = fget_light(fdout, &fput_out);
1766
1767 if (out) {
1768 if (out->f_mode & FMODE_WRITE)
1769 error = do_tee(in, out, len, flags);
1770 fput_light(out, fput_out);
1771 }
1772 }
1773 fput_light(in, fput_in);
1774 }
1775
1776 return error;
1777 }
This page took 0.102229 seconds and 6 git commands to generate.