Merge branch 'for-2.6.38/core' into for-next
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34
35 /*
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
40 */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
43 {
44 struct page *page = buf->page;
45 struct address_space *mapping;
46
47 lock_page(page);
48
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
52
53 /*
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
60 */
61 wait_on_page_writeback(page);
62
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
66
67 /*
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
70 */
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
74 }
75 }
76
77 /*
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
80 */
81 out_unlock:
82 unlock_page(page);
83 return 1;
84 }
85
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
88 {
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92
93 /*
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
96 */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
99 {
100 struct page *page = buf->page;
101 int err;
102
103 if (!PageUptodate(page)) {
104 lock_page(page);
105
106 /*
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
109 */
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
113 }
114
115 /*
116 * Uh oh, read-error from disk.
117 */
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
121 }
122
123 /*
124 * Page is ok afterall, we are done.
125 */
126 unlock_page(page);
127 }
128
129 return 0;
130 error:
131 unlock_page(page);
132 return err;
133 }
134
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
163 };
164
165 /**
166 * splice_to_pipe - fill passed data into a pipe
167 * @pipe: pipe to fill
168 * @spd: data to fill
169 *
170 * Description:
171 * @spd contains a map of pages and len/offset tuples, along with
172 * the struct pipe_buf_operations associated with these pages. This
173 * function will link that data to the pipe.
174 *
175 */
176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
178 {
179 unsigned int spd_pages = spd->nr_pages;
180 int ret, do_wakeup, page_nr;
181
182 ret = 0;
183 do_wakeup = 0;
184 page_nr = 0;
185
186 pipe_lock(pipe);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < pipe->buffers) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
211
212 if (pipe->inode)
213 do_wakeup = 1;
214
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < pipe->buffers)
218 continue;
219
220 break;
221 }
222
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
227 }
228
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
233 }
234
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
241 }
242
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
246 }
247
248 pipe_unlock(pipe);
249
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 }
256
257 while (page_nr < spd_pages)
258 spd->spd_release(spd, page_nr++);
259
260 return ret;
261 }
262
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265 page_cache_release(spd->pages[i]);
266 }
267
268 /*
269 * Check if we need to grow the arrays holding pages and partial page
270 * descriptions.
271 */
272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273 {
274 if (pipe->buffers <= PIPE_DEF_BUFFERS)
275 return 0;
276
277 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
278 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
279
280 if (spd->pages && spd->partial)
281 return 0;
282
283 kfree(spd->pages);
284 kfree(spd->partial);
285 return -ENOMEM;
286 }
287
288 void splice_shrink_spd(struct pipe_inode_info *pipe,
289 struct splice_pipe_desc *spd)
290 {
291 if (pipe->buffers <= PIPE_DEF_BUFFERS)
292 return;
293
294 kfree(spd->pages);
295 kfree(spd->partial);
296 }
297
298 static int
299 __generic_file_splice_read(struct file *in, loff_t *ppos,
300 struct pipe_inode_info *pipe, size_t len,
301 unsigned int flags)
302 {
303 struct address_space *mapping = in->f_mapping;
304 unsigned int loff, nr_pages, req_pages;
305 struct page *pages[PIPE_DEF_BUFFERS];
306 struct partial_page partial[PIPE_DEF_BUFFERS];
307 struct page *page;
308 pgoff_t index, end_index;
309 loff_t isize;
310 int error, page_nr;
311 struct splice_pipe_desc spd = {
312 .pages = pages,
313 .partial = partial,
314 .flags = flags,
315 .ops = &page_cache_pipe_buf_ops,
316 .spd_release = spd_release_page,
317 };
318
319 if (splice_grow_spd(pipe, &spd))
320 return -ENOMEM;
321
322 index = *ppos >> PAGE_CACHE_SHIFT;
323 loff = *ppos & ~PAGE_CACHE_MASK;
324 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
325 nr_pages = min(req_pages, pipe->buffers);
326
327 /*
328 * Lookup the (hopefully) full range of pages we need.
329 */
330 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
331 index += spd.nr_pages;
332
333 /*
334 * If find_get_pages_contig() returned fewer pages than we needed,
335 * readahead/allocate the rest and fill in the holes.
336 */
337 if (spd.nr_pages < nr_pages)
338 page_cache_sync_readahead(mapping, &in->f_ra, in,
339 index, req_pages - spd.nr_pages);
340
341 error = 0;
342 while (spd.nr_pages < nr_pages) {
343 /*
344 * Page could be there, find_get_pages_contig() breaks on
345 * the first hole.
346 */
347 page = find_get_page(mapping, index);
348 if (!page) {
349 /*
350 * page didn't exist, allocate one.
351 */
352 page = page_cache_alloc_cold(mapping);
353 if (!page)
354 break;
355
356 error = add_to_page_cache_lru(page, mapping, index,
357 GFP_KERNEL);
358 if (unlikely(error)) {
359 page_cache_release(page);
360 if (error == -EEXIST)
361 continue;
362 break;
363 }
364 /*
365 * add_to_page_cache() locks the page, unlock it
366 * to avoid convoluting the logic below even more.
367 */
368 unlock_page(page);
369 }
370
371 spd.pages[spd.nr_pages++] = page;
372 index++;
373 }
374
375 /*
376 * Now loop over the map and see if we need to start IO on any
377 * pages, fill in the partial map, etc.
378 */
379 index = *ppos >> PAGE_CACHE_SHIFT;
380 nr_pages = spd.nr_pages;
381 spd.nr_pages = 0;
382 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
383 unsigned int this_len;
384
385 if (!len)
386 break;
387
388 /*
389 * this_len is the max we'll use from this page
390 */
391 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
392 page = spd.pages[page_nr];
393
394 if (PageReadahead(page))
395 page_cache_async_readahead(mapping, &in->f_ra, in,
396 page, index, req_pages - page_nr);
397
398 /*
399 * If the page isn't uptodate, we may need to start io on it
400 */
401 if (!PageUptodate(page)) {
402 lock_page(page);
403
404 /*
405 * Page was truncated, or invalidated by the
406 * filesystem. Redo the find/create, but this time the
407 * page is kept locked, so there's no chance of another
408 * race with truncate/invalidate.
409 */
410 if (!page->mapping) {
411 unlock_page(page);
412 page = find_or_create_page(mapping, index,
413 mapping_gfp_mask(mapping));
414
415 if (!page) {
416 error = -ENOMEM;
417 break;
418 }
419 page_cache_release(spd.pages[page_nr]);
420 spd.pages[page_nr] = page;
421 }
422 /*
423 * page was already under io and is now done, great
424 */
425 if (PageUptodate(page)) {
426 unlock_page(page);
427 goto fill_it;
428 }
429
430 /*
431 * need to read in the page
432 */
433 error = mapping->a_ops->readpage(in, page);
434 if (unlikely(error)) {
435 /*
436 * We really should re-lookup the page here,
437 * but it complicates things a lot. Instead
438 * lets just do what we already stored, and
439 * we'll get it the next time we are called.
440 */
441 if (error == AOP_TRUNCATED_PAGE)
442 error = 0;
443
444 break;
445 }
446 }
447 fill_it:
448 /*
449 * i_size must be checked after PageUptodate.
450 */
451 isize = i_size_read(mapping->host);
452 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
453 if (unlikely(!isize || index > end_index))
454 break;
455
456 /*
457 * if this is the last page, see if we need to shrink
458 * the length and stop
459 */
460 if (end_index == index) {
461 unsigned int plen;
462
463 /*
464 * max good bytes in this page
465 */
466 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
467 if (plen <= loff)
468 break;
469
470 /*
471 * force quit after adding this page
472 */
473 this_len = min(this_len, plen - loff);
474 len = this_len;
475 }
476
477 spd.partial[page_nr].offset = loff;
478 spd.partial[page_nr].len = this_len;
479 len -= this_len;
480 loff = 0;
481 spd.nr_pages++;
482 index++;
483 }
484
485 /*
486 * Release any pages at the end, if we quit early. 'page_nr' is how far
487 * we got, 'nr_pages' is how many pages are in the map.
488 */
489 while (page_nr < nr_pages)
490 page_cache_release(spd.pages[page_nr++]);
491 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
492
493 if (spd.nr_pages)
494 error = splice_to_pipe(pipe, &spd);
495
496 splice_shrink_spd(pipe, &spd);
497 return error;
498 }
499
500 /**
501 * generic_file_splice_read - splice data from file to a pipe
502 * @in: file to splice from
503 * @ppos: position in @in
504 * @pipe: pipe to splice to
505 * @len: number of bytes to splice
506 * @flags: splice modifier flags
507 *
508 * Description:
509 * Will read pages from given file and fill them into a pipe. Can be
510 * used as long as the address_space operations for the source implements
511 * a readpage() hook.
512 *
513 */
514 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
515 struct pipe_inode_info *pipe, size_t len,
516 unsigned int flags)
517 {
518 loff_t isize, left;
519 int ret;
520
521 isize = i_size_read(in->f_mapping->host);
522 if (unlikely(*ppos >= isize))
523 return 0;
524
525 left = isize - *ppos;
526 if (unlikely(left < len))
527 len = left;
528
529 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
530 if (ret > 0) {
531 *ppos += ret;
532 file_accessed(in);
533 }
534
535 return ret;
536 }
537 EXPORT_SYMBOL(generic_file_splice_read);
538
539 static const struct pipe_buf_operations default_pipe_buf_ops = {
540 .can_merge = 0,
541 .map = generic_pipe_buf_map,
542 .unmap = generic_pipe_buf_unmap,
543 .confirm = generic_pipe_buf_confirm,
544 .release = generic_pipe_buf_release,
545 .steal = generic_pipe_buf_steal,
546 .get = generic_pipe_buf_get,
547 };
548
549 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
550 unsigned long vlen, loff_t offset)
551 {
552 mm_segment_t old_fs;
553 loff_t pos = offset;
554 ssize_t res;
555
556 old_fs = get_fs();
557 set_fs(get_ds());
558 /* The cast to a user pointer is valid due to the set_fs() */
559 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
560 set_fs(old_fs);
561
562 return res;
563 }
564
565 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
566 loff_t pos)
567 {
568 mm_segment_t old_fs;
569 ssize_t res;
570
571 old_fs = get_fs();
572 set_fs(get_ds());
573 /* The cast to a user pointer is valid due to the set_fs() */
574 res = vfs_write(file, (const char __user *)buf, count, &pos);
575 set_fs(old_fs);
576
577 return res;
578 }
579
580 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
581 struct pipe_inode_info *pipe, size_t len,
582 unsigned int flags)
583 {
584 unsigned int nr_pages;
585 unsigned int nr_freed;
586 size_t offset;
587 struct page *pages[PIPE_DEF_BUFFERS];
588 struct partial_page partial[PIPE_DEF_BUFFERS];
589 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
590 ssize_t res;
591 size_t this_len;
592 int error;
593 int i;
594 struct splice_pipe_desc spd = {
595 .pages = pages,
596 .partial = partial,
597 .flags = flags,
598 .ops = &default_pipe_buf_ops,
599 .spd_release = spd_release_page,
600 };
601
602 if (splice_grow_spd(pipe, &spd))
603 return -ENOMEM;
604
605 res = -ENOMEM;
606 vec = __vec;
607 if (pipe->buffers > PIPE_DEF_BUFFERS) {
608 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
609 if (!vec)
610 goto shrink_ret;
611 }
612
613 offset = *ppos & ~PAGE_CACHE_MASK;
614 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
615
616 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
617 struct page *page;
618
619 page = alloc_page(GFP_USER);
620 error = -ENOMEM;
621 if (!page)
622 goto err;
623
624 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
625 vec[i].iov_base = (void __user *) page_address(page);
626 vec[i].iov_len = this_len;
627 spd.pages[i] = page;
628 spd.nr_pages++;
629 len -= this_len;
630 offset = 0;
631 }
632
633 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
634 if (res < 0) {
635 error = res;
636 goto err;
637 }
638
639 error = 0;
640 if (!res)
641 goto err;
642
643 nr_freed = 0;
644 for (i = 0; i < spd.nr_pages; i++) {
645 this_len = min_t(size_t, vec[i].iov_len, res);
646 spd.partial[i].offset = 0;
647 spd.partial[i].len = this_len;
648 if (!this_len) {
649 __free_page(spd.pages[i]);
650 spd.pages[i] = NULL;
651 nr_freed++;
652 }
653 res -= this_len;
654 }
655 spd.nr_pages -= nr_freed;
656
657 res = splice_to_pipe(pipe, &spd);
658 if (res > 0)
659 *ppos += res;
660
661 shrink_ret:
662 if (vec != __vec)
663 kfree(vec);
664 splice_shrink_spd(pipe, &spd);
665 return res;
666
667 err:
668 for (i = 0; i < spd.nr_pages; i++)
669 __free_page(spd.pages[i]);
670
671 res = error;
672 goto shrink_ret;
673 }
674 EXPORT_SYMBOL(default_file_splice_read);
675
676 /*
677 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
678 * using sendpage(). Return the number of bytes sent.
679 */
680 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
681 struct pipe_buffer *buf, struct splice_desc *sd)
682 {
683 struct file *file = sd->u.file;
684 loff_t pos = sd->pos;
685 int more;
686
687 if (!likely(file->f_op && file->f_op->sendpage))
688 return -EINVAL;
689
690 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
691 return file->f_op->sendpage(file, buf->page, buf->offset,
692 sd->len, &pos, more);
693 }
694
695 /*
696 * This is a little more tricky than the file -> pipe splicing. There are
697 * basically three cases:
698 *
699 * - Destination page already exists in the address space and there
700 * are users of it. For that case we have no other option that
701 * copying the data. Tough luck.
702 * - Destination page already exists in the address space, but there
703 * are no users of it. Make sure it's uptodate, then drop it. Fall
704 * through to last case.
705 * - Destination page does not exist, we can add the pipe page to
706 * the page cache and avoid the copy.
707 *
708 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
709 * sd->flags), we attempt to migrate pages from the pipe to the output
710 * file address space page cache. This is possible if no one else has
711 * the pipe page referenced outside of the pipe and page cache. If
712 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
713 * a new page in the output file page cache and fill/dirty that.
714 */
715 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
716 struct splice_desc *sd)
717 {
718 struct file *file = sd->u.file;
719 struct address_space *mapping = file->f_mapping;
720 unsigned int offset, this_len;
721 struct page *page;
722 void *fsdata;
723 int ret;
724
725 offset = sd->pos & ~PAGE_CACHE_MASK;
726
727 this_len = sd->len;
728 if (this_len + offset > PAGE_CACHE_SIZE)
729 this_len = PAGE_CACHE_SIZE - offset;
730
731 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
732 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
733 if (unlikely(ret))
734 goto out;
735
736 if (buf->page != page) {
737 /*
738 * Careful, ->map() uses KM_USER0!
739 */
740 char *src = buf->ops->map(pipe, buf, 1);
741 char *dst = kmap_atomic(page, KM_USER1);
742
743 memcpy(dst + offset, src + buf->offset, this_len);
744 flush_dcache_page(page);
745 kunmap_atomic(dst, KM_USER1);
746 buf->ops->unmap(pipe, buf, src);
747 }
748 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
749 page, fsdata);
750 out:
751 return ret;
752 }
753 EXPORT_SYMBOL(pipe_to_file);
754
755 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
756 {
757 smp_mb();
758 if (waitqueue_active(&pipe->wait))
759 wake_up_interruptible(&pipe->wait);
760 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
761 }
762
763 /**
764 * splice_from_pipe_feed - feed available data from a pipe to a file
765 * @pipe: pipe to splice from
766 * @sd: information to @actor
767 * @actor: handler that splices the data
768 *
769 * Description:
770 * This function loops over the pipe and calls @actor to do the
771 * actual moving of a single struct pipe_buffer to the desired
772 * destination. It returns when there's no more buffers left in
773 * the pipe or if the requested number of bytes (@sd->total_len)
774 * have been copied. It returns a positive number (one) if the
775 * pipe needs to be filled with more data, zero if the required
776 * number of bytes have been copied and -errno on error.
777 *
778 * This, together with splice_from_pipe_{begin,end,next}, may be
779 * used to implement the functionality of __splice_from_pipe() when
780 * locking is required around copying the pipe buffers to the
781 * destination.
782 */
783 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
784 splice_actor *actor)
785 {
786 int ret;
787
788 while (pipe->nrbufs) {
789 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
790 const struct pipe_buf_operations *ops = buf->ops;
791
792 sd->len = buf->len;
793 if (sd->len > sd->total_len)
794 sd->len = sd->total_len;
795
796 ret = buf->ops->confirm(pipe, buf);
797 if (unlikely(ret)) {
798 if (ret == -ENODATA)
799 ret = 0;
800 return ret;
801 }
802
803 ret = actor(pipe, buf, sd);
804 if (ret <= 0)
805 return ret;
806
807 buf->offset += ret;
808 buf->len -= ret;
809
810 sd->num_spliced += ret;
811 sd->len -= ret;
812 sd->pos += ret;
813 sd->total_len -= ret;
814
815 if (!buf->len) {
816 buf->ops = NULL;
817 ops->release(pipe, buf);
818 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
819 pipe->nrbufs--;
820 if (pipe->inode)
821 sd->need_wakeup = true;
822 }
823
824 if (!sd->total_len)
825 return 0;
826 }
827
828 return 1;
829 }
830 EXPORT_SYMBOL(splice_from_pipe_feed);
831
832 /**
833 * splice_from_pipe_next - wait for some data to splice from
834 * @pipe: pipe to splice from
835 * @sd: information about the splice operation
836 *
837 * Description:
838 * This function will wait for some data and return a positive
839 * value (one) if pipe buffers are available. It will return zero
840 * or -errno if no more data needs to be spliced.
841 */
842 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
843 {
844 while (!pipe->nrbufs) {
845 if (!pipe->writers)
846 return 0;
847
848 if (!pipe->waiting_writers && sd->num_spliced)
849 return 0;
850
851 if (sd->flags & SPLICE_F_NONBLOCK)
852 return -EAGAIN;
853
854 if (signal_pending(current))
855 return -ERESTARTSYS;
856
857 if (sd->need_wakeup) {
858 wakeup_pipe_writers(pipe);
859 sd->need_wakeup = false;
860 }
861
862 pipe_wait(pipe);
863 }
864
865 return 1;
866 }
867 EXPORT_SYMBOL(splice_from_pipe_next);
868
869 /**
870 * splice_from_pipe_begin - start splicing from pipe
871 * @sd: information about the splice operation
872 *
873 * Description:
874 * This function should be called before a loop containing
875 * splice_from_pipe_next() and splice_from_pipe_feed() to
876 * initialize the necessary fields of @sd.
877 */
878 void splice_from_pipe_begin(struct splice_desc *sd)
879 {
880 sd->num_spliced = 0;
881 sd->need_wakeup = false;
882 }
883 EXPORT_SYMBOL(splice_from_pipe_begin);
884
885 /**
886 * splice_from_pipe_end - finish splicing from pipe
887 * @pipe: pipe to splice from
888 * @sd: information about the splice operation
889 *
890 * Description:
891 * This function will wake up pipe writers if necessary. It should
892 * be called after a loop containing splice_from_pipe_next() and
893 * splice_from_pipe_feed().
894 */
895 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
896 {
897 if (sd->need_wakeup)
898 wakeup_pipe_writers(pipe);
899 }
900 EXPORT_SYMBOL(splice_from_pipe_end);
901
902 /**
903 * __splice_from_pipe - splice data from a pipe to given actor
904 * @pipe: pipe to splice from
905 * @sd: information to @actor
906 * @actor: handler that splices the data
907 *
908 * Description:
909 * This function does little more than loop over the pipe and call
910 * @actor to do the actual moving of a single struct pipe_buffer to
911 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
912 * pipe_to_user.
913 *
914 */
915 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
916 splice_actor *actor)
917 {
918 int ret;
919
920 splice_from_pipe_begin(sd);
921 do {
922 ret = splice_from_pipe_next(pipe, sd);
923 if (ret > 0)
924 ret = splice_from_pipe_feed(pipe, sd, actor);
925 } while (ret > 0);
926 splice_from_pipe_end(pipe, sd);
927
928 return sd->num_spliced ? sd->num_spliced : ret;
929 }
930 EXPORT_SYMBOL(__splice_from_pipe);
931
932 /**
933 * splice_from_pipe - splice data from a pipe to a file
934 * @pipe: pipe to splice from
935 * @out: file to splice to
936 * @ppos: position in @out
937 * @len: how many bytes to splice
938 * @flags: splice modifier flags
939 * @actor: handler that splices the data
940 *
941 * Description:
942 * See __splice_from_pipe. This function locks the pipe inode,
943 * otherwise it's identical to __splice_from_pipe().
944 *
945 */
946 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
947 loff_t *ppos, size_t len, unsigned int flags,
948 splice_actor *actor)
949 {
950 ssize_t ret;
951 struct splice_desc sd = {
952 .total_len = len,
953 .flags = flags,
954 .pos = *ppos,
955 .u.file = out,
956 };
957
958 pipe_lock(pipe);
959 ret = __splice_from_pipe(pipe, &sd, actor);
960 pipe_unlock(pipe);
961
962 return ret;
963 }
964
965 /**
966 * generic_file_splice_write - splice data from a pipe to a file
967 * @pipe: pipe info
968 * @out: file to write to
969 * @ppos: position in @out
970 * @len: number of bytes to splice
971 * @flags: splice modifier flags
972 *
973 * Description:
974 * Will either move or copy pages (determined by @flags options) from
975 * the given pipe inode to the given file.
976 *
977 */
978 ssize_t
979 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
980 loff_t *ppos, size_t len, unsigned int flags)
981 {
982 struct address_space *mapping = out->f_mapping;
983 struct inode *inode = mapping->host;
984 struct splice_desc sd = {
985 .total_len = len,
986 .flags = flags,
987 .pos = *ppos,
988 .u.file = out,
989 };
990 ssize_t ret;
991
992 pipe_lock(pipe);
993
994 splice_from_pipe_begin(&sd);
995 do {
996 ret = splice_from_pipe_next(pipe, &sd);
997 if (ret <= 0)
998 break;
999
1000 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1001 ret = file_remove_suid(out);
1002 if (!ret) {
1003 file_update_time(out);
1004 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1005 }
1006 mutex_unlock(&inode->i_mutex);
1007 } while (ret > 0);
1008 splice_from_pipe_end(pipe, &sd);
1009
1010 pipe_unlock(pipe);
1011
1012 if (sd.num_spliced)
1013 ret = sd.num_spliced;
1014
1015 if (ret > 0) {
1016 unsigned long nr_pages;
1017 int err;
1018
1019 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1020
1021 err = generic_write_sync(out, *ppos, ret);
1022 if (err)
1023 ret = err;
1024 else
1025 *ppos += ret;
1026 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1027 }
1028
1029 return ret;
1030 }
1031
1032 EXPORT_SYMBOL(generic_file_splice_write);
1033
1034 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1035 struct splice_desc *sd)
1036 {
1037 int ret;
1038 void *data;
1039
1040 data = buf->ops->map(pipe, buf, 0);
1041 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1042 buf->ops->unmap(pipe, buf, data);
1043
1044 return ret;
1045 }
1046
1047 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1048 struct file *out, loff_t *ppos,
1049 size_t len, unsigned int flags)
1050 {
1051 ssize_t ret;
1052
1053 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1054 if (ret > 0)
1055 *ppos += ret;
1056
1057 return ret;
1058 }
1059
1060 /**
1061 * generic_splice_sendpage - splice data from a pipe to a socket
1062 * @pipe: pipe to splice from
1063 * @out: socket to write to
1064 * @ppos: position in @out
1065 * @len: number of bytes to splice
1066 * @flags: splice modifier flags
1067 *
1068 * Description:
1069 * Will send @len bytes from the pipe to a network socket. No data copying
1070 * is involved.
1071 *
1072 */
1073 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1074 loff_t *ppos, size_t len, unsigned int flags)
1075 {
1076 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1077 }
1078
1079 EXPORT_SYMBOL(generic_splice_sendpage);
1080
1081 /*
1082 * Attempt to initiate a splice from pipe to file.
1083 */
1084 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1085 loff_t *ppos, size_t len, unsigned int flags)
1086 {
1087 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1088 loff_t *, size_t, unsigned int);
1089 int ret;
1090
1091 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1092 return -EBADF;
1093
1094 if (unlikely(out->f_flags & O_APPEND))
1095 return -EINVAL;
1096
1097 ret = rw_verify_area(WRITE, out, ppos, len);
1098 if (unlikely(ret < 0))
1099 return ret;
1100
1101 if (out->f_op && out->f_op->splice_write)
1102 splice_write = out->f_op->splice_write;
1103 else
1104 splice_write = default_file_splice_write;
1105
1106 return splice_write(pipe, out, ppos, len, flags);
1107 }
1108
1109 /*
1110 * Attempt to initiate a splice from a file to a pipe.
1111 */
1112 static long do_splice_to(struct file *in, loff_t *ppos,
1113 struct pipe_inode_info *pipe, size_t len,
1114 unsigned int flags)
1115 {
1116 ssize_t (*splice_read)(struct file *, loff_t *,
1117 struct pipe_inode_info *, size_t, unsigned int);
1118 int ret;
1119
1120 if (unlikely(!(in->f_mode & FMODE_READ)))
1121 return -EBADF;
1122
1123 ret = rw_verify_area(READ, in, ppos, len);
1124 if (unlikely(ret < 0))
1125 return ret;
1126
1127 if (in->f_op && in->f_op->splice_read)
1128 splice_read = in->f_op->splice_read;
1129 else
1130 splice_read = default_file_splice_read;
1131
1132 return splice_read(in, ppos, pipe, len, flags);
1133 }
1134
1135 /**
1136 * splice_direct_to_actor - splices data directly between two non-pipes
1137 * @in: file to splice from
1138 * @sd: actor information on where to splice to
1139 * @actor: handles the data splicing
1140 *
1141 * Description:
1142 * This is a special case helper to splice directly between two
1143 * points, without requiring an explicit pipe. Internally an allocated
1144 * pipe is cached in the process, and reused during the lifetime of
1145 * that process.
1146 *
1147 */
1148 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1149 splice_direct_actor *actor)
1150 {
1151 struct pipe_inode_info *pipe;
1152 long ret, bytes;
1153 umode_t i_mode;
1154 size_t len;
1155 int i, flags;
1156
1157 /*
1158 * We require the input being a regular file, as we don't want to
1159 * randomly drop data for eg socket -> socket splicing. Use the
1160 * piped splicing for that!
1161 */
1162 i_mode = in->f_path.dentry->d_inode->i_mode;
1163 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1164 return -EINVAL;
1165
1166 /*
1167 * neither in nor out is a pipe, setup an internal pipe attached to
1168 * 'out' and transfer the wanted data from 'in' to 'out' through that
1169 */
1170 pipe = current->splice_pipe;
1171 if (unlikely(!pipe)) {
1172 pipe = alloc_pipe_info(NULL);
1173 if (!pipe)
1174 return -ENOMEM;
1175
1176 /*
1177 * We don't have an immediate reader, but we'll read the stuff
1178 * out of the pipe right after the splice_to_pipe(). So set
1179 * PIPE_READERS appropriately.
1180 */
1181 pipe->readers = 1;
1182
1183 current->splice_pipe = pipe;
1184 }
1185
1186 /*
1187 * Do the splice.
1188 */
1189 ret = 0;
1190 bytes = 0;
1191 len = sd->total_len;
1192 flags = sd->flags;
1193
1194 /*
1195 * Don't block on output, we have to drain the direct pipe.
1196 */
1197 sd->flags &= ~SPLICE_F_NONBLOCK;
1198
1199 while (len) {
1200 size_t read_len;
1201 loff_t pos = sd->pos, prev_pos = pos;
1202
1203 ret = do_splice_to(in, &pos, pipe, len, flags);
1204 if (unlikely(ret <= 0))
1205 goto out_release;
1206
1207 read_len = ret;
1208 sd->total_len = read_len;
1209
1210 /*
1211 * NOTE: nonblocking mode only applies to the input. We
1212 * must not do the output in nonblocking mode as then we
1213 * could get stuck data in the internal pipe:
1214 */
1215 ret = actor(pipe, sd);
1216 if (unlikely(ret <= 0)) {
1217 sd->pos = prev_pos;
1218 goto out_release;
1219 }
1220
1221 bytes += ret;
1222 len -= ret;
1223 sd->pos = pos;
1224
1225 if (ret < read_len) {
1226 sd->pos = prev_pos + ret;
1227 goto out_release;
1228 }
1229 }
1230
1231 done:
1232 pipe->nrbufs = pipe->curbuf = 0;
1233 file_accessed(in);
1234 return bytes;
1235
1236 out_release:
1237 /*
1238 * If we did an incomplete transfer we must release
1239 * the pipe buffers in question:
1240 */
1241 for (i = 0; i < pipe->buffers; i++) {
1242 struct pipe_buffer *buf = pipe->bufs + i;
1243
1244 if (buf->ops) {
1245 buf->ops->release(pipe, buf);
1246 buf->ops = NULL;
1247 }
1248 }
1249
1250 if (!bytes)
1251 bytes = ret;
1252
1253 goto done;
1254 }
1255 EXPORT_SYMBOL(splice_direct_to_actor);
1256
1257 static int direct_splice_actor(struct pipe_inode_info *pipe,
1258 struct splice_desc *sd)
1259 {
1260 struct file *file = sd->u.file;
1261
1262 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1263 sd->flags);
1264 }
1265
1266 /**
1267 * do_splice_direct - splices data directly between two files
1268 * @in: file to splice from
1269 * @ppos: input file offset
1270 * @out: file to splice to
1271 * @len: number of bytes to splice
1272 * @flags: splice modifier flags
1273 *
1274 * Description:
1275 * For use by do_sendfile(). splice can easily emulate sendfile, but
1276 * doing it in the application would incur an extra system call
1277 * (splice in + splice out, as compared to just sendfile()). So this helper
1278 * can splice directly through a process-private pipe.
1279 *
1280 */
1281 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1282 size_t len, unsigned int flags)
1283 {
1284 struct splice_desc sd = {
1285 .len = len,
1286 .total_len = len,
1287 .flags = flags,
1288 .pos = *ppos,
1289 .u.file = out,
1290 };
1291 long ret;
1292
1293 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1294 if (ret > 0)
1295 *ppos = sd.pos;
1296
1297 return ret;
1298 }
1299
1300 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1301 struct pipe_inode_info *opipe,
1302 size_t len, unsigned int flags);
1303 /*
1304 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1305 * location, so checking ->i_pipe is not enough to verify that this is a
1306 * pipe.
1307 */
1308 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1309 {
1310 if (S_ISFIFO(inode->i_mode))
1311 return inode->i_pipe;
1312
1313 return NULL;
1314 }
1315
1316 /*
1317 * Determine where to splice to/from.
1318 */
1319 static long do_splice(struct file *in, loff_t __user *off_in,
1320 struct file *out, loff_t __user *off_out,
1321 size_t len, unsigned int flags)
1322 {
1323 struct pipe_inode_info *ipipe;
1324 struct pipe_inode_info *opipe;
1325 loff_t offset, *off;
1326 long ret;
1327
1328 ipipe = pipe_info(in->f_path.dentry->d_inode);
1329 opipe = pipe_info(out->f_path.dentry->d_inode);
1330
1331 if (ipipe && opipe) {
1332 if (off_in || off_out)
1333 return -ESPIPE;
1334
1335 if (!(in->f_mode & FMODE_READ))
1336 return -EBADF;
1337
1338 if (!(out->f_mode & FMODE_WRITE))
1339 return -EBADF;
1340
1341 /* Splicing to self would be fun, but... */
1342 if (ipipe == opipe)
1343 return -EINVAL;
1344
1345 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1346 }
1347
1348 if (ipipe) {
1349 if (off_in)
1350 return -ESPIPE;
1351 if (off_out) {
1352 if (!(out->f_mode & FMODE_PWRITE))
1353 return -EINVAL;
1354 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1355 return -EFAULT;
1356 off = &offset;
1357 } else
1358 off = &out->f_pos;
1359
1360 ret = do_splice_from(ipipe, out, off, len, flags);
1361
1362 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1363 ret = -EFAULT;
1364
1365 return ret;
1366 }
1367
1368 if (opipe) {
1369 if (off_out)
1370 return -ESPIPE;
1371 if (off_in) {
1372 if (!(in->f_mode & FMODE_PREAD))
1373 return -EINVAL;
1374 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1375 return -EFAULT;
1376 off = &offset;
1377 } else
1378 off = &in->f_pos;
1379
1380 ret = do_splice_to(in, off, opipe, len, flags);
1381
1382 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1383 ret = -EFAULT;
1384
1385 return ret;
1386 }
1387
1388 return -EINVAL;
1389 }
1390
1391 /*
1392 * Map an iov into an array of pages and offset/length tupples. With the
1393 * partial_page structure, we can map several non-contiguous ranges into
1394 * our ones pages[] map instead of splitting that operation into pieces.
1395 * Could easily be exported as a generic helper for other users, in which
1396 * case one would probably want to add a 'max_nr_pages' parameter as well.
1397 */
1398 static int get_iovec_page_array(const struct iovec __user *iov,
1399 unsigned int nr_vecs, struct page **pages,
1400 struct partial_page *partial, int aligned,
1401 unsigned int pipe_buffers)
1402 {
1403 int buffers = 0, error = 0;
1404
1405 while (nr_vecs) {
1406 unsigned long off, npages;
1407 struct iovec entry;
1408 void __user *base;
1409 size_t len;
1410 int i;
1411
1412 error = -EFAULT;
1413 if (copy_from_user(&entry, iov, sizeof(entry)))
1414 break;
1415
1416 base = entry.iov_base;
1417 len = entry.iov_len;
1418
1419 /*
1420 * Sanity check this iovec. 0 read succeeds.
1421 */
1422 error = 0;
1423 if (unlikely(!len))
1424 break;
1425 error = -EFAULT;
1426 if (!access_ok(VERIFY_READ, base, len))
1427 break;
1428
1429 /*
1430 * Get this base offset and number of pages, then map
1431 * in the user pages.
1432 */
1433 off = (unsigned long) base & ~PAGE_MASK;
1434
1435 /*
1436 * If asked for alignment, the offset must be zero and the
1437 * length a multiple of the PAGE_SIZE.
1438 */
1439 error = -EINVAL;
1440 if (aligned && (off || len & ~PAGE_MASK))
1441 break;
1442
1443 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1444 if (npages > pipe_buffers - buffers)
1445 npages = pipe_buffers - buffers;
1446
1447 error = get_user_pages_fast((unsigned long)base, npages,
1448 0, &pages[buffers]);
1449
1450 if (unlikely(error <= 0))
1451 break;
1452
1453 /*
1454 * Fill this contiguous range into the partial page map.
1455 */
1456 for (i = 0; i < error; i++) {
1457 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1458
1459 partial[buffers].offset = off;
1460 partial[buffers].len = plen;
1461
1462 off = 0;
1463 len -= plen;
1464 buffers++;
1465 }
1466
1467 /*
1468 * We didn't complete this iov, stop here since it probably
1469 * means we have to move some of this into a pipe to
1470 * be able to continue.
1471 */
1472 if (len)
1473 break;
1474
1475 /*
1476 * Don't continue if we mapped fewer pages than we asked for,
1477 * or if we mapped the max number of pages that we have
1478 * room for.
1479 */
1480 if (error < npages || buffers == pipe_buffers)
1481 break;
1482
1483 nr_vecs--;
1484 iov++;
1485 }
1486
1487 if (buffers)
1488 return buffers;
1489
1490 return error;
1491 }
1492
1493 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1494 struct splice_desc *sd)
1495 {
1496 char *src;
1497 int ret;
1498
1499 /*
1500 * See if we can use the atomic maps, by prefaulting in the
1501 * pages and doing an atomic copy
1502 */
1503 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1504 src = buf->ops->map(pipe, buf, 1);
1505 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1506 sd->len);
1507 buf->ops->unmap(pipe, buf, src);
1508 if (!ret) {
1509 ret = sd->len;
1510 goto out;
1511 }
1512 }
1513
1514 /*
1515 * No dice, use slow non-atomic map and copy
1516 */
1517 src = buf->ops->map(pipe, buf, 0);
1518
1519 ret = sd->len;
1520 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1521 ret = -EFAULT;
1522
1523 buf->ops->unmap(pipe, buf, src);
1524 out:
1525 if (ret > 0)
1526 sd->u.userptr += ret;
1527 return ret;
1528 }
1529
1530 /*
1531 * For lack of a better implementation, implement vmsplice() to userspace
1532 * as a simple copy of the pipes pages to the user iov.
1533 */
1534 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1535 unsigned long nr_segs, unsigned int flags)
1536 {
1537 struct pipe_inode_info *pipe;
1538 struct splice_desc sd;
1539 ssize_t size;
1540 int error;
1541 long ret;
1542
1543 pipe = pipe_info(file->f_path.dentry->d_inode);
1544 if (!pipe)
1545 return -EBADF;
1546
1547 pipe_lock(pipe);
1548
1549 error = ret = 0;
1550 while (nr_segs) {
1551 void __user *base;
1552 size_t len;
1553
1554 /*
1555 * Get user address base and length for this iovec.
1556 */
1557 error = get_user(base, &iov->iov_base);
1558 if (unlikely(error))
1559 break;
1560 error = get_user(len, &iov->iov_len);
1561 if (unlikely(error))
1562 break;
1563
1564 /*
1565 * Sanity check this iovec. 0 read succeeds.
1566 */
1567 if (unlikely(!len))
1568 break;
1569 if (unlikely(!base)) {
1570 error = -EFAULT;
1571 break;
1572 }
1573
1574 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1575 error = -EFAULT;
1576 break;
1577 }
1578
1579 sd.len = 0;
1580 sd.total_len = len;
1581 sd.flags = flags;
1582 sd.u.userptr = base;
1583 sd.pos = 0;
1584
1585 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1586 if (size < 0) {
1587 if (!ret)
1588 ret = size;
1589
1590 break;
1591 }
1592
1593 ret += size;
1594
1595 if (size < len)
1596 break;
1597
1598 nr_segs--;
1599 iov++;
1600 }
1601
1602 pipe_unlock(pipe);
1603
1604 if (!ret)
1605 ret = error;
1606
1607 return ret;
1608 }
1609
1610 /*
1611 * vmsplice splices a user address range into a pipe. It can be thought of
1612 * as splice-from-memory, where the regular splice is splice-from-file (or
1613 * to file). In both cases the output is a pipe, naturally.
1614 */
1615 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1616 unsigned long nr_segs, unsigned int flags)
1617 {
1618 struct pipe_inode_info *pipe;
1619 struct page *pages[PIPE_DEF_BUFFERS];
1620 struct partial_page partial[PIPE_DEF_BUFFERS];
1621 struct splice_pipe_desc spd = {
1622 .pages = pages,
1623 .partial = partial,
1624 .flags = flags,
1625 .ops = &user_page_pipe_buf_ops,
1626 .spd_release = spd_release_page,
1627 };
1628 long ret;
1629
1630 pipe = pipe_info(file->f_path.dentry->d_inode);
1631 if (!pipe)
1632 return -EBADF;
1633
1634 if (splice_grow_spd(pipe, &spd))
1635 return -ENOMEM;
1636
1637 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1638 spd.partial, flags & SPLICE_F_GIFT,
1639 pipe->buffers);
1640 if (spd.nr_pages <= 0)
1641 ret = spd.nr_pages;
1642 else
1643 ret = splice_to_pipe(pipe, &spd);
1644
1645 splice_shrink_spd(pipe, &spd);
1646 return ret;
1647 }
1648
1649 /*
1650 * Note that vmsplice only really supports true splicing _from_ user memory
1651 * to a pipe, not the other way around. Splicing from user memory is a simple
1652 * operation that can be supported without any funky alignment restrictions
1653 * or nasty vm tricks. We simply map in the user memory and fill them into
1654 * a pipe. The reverse isn't quite as easy, though. There are two possible
1655 * solutions for that:
1656 *
1657 * - memcpy() the data internally, at which point we might as well just
1658 * do a regular read() on the buffer anyway.
1659 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1660 * has restriction limitations on both ends of the pipe).
1661 *
1662 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1663 *
1664 */
1665 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1666 unsigned long, nr_segs, unsigned int, flags)
1667 {
1668 struct file *file;
1669 long error;
1670 int fput;
1671
1672 if (unlikely(nr_segs > UIO_MAXIOV))
1673 return -EINVAL;
1674 else if (unlikely(!nr_segs))
1675 return 0;
1676
1677 error = -EBADF;
1678 file = fget_light(fd, &fput);
1679 if (file) {
1680 if (file->f_mode & FMODE_WRITE)
1681 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1682 else if (file->f_mode & FMODE_READ)
1683 error = vmsplice_to_user(file, iov, nr_segs, flags);
1684
1685 fput_light(file, fput);
1686 }
1687
1688 return error;
1689 }
1690
1691 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1692 int, fd_out, loff_t __user *, off_out,
1693 size_t, len, unsigned int, flags)
1694 {
1695 long error;
1696 struct file *in, *out;
1697 int fput_in, fput_out;
1698
1699 if (unlikely(!len))
1700 return 0;
1701
1702 error = -EBADF;
1703 in = fget_light(fd_in, &fput_in);
1704 if (in) {
1705 if (in->f_mode & FMODE_READ) {
1706 out = fget_light(fd_out, &fput_out);
1707 if (out) {
1708 if (out->f_mode & FMODE_WRITE)
1709 error = do_splice(in, off_in,
1710 out, off_out,
1711 len, flags);
1712 fput_light(out, fput_out);
1713 }
1714 }
1715
1716 fput_light(in, fput_in);
1717 }
1718
1719 return error;
1720 }
1721
1722 /*
1723 * Make sure there's data to read. Wait for input if we can, otherwise
1724 * return an appropriate error.
1725 */
1726 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1727 {
1728 int ret;
1729
1730 /*
1731 * Check ->nrbufs without the inode lock first. This function
1732 * is speculative anyways, so missing one is ok.
1733 */
1734 if (pipe->nrbufs)
1735 return 0;
1736
1737 ret = 0;
1738 pipe_lock(pipe);
1739
1740 while (!pipe->nrbufs) {
1741 if (signal_pending(current)) {
1742 ret = -ERESTARTSYS;
1743 break;
1744 }
1745 if (!pipe->writers)
1746 break;
1747 if (!pipe->waiting_writers) {
1748 if (flags & SPLICE_F_NONBLOCK) {
1749 ret = -EAGAIN;
1750 break;
1751 }
1752 }
1753 pipe_wait(pipe);
1754 }
1755
1756 pipe_unlock(pipe);
1757 return ret;
1758 }
1759
1760 /*
1761 * Make sure there's writeable room. Wait for room if we can, otherwise
1762 * return an appropriate error.
1763 */
1764 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1765 {
1766 int ret;
1767
1768 /*
1769 * Check ->nrbufs without the inode lock first. This function
1770 * is speculative anyways, so missing one is ok.
1771 */
1772 if (pipe->nrbufs < pipe->buffers)
1773 return 0;
1774
1775 ret = 0;
1776 pipe_lock(pipe);
1777
1778 while (pipe->nrbufs >= pipe->buffers) {
1779 if (!pipe->readers) {
1780 send_sig(SIGPIPE, current, 0);
1781 ret = -EPIPE;
1782 break;
1783 }
1784 if (flags & SPLICE_F_NONBLOCK) {
1785 ret = -EAGAIN;
1786 break;
1787 }
1788 if (signal_pending(current)) {
1789 ret = -ERESTARTSYS;
1790 break;
1791 }
1792 pipe->waiting_writers++;
1793 pipe_wait(pipe);
1794 pipe->waiting_writers--;
1795 }
1796
1797 pipe_unlock(pipe);
1798 return ret;
1799 }
1800
1801 /*
1802 * Splice contents of ipipe to opipe.
1803 */
1804 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1805 struct pipe_inode_info *opipe,
1806 size_t len, unsigned int flags)
1807 {
1808 struct pipe_buffer *ibuf, *obuf;
1809 int ret = 0, nbuf;
1810 bool input_wakeup = false;
1811
1812
1813 retry:
1814 ret = ipipe_prep(ipipe, flags);
1815 if (ret)
1816 return ret;
1817
1818 ret = opipe_prep(opipe, flags);
1819 if (ret)
1820 return ret;
1821
1822 /*
1823 * Potential ABBA deadlock, work around it by ordering lock
1824 * grabbing by pipe info address. Otherwise two different processes
1825 * could deadlock (one doing tee from A -> B, the other from B -> A).
1826 */
1827 pipe_double_lock(ipipe, opipe);
1828
1829 do {
1830 if (!opipe->readers) {
1831 send_sig(SIGPIPE, current, 0);
1832 if (!ret)
1833 ret = -EPIPE;
1834 break;
1835 }
1836
1837 if (!ipipe->nrbufs && !ipipe->writers)
1838 break;
1839
1840 /*
1841 * Cannot make any progress, because either the input
1842 * pipe is empty or the output pipe is full.
1843 */
1844 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1845 /* Already processed some buffers, break */
1846 if (ret)
1847 break;
1848
1849 if (flags & SPLICE_F_NONBLOCK) {
1850 ret = -EAGAIN;
1851 break;
1852 }
1853
1854 /*
1855 * We raced with another reader/writer and haven't
1856 * managed to process any buffers. A zero return
1857 * value means EOF, so retry instead.
1858 */
1859 pipe_unlock(ipipe);
1860 pipe_unlock(opipe);
1861 goto retry;
1862 }
1863
1864 ibuf = ipipe->bufs + ipipe->curbuf;
1865 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1866 obuf = opipe->bufs + nbuf;
1867
1868 if (len >= ibuf->len) {
1869 /*
1870 * Simply move the whole buffer from ipipe to opipe
1871 */
1872 *obuf = *ibuf;
1873 ibuf->ops = NULL;
1874 opipe->nrbufs++;
1875 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1876 ipipe->nrbufs--;
1877 input_wakeup = true;
1878 } else {
1879 /*
1880 * Get a reference to this pipe buffer,
1881 * so we can copy the contents over.
1882 */
1883 ibuf->ops->get(ipipe, ibuf);
1884 *obuf = *ibuf;
1885
1886 /*
1887 * Don't inherit the gift flag, we need to
1888 * prevent multiple steals of this page.
1889 */
1890 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1891
1892 obuf->len = len;
1893 opipe->nrbufs++;
1894 ibuf->offset += obuf->len;
1895 ibuf->len -= obuf->len;
1896 }
1897 ret += obuf->len;
1898 len -= obuf->len;
1899 } while (len);
1900
1901 pipe_unlock(ipipe);
1902 pipe_unlock(opipe);
1903
1904 /*
1905 * If we put data in the output pipe, wakeup any potential readers.
1906 */
1907 if (ret > 0) {
1908 smp_mb();
1909 if (waitqueue_active(&opipe->wait))
1910 wake_up_interruptible(&opipe->wait);
1911 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1912 }
1913 if (input_wakeup)
1914 wakeup_pipe_writers(ipipe);
1915
1916 return ret;
1917 }
1918
1919 /*
1920 * Link contents of ipipe to opipe.
1921 */
1922 static int link_pipe(struct pipe_inode_info *ipipe,
1923 struct pipe_inode_info *opipe,
1924 size_t len, unsigned int flags)
1925 {
1926 struct pipe_buffer *ibuf, *obuf;
1927 int ret = 0, i = 0, nbuf;
1928
1929 /*
1930 * Potential ABBA deadlock, work around it by ordering lock
1931 * grabbing by pipe info address. Otherwise two different processes
1932 * could deadlock (one doing tee from A -> B, the other from B -> A).
1933 */
1934 pipe_double_lock(ipipe, opipe);
1935
1936 do {
1937 if (!opipe->readers) {
1938 send_sig(SIGPIPE, current, 0);
1939 if (!ret)
1940 ret = -EPIPE;
1941 break;
1942 }
1943
1944 /*
1945 * If we have iterated all input buffers or ran out of
1946 * output room, break.
1947 */
1948 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1949 break;
1950
1951 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1952 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1953
1954 /*
1955 * Get a reference to this pipe buffer,
1956 * so we can copy the contents over.
1957 */
1958 ibuf->ops->get(ipipe, ibuf);
1959
1960 obuf = opipe->bufs + nbuf;
1961 *obuf = *ibuf;
1962
1963 /*
1964 * Don't inherit the gift flag, we need to
1965 * prevent multiple steals of this page.
1966 */
1967 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1968
1969 if (obuf->len > len)
1970 obuf->len = len;
1971
1972 opipe->nrbufs++;
1973 ret += obuf->len;
1974 len -= obuf->len;
1975 i++;
1976 } while (len);
1977
1978 /*
1979 * return EAGAIN if we have the potential of some data in the
1980 * future, otherwise just return 0
1981 */
1982 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1983 ret = -EAGAIN;
1984
1985 pipe_unlock(ipipe);
1986 pipe_unlock(opipe);
1987
1988 /*
1989 * If we put data in the output pipe, wakeup any potential readers.
1990 */
1991 if (ret > 0) {
1992 smp_mb();
1993 if (waitqueue_active(&opipe->wait))
1994 wake_up_interruptible(&opipe->wait);
1995 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1996 }
1997
1998 return ret;
1999 }
2000
2001 /*
2002 * This is a tee(1) implementation that works on pipes. It doesn't copy
2003 * any data, it simply references the 'in' pages on the 'out' pipe.
2004 * The 'flags' used are the SPLICE_F_* variants, currently the only
2005 * applicable one is SPLICE_F_NONBLOCK.
2006 */
2007 static long do_tee(struct file *in, struct file *out, size_t len,
2008 unsigned int flags)
2009 {
2010 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
2011 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
2012 int ret = -EINVAL;
2013
2014 /*
2015 * Duplicate the contents of ipipe to opipe without actually
2016 * copying the data.
2017 */
2018 if (ipipe && opipe && ipipe != opipe) {
2019 /*
2020 * Keep going, unless we encounter an error. The ipipe/opipe
2021 * ordering doesn't really matter.
2022 */
2023 ret = ipipe_prep(ipipe, flags);
2024 if (!ret) {
2025 ret = opipe_prep(opipe, flags);
2026 if (!ret)
2027 ret = link_pipe(ipipe, opipe, len, flags);
2028 }
2029 }
2030
2031 return ret;
2032 }
2033
2034 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2035 {
2036 struct file *in;
2037 int error, fput_in;
2038
2039 if (unlikely(!len))
2040 return 0;
2041
2042 error = -EBADF;
2043 in = fget_light(fdin, &fput_in);
2044 if (in) {
2045 if (in->f_mode & FMODE_READ) {
2046 int fput_out;
2047 struct file *out = fget_light(fdout, &fput_out);
2048
2049 if (out) {
2050 if (out->f_mode & FMODE_WRITE)
2051 error = do_tee(in, out, len, flags);
2052 fput_light(out, fput_out);
2053 }
2054 }
2055 fput_light(in, fput_in);
2056 }
2057
2058 return error;
2059 }
This page took 0.119243 seconds and 6 git commands to generate.