splice: remove i_mutex locking in splice_from_pipe()
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
39 */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
42 {
43 struct page *page = buf->page;
44 struct address_space *mapping;
45
46 lock_page(page);
47
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
51
52 /*
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
59 */
60 wait_on_page_writeback(page);
61
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
65
66 /*
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
69 */
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
73 }
74 }
75
76 /*
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
79 */
80 out_unlock:
81 unlock_page(page);
82 return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
87 {
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
95 */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
98 {
99 struct page *page = buf->page;
100 int err;
101
102 if (!PageUptodate(page)) {
103 lock_page(page);
104
105 /*
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
108 */
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
112 }
113
114 /*
115 * Uh oh, read-error from disk.
116 */
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
120 }
121
122 /*
123 * Page is ok afterall, we are done.
124 */
125 unlock_page(page);
126 }
127
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
146 {
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
149
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
162 };
163
164 /**
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
168 *
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
173 *
174 */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
177 {
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
211
212 if (pipe->inode)
213 do_wakeup = 1;
214
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < PIPE_BUFFERS)
218 continue;
219
220 break;
221 }
222
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
227 }
228
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
233 }
234
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
241 }
242
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
246 }
247
248 if (pipe->inode) {
249 mutex_unlock(&pipe->inode->i_mutex);
250
251 if (do_wakeup) {
252 smp_mb();
253 if (waitqueue_active(&pipe->wait))
254 wake_up_interruptible(&pipe->wait);
255 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256 }
257 }
258
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
261
262 return ret;
263 }
264
265 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266 {
267 page_cache_release(spd->pages[i]);
268 }
269
270 static int
271 __generic_file_splice_read(struct file *in, loff_t *ppos,
272 struct pipe_inode_info *pipe, size_t len,
273 unsigned int flags)
274 {
275 struct address_space *mapping = in->f_mapping;
276 unsigned int loff, nr_pages, req_pages;
277 struct page *pages[PIPE_BUFFERS];
278 struct partial_page partial[PIPE_BUFFERS];
279 struct page *page;
280 pgoff_t index, end_index;
281 loff_t isize;
282 int error, page_nr;
283 struct splice_pipe_desc spd = {
284 .pages = pages,
285 .partial = partial,
286 .flags = flags,
287 .ops = &page_cache_pipe_buf_ops,
288 .spd_release = spd_release_page,
289 };
290
291 index = *ppos >> PAGE_CACHE_SHIFT;
292 loff = *ppos & ~PAGE_CACHE_MASK;
293 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
294 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
295
296 /*
297 * Lookup the (hopefully) full range of pages we need.
298 */
299 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
300 index += spd.nr_pages;
301
302 /*
303 * If find_get_pages_contig() returned fewer pages than we needed,
304 * readahead/allocate the rest and fill in the holes.
305 */
306 if (spd.nr_pages < nr_pages)
307 page_cache_sync_readahead(mapping, &in->f_ra, in,
308 index, req_pages - spd.nr_pages);
309
310 error = 0;
311 while (spd.nr_pages < nr_pages) {
312 /*
313 * Page could be there, find_get_pages_contig() breaks on
314 * the first hole.
315 */
316 page = find_get_page(mapping, index);
317 if (!page) {
318 /*
319 * page didn't exist, allocate one.
320 */
321 page = page_cache_alloc_cold(mapping);
322 if (!page)
323 break;
324
325 error = add_to_page_cache_lru(page, mapping, index,
326 mapping_gfp_mask(mapping));
327 if (unlikely(error)) {
328 page_cache_release(page);
329 if (error == -EEXIST)
330 continue;
331 break;
332 }
333 /*
334 * add_to_page_cache() locks the page, unlock it
335 * to avoid convoluting the logic below even more.
336 */
337 unlock_page(page);
338 }
339
340 pages[spd.nr_pages++] = page;
341 index++;
342 }
343
344 /*
345 * Now loop over the map and see if we need to start IO on any
346 * pages, fill in the partial map, etc.
347 */
348 index = *ppos >> PAGE_CACHE_SHIFT;
349 nr_pages = spd.nr_pages;
350 spd.nr_pages = 0;
351 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
352 unsigned int this_len;
353
354 if (!len)
355 break;
356
357 /*
358 * this_len is the max we'll use from this page
359 */
360 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
361 page = pages[page_nr];
362
363 if (PageReadahead(page))
364 page_cache_async_readahead(mapping, &in->f_ra, in,
365 page, index, req_pages - page_nr);
366
367 /*
368 * If the page isn't uptodate, we may need to start io on it
369 */
370 if (!PageUptodate(page)) {
371 /*
372 * If in nonblock mode then dont block on waiting
373 * for an in-flight io page
374 */
375 if (flags & SPLICE_F_NONBLOCK) {
376 if (!trylock_page(page)) {
377 error = -EAGAIN;
378 break;
379 }
380 } else
381 lock_page(page);
382
383 /*
384 * Page was truncated, or invalidated by the
385 * filesystem. Redo the find/create, but this time the
386 * page is kept locked, so there's no chance of another
387 * race with truncate/invalidate.
388 */
389 if (!page->mapping) {
390 unlock_page(page);
391 page = find_or_create_page(mapping, index,
392 mapping_gfp_mask(mapping));
393
394 if (!page) {
395 error = -ENOMEM;
396 break;
397 }
398 page_cache_release(pages[page_nr]);
399 pages[page_nr] = page;
400 }
401 /*
402 * page was already under io and is now done, great
403 */
404 if (PageUptodate(page)) {
405 unlock_page(page);
406 goto fill_it;
407 }
408
409 /*
410 * need to read in the page
411 */
412 error = mapping->a_ops->readpage(in, page);
413 if (unlikely(error)) {
414 /*
415 * We really should re-lookup the page here,
416 * but it complicates things a lot. Instead
417 * lets just do what we already stored, and
418 * we'll get it the next time we are called.
419 */
420 if (error == AOP_TRUNCATED_PAGE)
421 error = 0;
422
423 break;
424 }
425 }
426 fill_it:
427 /*
428 * i_size must be checked after PageUptodate.
429 */
430 isize = i_size_read(mapping->host);
431 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
432 if (unlikely(!isize || index > end_index))
433 break;
434
435 /*
436 * if this is the last page, see if we need to shrink
437 * the length and stop
438 */
439 if (end_index == index) {
440 unsigned int plen;
441
442 /*
443 * max good bytes in this page
444 */
445 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
446 if (plen <= loff)
447 break;
448
449 /*
450 * force quit after adding this page
451 */
452 this_len = min(this_len, plen - loff);
453 len = this_len;
454 }
455
456 partial[page_nr].offset = loff;
457 partial[page_nr].len = this_len;
458 len -= this_len;
459 loff = 0;
460 spd.nr_pages++;
461 index++;
462 }
463
464 /*
465 * Release any pages at the end, if we quit early. 'page_nr' is how far
466 * we got, 'nr_pages' is how many pages are in the map.
467 */
468 while (page_nr < nr_pages)
469 page_cache_release(pages[page_nr++]);
470 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
471
472 if (spd.nr_pages)
473 return splice_to_pipe(pipe, &spd);
474
475 return error;
476 }
477
478 /**
479 * generic_file_splice_read - splice data from file to a pipe
480 * @in: file to splice from
481 * @ppos: position in @in
482 * @pipe: pipe to splice to
483 * @len: number of bytes to splice
484 * @flags: splice modifier flags
485 *
486 * Description:
487 * Will read pages from given file and fill them into a pipe. Can be
488 * used as long as the address_space operations for the source implements
489 * a readpage() hook.
490 *
491 */
492 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
493 struct pipe_inode_info *pipe, size_t len,
494 unsigned int flags)
495 {
496 loff_t isize, left;
497 int ret;
498
499 isize = i_size_read(in->f_mapping->host);
500 if (unlikely(*ppos >= isize))
501 return 0;
502
503 left = isize - *ppos;
504 if (unlikely(left < len))
505 len = left;
506
507 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
508 if (ret > 0)
509 *ppos += ret;
510
511 return ret;
512 }
513
514 EXPORT_SYMBOL(generic_file_splice_read);
515
516 /*
517 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
518 * using sendpage(). Return the number of bytes sent.
519 */
520 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
521 struct pipe_buffer *buf, struct splice_desc *sd)
522 {
523 struct file *file = sd->u.file;
524 loff_t pos = sd->pos;
525 int ret, more;
526
527 ret = buf->ops->confirm(pipe, buf);
528 if (!ret) {
529 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
530
531 ret = file->f_op->sendpage(file, buf->page, buf->offset,
532 sd->len, &pos, more);
533 }
534
535 return ret;
536 }
537
538 /*
539 * This is a little more tricky than the file -> pipe splicing. There are
540 * basically three cases:
541 *
542 * - Destination page already exists in the address space and there
543 * are users of it. For that case we have no other option that
544 * copying the data. Tough luck.
545 * - Destination page already exists in the address space, but there
546 * are no users of it. Make sure it's uptodate, then drop it. Fall
547 * through to last case.
548 * - Destination page does not exist, we can add the pipe page to
549 * the page cache and avoid the copy.
550 *
551 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
552 * sd->flags), we attempt to migrate pages from the pipe to the output
553 * file address space page cache. This is possible if no one else has
554 * the pipe page referenced outside of the pipe and page cache. If
555 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
556 * a new page in the output file page cache and fill/dirty that.
557 */
558 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
559 struct splice_desc *sd)
560 {
561 struct file *file = sd->u.file;
562 struct address_space *mapping = file->f_mapping;
563 unsigned int offset, this_len;
564 struct page *page;
565 void *fsdata;
566 int ret;
567
568 /*
569 * make sure the data in this buffer is uptodate
570 */
571 ret = buf->ops->confirm(pipe, buf);
572 if (unlikely(ret))
573 return ret;
574
575 offset = sd->pos & ~PAGE_CACHE_MASK;
576
577 this_len = sd->len;
578 if (this_len + offset > PAGE_CACHE_SIZE)
579 this_len = PAGE_CACHE_SIZE - offset;
580
581 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
582 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
583 if (unlikely(ret))
584 goto out;
585
586 if (buf->page != page) {
587 /*
588 * Careful, ->map() uses KM_USER0!
589 */
590 char *src = buf->ops->map(pipe, buf, 1);
591 char *dst = kmap_atomic(page, KM_USER1);
592
593 memcpy(dst + offset, src + buf->offset, this_len);
594 flush_dcache_page(page);
595 kunmap_atomic(dst, KM_USER1);
596 buf->ops->unmap(pipe, buf, src);
597 }
598 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
599 page, fsdata);
600 out:
601 return ret;
602 }
603
604 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
605 {
606 smp_mb();
607 if (waitqueue_active(&pipe->wait))
608 wake_up_interruptible(&pipe->wait);
609 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
610 }
611
612 /**
613 * splice_from_pipe_feed - feed available data from a pipe to a file
614 * @pipe: pipe to splice from
615 * @sd: information to @actor
616 * @actor: handler that splices the data
617 *
618 * Description:
619
620 * This function loops over the pipe and calls @actor to do the
621 * actual moving of a single struct pipe_buffer to the desired
622 * destination. It returns when there's no more buffers left in
623 * the pipe or if the requested number of bytes (@sd->total_len)
624 * have been copied. It returns a positive number (one) if the
625 * pipe needs to be filled with more data, zero if the required
626 * number of bytes have been copied and -errno on error.
627 *
628 * This, together with splice_from_pipe_{begin,end,next}, may be
629 * used to implement the functionality of __splice_from_pipe() when
630 * locking is required around copying the pipe buffers to the
631 * destination.
632 */
633 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
634 splice_actor *actor)
635 {
636 int ret;
637
638 while (pipe->nrbufs) {
639 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
640 const struct pipe_buf_operations *ops = buf->ops;
641
642 sd->len = buf->len;
643 if (sd->len > sd->total_len)
644 sd->len = sd->total_len;
645
646 ret = actor(pipe, buf, sd);
647 if (ret <= 0) {
648 if (ret == -ENODATA)
649 ret = 0;
650 return ret;
651 }
652 buf->offset += ret;
653 buf->len -= ret;
654
655 sd->num_spliced += ret;
656 sd->len -= ret;
657 sd->pos += ret;
658 sd->total_len -= ret;
659
660 if (!buf->len) {
661 buf->ops = NULL;
662 ops->release(pipe, buf);
663 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
664 pipe->nrbufs--;
665 if (pipe->inode)
666 sd->need_wakeup = true;
667 }
668
669 if (!sd->total_len)
670 return 0;
671 }
672
673 return 1;
674 }
675 EXPORT_SYMBOL(splice_from_pipe_feed);
676
677 /**
678 * splice_from_pipe_next - wait for some data to splice from
679 * @pipe: pipe to splice from
680 * @sd: information about the splice operation
681 *
682 * Description:
683 * This function will wait for some data and return a positive
684 * value (one) if pipe buffers are available. It will return zero
685 * or -errno if no more data needs to be spliced.
686 */
687 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
688 {
689 while (!pipe->nrbufs) {
690 if (!pipe->writers)
691 return 0;
692
693 if (!pipe->waiting_writers && sd->num_spliced)
694 return 0;
695
696 if (sd->flags & SPLICE_F_NONBLOCK)
697 return -EAGAIN;
698
699 if (signal_pending(current))
700 return -ERESTARTSYS;
701
702 if (sd->need_wakeup) {
703 wakeup_pipe_writers(pipe);
704 sd->need_wakeup = false;
705 }
706
707 pipe_wait(pipe);
708 }
709
710 return 1;
711 }
712 EXPORT_SYMBOL(splice_from_pipe_next);
713
714 /**
715 * splice_from_pipe_begin - start splicing from pipe
716 * @pipe: pipe to splice from
717 *
718 * Description:
719 * This function should be called before a loop containing
720 * splice_from_pipe_next() and splice_from_pipe_feed() to
721 * initialize the necessary fields of @sd.
722 */
723 void splice_from_pipe_begin(struct splice_desc *sd)
724 {
725 sd->num_spliced = 0;
726 sd->need_wakeup = false;
727 }
728 EXPORT_SYMBOL(splice_from_pipe_begin);
729
730 /**
731 * splice_from_pipe_end - finish splicing from pipe
732 * @pipe: pipe to splice from
733 * @sd: information about the splice operation
734 *
735 * Description:
736 * This function will wake up pipe writers if necessary. It should
737 * be called after a loop containing splice_from_pipe_next() and
738 * splice_from_pipe_feed().
739 */
740 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
741 {
742 if (sd->need_wakeup)
743 wakeup_pipe_writers(pipe);
744 }
745 EXPORT_SYMBOL(splice_from_pipe_end);
746
747 /**
748 * __splice_from_pipe - splice data from a pipe to given actor
749 * @pipe: pipe to splice from
750 * @sd: information to @actor
751 * @actor: handler that splices the data
752 *
753 * Description:
754 * This function does little more than loop over the pipe and call
755 * @actor to do the actual moving of a single struct pipe_buffer to
756 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
757 * pipe_to_user.
758 *
759 */
760 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
761 splice_actor *actor)
762 {
763 int ret;
764
765 splice_from_pipe_begin(sd);
766 do {
767 ret = splice_from_pipe_next(pipe, sd);
768 if (ret > 0)
769 ret = splice_from_pipe_feed(pipe, sd, actor);
770 } while (ret > 0);
771 splice_from_pipe_end(pipe, sd);
772
773 return sd->num_spliced ? sd->num_spliced : ret;
774 }
775 EXPORT_SYMBOL(__splice_from_pipe);
776
777 /**
778 * splice_from_pipe - splice data from a pipe to a file
779 * @pipe: pipe to splice from
780 * @out: file to splice to
781 * @ppos: position in @out
782 * @len: how many bytes to splice
783 * @flags: splice modifier flags
784 * @actor: handler that splices the data
785 *
786 * Description:
787 * See __splice_from_pipe. This function locks the pipe inode,
788 * otherwise it's identical to __splice_from_pipe().
789 *
790 */
791 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
792 loff_t *ppos, size_t len, unsigned int flags,
793 splice_actor *actor)
794 {
795 ssize_t ret;
796 struct splice_desc sd = {
797 .total_len = len,
798 .flags = flags,
799 .pos = *ppos,
800 .u.file = out,
801 };
802
803 if (pipe->inode)
804 mutex_lock(&pipe->inode->i_mutex);
805 ret = __splice_from_pipe(pipe, &sd, actor);
806 if (pipe->inode)
807 mutex_unlock(&pipe->inode->i_mutex);
808
809 return ret;
810 }
811
812 /**
813 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
814 * @pipe: pipe info
815 * @out: file to write to
816 * @ppos: position in @out
817 * @len: number of bytes to splice
818 * @flags: splice modifier flags
819 *
820 * Description:
821 * Will either move or copy pages (determined by @flags options) from
822 * the given pipe inode to the given file. The caller is responsible
823 * for acquiring i_mutex on both inodes.
824 *
825 */
826 ssize_t
827 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
828 loff_t *ppos, size_t len, unsigned int flags)
829 {
830 struct address_space *mapping = out->f_mapping;
831 struct inode *inode = mapping->host;
832 struct splice_desc sd = {
833 .total_len = len,
834 .flags = flags,
835 .pos = *ppos,
836 .u.file = out,
837 };
838 ssize_t ret;
839 int err;
840
841 err = file_remove_suid(out);
842 if (unlikely(err))
843 return err;
844
845 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
846 if (ret > 0) {
847 unsigned long nr_pages;
848
849 *ppos += ret;
850 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
851
852 /*
853 * If file or inode is SYNC and we actually wrote some data,
854 * sync it.
855 */
856 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
857 err = generic_osync_inode(inode, mapping,
858 OSYNC_METADATA|OSYNC_DATA);
859
860 if (err)
861 ret = err;
862 }
863 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
864 }
865
866 return ret;
867 }
868
869 EXPORT_SYMBOL(generic_file_splice_write_nolock);
870
871 /**
872 * generic_file_splice_write - splice data from a pipe to a file
873 * @pipe: pipe info
874 * @out: file to write to
875 * @ppos: position in @out
876 * @len: number of bytes to splice
877 * @flags: splice modifier flags
878 *
879 * Description:
880 * Will either move or copy pages (determined by @flags options) from
881 * the given pipe inode to the given file.
882 *
883 */
884 ssize_t
885 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
886 loff_t *ppos, size_t len, unsigned int flags)
887 {
888 struct address_space *mapping = out->f_mapping;
889 struct inode *inode = mapping->host;
890 struct splice_desc sd = {
891 .total_len = len,
892 .flags = flags,
893 .pos = *ppos,
894 .u.file = out,
895 };
896 ssize_t ret;
897
898 WARN_ON(S_ISFIFO(inode->i_mode));
899 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
900 ret = file_remove_suid(out);
901 if (likely(!ret)) {
902 if (pipe->inode)
903 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_CHILD);
904 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
905 if (pipe->inode)
906 mutex_unlock(&pipe->inode->i_mutex);
907 }
908 mutex_unlock(&inode->i_mutex);
909 if (ret > 0) {
910 unsigned long nr_pages;
911
912 *ppos += ret;
913 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
914
915 /*
916 * If file or inode is SYNC and we actually wrote some data,
917 * sync it.
918 */
919 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
920 int err;
921
922 mutex_lock(&inode->i_mutex);
923 err = generic_osync_inode(inode, mapping,
924 OSYNC_METADATA|OSYNC_DATA);
925 mutex_unlock(&inode->i_mutex);
926
927 if (err)
928 ret = err;
929 }
930 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
931 }
932
933 return ret;
934 }
935
936 EXPORT_SYMBOL(generic_file_splice_write);
937
938 /**
939 * generic_splice_sendpage - splice data from a pipe to a socket
940 * @pipe: pipe to splice from
941 * @out: socket to write to
942 * @ppos: position in @out
943 * @len: number of bytes to splice
944 * @flags: splice modifier flags
945 *
946 * Description:
947 * Will send @len bytes from the pipe to a network socket. No data copying
948 * is involved.
949 *
950 */
951 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
952 loff_t *ppos, size_t len, unsigned int flags)
953 {
954 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
955 }
956
957 EXPORT_SYMBOL(generic_splice_sendpage);
958
959 /*
960 * Attempt to initiate a splice from pipe to file.
961 */
962 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
963 loff_t *ppos, size_t len, unsigned int flags)
964 {
965 int ret;
966
967 if (unlikely(!out->f_op || !out->f_op->splice_write))
968 return -EINVAL;
969
970 if (unlikely(!(out->f_mode & FMODE_WRITE)))
971 return -EBADF;
972
973 if (unlikely(out->f_flags & O_APPEND))
974 return -EINVAL;
975
976 ret = rw_verify_area(WRITE, out, ppos, len);
977 if (unlikely(ret < 0))
978 return ret;
979
980 return out->f_op->splice_write(pipe, out, ppos, len, flags);
981 }
982
983 /*
984 * Attempt to initiate a splice from a file to a pipe.
985 */
986 static long do_splice_to(struct file *in, loff_t *ppos,
987 struct pipe_inode_info *pipe, size_t len,
988 unsigned int flags)
989 {
990 int ret;
991
992 if (unlikely(!in->f_op || !in->f_op->splice_read))
993 return -EINVAL;
994
995 if (unlikely(!(in->f_mode & FMODE_READ)))
996 return -EBADF;
997
998 ret = rw_verify_area(READ, in, ppos, len);
999 if (unlikely(ret < 0))
1000 return ret;
1001
1002 return in->f_op->splice_read(in, ppos, pipe, len, flags);
1003 }
1004
1005 /**
1006 * splice_direct_to_actor - splices data directly between two non-pipes
1007 * @in: file to splice from
1008 * @sd: actor information on where to splice to
1009 * @actor: handles the data splicing
1010 *
1011 * Description:
1012 * This is a special case helper to splice directly between two
1013 * points, without requiring an explicit pipe. Internally an allocated
1014 * pipe is cached in the process, and reused during the lifetime of
1015 * that process.
1016 *
1017 */
1018 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1019 splice_direct_actor *actor)
1020 {
1021 struct pipe_inode_info *pipe;
1022 long ret, bytes;
1023 umode_t i_mode;
1024 size_t len;
1025 int i, flags;
1026
1027 /*
1028 * We require the input being a regular file, as we don't want to
1029 * randomly drop data for eg socket -> socket splicing. Use the
1030 * piped splicing for that!
1031 */
1032 i_mode = in->f_path.dentry->d_inode->i_mode;
1033 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1034 return -EINVAL;
1035
1036 /*
1037 * neither in nor out is a pipe, setup an internal pipe attached to
1038 * 'out' and transfer the wanted data from 'in' to 'out' through that
1039 */
1040 pipe = current->splice_pipe;
1041 if (unlikely(!pipe)) {
1042 pipe = alloc_pipe_info(NULL);
1043 if (!pipe)
1044 return -ENOMEM;
1045
1046 /*
1047 * We don't have an immediate reader, but we'll read the stuff
1048 * out of the pipe right after the splice_to_pipe(). So set
1049 * PIPE_READERS appropriately.
1050 */
1051 pipe->readers = 1;
1052
1053 current->splice_pipe = pipe;
1054 }
1055
1056 /*
1057 * Do the splice.
1058 */
1059 ret = 0;
1060 bytes = 0;
1061 len = sd->total_len;
1062 flags = sd->flags;
1063
1064 /*
1065 * Don't block on output, we have to drain the direct pipe.
1066 */
1067 sd->flags &= ~SPLICE_F_NONBLOCK;
1068
1069 while (len) {
1070 size_t read_len;
1071 loff_t pos = sd->pos, prev_pos = pos;
1072
1073 ret = do_splice_to(in, &pos, pipe, len, flags);
1074 if (unlikely(ret <= 0))
1075 goto out_release;
1076
1077 read_len = ret;
1078 sd->total_len = read_len;
1079
1080 /*
1081 * NOTE: nonblocking mode only applies to the input. We
1082 * must not do the output in nonblocking mode as then we
1083 * could get stuck data in the internal pipe:
1084 */
1085 ret = actor(pipe, sd);
1086 if (unlikely(ret <= 0)) {
1087 sd->pos = prev_pos;
1088 goto out_release;
1089 }
1090
1091 bytes += ret;
1092 len -= ret;
1093 sd->pos = pos;
1094
1095 if (ret < read_len) {
1096 sd->pos = prev_pos + ret;
1097 goto out_release;
1098 }
1099 }
1100
1101 done:
1102 pipe->nrbufs = pipe->curbuf = 0;
1103 file_accessed(in);
1104 return bytes;
1105
1106 out_release:
1107 /*
1108 * If we did an incomplete transfer we must release
1109 * the pipe buffers in question:
1110 */
1111 for (i = 0; i < PIPE_BUFFERS; i++) {
1112 struct pipe_buffer *buf = pipe->bufs + i;
1113
1114 if (buf->ops) {
1115 buf->ops->release(pipe, buf);
1116 buf->ops = NULL;
1117 }
1118 }
1119
1120 if (!bytes)
1121 bytes = ret;
1122
1123 goto done;
1124 }
1125 EXPORT_SYMBOL(splice_direct_to_actor);
1126
1127 static int direct_splice_actor(struct pipe_inode_info *pipe,
1128 struct splice_desc *sd)
1129 {
1130 struct file *file = sd->u.file;
1131
1132 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1133 }
1134
1135 /**
1136 * do_splice_direct - splices data directly between two files
1137 * @in: file to splice from
1138 * @ppos: input file offset
1139 * @out: file to splice to
1140 * @len: number of bytes to splice
1141 * @flags: splice modifier flags
1142 *
1143 * Description:
1144 * For use by do_sendfile(). splice can easily emulate sendfile, but
1145 * doing it in the application would incur an extra system call
1146 * (splice in + splice out, as compared to just sendfile()). So this helper
1147 * can splice directly through a process-private pipe.
1148 *
1149 */
1150 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1151 size_t len, unsigned int flags)
1152 {
1153 struct splice_desc sd = {
1154 .len = len,
1155 .total_len = len,
1156 .flags = flags,
1157 .pos = *ppos,
1158 .u.file = out,
1159 };
1160 long ret;
1161
1162 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1163 if (ret > 0)
1164 *ppos = sd.pos;
1165
1166 return ret;
1167 }
1168
1169 /*
1170 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1171 * location, so checking ->i_pipe is not enough to verify that this is a
1172 * pipe.
1173 */
1174 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1175 {
1176 if (S_ISFIFO(inode->i_mode))
1177 return inode->i_pipe;
1178
1179 return NULL;
1180 }
1181
1182 /*
1183 * Determine where to splice to/from.
1184 */
1185 static long do_splice(struct file *in, loff_t __user *off_in,
1186 struct file *out, loff_t __user *off_out,
1187 size_t len, unsigned int flags)
1188 {
1189 struct pipe_inode_info *pipe;
1190 loff_t offset, *off;
1191 long ret;
1192
1193 pipe = pipe_info(in->f_path.dentry->d_inode);
1194 if (pipe) {
1195 if (off_in)
1196 return -ESPIPE;
1197 if (off_out) {
1198 if (out->f_op->llseek == no_llseek)
1199 return -EINVAL;
1200 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1201 return -EFAULT;
1202 off = &offset;
1203 } else
1204 off = &out->f_pos;
1205
1206 ret = do_splice_from(pipe, out, off, len, flags);
1207
1208 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1209 ret = -EFAULT;
1210
1211 return ret;
1212 }
1213
1214 pipe = pipe_info(out->f_path.dentry->d_inode);
1215 if (pipe) {
1216 if (off_out)
1217 return -ESPIPE;
1218 if (off_in) {
1219 if (in->f_op->llseek == no_llseek)
1220 return -EINVAL;
1221 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1222 return -EFAULT;
1223 off = &offset;
1224 } else
1225 off = &in->f_pos;
1226
1227 ret = do_splice_to(in, off, pipe, len, flags);
1228
1229 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1230 ret = -EFAULT;
1231
1232 return ret;
1233 }
1234
1235 return -EINVAL;
1236 }
1237
1238 /*
1239 * Map an iov into an array of pages and offset/length tupples. With the
1240 * partial_page structure, we can map several non-contiguous ranges into
1241 * our ones pages[] map instead of splitting that operation into pieces.
1242 * Could easily be exported as a generic helper for other users, in which
1243 * case one would probably want to add a 'max_nr_pages' parameter as well.
1244 */
1245 static int get_iovec_page_array(const struct iovec __user *iov,
1246 unsigned int nr_vecs, struct page **pages,
1247 struct partial_page *partial, int aligned)
1248 {
1249 int buffers = 0, error = 0;
1250
1251 while (nr_vecs) {
1252 unsigned long off, npages;
1253 struct iovec entry;
1254 void __user *base;
1255 size_t len;
1256 int i;
1257
1258 error = -EFAULT;
1259 if (copy_from_user(&entry, iov, sizeof(entry)))
1260 break;
1261
1262 base = entry.iov_base;
1263 len = entry.iov_len;
1264
1265 /*
1266 * Sanity check this iovec. 0 read succeeds.
1267 */
1268 error = 0;
1269 if (unlikely(!len))
1270 break;
1271 error = -EFAULT;
1272 if (!access_ok(VERIFY_READ, base, len))
1273 break;
1274
1275 /*
1276 * Get this base offset and number of pages, then map
1277 * in the user pages.
1278 */
1279 off = (unsigned long) base & ~PAGE_MASK;
1280
1281 /*
1282 * If asked for alignment, the offset must be zero and the
1283 * length a multiple of the PAGE_SIZE.
1284 */
1285 error = -EINVAL;
1286 if (aligned && (off || len & ~PAGE_MASK))
1287 break;
1288
1289 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1290 if (npages > PIPE_BUFFERS - buffers)
1291 npages = PIPE_BUFFERS - buffers;
1292
1293 error = get_user_pages_fast((unsigned long)base, npages,
1294 0, &pages[buffers]);
1295
1296 if (unlikely(error <= 0))
1297 break;
1298
1299 /*
1300 * Fill this contiguous range into the partial page map.
1301 */
1302 for (i = 0; i < error; i++) {
1303 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1304
1305 partial[buffers].offset = off;
1306 partial[buffers].len = plen;
1307
1308 off = 0;
1309 len -= plen;
1310 buffers++;
1311 }
1312
1313 /*
1314 * We didn't complete this iov, stop here since it probably
1315 * means we have to move some of this into a pipe to
1316 * be able to continue.
1317 */
1318 if (len)
1319 break;
1320
1321 /*
1322 * Don't continue if we mapped fewer pages than we asked for,
1323 * or if we mapped the max number of pages that we have
1324 * room for.
1325 */
1326 if (error < npages || buffers == PIPE_BUFFERS)
1327 break;
1328
1329 nr_vecs--;
1330 iov++;
1331 }
1332
1333 if (buffers)
1334 return buffers;
1335
1336 return error;
1337 }
1338
1339 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1340 struct splice_desc *sd)
1341 {
1342 char *src;
1343 int ret;
1344
1345 ret = buf->ops->confirm(pipe, buf);
1346 if (unlikely(ret))
1347 return ret;
1348
1349 /*
1350 * See if we can use the atomic maps, by prefaulting in the
1351 * pages and doing an atomic copy
1352 */
1353 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1354 src = buf->ops->map(pipe, buf, 1);
1355 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1356 sd->len);
1357 buf->ops->unmap(pipe, buf, src);
1358 if (!ret) {
1359 ret = sd->len;
1360 goto out;
1361 }
1362 }
1363
1364 /*
1365 * No dice, use slow non-atomic map and copy
1366 */
1367 src = buf->ops->map(pipe, buf, 0);
1368
1369 ret = sd->len;
1370 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1371 ret = -EFAULT;
1372
1373 buf->ops->unmap(pipe, buf, src);
1374 out:
1375 if (ret > 0)
1376 sd->u.userptr += ret;
1377 return ret;
1378 }
1379
1380 /*
1381 * For lack of a better implementation, implement vmsplice() to userspace
1382 * as a simple copy of the pipes pages to the user iov.
1383 */
1384 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1385 unsigned long nr_segs, unsigned int flags)
1386 {
1387 struct pipe_inode_info *pipe;
1388 struct splice_desc sd;
1389 ssize_t size;
1390 int error;
1391 long ret;
1392
1393 pipe = pipe_info(file->f_path.dentry->d_inode);
1394 if (!pipe)
1395 return -EBADF;
1396
1397 if (pipe->inode)
1398 mutex_lock(&pipe->inode->i_mutex);
1399
1400 error = ret = 0;
1401 while (nr_segs) {
1402 void __user *base;
1403 size_t len;
1404
1405 /*
1406 * Get user address base and length for this iovec.
1407 */
1408 error = get_user(base, &iov->iov_base);
1409 if (unlikely(error))
1410 break;
1411 error = get_user(len, &iov->iov_len);
1412 if (unlikely(error))
1413 break;
1414
1415 /*
1416 * Sanity check this iovec. 0 read succeeds.
1417 */
1418 if (unlikely(!len))
1419 break;
1420 if (unlikely(!base)) {
1421 error = -EFAULT;
1422 break;
1423 }
1424
1425 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1426 error = -EFAULT;
1427 break;
1428 }
1429
1430 sd.len = 0;
1431 sd.total_len = len;
1432 sd.flags = flags;
1433 sd.u.userptr = base;
1434 sd.pos = 0;
1435
1436 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1437 if (size < 0) {
1438 if (!ret)
1439 ret = size;
1440
1441 break;
1442 }
1443
1444 ret += size;
1445
1446 if (size < len)
1447 break;
1448
1449 nr_segs--;
1450 iov++;
1451 }
1452
1453 if (pipe->inode)
1454 mutex_unlock(&pipe->inode->i_mutex);
1455
1456 if (!ret)
1457 ret = error;
1458
1459 return ret;
1460 }
1461
1462 /*
1463 * vmsplice splices a user address range into a pipe. It can be thought of
1464 * as splice-from-memory, where the regular splice is splice-from-file (or
1465 * to file). In both cases the output is a pipe, naturally.
1466 */
1467 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1468 unsigned long nr_segs, unsigned int flags)
1469 {
1470 struct pipe_inode_info *pipe;
1471 struct page *pages[PIPE_BUFFERS];
1472 struct partial_page partial[PIPE_BUFFERS];
1473 struct splice_pipe_desc spd = {
1474 .pages = pages,
1475 .partial = partial,
1476 .flags = flags,
1477 .ops = &user_page_pipe_buf_ops,
1478 .spd_release = spd_release_page,
1479 };
1480
1481 pipe = pipe_info(file->f_path.dentry->d_inode);
1482 if (!pipe)
1483 return -EBADF;
1484
1485 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1486 flags & SPLICE_F_GIFT);
1487 if (spd.nr_pages <= 0)
1488 return spd.nr_pages;
1489
1490 return splice_to_pipe(pipe, &spd);
1491 }
1492
1493 /*
1494 * Note that vmsplice only really supports true splicing _from_ user memory
1495 * to a pipe, not the other way around. Splicing from user memory is a simple
1496 * operation that can be supported without any funky alignment restrictions
1497 * or nasty vm tricks. We simply map in the user memory and fill them into
1498 * a pipe. The reverse isn't quite as easy, though. There are two possible
1499 * solutions for that:
1500 *
1501 * - memcpy() the data internally, at which point we might as well just
1502 * do a regular read() on the buffer anyway.
1503 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1504 * has restriction limitations on both ends of the pipe).
1505 *
1506 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1507 *
1508 */
1509 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1510 unsigned long, nr_segs, unsigned int, flags)
1511 {
1512 struct file *file;
1513 long error;
1514 int fput;
1515
1516 if (unlikely(nr_segs > UIO_MAXIOV))
1517 return -EINVAL;
1518 else if (unlikely(!nr_segs))
1519 return 0;
1520
1521 error = -EBADF;
1522 file = fget_light(fd, &fput);
1523 if (file) {
1524 if (file->f_mode & FMODE_WRITE)
1525 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1526 else if (file->f_mode & FMODE_READ)
1527 error = vmsplice_to_user(file, iov, nr_segs, flags);
1528
1529 fput_light(file, fput);
1530 }
1531
1532 return error;
1533 }
1534
1535 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1536 int, fd_out, loff_t __user *, off_out,
1537 size_t, len, unsigned int, flags)
1538 {
1539 long error;
1540 struct file *in, *out;
1541 int fput_in, fput_out;
1542
1543 if (unlikely(!len))
1544 return 0;
1545
1546 error = -EBADF;
1547 in = fget_light(fd_in, &fput_in);
1548 if (in) {
1549 if (in->f_mode & FMODE_READ) {
1550 out = fget_light(fd_out, &fput_out);
1551 if (out) {
1552 if (out->f_mode & FMODE_WRITE)
1553 error = do_splice(in, off_in,
1554 out, off_out,
1555 len, flags);
1556 fput_light(out, fput_out);
1557 }
1558 }
1559
1560 fput_light(in, fput_in);
1561 }
1562
1563 return error;
1564 }
1565
1566 /*
1567 * Make sure there's data to read. Wait for input if we can, otherwise
1568 * return an appropriate error.
1569 */
1570 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1571 {
1572 int ret;
1573
1574 /*
1575 * Check ->nrbufs without the inode lock first. This function
1576 * is speculative anyways, so missing one is ok.
1577 */
1578 if (pipe->nrbufs)
1579 return 0;
1580
1581 ret = 0;
1582 mutex_lock(&pipe->inode->i_mutex);
1583
1584 while (!pipe->nrbufs) {
1585 if (signal_pending(current)) {
1586 ret = -ERESTARTSYS;
1587 break;
1588 }
1589 if (!pipe->writers)
1590 break;
1591 if (!pipe->waiting_writers) {
1592 if (flags & SPLICE_F_NONBLOCK) {
1593 ret = -EAGAIN;
1594 break;
1595 }
1596 }
1597 pipe_wait(pipe);
1598 }
1599
1600 mutex_unlock(&pipe->inode->i_mutex);
1601 return ret;
1602 }
1603
1604 /*
1605 * Make sure there's writeable room. Wait for room if we can, otherwise
1606 * return an appropriate error.
1607 */
1608 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1609 {
1610 int ret;
1611
1612 /*
1613 * Check ->nrbufs without the inode lock first. This function
1614 * is speculative anyways, so missing one is ok.
1615 */
1616 if (pipe->nrbufs < PIPE_BUFFERS)
1617 return 0;
1618
1619 ret = 0;
1620 mutex_lock(&pipe->inode->i_mutex);
1621
1622 while (pipe->nrbufs >= PIPE_BUFFERS) {
1623 if (!pipe->readers) {
1624 send_sig(SIGPIPE, current, 0);
1625 ret = -EPIPE;
1626 break;
1627 }
1628 if (flags & SPLICE_F_NONBLOCK) {
1629 ret = -EAGAIN;
1630 break;
1631 }
1632 if (signal_pending(current)) {
1633 ret = -ERESTARTSYS;
1634 break;
1635 }
1636 pipe->waiting_writers++;
1637 pipe_wait(pipe);
1638 pipe->waiting_writers--;
1639 }
1640
1641 mutex_unlock(&pipe->inode->i_mutex);
1642 return ret;
1643 }
1644
1645 /*
1646 * Link contents of ipipe to opipe.
1647 */
1648 static int link_pipe(struct pipe_inode_info *ipipe,
1649 struct pipe_inode_info *opipe,
1650 size_t len, unsigned int flags)
1651 {
1652 struct pipe_buffer *ibuf, *obuf;
1653 int ret = 0, i = 0, nbuf;
1654
1655 /*
1656 * Potential ABBA deadlock, work around it by ordering lock
1657 * grabbing by inode address. Otherwise two different processes
1658 * could deadlock (one doing tee from A -> B, the other from B -> A).
1659 */
1660 inode_double_lock(ipipe->inode, opipe->inode);
1661
1662 do {
1663 if (!opipe->readers) {
1664 send_sig(SIGPIPE, current, 0);
1665 if (!ret)
1666 ret = -EPIPE;
1667 break;
1668 }
1669
1670 /*
1671 * If we have iterated all input buffers or ran out of
1672 * output room, break.
1673 */
1674 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1675 break;
1676
1677 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1678 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1679
1680 /*
1681 * Get a reference to this pipe buffer,
1682 * so we can copy the contents over.
1683 */
1684 ibuf->ops->get(ipipe, ibuf);
1685
1686 obuf = opipe->bufs + nbuf;
1687 *obuf = *ibuf;
1688
1689 /*
1690 * Don't inherit the gift flag, we need to
1691 * prevent multiple steals of this page.
1692 */
1693 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1694
1695 if (obuf->len > len)
1696 obuf->len = len;
1697
1698 opipe->nrbufs++;
1699 ret += obuf->len;
1700 len -= obuf->len;
1701 i++;
1702 } while (len);
1703
1704 /*
1705 * return EAGAIN if we have the potential of some data in the
1706 * future, otherwise just return 0
1707 */
1708 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1709 ret = -EAGAIN;
1710
1711 inode_double_unlock(ipipe->inode, opipe->inode);
1712
1713 /*
1714 * If we put data in the output pipe, wakeup any potential readers.
1715 */
1716 if (ret > 0) {
1717 smp_mb();
1718 if (waitqueue_active(&opipe->wait))
1719 wake_up_interruptible(&opipe->wait);
1720 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1721 }
1722
1723 return ret;
1724 }
1725
1726 /*
1727 * This is a tee(1) implementation that works on pipes. It doesn't copy
1728 * any data, it simply references the 'in' pages on the 'out' pipe.
1729 * The 'flags' used are the SPLICE_F_* variants, currently the only
1730 * applicable one is SPLICE_F_NONBLOCK.
1731 */
1732 static long do_tee(struct file *in, struct file *out, size_t len,
1733 unsigned int flags)
1734 {
1735 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1736 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1737 int ret = -EINVAL;
1738
1739 /*
1740 * Duplicate the contents of ipipe to opipe without actually
1741 * copying the data.
1742 */
1743 if (ipipe && opipe && ipipe != opipe) {
1744 /*
1745 * Keep going, unless we encounter an error. The ipipe/opipe
1746 * ordering doesn't really matter.
1747 */
1748 ret = link_ipipe_prep(ipipe, flags);
1749 if (!ret) {
1750 ret = link_opipe_prep(opipe, flags);
1751 if (!ret)
1752 ret = link_pipe(ipipe, opipe, len, flags);
1753 }
1754 }
1755
1756 return ret;
1757 }
1758
1759 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1760 {
1761 struct file *in;
1762 int error, fput_in;
1763
1764 if (unlikely(!len))
1765 return 0;
1766
1767 error = -EBADF;
1768 in = fget_light(fdin, &fput_in);
1769 if (in) {
1770 if (in->f_mode & FMODE_READ) {
1771 int fput_out;
1772 struct file *out = fget_light(fdout, &fput_out);
1773
1774 if (out) {
1775 if (out->f_mode & FMODE_WRITE)
1776 error = do_tee(in, out, len, flags);
1777 fput_light(out, fput_out);
1778 }
1779 }
1780 fput_light(in, fput_in);
1781 }
1782
1783 return error;
1784 }
This page took 0.070454 seconds and 6 git commands to generate.