ocfs2: fix i_mutex locking in ocfs2_splice_to_file()
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35 * Attempt to steal a page from a pipe buffer. This should perhaps go into
36 * a vm helper function, it's already simplified quite a bit by the
37 * addition of remove_mapping(). If success is returned, the caller may
38 * attempt to reuse this page for another destination.
39 */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 struct pipe_buffer *buf)
42 {
43 struct page *page = buf->page;
44 struct address_space *mapping;
45
46 lock_page(page);
47
48 mapping = page_mapping(page);
49 if (mapping) {
50 WARN_ON(!PageUptodate(page));
51
52 /*
53 * At least for ext2 with nobh option, we need to wait on
54 * writeback completing on this page, since we'll remove it
55 * from the pagecache. Otherwise truncate wont wait on the
56 * page, allowing the disk blocks to be reused by someone else
57 * before we actually wrote our data to them. fs corruption
58 * ensues.
59 */
60 wait_on_page_writeback(page);
61
62 if (page_has_private(page) &&
63 !try_to_release_page(page, GFP_KERNEL))
64 goto out_unlock;
65
66 /*
67 * If we succeeded in removing the mapping, set LRU flag
68 * and return good.
69 */
70 if (remove_mapping(mapping, page)) {
71 buf->flags |= PIPE_BUF_FLAG_LRU;
72 return 0;
73 }
74 }
75
76 /*
77 * Raced with truncate or failed to remove page from current
78 * address space, unlock and return failure.
79 */
80 out_unlock:
81 unlock_page(page);
82 return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 struct pipe_buffer *buf)
87 {
88 page_cache_release(buf->page);
89 buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93 * Check whether the contents of buf is OK to access. Since the content
94 * is a page cache page, IO may be in flight.
95 */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 struct pipe_buffer *buf)
98 {
99 struct page *page = buf->page;
100 int err;
101
102 if (!PageUptodate(page)) {
103 lock_page(page);
104
105 /*
106 * Page got truncated/unhashed. This will cause a 0-byte
107 * splice, if this is the first page.
108 */
109 if (!page->mapping) {
110 err = -ENODATA;
111 goto error;
112 }
113
114 /*
115 * Uh oh, read-error from disk.
116 */
117 if (!PageUptodate(page)) {
118 err = -EIO;
119 goto error;
120 }
121
122 /*
123 * Page is ok afterall, we are done.
124 */
125 unlock_page(page);
126 }
127
128 return 0;
129 error:
130 unlock_page(page);
131 return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 .can_merge = 0,
136 .map = generic_pipe_buf_map,
137 .unmap = generic_pipe_buf_unmap,
138 .confirm = page_cache_pipe_buf_confirm,
139 .release = page_cache_pipe_buf_release,
140 .steal = page_cache_pipe_buf_steal,
141 .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 struct pipe_buffer *buf)
146 {
147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 return 1;
149
150 buf->flags |= PIPE_BUF_FLAG_LRU;
151 return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 .can_merge = 0,
156 .map = generic_pipe_buf_map,
157 .unmap = generic_pipe_buf_unmap,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
162 };
163
164 /**
165 * splice_to_pipe - fill passed data into a pipe
166 * @pipe: pipe to fill
167 * @spd: data to fill
168 *
169 * Description:
170 * @spd contains a map of pages and len/offset tuples, along with
171 * the struct pipe_buf_operations associated with these pages. This
172 * function will link that data to the pipe.
173 *
174 */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 struct splice_pipe_desc *spd)
177 {
178 unsigned int spd_pages = spd->nr_pages;
179 int ret, do_wakeup, page_nr;
180
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
184
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
187
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
194 }
195
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
199
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->private = spd->partial[page_nr].private;
204 buf->ops = spd->ops;
205 if (spd->flags & SPLICE_F_GIFT)
206 buf->flags |= PIPE_BUF_FLAG_GIFT;
207
208 pipe->nrbufs++;
209 page_nr++;
210 ret += buf->len;
211
212 if (pipe->inode)
213 do_wakeup = 1;
214
215 if (!--spd->nr_pages)
216 break;
217 if (pipe->nrbufs < PIPE_BUFFERS)
218 continue;
219
220 break;
221 }
222
223 if (spd->flags & SPLICE_F_NONBLOCK) {
224 if (!ret)
225 ret = -EAGAIN;
226 break;
227 }
228
229 if (signal_pending(current)) {
230 if (!ret)
231 ret = -ERESTARTSYS;
232 break;
233 }
234
235 if (do_wakeup) {
236 smp_mb();
237 if (waitqueue_active(&pipe->wait))
238 wake_up_interruptible_sync(&pipe->wait);
239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 do_wakeup = 0;
241 }
242
243 pipe->waiting_writers++;
244 pipe_wait(pipe);
245 pipe->waiting_writers--;
246 }
247
248 if (pipe->inode) {
249 mutex_unlock(&pipe->inode->i_mutex);
250
251 if (do_wakeup) {
252 smp_mb();
253 if (waitqueue_active(&pipe->wait))
254 wake_up_interruptible(&pipe->wait);
255 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
256 }
257 }
258
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
261
262 return ret;
263 }
264
265 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
266 {
267 page_cache_release(spd->pages[i]);
268 }
269
270 static int
271 __generic_file_splice_read(struct file *in, loff_t *ppos,
272 struct pipe_inode_info *pipe, size_t len,
273 unsigned int flags)
274 {
275 struct address_space *mapping = in->f_mapping;
276 unsigned int loff, nr_pages, req_pages;
277 struct page *pages[PIPE_BUFFERS];
278 struct partial_page partial[PIPE_BUFFERS];
279 struct page *page;
280 pgoff_t index, end_index;
281 loff_t isize;
282 int error, page_nr;
283 struct splice_pipe_desc spd = {
284 .pages = pages,
285 .partial = partial,
286 .flags = flags,
287 .ops = &page_cache_pipe_buf_ops,
288 .spd_release = spd_release_page,
289 };
290
291 index = *ppos >> PAGE_CACHE_SHIFT;
292 loff = *ppos & ~PAGE_CACHE_MASK;
293 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
294 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
295
296 /*
297 * Lookup the (hopefully) full range of pages we need.
298 */
299 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
300 index += spd.nr_pages;
301
302 /*
303 * If find_get_pages_contig() returned fewer pages than we needed,
304 * readahead/allocate the rest and fill in the holes.
305 */
306 if (spd.nr_pages < nr_pages)
307 page_cache_sync_readahead(mapping, &in->f_ra, in,
308 index, req_pages - spd.nr_pages);
309
310 error = 0;
311 while (spd.nr_pages < nr_pages) {
312 /*
313 * Page could be there, find_get_pages_contig() breaks on
314 * the first hole.
315 */
316 page = find_get_page(mapping, index);
317 if (!page) {
318 /*
319 * page didn't exist, allocate one.
320 */
321 page = page_cache_alloc_cold(mapping);
322 if (!page)
323 break;
324
325 error = add_to_page_cache_lru(page, mapping, index,
326 mapping_gfp_mask(mapping));
327 if (unlikely(error)) {
328 page_cache_release(page);
329 if (error == -EEXIST)
330 continue;
331 break;
332 }
333 /*
334 * add_to_page_cache() locks the page, unlock it
335 * to avoid convoluting the logic below even more.
336 */
337 unlock_page(page);
338 }
339
340 pages[spd.nr_pages++] = page;
341 index++;
342 }
343
344 /*
345 * Now loop over the map and see if we need to start IO on any
346 * pages, fill in the partial map, etc.
347 */
348 index = *ppos >> PAGE_CACHE_SHIFT;
349 nr_pages = spd.nr_pages;
350 spd.nr_pages = 0;
351 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
352 unsigned int this_len;
353
354 if (!len)
355 break;
356
357 /*
358 * this_len is the max we'll use from this page
359 */
360 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
361 page = pages[page_nr];
362
363 if (PageReadahead(page))
364 page_cache_async_readahead(mapping, &in->f_ra, in,
365 page, index, req_pages - page_nr);
366
367 /*
368 * If the page isn't uptodate, we may need to start io on it
369 */
370 if (!PageUptodate(page)) {
371 /*
372 * If in nonblock mode then dont block on waiting
373 * for an in-flight io page
374 */
375 if (flags & SPLICE_F_NONBLOCK) {
376 if (!trylock_page(page)) {
377 error = -EAGAIN;
378 break;
379 }
380 } else
381 lock_page(page);
382
383 /*
384 * Page was truncated, or invalidated by the
385 * filesystem. Redo the find/create, but this time the
386 * page is kept locked, so there's no chance of another
387 * race with truncate/invalidate.
388 */
389 if (!page->mapping) {
390 unlock_page(page);
391 page = find_or_create_page(mapping, index,
392 mapping_gfp_mask(mapping));
393
394 if (!page) {
395 error = -ENOMEM;
396 break;
397 }
398 page_cache_release(pages[page_nr]);
399 pages[page_nr] = page;
400 }
401 /*
402 * page was already under io and is now done, great
403 */
404 if (PageUptodate(page)) {
405 unlock_page(page);
406 goto fill_it;
407 }
408
409 /*
410 * need to read in the page
411 */
412 error = mapping->a_ops->readpage(in, page);
413 if (unlikely(error)) {
414 /*
415 * We really should re-lookup the page here,
416 * but it complicates things a lot. Instead
417 * lets just do what we already stored, and
418 * we'll get it the next time we are called.
419 */
420 if (error == AOP_TRUNCATED_PAGE)
421 error = 0;
422
423 break;
424 }
425 }
426 fill_it:
427 /*
428 * i_size must be checked after PageUptodate.
429 */
430 isize = i_size_read(mapping->host);
431 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
432 if (unlikely(!isize || index > end_index))
433 break;
434
435 /*
436 * if this is the last page, see if we need to shrink
437 * the length and stop
438 */
439 if (end_index == index) {
440 unsigned int plen;
441
442 /*
443 * max good bytes in this page
444 */
445 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
446 if (plen <= loff)
447 break;
448
449 /*
450 * force quit after adding this page
451 */
452 this_len = min(this_len, plen - loff);
453 len = this_len;
454 }
455
456 partial[page_nr].offset = loff;
457 partial[page_nr].len = this_len;
458 len -= this_len;
459 loff = 0;
460 spd.nr_pages++;
461 index++;
462 }
463
464 /*
465 * Release any pages at the end, if we quit early. 'page_nr' is how far
466 * we got, 'nr_pages' is how many pages are in the map.
467 */
468 while (page_nr < nr_pages)
469 page_cache_release(pages[page_nr++]);
470 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
471
472 if (spd.nr_pages)
473 return splice_to_pipe(pipe, &spd);
474
475 return error;
476 }
477
478 /**
479 * generic_file_splice_read - splice data from file to a pipe
480 * @in: file to splice from
481 * @ppos: position in @in
482 * @pipe: pipe to splice to
483 * @len: number of bytes to splice
484 * @flags: splice modifier flags
485 *
486 * Description:
487 * Will read pages from given file and fill them into a pipe. Can be
488 * used as long as the address_space operations for the source implements
489 * a readpage() hook.
490 *
491 */
492 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
493 struct pipe_inode_info *pipe, size_t len,
494 unsigned int flags)
495 {
496 loff_t isize, left;
497 int ret;
498
499 isize = i_size_read(in->f_mapping->host);
500 if (unlikely(*ppos >= isize))
501 return 0;
502
503 left = isize - *ppos;
504 if (unlikely(left < len))
505 len = left;
506
507 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
508 if (ret > 0)
509 *ppos += ret;
510
511 return ret;
512 }
513
514 EXPORT_SYMBOL(generic_file_splice_read);
515
516 /*
517 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
518 * using sendpage(). Return the number of bytes sent.
519 */
520 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
521 struct pipe_buffer *buf, struct splice_desc *sd)
522 {
523 struct file *file = sd->u.file;
524 loff_t pos = sd->pos;
525 int ret, more;
526
527 ret = buf->ops->confirm(pipe, buf);
528 if (!ret) {
529 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
530
531 ret = file->f_op->sendpage(file, buf->page, buf->offset,
532 sd->len, &pos, more);
533 }
534
535 return ret;
536 }
537
538 /*
539 * This is a little more tricky than the file -> pipe splicing. There are
540 * basically three cases:
541 *
542 * - Destination page already exists in the address space and there
543 * are users of it. For that case we have no other option that
544 * copying the data. Tough luck.
545 * - Destination page already exists in the address space, but there
546 * are no users of it. Make sure it's uptodate, then drop it. Fall
547 * through to last case.
548 * - Destination page does not exist, we can add the pipe page to
549 * the page cache and avoid the copy.
550 *
551 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
552 * sd->flags), we attempt to migrate pages from the pipe to the output
553 * file address space page cache. This is possible if no one else has
554 * the pipe page referenced outside of the pipe and page cache. If
555 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
556 * a new page in the output file page cache and fill/dirty that.
557 */
558 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
559 struct splice_desc *sd)
560 {
561 struct file *file = sd->u.file;
562 struct address_space *mapping = file->f_mapping;
563 unsigned int offset, this_len;
564 struct page *page;
565 void *fsdata;
566 int ret;
567
568 /*
569 * make sure the data in this buffer is uptodate
570 */
571 ret = buf->ops->confirm(pipe, buf);
572 if (unlikely(ret))
573 return ret;
574
575 offset = sd->pos & ~PAGE_CACHE_MASK;
576
577 this_len = sd->len;
578 if (this_len + offset > PAGE_CACHE_SIZE)
579 this_len = PAGE_CACHE_SIZE - offset;
580
581 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
582 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
583 if (unlikely(ret))
584 goto out;
585
586 if (buf->page != page) {
587 /*
588 * Careful, ->map() uses KM_USER0!
589 */
590 char *src = buf->ops->map(pipe, buf, 1);
591 char *dst = kmap_atomic(page, KM_USER1);
592
593 memcpy(dst + offset, src + buf->offset, this_len);
594 flush_dcache_page(page);
595 kunmap_atomic(dst, KM_USER1);
596 buf->ops->unmap(pipe, buf, src);
597 }
598 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
599 page, fsdata);
600 out:
601 return ret;
602 }
603 EXPORT_SYMBOL(pipe_to_file);
604
605 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
606 {
607 smp_mb();
608 if (waitqueue_active(&pipe->wait))
609 wake_up_interruptible(&pipe->wait);
610 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
611 }
612
613 /**
614 * splice_from_pipe_feed - feed available data from a pipe to a file
615 * @pipe: pipe to splice from
616 * @sd: information to @actor
617 * @actor: handler that splices the data
618 *
619 * Description:
620
621 * This function loops over the pipe and calls @actor to do the
622 * actual moving of a single struct pipe_buffer to the desired
623 * destination. It returns when there's no more buffers left in
624 * the pipe or if the requested number of bytes (@sd->total_len)
625 * have been copied. It returns a positive number (one) if the
626 * pipe needs to be filled with more data, zero if the required
627 * number of bytes have been copied and -errno on error.
628 *
629 * This, together with splice_from_pipe_{begin,end,next}, may be
630 * used to implement the functionality of __splice_from_pipe() when
631 * locking is required around copying the pipe buffers to the
632 * destination.
633 */
634 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
635 splice_actor *actor)
636 {
637 int ret;
638
639 while (pipe->nrbufs) {
640 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
641 const struct pipe_buf_operations *ops = buf->ops;
642
643 sd->len = buf->len;
644 if (sd->len > sd->total_len)
645 sd->len = sd->total_len;
646
647 ret = actor(pipe, buf, sd);
648 if (ret <= 0) {
649 if (ret == -ENODATA)
650 ret = 0;
651 return ret;
652 }
653 buf->offset += ret;
654 buf->len -= ret;
655
656 sd->num_spliced += ret;
657 sd->len -= ret;
658 sd->pos += ret;
659 sd->total_len -= ret;
660
661 if (!buf->len) {
662 buf->ops = NULL;
663 ops->release(pipe, buf);
664 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
665 pipe->nrbufs--;
666 if (pipe->inode)
667 sd->need_wakeup = true;
668 }
669
670 if (!sd->total_len)
671 return 0;
672 }
673
674 return 1;
675 }
676 EXPORT_SYMBOL(splice_from_pipe_feed);
677
678 /**
679 * splice_from_pipe_next - wait for some data to splice from
680 * @pipe: pipe to splice from
681 * @sd: information about the splice operation
682 *
683 * Description:
684 * This function will wait for some data and return a positive
685 * value (one) if pipe buffers are available. It will return zero
686 * or -errno if no more data needs to be spliced.
687 */
688 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
689 {
690 while (!pipe->nrbufs) {
691 if (!pipe->writers)
692 return 0;
693
694 if (!pipe->waiting_writers && sd->num_spliced)
695 return 0;
696
697 if (sd->flags & SPLICE_F_NONBLOCK)
698 return -EAGAIN;
699
700 if (signal_pending(current))
701 return -ERESTARTSYS;
702
703 if (sd->need_wakeup) {
704 wakeup_pipe_writers(pipe);
705 sd->need_wakeup = false;
706 }
707
708 pipe_wait(pipe);
709 }
710
711 return 1;
712 }
713 EXPORT_SYMBOL(splice_from_pipe_next);
714
715 /**
716 * splice_from_pipe_begin - start splicing from pipe
717 * @pipe: pipe to splice from
718 *
719 * Description:
720 * This function should be called before a loop containing
721 * splice_from_pipe_next() and splice_from_pipe_feed() to
722 * initialize the necessary fields of @sd.
723 */
724 void splice_from_pipe_begin(struct splice_desc *sd)
725 {
726 sd->num_spliced = 0;
727 sd->need_wakeup = false;
728 }
729 EXPORT_SYMBOL(splice_from_pipe_begin);
730
731 /**
732 * splice_from_pipe_end - finish splicing from pipe
733 * @pipe: pipe to splice from
734 * @sd: information about the splice operation
735 *
736 * Description:
737 * This function will wake up pipe writers if necessary. It should
738 * be called after a loop containing splice_from_pipe_next() and
739 * splice_from_pipe_feed().
740 */
741 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
742 {
743 if (sd->need_wakeup)
744 wakeup_pipe_writers(pipe);
745 }
746 EXPORT_SYMBOL(splice_from_pipe_end);
747
748 /**
749 * __splice_from_pipe - splice data from a pipe to given actor
750 * @pipe: pipe to splice from
751 * @sd: information to @actor
752 * @actor: handler that splices the data
753 *
754 * Description:
755 * This function does little more than loop over the pipe and call
756 * @actor to do the actual moving of a single struct pipe_buffer to
757 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
758 * pipe_to_user.
759 *
760 */
761 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
762 splice_actor *actor)
763 {
764 int ret;
765
766 splice_from_pipe_begin(sd);
767 do {
768 ret = splice_from_pipe_next(pipe, sd);
769 if (ret > 0)
770 ret = splice_from_pipe_feed(pipe, sd, actor);
771 } while (ret > 0);
772 splice_from_pipe_end(pipe, sd);
773
774 return sd->num_spliced ? sd->num_spliced : ret;
775 }
776 EXPORT_SYMBOL(__splice_from_pipe);
777
778 /**
779 * splice_from_pipe - splice data from a pipe to a file
780 * @pipe: pipe to splice from
781 * @out: file to splice to
782 * @ppos: position in @out
783 * @len: how many bytes to splice
784 * @flags: splice modifier flags
785 * @actor: handler that splices the data
786 *
787 * Description:
788 * See __splice_from_pipe. This function locks the pipe inode,
789 * otherwise it's identical to __splice_from_pipe().
790 *
791 */
792 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
793 loff_t *ppos, size_t len, unsigned int flags,
794 splice_actor *actor)
795 {
796 ssize_t ret;
797 struct splice_desc sd = {
798 .total_len = len,
799 .flags = flags,
800 .pos = *ppos,
801 .u.file = out,
802 };
803
804 if (pipe->inode)
805 mutex_lock(&pipe->inode->i_mutex);
806 ret = __splice_from_pipe(pipe, &sd, actor);
807 if (pipe->inode)
808 mutex_unlock(&pipe->inode->i_mutex);
809
810 return ret;
811 }
812
813 /**
814 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
815 * @pipe: pipe info
816 * @out: file to write to
817 * @ppos: position in @out
818 * @len: number of bytes to splice
819 * @flags: splice modifier flags
820 *
821 * Description:
822 * Will either move or copy pages (determined by @flags options) from
823 * the given pipe inode to the given file. The caller is responsible
824 * for acquiring i_mutex on both inodes.
825 *
826 */
827 ssize_t
828 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
829 loff_t *ppos, size_t len, unsigned int flags)
830 {
831 struct address_space *mapping = out->f_mapping;
832 struct inode *inode = mapping->host;
833 struct splice_desc sd = {
834 .total_len = len,
835 .flags = flags,
836 .pos = *ppos,
837 .u.file = out,
838 };
839 ssize_t ret;
840 int err;
841
842 err = file_remove_suid(out);
843 if (unlikely(err))
844 return err;
845
846 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
847 if (ret > 0) {
848 unsigned long nr_pages;
849
850 *ppos += ret;
851 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
852
853 /*
854 * If file or inode is SYNC and we actually wrote some data,
855 * sync it.
856 */
857 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
858 err = generic_osync_inode(inode, mapping,
859 OSYNC_METADATA|OSYNC_DATA);
860
861 if (err)
862 ret = err;
863 }
864 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
865 }
866
867 return ret;
868 }
869
870 EXPORT_SYMBOL(generic_file_splice_write_nolock);
871
872 /**
873 * generic_file_splice_write - splice data from a pipe to a file
874 * @pipe: pipe info
875 * @out: file to write to
876 * @ppos: position in @out
877 * @len: number of bytes to splice
878 * @flags: splice modifier flags
879 *
880 * Description:
881 * Will either move or copy pages (determined by @flags options) from
882 * the given pipe inode to the given file.
883 *
884 */
885 ssize_t
886 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
887 loff_t *ppos, size_t len, unsigned int flags)
888 {
889 struct address_space *mapping = out->f_mapping;
890 struct inode *inode = mapping->host;
891 struct splice_desc sd = {
892 .total_len = len,
893 .flags = flags,
894 .pos = *ppos,
895 .u.file = out,
896 };
897 ssize_t ret;
898
899 if (pipe->inode)
900 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
901
902 splice_from_pipe_begin(&sd);
903 do {
904 ret = splice_from_pipe_next(pipe, &sd);
905 if (ret <= 0)
906 break;
907
908 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
909 ret = file_remove_suid(out);
910 if (!ret)
911 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
912 mutex_unlock(&inode->i_mutex);
913 } while (ret > 0);
914 splice_from_pipe_end(pipe, &sd);
915
916 if (pipe->inode)
917 mutex_unlock(&pipe->inode->i_mutex);
918
919 if (sd.num_spliced)
920 ret = sd.num_spliced;
921
922 if (ret > 0) {
923 unsigned long nr_pages;
924
925 *ppos += ret;
926 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
927
928 /*
929 * If file or inode is SYNC and we actually wrote some data,
930 * sync it.
931 */
932 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
933 int err;
934
935 mutex_lock(&inode->i_mutex);
936 err = generic_osync_inode(inode, mapping,
937 OSYNC_METADATA|OSYNC_DATA);
938 mutex_unlock(&inode->i_mutex);
939
940 if (err)
941 ret = err;
942 }
943 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
944 }
945
946 return ret;
947 }
948
949 EXPORT_SYMBOL(generic_file_splice_write);
950
951 /**
952 * generic_splice_sendpage - splice data from a pipe to a socket
953 * @pipe: pipe to splice from
954 * @out: socket to write to
955 * @ppos: position in @out
956 * @len: number of bytes to splice
957 * @flags: splice modifier flags
958 *
959 * Description:
960 * Will send @len bytes from the pipe to a network socket. No data copying
961 * is involved.
962 *
963 */
964 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
965 loff_t *ppos, size_t len, unsigned int flags)
966 {
967 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
968 }
969
970 EXPORT_SYMBOL(generic_splice_sendpage);
971
972 /*
973 * Attempt to initiate a splice from pipe to file.
974 */
975 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
976 loff_t *ppos, size_t len, unsigned int flags)
977 {
978 int ret;
979
980 if (unlikely(!out->f_op || !out->f_op->splice_write))
981 return -EINVAL;
982
983 if (unlikely(!(out->f_mode & FMODE_WRITE)))
984 return -EBADF;
985
986 if (unlikely(out->f_flags & O_APPEND))
987 return -EINVAL;
988
989 ret = rw_verify_area(WRITE, out, ppos, len);
990 if (unlikely(ret < 0))
991 return ret;
992
993 return out->f_op->splice_write(pipe, out, ppos, len, flags);
994 }
995
996 /*
997 * Attempt to initiate a splice from a file to a pipe.
998 */
999 static long do_splice_to(struct file *in, loff_t *ppos,
1000 struct pipe_inode_info *pipe, size_t len,
1001 unsigned int flags)
1002 {
1003 int ret;
1004
1005 if (unlikely(!in->f_op || !in->f_op->splice_read))
1006 return -EINVAL;
1007
1008 if (unlikely(!(in->f_mode & FMODE_READ)))
1009 return -EBADF;
1010
1011 ret = rw_verify_area(READ, in, ppos, len);
1012 if (unlikely(ret < 0))
1013 return ret;
1014
1015 return in->f_op->splice_read(in, ppos, pipe, len, flags);
1016 }
1017
1018 /**
1019 * splice_direct_to_actor - splices data directly between two non-pipes
1020 * @in: file to splice from
1021 * @sd: actor information on where to splice to
1022 * @actor: handles the data splicing
1023 *
1024 * Description:
1025 * This is a special case helper to splice directly between two
1026 * points, without requiring an explicit pipe. Internally an allocated
1027 * pipe is cached in the process, and reused during the lifetime of
1028 * that process.
1029 *
1030 */
1031 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1032 splice_direct_actor *actor)
1033 {
1034 struct pipe_inode_info *pipe;
1035 long ret, bytes;
1036 umode_t i_mode;
1037 size_t len;
1038 int i, flags;
1039
1040 /*
1041 * We require the input being a regular file, as we don't want to
1042 * randomly drop data for eg socket -> socket splicing. Use the
1043 * piped splicing for that!
1044 */
1045 i_mode = in->f_path.dentry->d_inode->i_mode;
1046 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1047 return -EINVAL;
1048
1049 /*
1050 * neither in nor out is a pipe, setup an internal pipe attached to
1051 * 'out' and transfer the wanted data from 'in' to 'out' through that
1052 */
1053 pipe = current->splice_pipe;
1054 if (unlikely(!pipe)) {
1055 pipe = alloc_pipe_info(NULL);
1056 if (!pipe)
1057 return -ENOMEM;
1058
1059 /*
1060 * We don't have an immediate reader, but we'll read the stuff
1061 * out of the pipe right after the splice_to_pipe(). So set
1062 * PIPE_READERS appropriately.
1063 */
1064 pipe->readers = 1;
1065
1066 current->splice_pipe = pipe;
1067 }
1068
1069 /*
1070 * Do the splice.
1071 */
1072 ret = 0;
1073 bytes = 0;
1074 len = sd->total_len;
1075 flags = sd->flags;
1076
1077 /*
1078 * Don't block on output, we have to drain the direct pipe.
1079 */
1080 sd->flags &= ~SPLICE_F_NONBLOCK;
1081
1082 while (len) {
1083 size_t read_len;
1084 loff_t pos = sd->pos, prev_pos = pos;
1085
1086 ret = do_splice_to(in, &pos, pipe, len, flags);
1087 if (unlikely(ret <= 0))
1088 goto out_release;
1089
1090 read_len = ret;
1091 sd->total_len = read_len;
1092
1093 /*
1094 * NOTE: nonblocking mode only applies to the input. We
1095 * must not do the output in nonblocking mode as then we
1096 * could get stuck data in the internal pipe:
1097 */
1098 ret = actor(pipe, sd);
1099 if (unlikely(ret <= 0)) {
1100 sd->pos = prev_pos;
1101 goto out_release;
1102 }
1103
1104 bytes += ret;
1105 len -= ret;
1106 sd->pos = pos;
1107
1108 if (ret < read_len) {
1109 sd->pos = prev_pos + ret;
1110 goto out_release;
1111 }
1112 }
1113
1114 done:
1115 pipe->nrbufs = pipe->curbuf = 0;
1116 file_accessed(in);
1117 return bytes;
1118
1119 out_release:
1120 /*
1121 * If we did an incomplete transfer we must release
1122 * the pipe buffers in question:
1123 */
1124 for (i = 0; i < PIPE_BUFFERS; i++) {
1125 struct pipe_buffer *buf = pipe->bufs + i;
1126
1127 if (buf->ops) {
1128 buf->ops->release(pipe, buf);
1129 buf->ops = NULL;
1130 }
1131 }
1132
1133 if (!bytes)
1134 bytes = ret;
1135
1136 goto done;
1137 }
1138 EXPORT_SYMBOL(splice_direct_to_actor);
1139
1140 static int direct_splice_actor(struct pipe_inode_info *pipe,
1141 struct splice_desc *sd)
1142 {
1143 struct file *file = sd->u.file;
1144
1145 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1146 }
1147
1148 /**
1149 * do_splice_direct - splices data directly between two files
1150 * @in: file to splice from
1151 * @ppos: input file offset
1152 * @out: file to splice to
1153 * @len: number of bytes to splice
1154 * @flags: splice modifier flags
1155 *
1156 * Description:
1157 * For use by do_sendfile(). splice can easily emulate sendfile, but
1158 * doing it in the application would incur an extra system call
1159 * (splice in + splice out, as compared to just sendfile()). So this helper
1160 * can splice directly through a process-private pipe.
1161 *
1162 */
1163 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1164 size_t len, unsigned int flags)
1165 {
1166 struct splice_desc sd = {
1167 .len = len,
1168 .total_len = len,
1169 .flags = flags,
1170 .pos = *ppos,
1171 .u.file = out,
1172 };
1173 long ret;
1174
1175 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1176 if (ret > 0)
1177 *ppos = sd.pos;
1178
1179 return ret;
1180 }
1181
1182 /*
1183 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1184 * location, so checking ->i_pipe is not enough to verify that this is a
1185 * pipe.
1186 */
1187 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1188 {
1189 if (S_ISFIFO(inode->i_mode))
1190 return inode->i_pipe;
1191
1192 return NULL;
1193 }
1194
1195 /*
1196 * Determine where to splice to/from.
1197 */
1198 static long do_splice(struct file *in, loff_t __user *off_in,
1199 struct file *out, loff_t __user *off_out,
1200 size_t len, unsigned int flags)
1201 {
1202 struct pipe_inode_info *pipe;
1203 loff_t offset, *off;
1204 long ret;
1205
1206 pipe = pipe_info(in->f_path.dentry->d_inode);
1207 if (pipe) {
1208 if (off_in)
1209 return -ESPIPE;
1210 if (off_out) {
1211 if (out->f_op->llseek == no_llseek)
1212 return -EINVAL;
1213 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1214 return -EFAULT;
1215 off = &offset;
1216 } else
1217 off = &out->f_pos;
1218
1219 ret = do_splice_from(pipe, out, off, len, flags);
1220
1221 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1222 ret = -EFAULT;
1223
1224 return ret;
1225 }
1226
1227 pipe = pipe_info(out->f_path.dentry->d_inode);
1228 if (pipe) {
1229 if (off_out)
1230 return -ESPIPE;
1231 if (off_in) {
1232 if (in->f_op->llseek == no_llseek)
1233 return -EINVAL;
1234 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1235 return -EFAULT;
1236 off = &offset;
1237 } else
1238 off = &in->f_pos;
1239
1240 ret = do_splice_to(in, off, pipe, len, flags);
1241
1242 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1243 ret = -EFAULT;
1244
1245 return ret;
1246 }
1247
1248 return -EINVAL;
1249 }
1250
1251 /*
1252 * Map an iov into an array of pages and offset/length tupples. With the
1253 * partial_page structure, we can map several non-contiguous ranges into
1254 * our ones pages[] map instead of splitting that operation into pieces.
1255 * Could easily be exported as a generic helper for other users, in which
1256 * case one would probably want to add a 'max_nr_pages' parameter as well.
1257 */
1258 static int get_iovec_page_array(const struct iovec __user *iov,
1259 unsigned int nr_vecs, struct page **pages,
1260 struct partial_page *partial, int aligned)
1261 {
1262 int buffers = 0, error = 0;
1263
1264 while (nr_vecs) {
1265 unsigned long off, npages;
1266 struct iovec entry;
1267 void __user *base;
1268 size_t len;
1269 int i;
1270
1271 error = -EFAULT;
1272 if (copy_from_user(&entry, iov, sizeof(entry)))
1273 break;
1274
1275 base = entry.iov_base;
1276 len = entry.iov_len;
1277
1278 /*
1279 * Sanity check this iovec. 0 read succeeds.
1280 */
1281 error = 0;
1282 if (unlikely(!len))
1283 break;
1284 error = -EFAULT;
1285 if (!access_ok(VERIFY_READ, base, len))
1286 break;
1287
1288 /*
1289 * Get this base offset and number of pages, then map
1290 * in the user pages.
1291 */
1292 off = (unsigned long) base & ~PAGE_MASK;
1293
1294 /*
1295 * If asked for alignment, the offset must be zero and the
1296 * length a multiple of the PAGE_SIZE.
1297 */
1298 error = -EINVAL;
1299 if (aligned && (off || len & ~PAGE_MASK))
1300 break;
1301
1302 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1303 if (npages > PIPE_BUFFERS - buffers)
1304 npages = PIPE_BUFFERS - buffers;
1305
1306 error = get_user_pages_fast((unsigned long)base, npages,
1307 0, &pages[buffers]);
1308
1309 if (unlikely(error <= 0))
1310 break;
1311
1312 /*
1313 * Fill this contiguous range into the partial page map.
1314 */
1315 for (i = 0; i < error; i++) {
1316 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1317
1318 partial[buffers].offset = off;
1319 partial[buffers].len = plen;
1320
1321 off = 0;
1322 len -= plen;
1323 buffers++;
1324 }
1325
1326 /*
1327 * We didn't complete this iov, stop here since it probably
1328 * means we have to move some of this into a pipe to
1329 * be able to continue.
1330 */
1331 if (len)
1332 break;
1333
1334 /*
1335 * Don't continue if we mapped fewer pages than we asked for,
1336 * or if we mapped the max number of pages that we have
1337 * room for.
1338 */
1339 if (error < npages || buffers == PIPE_BUFFERS)
1340 break;
1341
1342 nr_vecs--;
1343 iov++;
1344 }
1345
1346 if (buffers)
1347 return buffers;
1348
1349 return error;
1350 }
1351
1352 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1353 struct splice_desc *sd)
1354 {
1355 char *src;
1356 int ret;
1357
1358 ret = buf->ops->confirm(pipe, buf);
1359 if (unlikely(ret))
1360 return ret;
1361
1362 /*
1363 * See if we can use the atomic maps, by prefaulting in the
1364 * pages and doing an atomic copy
1365 */
1366 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1367 src = buf->ops->map(pipe, buf, 1);
1368 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1369 sd->len);
1370 buf->ops->unmap(pipe, buf, src);
1371 if (!ret) {
1372 ret = sd->len;
1373 goto out;
1374 }
1375 }
1376
1377 /*
1378 * No dice, use slow non-atomic map and copy
1379 */
1380 src = buf->ops->map(pipe, buf, 0);
1381
1382 ret = sd->len;
1383 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1384 ret = -EFAULT;
1385
1386 buf->ops->unmap(pipe, buf, src);
1387 out:
1388 if (ret > 0)
1389 sd->u.userptr += ret;
1390 return ret;
1391 }
1392
1393 /*
1394 * For lack of a better implementation, implement vmsplice() to userspace
1395 * as a simple copy of the pipes pages to the user iov.
1396 */
1397 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1398 unsigned long nr_segs, unsigned int flags)
1399 {
1400 struct pipe_inode_info *pipe;
1401 struct splice_desc sd;
1402 ssize_t size;
1403 int error;
1404 long ret;
1405
1406 pipe = pipe_info(file->f_path.dentry->d_inode);
1407 if (!pipe)
1408 return -EBADF;
1409
1410 if (pipe->inode)
1411 mutex_lock(&pipe->inode->i_mutex);
1412
1413 error = ret = 0;
1414 while (nr_segs) {
1415 void __user *base;
1416 size_t len;
1417
1418 /*
1419 * Get user address base and length for this iovec.
1420 */
1421 error = get_user(base, &iov->iov_base);
1422 if (unlikely(error))
1423 break;
1424 error = get_user(len, &iov->iov_len);
1425 if (unlikely(error))
1426 break;
1427
1428 /*
1429 * Sanity check this iovec. 0 read succeeds.
1430 */
1431 if (unlikely(!len))
1432 break;
1433 if (unlikely(!base)) {
1434 error = -EFAULT;
1435 break;
1436 }
1437
1438 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1439 error = -EFAULT;
1440 break;
1441 }
1442
1443 sd.len = 0;
1444 sd.total_len = len;
1445 sd.flags = flags;
1446 sd.u.userptr = base;
1447 sd.pos = 0;
1448
1449 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1450 if (size < 0) {
1451 if (!ret)
1452 ret = size;
1453
1454 break;
1455 }
1456
1457 ret += size;
1458
1459 if (size < len)
1460 break;
1461
1462 nr_segs--;
1463 iov++;
1464 }
1465
1466 if (pipe->inode)
1467 mutex_unlock(&pipe->inode->i_mutex);
1468
1469 if (!ret)
1470 ret = error;
1471
1472 return ret;
1473 }
1474
1475 /*
1476 * vmsplice splices a user address range into a pipe. It can be thought of
1477 * as splice-from-memory, where the regular splice is splice-from-file (or
1478 * to file). In both cases the output is a pipe, naturally.
1479 */
1480 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1481 unsigned long nr_segs, unsigned int flags)
1482 {
1483 struct pipe_inode_info *pipe;
1484 struct page *pages[PIPE_BUFFERS];
1485 struct partial_page partial[PIPE_BUFFERS];
1486 struct splice_pipe_desc spd = {
1487 .pages = pages,
1488 .partial = partial,
1489 .flags = flags,
1490 .ops = &user_page_pipe_buf_ops,
1491 .spd_release = spd_release_page,
1492 };
1493
1494 pipe = pipe_info(file->f_path.dentry->d_inode);
1495 if (!pipe)
1496 return -EBADF;
1497
1498 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1499 flags & SPLICE_F_GIFT);
1500 if (spd.nr_pages <= 0)
1501 return spd.nr_pages;
1502
1503 return splice_to_pipe(pipe, &spd);
1504 }
1505
1506 /*
1507 * Note that vmsplice only really supports true splicing _from_ user memory
1508 * to a pipe, not the other way around. Splicing from user memory is a simple
1509 * operation that can be supported without any funky alignment restrictions
1510 * or nasty vm tricks. We simply map in the user memory and fill them into
1511 * a pipe. The reverse isn't quite as easy, though. There are two possible
1512 * solutions for that:
1513 *
1514 * - memcpy() the data internally, at which point we might as well just
1515 * do a regular read() on the buffer anyway.
1516 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1517 * has restriction limitations on both ends of the pipe).
1518 *
1519 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1520 *
1521 */
1522 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1523 unsigned long, nr_segs, unsigned int, flags)
1524 {
1525 struct file *file;
1526 long error;
1527 int fput;
1528
1529 if (unlikely(nr_segs > UIO_MAXIOV))
1530 return -EINVAL;
1531 else if (unlikely(!nr_segs))
1532 return 0;
1533
1534 error = -EBADF;
1535 file = fget_light(fd, &fput);
1536 if (file) {
1537 if (file->f_mode & FMODE_WRITE)
1538 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1539 else if (file->f_mode & FMODE_READ)
1540 error = vmsplice_to_user(file, iov, nr_segs, flags);
1541
1542 fput_light(file, fput);
1543 }
1544
1545 return error;
1546 }
1547
1548 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1549 int, fd_out, loff_t __user *, off_out,
1550 size_t, len, unsigned int, flags)
1551 {
1552 long error;
1553 struct file *in, *out;
1554 int fput_in, fput_out;
1555
1556 if (unlikely(!len))
1557 return 0;
1558
1559 error = -EBADF;
1560 in = fget_light(fd_in, &fput_in);
1561 if (in) {
1562 if (in->f_mode & FMODE_READ) {
1563 out = fget_light(fd_out, &fput_out);
1564 if (out) {
1565 if (out->f_mode & FMODE_WRITE)
1566 error = do_splice(in, off_in,
1567 out, off_out,
1568 len, flags);
1569 fput_light(out, fput_out);
1570 }
1571 }
1572
1573 fput_light(in, fput_in);
1574 }
1575
1576 return error;
1577 }
1578
1579 /*
1580 * Make sure there's data to read. Wait for input if we can, otherwise
1581 * return an appropriate error.
1582 */
1583 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1584 {
1585 int ret;
1586
1587 /*
1588 * Check ->nrbufs without the inode lock first. This function
1589 * is speculative anyways, so missing one is ok.
1590 */
1591 if (pipe->nrbufs)
1592 return 0;
1593
1594 ret = 0;
1595 mutex_lock(&pipe->inode->i_mutex);
1596
1597 while (!pipe->nrbufs) {
1598 if (signal_pending(current)) {
1599 ret = -ERESTARTSYS;
1600 break;
1601 }
1602 if (!pipe->writers)
1603 break;
1604 if (!pipe->waiting_writers) {
1605 if (flags & SPLICE_F_NONBLOCK) {
1606 ret = -EAGAIN;
1607 break;
1608 }
1609 }
1610 pipe_wait(pipe);
1611 }
1612
1613 mutex_unlock(&pipe->inode->i_mutex);
1614 return ret;
1615 }
1616
1617 /*
1618 * Make sure there's writeable room. Wait for room if we can, otherwise
1619 * return an appropriate error.
1620 */
1621 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1622 {
1623 int ret;
1624
1625 /*
1626 * Check ->nrbufs without the inode lock first. This function
1627 * is speculative anyways, so missing one is ok.
1628 */
1629 if (pipe->nrbufs < PIPE_BUFFERS)
1630 return 0;
1631
1632 ret = 0;
1633 mutex_lock(&pipe->inode->i_mutex);
1634
1635 while (pipe->nrbufs >= PIPE_BUFFERS) {
1636 if (!pipe->readers) {
1637 send_sig(SIGPIPE, current, 0);
1638 ret = -EPIPE;
1639 break;
1640 }
1641 if (flags & SPLICE_F_NONBLOCK) {
1642 ret = -EAGAIN;
1643 break;
1644 }
1645 if (signal_pending(current)) {
1646 ret = -ERESTARTSYS;
1647 break;
1648 }
1649 pipe->waiting_writers++;
1650 pipe_wait(pipe);
1651 pipe->waiting_writers--;
1652 }
1653
1654 mutex_unlock(&pipe->inode->i_mutex);
1655 return ret;
1656 }
1657
1658 /*
1659 * Link contents of ipipe to opipe.
1660 */
1661 static int link_pipe(struct pipe_inode_info *ipipe,
1662 struct pipe_inode_info *opipe,
1663 size_t len, unsigned int flags)
1664 {
1665 struct pipe_buffer *ibuf, *obuf;
1666 int ret = 0, i = 0, nbuf;
1667
1668 /*
1669 * Potential ABBA deadlock, work around it by ordering lock
1670 * grabbing by inode address. Otherwise two different processes
1671 * could deadlock (one doing tee from A -> B, the other from B -> A).
1672 */
1673 inode_double_lock(ipipe->inode, opipe->inode);
1674
1675 do {
1676 if (!opipe->readers) {
1677 send_sig(SIGPIPE, current, 0);
1678 if (!ret)
1679 ret = -EPIPE;
1680 break;
1681 }
1682
1683 /*
1684 * If we have iterated all input buffers or ran out of
1685 * output room, break.
1686 */
1687 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1688 break;
1689
1690 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1691 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1692
1693 /*
1694 * Get a reference to this pipe buffer,
1695 * so we can copy the contents over.
1696 */
1697 ibuf->ops->get(ipipe, ibuf);
1698
1699 obuf = opipe->bufs + nbuf;
1700 *obuf = *ibuf;
1701
1702 /*
1703 * Don't inherit the gift flag, we need to
1704 * prevent multiple steals of this page.
1705 */
1706 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1707
1708 if (obuf->len > len)
1709 obuf->len = len;
1710
1711 opipe->nrbufs++;
1712 ret += obuf->len;
1713 len -= obuf->len;
1714 i++;
1715 } while (len);
1716
1717 /*
1718 * return EAGAIN if we have the potential of some data in the
1719 * future, otherwise just return 0
1720 */
1721 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1722 ret = -EAGAIN;
1723
1724 inode_double_unlock(ipipe->inode, opipe->inode);
1725
1726 /*
1727 * If we put data in the output pipe, wakeup any potential readers.
1728 */
1729 if (ret > 0) {
1730 smp_mb();
1731 if (waitqueue_active(&opipe->wait))
1732 wake_up_interruptible(&opipe->wait);
1733 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1734 }
1735
1736 return ret;
1737 }
1738
1739 /*
1740 * This is a tee(1) implementation that works on pipes. It doesn't copy
1741 * any data, it simply references the 'in' pages on the 'out' pipe.
1742 * The 'flags' used are the SPLICE_F_* variants, currently the only
1743 * applicable one is SPLICE_F_NONBLOCK.
1744 */
1745 static long do_tee(struct file *in, struct file *out, size_t len,
1746 unsigned int flags)
1747 {
1748 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1749 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1750 int ret = -EINVAL;
1751
1752 /*
1753 * Duplicate the contents of ipipe to opipe without actually
1754 * copying the data.
1755 */
1756 if (ipipe && opipe && ipipe != opipe) {
1757 /*
1758 * Keep going, unless we encounter an error. The ipipe/opipe
1759 * ordering doesn't really matter.
1760 */
1761 ret = link_ipipe_prep(ipipe, flags);
1762 if (!ret) {
1763 ret = link_opipe_prep(opipe, flags);
1764 if (!ret)
1765 ret = link_pipe(ipipe, opipe, len, flags);
1766 }
1767 }
1768
1769 return ret;
1770 }
1771
1772 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1773 {
1774 struct file *in;
1775 int error, fput_in;
1776
1777 if (unlikely(!len))
1778 return 0;
1779
1780 error = -EBADF;
1781 in = fget_light(fdin, &fput_in);
1782 if (in) {
1783 if (in->f_mode & FMODE_READ) {
1784 int fput_out;
1785 struct file *out = fget_light(fdout, &fput_out);
1786
1787 if (out) {
1788 if (out->f_mode & FMODE_WRITE)
1789 error = do_tee(in, out, len, flags);
1790 fput_light(out, fput_out);
1791 }
1792 }
1793 fput_light(in, fput_in);
1794 }
1795
1796 return error;
1797 }
This page took 0.076146 seconds and 6 git commands to generate.