Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/usb-2.6
[deliverable/linux.git] / fs / splice.c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@suse.de>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
35 };
36
37 /*
38 * Passed to splice_to_pipe
39 */
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47
48 /*
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
53 */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *info,
55 struct pipe_buffer *buf)
56 {
57 struct page *page = buf->page;
58 struct address_space *mapping = page_mapping(page);
59
60 lock_page(page);
61
62 WARN_ON(!PageUptodate(page));
63
64 /*
65 * At least for ext2 with nobh option, we need to wait on writeback
66 * completing on this page, since we'll remove it from the pagecache.
67 * Otherwise truncate wont wait on the page, allowing the disk
68 * blocks to be reused by someone else before we actually wrote our
69 * data to them. fs corruption ensues.
70 */
71 wait_on_page_writeback(page);
72
73 if (PagePrivate(page))
74 try_to_release_page(page, mapping_gfp_mask(mapping));
75
76 if (!remove_mapping(mapping, page)) {
77 unlock_page(page);
78 return 1;
79 }
80
81 buf->flags |= PIPE_BUF_FLAG_STOLEN | PIPE_BUF_FLAG_LRU;
82 return 0;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *info,
86 struct pipe_buffer *buf)
87 {
88 page_cache_release(buf->page);
89 buf->page = NULL;
90 buf->flags &= ~(PIPE_BUF_FLAG_STOLEN | PIPE_BUF_FLAG_LRU);
91 }
92
93 static void *page_cache_pipe_buf_map(struct file *file,
94 struct pipe_inode_info *info,
95 struct pipe_buffer *buf)
96 {
97 struct page *page = buf->page;
98 int err;
99
100 if (!PageUptodate(page)) {
101 lock_page(page);
102
103 /*
104 * Page got truncated/unhashed. This will cause a 0-byte
105 * splice, if this is the first page.
106 */
107 if (!page->mapping) {
108 err = -ENODATA;
109 goto error;
110 }
111
112 /*
113 * Uh oh, read-error from disk.
114 */
115 if (!PageUptodate(page)) {
116 err = -EIO;
117 goto error;
118 }
119
120 /*
121 * Page is ok afterall, fall through to mapping.
122 */
123 unlock_page(page);
124 }
125
126 return kmap(page);
127 error:
128 unlock_page(page);
129 return ERR_PTR(err);
130 }
131
132 static void page_cache_pipe_buf_unmap(struct pipe_inode_info *info,
133 struct pipe_buffer *buf)
134 {
135 kunmap(buf->page);
136 }
137
138 static void *user_page_pipe_buf_map(struct file *file,
139 struct pipe_inode_info *pipe,
140 struct pipe_buffer *buf)
141 {
142 return kmap(buf->page);
143 }
144
145 static void user_page_pipe_buf_unmap(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147 {
148 kunmap(buf->page);
149 }
150
151 static void page_cache_pipe_buf_get(struct pipe_inode_info *info,
152 struct pipe_buffer *buf)
153 {
154 page_cache_get(buf->page);
155 }
156
157 static struct pipe_buf_operations page_cache_pipe_buf_ops = {
158 .can_merge = 0,
159 .map = page_cache_pipe_buf_map,
160 .unmap = page_cache_pipe_buf_unmap,
161 .release = page_cache_pipe_buf_release,
162 .steal = page_cache_pipe_buf_steal,
163 .get = page_cache_pipe_buf_get,
164 };
165
166 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
167 struct pipe_buffer *buf)
168 {
169 return 1;
170 }
171
172 static struct pipe_buf_operations user_page_pipe_buf_ops = {
173 .can_merge = 0,
174 .map = user_page_pipe_buf_map,
175 .unmap = user_page_pipe_buf_unmap,
176 .release = page_cache_pipe_buf_release,
177 .steal = user_page_pipe_buf_steal,
178 .get = page_cache_pipe_buf_get,
179 };
180
181 /*
182 * Pipe output worker. This sets up our pipe format with the page cache
183 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
184 */
185 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186 struct splice_pipe_desc *spd)
187 {
188 int ret, do_wakeup, page_nr;
189
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
193
194 if (pipe->inode)
195 mutex_lock(&pipe->inode->i_mutex);
196
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
203 }
204
205 if (pipe->nrbufs < PIPE_BUFFERS) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->ops = spd->ops;
213 pipe->nrbufs++;
214 page_nr++;
215 ret += buf->len;
216
217 if (pipe->inode)
218 do_wakeup = 1;
219
220 if (!--spd->nr_pages)
221 break;
222 if (pipe->nrbufs < PIPE_BUFFERS)
223 continue;
224
225 break;
226 }
227
228 if (spd->flags & SPLICE_F_NONBLOCK) {
229 if (!ret)
230 ret = -EAGAIN;
231 break;
232 }
233
234 if (signal_pending(current)) {
235 if (!ret)
236 ret = -ERESTARTSYS;
237 break;
238 }
239
240 if (do_wakeup) {
241 smp_mb();
242 if (waitqueue_active(&pipe->wait))
243 wake_up_interruptible_sync(&pipe->wait);
244 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
245 do_wakeup = 0;
246 }
247
248 pipe->waiting_writers++;
249 pipe_wait(pipe);
250 pipe->waiting_writers--;
251 }
252
253 if (pipe->inode)
254 mutex_unlock(&pipe->inode->i_mutex);
255
256 if (do_wakeup) {
257 smp_mb();
258 if (waitqueue_active(&pipe->wait))
259 wake_up_interruptible(&pipe->wait);
260 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
261 }
262
263 while (page_nr < spd->nr_pages)
264 page_cache_release(spd->pages[page_nr++]);
265
266 return ret;
267 }
268
269 static int
270 __generic_file_splice_read(struct file *in, loff_t *ppos,
271 struct pipe_inode_info *pipe, size_t len,
272 unsigned int flags)
273 {
274 struct address_space *mapping = in->f_mapping;
275 unsigned int loff, nr_pages;
276 struct page *pages[PIPE_BUFFERS];
277 struct partial_page partial[PIPE_BUFFERS];
278 struct page *page;
279 pgoff_t index, end_index;
280 loff_t isize;
281 size_t total_len;
282 int error, page_nr;
283 struct splice_pipe_desc spd = {
284 .pages = pages,
285 .partial = partial,
286 .flags = flags,
287 .ops = &page_cache_pipe_buf_ops,
288 };
289
290 index = *ppos >> PAGE_CACHE_SHIFT;
291 loff = *ppos & ~PAGE_CACHE_MASK;
292 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
293
294 if (nr_pages > PIPE_BUFFERS)
295 nr_pages = PIPE_BUFFERS;
296
297 /*
298 * Initiate read-ahead on this page range. however, don't call into
299 * read-ahead if this is a non-zero offset (we are likely doing small
300 * chunk splice and the page is already there) for a single page.
301 */
302 if (!loff || nr_pages > 1)
303 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
304
305 /*
306 * Now fill in the holes:
307 */
308 error = 0;
309 total_len = 0;
310
311 /*
312 * Lookup the (hopefully) full range of pages we need.
313 */
314 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
315
316 /*
317 * If find_get_pages_contig() returned fewer pages than we needed,
318 * allocate the rest.
319 */
320 index += spd.nr_pages;
321 while (spd.nr_pages < nr_pages) {
322 /*
323 * Page could be there, find_get_pages_contig() breaks on
324 * the first hole.
325 */
326 page = find_get_page(mapping, index);
327 if (!page) {
328 /*
329 * page didn't exist, allocate one.
330 */
331 page = page_cache_alloc_cold(mapping);
332 if (!page)
333 break;
334
335 error = add_to_page_cache_lru(page, mapping, index,
336 mapping_gfp_mask(mapping));
337 if (unlikely(error)) {
338 page_cache_release(page);
339 break;
340 }
341 /*
342 * add_to_page_cache() locks the page, unlock it
343 * to avoid convoluting the logic below even more.
344 */
345 unlock_page(page);
346 }
347
348 pages[spd.nr_pages++] = page;
349 index++;
350 }
351
352 /*
353 * Now loop over the map and see if we need to start IO on any
354 * pages, fill in the partial map, etc.
355 */
356 index = *ppos >> PAGE_CACHE_SHIFT;
357 nr_pages = spd.nr_pages;
358 spd.nr_pages = 0;
359 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
360 unsigned int this_len;
361
362 if (!len)
363 break;
364
365 /*
366 * this_len is the max we'll use from this page
367 */
368 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
369 page = pages[page_nr];
370
371 /*
372 * If the page isn't uptodate, we may need to start io on it
373 */
374 if (!PageUptodate(page)) {
375 /*
376 * If in nonblock mode then dont block on waiting
377 * for an in-flight io page
378 */
379 if (flags & SPLICE_F_NONBLOCK)
380 break;
381
382 lock_page(page);
383
384 /*
385 * page was truncated, stop here. if this isn't the
386 * first page, we'll just complete what we already
387 * added
388 */
389 if (!page->mapping) {
390 unlock_page(page);
391 break;
392 }
393 /*
394 * page was already under io and is now done, great
395 */
396 if (PageUptodate(page)) {
397 unlock_page(page);
398 goto fill_it;
399 }
400
401 /*
402 * need to read in the page
403 */
404 error = mapping->a_ops->readpage(in, page);
405 if (unlikely(error)) {
406 /*
407 * We really should re-lookup the page here,
408 * but it complicates things a lot. Instead
409 * lets just do what we already stored, and
410 * we'll get it the next time we are called.
411 */
412 if (error == AOP_TRUNCATED_PAGE)
413 error = 0;
414
415 break;
416 }
417
418 /*
419 * i_size must be checked after ->readpage().
420 */
421 isize = i_size_read(mapping->host);
422 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
423 if (unlikely(!isize || index > end_index))
424 break;
425
426 /*
427 * if this is the last page, see if we need to shrink
428 * the length and stop
429 */
430 if (end_index == index) {
431 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
432 if (total_len + loff > isize)
433 break;
434 /*
435 * force quit after adding this page
436 */
437 len = this_len;
438 this_len = min(this_len, loff);
439 loff = 0;
440 }
441 }
442 fill_it:
443 partial[page_nr].offset = loff;
444 partial[page_nr].len = this_len;
445 len -= this_len;
446 total_len += this_len;
447 loff = 0;
448 spd.nr_pages++;
449 index++;
450 }
451
452 /*
453 * Release any pages at the end, if we quit early. 'i' is how far
454 * we got, 'nr_pages' is how many pages are in the map.
455 */
456 while (page_nr < nr_pages)
457 page_cache_release(pages[page_nr++]);
458
459 if (spd.nr_pages)
460 return splice_to_pipe(pipe, &spd);
461
462 return error;
463 }
464
465 /**
466 * generic_file_splice_read - splice data from file to a pipe
467 * @in: file to splice from
468 * @pipe: pipe to splice to
469 * @len: number of bytes to splice
470 * @flags: splice modifier flags
471 *
472 * Will read pages from given file and fill them into a pipe.
473 */
474 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
475 struct pipe_inode_info *pipe, size_t len,
476 unsigned int flags)
477 {
478 ssize_t spliced;
479 int ret;
480
481 ret = 0;
482 spliced = 0;
483
484 while (len) {
485 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
486
487 if (ret < 0)
488 break;
489 else if (!ret) {
490 if (spliced)
491 break;
492 if (flags & SPLICE_F_NONBLOCK) {
493 ret = -EAGAIN;
494 break;
495 }
496 }
497
498 *ppos += ret;
499 len -= ret;
500 spliced += ret;
501 }
502
503 if (spliced)
504 return spliced;
505
506 return ret;
507 }
508
509 EXPORT_SYMBOL(generic_file_splice_read);
510
511 /*
512 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
513 * using sendpage(). Return the number of bytes sent.
514 */
515 static int pipe_to_sendpage(struct pipe_inode_info *info,
516 struct pipe_buffer *buf, struct splice_desc *sd)
517 {
518 struct file *file = sd->file;
519 loff_t pos = sd->pos;
520 ssize_t ret;
521 void *ptr;
522 int more;
523
524 /*
525 * Sub-optimal, but we are limited by the pipe ->map. We don't
526 * need a kmap'ed buffer here, we just want to make sure we
527 * have the page pinned if the pipe page originates from the
528 * page cache.
529 */
530 ptr = buf->ops->map(file, info, buf);
531 if (IS_ERR(ptr))
532 return PTR_ERR(ptr);
533
534 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
535
536 ret = file->f_op->sendpage(file, buf->page, buf->offset, sd->len,
537 &pos, more);
538
539 buf->ops->unmap(info, buf);
540 return ret;
541 }
542
543 /*
544 * This is a little more tricky than the file -> pipe splicing. There are
545 * basically three cases:
546 *
547 * - Destination page already exists in the address space and there
548 * are users of it. For that case we have no other option that
549 * copying the data. Tough luck.
550 * - Destination page already exists in the address space, but there
551 * are no users of it. Make sure it's uptodate, then drop it. Fall
552 * through to last case.
553 * - Destination page does not exist, we can add the pipe page to
554 * the page cache and avoid the copy.
555 *
556 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
557 * sd->flags), we attempt to migrate pages from the pipe to the output
558 * file address space page cache. This is possible if no one else has
559 * the pipe page referenced outside of the pipe and page cache. If
560 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
561 * a new page in the output file page cache and fill/dirty that.
562 */
563 static int pipe_to_file(struct pipe_inode_info *info, struct pipe_buffer *buf,
564 struct splice_desc *sd)
565 {
566 struct file *file = sd->file;
567 struct address_space *mapping = file->f_mapping;
568 gfp_t gfp_mask = mapping_gfp_mask(mapping);
569 unsigned int offset, this_len;
570 struct page *page;
571 pgoff_t index;
572 char *src;
573 int ret;
574
575 /*
576 * make sure the data in this buffer is uptodate
577 */
578 src = buf->ops->map(file, info, buf);
579 if (IS_ERR(src))
580 return PTR_ERR(src);
581
582 index = sd->pos >> PAGE_CACHE_SHIFT;
583 offset = sd->pos & ~PAGE_CACHE_MASK;
584
585 this_len = sd->len;
586 if (this_len + offset > PAGE_CACHE_SIZE)
587 this_len = PAGE_CACHE_SIZE - offset;
588
589 /*
590 * Reuse buf page, if SPLICE_F_MOVE is set.
591 */
592 if (sd->flags & SPLICE_F_MOVE) {
593 /*
594 * If steal succeeds, buf->page is now pruned from the vm
595 * side (LRU and page cache) and we can reuse it. The page
596 * will also be looked on successful return.
597 */
598 if (buf->ops->steal(info, buf))
599 goto find_page;
600
601 page = buf->page;
602 if (add_to_page_cache(page, mapping, index, gfp_mask))
603 goto find_page;
604
605 if (!(buf->flags & PIPE_BUF_FLAG_LRU))
606 lru_cache_add(page);
607 } else {
608 find_page:
609 page = find_lock_page(mapping, index);
610 if (!page) {
611 ret = -ENOMEM;
612 page = page_cache_alloc_cold(mapping);
613 if (unlikely(!page))
614 goto out_nomem;
615
616 /*
617 * This will also lock the page
618 */
619 ret = add_to_page_cache_lru(page, mapping, index,
620 gfp_mask);
621 if (unlikely(ret))
622 goto out;
623 }
624
625 /*
626 * We get here with the page locked. If the page is also
627 * uptodate, we don't need to do more. If it isn't, we
628 * may need to bring it in if we are not going to overwrite
629 * the full page.
630 */
631 if (!PageUptodate(page)) {
632 if (this_len < PAGE_CACHE_SIZE) {
633 ret = mapping->a_ops->readpage(file, page);
634 if (unlikely(ret))
635 goto out;
636
637 lock_page(page);
638
639 if (!PageUptodate(page)) {
640 /*
641 * Page got invalidated, repeat.
642 */
643 if (!page->mapping) {
644 unlock_page(page);
645 page_cache_release(page);
646 goto find_page;
647 }
648 ret = -EIO;
649 goto out;
650 }
651 } else
652 SetPageUptodate(page);
653 }
654 }
655
656 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
657 if (ret == AOP_TRUNCATED_PAGE) {
658 page_cache_release(page);
659 goto find_page;
660 } else if (ret)
661 goto out;
662
663 if (!(buf->flags & PIPE_BUF_FLAG_STOLEN)) {
664 char *dst = kmap_atomic(page, KM_USER0);
665
666 memcpy(dst + offset, src + buf->offset, this_len);
667 flush_dcache_page(page);
668 kunmap_atomic(dst, KM_USER0);
669 }
670
671 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
672 if (ret == AOP_TRUNCATED_PAGE) {
673 page_cache_release(page);
674 goto find_page;
675 } else if (ret)
676 goto out;
677
678 /*
679 * Return the number of bytes written.
680 */
681 ret = this_len;
682 mark_page_accessed(page);
683 balance_dirty_pages_ratelimited(mapping);
684 out:
685 if (!(buf->flags & PIPE_BUF_FLAG_STOLEN))
686 page_cache_release(page);
687
688 unlock_page(page);
689 out_nomem:
690 buf->ops->unmap(info, buf);
691 return ret;
692 }
693
694 /*
695 * Pipe input worker. Most of this logic works like a regular pipe, the
696 * key here is the 'actor' worker passed in that actually moves the data
697 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
698 */
699 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
700 loff_t *ppos, size_t len, unsigned int flags,
701 splice_actor *actor)
702 {
703 int ret, do_wakeup, err;
704 struct splice_desc sd;
705
706 ret = 0;
707 do_wakeup = 0;
708
709 sd.total_len = len;
710 sd.flags = flags;
711 sd.file = out;
712 sd.pos = *ppos;
713
714 if (pipe->inode)
715 mutex_lock(&pipe->inode->i_mutex);
716
717 for (;;) {
718 if (pipe->nrbufs) {
719 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
720 struct pipe_buf_operations *ops = buf->ops;
721
722 sd.len = buf->len;
723 if (sd.len > sd.total_len)
724 sd.len = sd.total_len;
725
726 err = actor(pipe, buf, &sd);
727 if (err <= 0) {
728 if (!ret && err != -ENODATA)
729 ret = err;
730
731 break;
732 }
733
734 ret += err;
735 buf->offset += err;
736 buf->len -= err;
737
738 sd.len -= err;
739 sd.pos += err;
740 sd.total_len -= err;
741 if (sd.len)
742 continue;
743
744 if (!buf->len) {
745 buf->ops = NULL;
746 ops->release(pipe, buf);
747 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
748 pipe->nrbufs--;
749 if (pipe->inode)
750 do_wakeup = 1;
751 }
752
753 if (!sd.total_len)
754 break;
755 }
756
757 if (pipe->nrbufs)
758 continue;
759 if (!pipe->writers)
760 break;
761 if (!pipe->waiting_writers) {
762 if (ret)
763 break;
764 }
765
766 if (flags & SPLICE_F_NONBLOCK) {
767 if (!ret)
768 ret = -EAGAIN;
769 break;
770 }
771
772 if (signal_pending(current)) {
773 if (!ret)
774 ret = -ERESTARTSYS;
775 break;
776 }
777
778 if (do_wakeup) {
779 smp_mb();
780 if (waitqueue_active(&pipe->wait))
781 wake_up_interruptible_sync(&pipe->wait);
782 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
783 do_wakeup = 0;
784 }
785
786 pipe_wait(pipe);
787 }
788
789 if (pipe->inode)
790 mutex_unlock(&pipe->inode->i_mutex);
791
792 if (do_wakeup) {
793 smp_mb();
794 if (waitqueue_active(&pipe->wait))
795 wake_up_interruptible(&pipe->wait);
796 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
797 }
798
799 return ret;
800 }
801
802 /**
803 * generic_file_splice_write - splice data from a pipe to a file
804 * @pipe: pipe info
805 * @out: file to write to
806 * @len: number of bytes to splice
807 * @flags: splice modifier flags
808 *
809 * Will either move or copy pages (determined by @flags options) from
810 * the given pipe inode to the given file.
811 *
812 */
813 ssize_t
814 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
815 loff_t *ppos, size_t len, unsigned int flags)
816 {
817 struct address_space *mapping = out->f_mapping;
818 ssize_t ret;
819
820 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
821 if (ret > 0) {
822 struct inode *inode = mapping->host;
823
824 *ppos += ret;
825
826 /*
827 * If file or inode is SYNC and we actually wrote some data,
828 * sync it.
829 */
830 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
831 int err;
832
833 mutex_lock(&inode->i_mutex);
834 err = generic_osync_inode(inode, mapping,
835 OSYNC_METADATA|OSYNC_DATA);
836 mutex_unlock(&inode->i_mutex);
837
838 if (err)
839 ret = err;
840 }
841 }
842
843 return ret;
844 }
845
846 EXPORT_SYMBOL(generic_file_splice_write);
847
848 /**
849 * generic_splice_sendpage - splice data from a pipe to a socket
850 * @inode: pipe inode
851 * @out: socket to write to
852 * @len: number of bytes to splice
853 * @flags: splice modifier flags
854 *
855 * Will send @len bytes from the pipe to a network socket. No data copying
856 * is involved.
857 *
858 */
859 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
860 loff_t *ppos, size_t len, unsigned int flags)
861 {
862 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
863 }
864
865 EXPORT_SYMBOL(generic_splice_sendpage);
866
867 /*
868 * Attempt to initiate a splice from pipe to file.
869 */
870 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
871 loff_t *ppos, size_t len, unsigned int flags)
872 {
873 int ret;
874
875 if (unlikely(!out->f_op || !out->f_op->splice_write))
876 return -EINVAL;
877
878 if (unlikely(!(out->f_mode & FMODE_WRITE)))
879 return -EBADF;
880
881 ret = rw_verify_area(WRITE, out, ppos, len);
882 if (unlikely(ret < 0))
883 return ret;
884
885 return out->f_op->splice_write(pipe, out, ppos, len, flags);
886 }
887
888 /*
889 * Attempt to initiate a splice from a file to a pipe.
890 */
891 static long do_splice_to(struct file *in, loff_t *ppos,
892 struct pipe_inode_info *pipe, size_t len,
893 unsigned int flags)
894 {
895 loff_t isize, left;
896 int ret;
897
898 if (unlikely(!in->f_op || !in->f_op->splice_read))
899 return -EINVAL;
900
901 if (unlikely(!(in->f_mode & FMODE_READ)))
902 return -EBADF;
903
904 ret = rw_verify_area(READ, in, ppos, len);
905 if (unlikely(ret < 0))
906 return ret;
907
908 isize = i_size_read(in->f_mapping->host);
909 if (unlikely(*ppos >= isize))
910 return 0;
911
912 left = isize - *ppos;
913 if (unlikely(left < len))
914 len = left;
915
916 return in->f_op->splice_read(in, ppos, pipe, len, flags);
917 }
918
919 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
920 size_t len, unsigned int flags)
921 {
922 struct pipe_inode_info *pipe;
923 long ret, bytes;
924 loff_t out_off;
925 umode_t i_mode;
926 int i;
927
928 /*
929 * We require the input being a regular file, as we don't want to
930 * randomly drop data for eg socket -> socket splicing. Use the
931 * piped splicing for that!
932 */
933 i_mode = in->f_dentry->d_inode->i_mode;
934 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
935 return -EINVAL;
936
937 /*
938 * neither in nor out is a pipe, setup an internal pipe attached to
939 * 'out' and transfer the wanted data from 'in' to 'out' through that
940 */
941 pipe = current->splice_pipe;
942 if (unlikely(!pipe)) {
943 pipe = alloc_pipe_info(NULL);
944 if (!pipe)
945 return -ENOMEM;
946
947 /*
948 * We don't have an immediate reader, but we'll read the stuff
949 * out of the pipe right after the splice_to_pipe(). So set
950 * PIPE_READERS appropriately.
951 */
952 pipe->readers = 1;
953
954 current->splice_pipe = pipe;
955 }
956
957 /*
958 * Do the splice.
959 */
960 ret = 0;
961 bytes = 0;
962 out_off = 0;
963
964 while (len) {
965 size_t read_len, max_read_len;
966
967 /*
968 * Do at most PIPE_BUFFERS pages worth of transfer:
969 */
970 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
971
972 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
973 if (unlikely(ret < 0))
974 goto out_release;
975
976 read_len = ret;
977
978 /*
979 * NOTE: nonblocking mode only applies to the input. We
980 * must not do the output in nonblocking mode as then we
981 * could get stuck data in the internal pipe:
982 */
983 ret = do_splice_from(pipe, out, &out_off, read_len,
984 flags & ~SPLICE_F_NONBLOCK);
985 if (unlikely(ret < 0))
986 goto out_release;
987
988 bytes += ret;
989 len -= ret;
990
991 /*
992 * In nonblocking mode, if we got back a short read then
993 * that was due to either an IO error or due to the
994 * pagecache entry not being there. In the IO error case
995 * the _next_ splice attempt will produce a clean IO error
996 * return value (not a short read), so in both cases it's
997 * correct to break out of the loop here:
998 */
999 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1000 break;
1001 }
1002
1003 pipe->nrbufs = pipe->curbuf = 0;
1004
1005 return bytes;
1006
1007 out_release:
1008 /*
1009 * If we did an incomplete transfer we must release
1010 * the pipe buffers in question:
1011 */
1012 for (i = 0; i < PIPE_BUFFERS; i++) {
1013 struct pipe_buffer *buf = pipe->bufs + i;
1014
1015 if (buf->ops) {
1016 buf->ops->release(pipe, buf);
1017 buf->ops = NULL;
1018 }
1019 }
1020 pipe->nrbufs = pipe->curbuf = 0;
1021
1022 /*
1023 * If we transferred some data, return the number of bytes:
1024 */
1025 if (bytes > 0)
1026 return bytes;
1027
1028 return ret;
1029 }
1030
1031 EXPORT_SYMBOL(do_splice_direct);
1032
1033 /*
1034 * Determine where to splice to/from.
1035 */
1036 static long do_splice(struct file *in, loff_t __user *off_in,
1037 struct file *out, loff_t __user *off_out,
1038 size_t len, unsigned int flags)
1039 {
1040 struct pipe_inode_info *pipe;
1041 loff_t offset, *off;
1042 long ret;
1043
1044 pipe = in->f_dentry->d_inode->i_pipe;
1045 if (pipe) {
1046 if (off_in)
1047 return -ESPIPE;
1048 if (off_out) {
1049 if (out->f_op->llseek == no_llseek)
1050 return -EINVAL;
1051 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1052 return -EFAULT;
1053 off = &offset;
1054 } else
1055 off = &out->f_pos;
1056
1057 ret = do_splice_from(pipe, out, off, len, flags);
1058
1059 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1060 ret = -EFAULT;
1061
1062 return ret;
1063 }
1064
1065 pipe = out->f_dentry->d_inode->i_pipe;
1066 if (pipe) {
1067 if (off_out)
1068 return -ESPIPE;
1069 if (off_in) {
1070 if (in->f_op->llseek == no_llseek)
1071 return -EINVAL;
1072 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1073 return -EFAULT;
1074 off = &offset;
1075 } else
1076 off = &in->f_pos;
1077
1078 ret = do_splice_to(in, off, pipe, len, flags);
1079
1080 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1081 ret = -EFAULT;
1082
1083 return ret;
1084 }
1085
1086 return -EINVAL;
1087 }
1088
1089 /*
1090 * Map an iov into an array of pages and offset/length tupples. With the
1091 * partial_page structure, we can map several non-contiguous ranges into
1092 * our ones pages[] map instead of splitting that operation into pieces.
1093 * Could easily be exported as a generic helper for other users, in which
1094 * case one would probably want to add a 'max_nr_pages' parameter as well.
1095 */
1096 static int get_iovec_page_array(const struct iovec __user *iov,
1097 unsigned int nr_vecs, struct page **pages,
1098 struct partial_page *partial)
1099 {
1100 int buffers = 0, error = 0;
1101
1102 /*
1103 * It's ok to take the mmap_sem for reading, even
1104 * across a "get_user()".
1105 */
1106 down_read(&current->mm->mmap_sem);
1107
1108 while (nr_vecs) {
1109 unsigned long off, npages;
1110 void __user *base;
1111 size_t len;
1112 int i;
1113
1114 /*
1115 * Get user address base and length for this iovec.
1116 */
1117 error = get_user(base, &iov->iov_base);
1118 if (unlikely(error))
1119 break;
1120 error = get_user(len, &iov->iov_len);
1121 if (unlikely(error))
1122 break;
1123
1124 /*
1125 * Sanity check this iovec. 0 read succeeds.
1126 */
1127 if (unlikely(!len))
1128 break;
1129 error = -EFAULT;
1130 if (unlikely(!base))
1131 break;
1132
1133 /*
1134 * Get this base offset and number of pages, then map
1135 * in the user pages.
1136 */
1137 off = (unsigned long) base & ~PAGE_MASK;
1138 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1139 if (npages > PIPE_BUFFERS - buffers)
1140 npages = PIPE_BUFFERS - buffers;
1141
1142 error = get_user_pages(current, current->mm,
1143 (unsigned long) base, npages, 0, 0,
1144 &pages[buffers], NULL);
1145
1146 if (unlikely(error <= 0))
1147 break;
1148
1149 /*
1150 * Fill this contiguous range into the partial page map.
1151 */
1152 for (i = 0; i < error; i++) {
1153 const int plen = min_t(size_t, len, PAGE_SIZE) - off;
1154
1155 partial[buffers].offset = off;
1156 partial[buffers].len = plen;
1157
1158 off = 0;
1159 len -= plen;
1160 buffers++;
1161 }
1162
1163 /*
1164 * We didn't complete this iov, stop here since it probably
1165 * means we have to move some of this into a pipe to
1166 * be able to continue.
1167 */
1168 if (len)
1169 break;
1170
1171 /*
1172 * Don't continue if we mapped fewer pages than we asked for,
1173 * or if we mapped the max number of pages that we have
1174 * room for.
1175 */
1176 if (error < npages || buffers == PIPE_BUFFERS)
1177 break;
1178
1179 nr_vecs--;
1180 iov++;
1181 }
1182
1183 up_read(&current->mm->mmap_sem);
1184
1185 if (buffers)
1186 return buffers;
1187
1188 return error;
1189 }
1190
1191 /*
1192 * vmsplice splices a user address range into a pipe. It can be thought of
1193 * as splice-from-memory, where the regular splice is splice-from-file (or
1194 * to file). In both cases the output is a pipe, naturally.
1195 *
1196 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1197 * not the other way around. Splicing from user memory is a simple operation
1198 * that can be supported without any funky alignment restrictions or nasty
1199 * vm tricks. We simply map in the user memory and fill them into a pipe.
1200 * The reverse isn't quite as easy, though. There are two possible solutions
1201 * for that:
1202 *
1203 * - memcpy() the data internally, at which point we might as well just
1204 * do a regular read() on the buffer anyway.
1205 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1206 * has restriction limitations on both ends of the pipe).
1207 *
1208 * Alas, it isn't here.
1209 *
1210 */
1211 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1212 unsigned long nr_segs, unsigned int flags)
1213 {
1214 struct pipe_inode_info *pipe = file->f_dentry->d_inode->i_pipe;
1215 struct page *pages[PIPE_BUFFERS];
1216 struct partial_page partial[PIPE_BUFFERS];
1217 struct splice_pipe_desc spd = {
1218 .pages = pages,
1219 .partial = partial,
1220 .flags = flags,
1221 .ops = &user_page_pipe_buf_ops,
1222 };
1223
1224 if (unlikely(!pipe))
1225 return -EBADF;
1226 if (unlikely(nr_segs > UIO_MAXIOV))
1227 return -EINVAL;
1228 else if (unlikely(!nr_segs))
1229 return 0;
1230
1231 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial);
1232 if (spd.nr_pages <= 0)
1233 return spd.nr_pages;
1234
1235 return splice_to_pipe(pipe, &spd);
1236 }
1237
1238 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1239 unsigned long nr_segs, unsigned int flags)
1240 {
1241 struct file *file;
1242 long error;
1243 int fput;
1244
1245 error = -EBADF;
1246 file = fget_light(fd, &fput);
1247 if (file) {
1248 if (file->f_mode & FMODE_WRITE)
1249 error = do_vmsplice(file, iov, nr_segs, flags);
1250
1251 fput_light(file, fput);
1252 }
1253
1254 return error;
1255 }
1256
1257 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1258 int fd_out, loff_t __user *off_out,
1259 size_t len, unsigned int flags)
1260 {
1261 long error;
1262 struct file *in, *out;
1263 int fput_in, fput_out;
1264
1265 if (unlikely(!len))
1266 return 0;
1267
1268 error = -EBADF;
1269 in = fget_light(fd_in, &fput_in);
1270 if (in) {
1271 if (in->f_mode & FMODE_READ) {
1272 out = fget_light(fd_out, &fput_out);
1273 if (out) {
1274 if (out->f_mode & FMODE_WRITE)
1275 error = do_splice(in, off_in,
1276 out, off_out,
1277 len, flags);
1278 fput_light(out, fput_out);
1279 }
1280 }
1281
1282 fput_light(in, fput_in);
1283 }
1284
1285 return error;
1286 }
1287
1288 /*
1289 * Link contents of ipipe to opipe.
1290 */
1291 static int link_pipe(struct pipe_inode_info *ipipe,
1292 struct pipe_inode_info *opipe,
1293 size_t len, unsigned int flags)
1294 {
1295 struct pipe_buffer *ibuf, *obuf;
1296 int ret, do_wakeup, i, ipipe_first;
1297
1298 ret = do_wakeup = ipipe_first = 0;
1299
1300 /*
1301 * Potential ABBA deadlock, work around it by ordering lock
1302 * grabbing by inode address. Otherwise two different processes
1303 * could deadlock (one doing tee from A -> B, the other from B -> A).
1304 */
1305 if (ipipe->inode < opipe->inode) {
1306 ipipe_first = 1;
1307 mutex_lock(&ipipe->inode->i_mutex);
1308 mutex_lock(&opipe->inode->i_mutex);
1309 } else {
1310 mutex_lock(&opipe->inode->i_mutex);
1311 mutex_lock(&ipipe->inode->i_mutex);
1312 }
1313
1314 for (i = 0;; i++) {
1315 if (!opipe->readers) {
1316 send_sig(SIGPIPE, current, 0);
1317 if (!ret)
1318 ret = -EPIPE;
1319 break;
1320 }
1321 if (ipipe->nrbufs - i) {
1322 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1323
1324 /*
1325 * If we have room, fill this buffer
1326 */
1327 if (opipe->nrbufs < PIPE_BUFFERS) {
1328 int nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1329
1330 /*
1331 * Get a reference to this pipe buffer,
1332 * so we can copy the contents over.
1333 */
1334 ibuf->ops->get(ipipe, ibuf);
1335
1336 obuf = opipe->bufs + nbuf;
1337 *obuf = *ibuf;
1338
1339 if (obuf->len > len)
1340 obuf->len = len;
1341
1342 opipe->nrbufs++;
1343 do_wakeup = 1;
1344 ret += obuf->len;
1345 len -= obuf->len;
1346
1347 if (!len)
1348 break;
1349 if (opipe->nrbufs < PIPE_BUFFERS)
1350 continue;
1351 }
1352
1353 /*
1354 * We have input available, but no output room.
1355 * If we already copied data, return that. If we
1356 * need to drop the opipe lock, it must be ordered
1357 * last to avoid deadlocks.
1358 */
1359 if ((flags & SPLICE_F_NONBLOCK) || !ipipe_first) {
1360 if (!ret)
1361 ret = -EAGAIN;
1362 break;
1363 }
1364 if (signal_pending(current)) {
1365 if (!ret)
1366 ret = -ERESTARTSYS;
1367 break;
1368 }
1369 if (do_wakeup) {
1370 smp_mb();
1371 if (waitqueue_active(&opipe->wait))
1372 wake_up_interruptible(&opipe->wait);
1373 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1374 do_wakeup = 0;
1375 }
1376
1377 opipe->waiting_writers++;
1378 pipe_wait(opipe);
1379 opipe->waiting_writers--;
1380 continue;
1381 }
1382
1383 /*
1384 * No input buffers, do the usual checks for available
1385 * writers and blocking and wait if necessary
1386 */
1387 if (!ipipe->writers)
1388 break;
1389 if (!ipipe->waiting_writers) {
1390 if (ret)
1391 break;
1392 }
1393 /*
1394 * pipe_wait() drops the ipipe mutex. To avoid deadlocks
1395 * with another process, we can only safely do that if
1396 * the ipipe lock is ordered last.
1397 */
1398 if ((flags & SPLICE_F_NONBLOCK) || ipipe_first) {
1399 if (!ret)
1400 ret = -EAGAIN;
1401 break;
1402 }
1403 if (signal_pending(current)) {
1404 if (!ret)
1405 ret = -ERESTARTSYS;
1406 break;
1407 }
1408
1409 if (waitqueue_active(&ipipe->wait))
1410 wake_up_interruptible_sync(&ipipe->wait);
1411 kill_fasync(&ipipe->fasync_writers, SIGIO, POLL_OUT);
1412
1413 pipe_wait(ipipe);
1414 }
1415
1416 mutex_unlock(&ipipe->inode->i_mutex);
1417 mutex_unlock(&opipe->inode->i_mutex);
1418
1419 if (do_wakeup) {
1420 smp_mb();
1421 if (waitqueue_active(&opipe->wait))
1422 wake_up_interruptible(&opipe->wait);
1423 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1424 }
1425
1426 return ret;
1427 }
1428
1429 /*
1430 * This is a tee(1) implementation that works on pipes. It doesn't copy
1431 * any data, it simply references the 'in' pages on the 'out' pipe.
1432 * The 'flags' used are the SPLICE_F_* variants, currently the only
1433 * applicable one is SPLICE_F_NONBLOCK.
1434 */
1435 static long do_tee(struct file *in, struct file *out, size_t len,
1436 unsigned int flags)
1437 {
1438 struct pipe_inode_info *ipipe = in->f_dentry->d_inode->i_pipe;
1439 struct pipe_inode_info *opipe = out->f_dentry->d_inode->i_pipe;
1440
1441 /*
1442 * Link ipipe to the two output pipes, consuming as we go along.
1443 */
1444 if (ipipe && opipe)
1445 return link_pipe(ipipe, opipe, len, flags);
1446
1447 return -EINVAL;
1448 }
1449
1450 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1451 {
1452 struct file *in;
1453 int error, fput_in;
1454
1455 if (unlikely(!len))
1456 return 0;
1457
1458 error = -EBADF;
1459 in = fget_light(fdin, &fput_in);
1460 if (in) {
1461 if (in->f_mode & FMODE_READ) {
1462 int fput_out;
1463 struct file *out = fget_light(fdout, &fput_out);
1464
1465 if (out) {
1466 if (out->f_mode & FMODE_WRITE)
1467 error = do_tee(in, out, len, flags);
1468 fput_light(out, fput_out);
1469 }
1470 }
1471 fput_light(in, fput_in);
1472 }
1473
1474 return error;
1475 }
This page took 0.068237 seconds and 6 git commands to generate.