[PATCH] BLOCK: Remove no-longer necessary linux/mpage.h inclusions [try #6]
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h> /* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h> /* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <asm/uaccess.h>
41
42
43 void get_filesystem(struct file_system_type *fs);
44 void put_filesystem(struct file_system_type *fs);
45 struct file_system_type *get_fs_type(const char *name);
46
47 LIST_HEAD(super_blocks);
48 DEFINE_SPINLOCK(sb_lock);
49
50 /**
51 * alloc_super - create new superblock
52 * @type: filesystem type superblock should belong to
53 *
54 * Allocates and initializes a new &struct super_block. alloc_super()
55 * returns a pointer new superblock or %NULL if allocation had failed.
56 */
57 static struct super_block *alloc_super(struct file_system_type *type)
58 {
59 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
60 static struct super_operations default_op;
61
62 if (s) {
63 if (security_sb_alloc(s)) {
64 kfree(s);
65 s = NULL;
66 goto out;
67 }
68 INIT_LIST_HEAD(&s->s_dirty);
69 INIT_LIST_HEAD(&s->s_io);
70 INIT_LIST_HEAD(&s->s_files);
71 INIT_LIST_HEAD(&s->s_instances);
72 INIT_HLIST_HEAD(&s->s_anon);
73 INIT_LIST_HEAD(&s->s_inodes);
74 init_rwsem(&s->s_umount);
75 mutex_init(&s->s_lock);
76 lockdep_set_class(&s->s_umount, &type->s_umount_key);
77 /*
78 * The locking rules for s_lock are up to the
79 * filesystem. For example ext3fs has different
80 * lock ordering than usbfs:
81 */
82 lockdep_set_class(&s->s_lock, &type->s_lock_key);
83 down_write(&s->s_umount);
84 s->s_count = S_BIAS;
85 atomic_set(&s->s_active, 1);
86 mutex_init(&s->s_vfs_rename_mutex);
87 mutex_init(&s->s_dquot.dqio_mutex);
88 mutex_init(&s->s_dquot.dqonoff_mutex);
89 init_rwsem(&s->s_dquot.dqptr_sem);
90 init_waitqueue_head(&s->s_wait_unfrozen);
91 s->s_maxbytes = MAX_NON_LFS;
92 s->dq_op = sb_dquot_ops;
93 s->s_qcop = sb_quotactl_ops;
94 s->s_op = &default_op;
95 s->s_time_gran = 1000000000;
96 }
97 out:
98 return s;
99 }
100
101 /**
102 * destroy_super - frees a superblock
103 * @s: superblock to free
104 *
105 * Frees a superblock.
106 */
107 static inline void destroy_super(struct super_block *s)
108 {
109 security_sb_free(s);
110 kfree(s);
111 }
112
113 /* Superblock refcounting */
114
115 /*
116 * Drop a superblock's refcount. Returns non-zero if the superblock was
117 * destroyed. The caller must hold sb_lock.
118 */
119 int __put_super(struct super_block *sb)
120 {
121 int ret = 0;
122
123 if (!--sb->s_count) {
124 destroy_super(sb);
125 ret = 1;
126 }
127 return ret;
128 }
129
130 /*
131 * Drop a superblock's refcount.
132 * Returns non-zero if the superblock is about to be destroyed and
133 * at least is already removed from super_blocks list, so if we are
134 * making a loop through super blocks then we need to restart.
135 * The caller must hold sb_lock.
136 */
137 int __put_super_and_need_restart(struct super_block *sb)
138 {
139 /* check for race with generic_shutdown_super() */
140 if (list_empty(&sb->s_list)) {
141 /* super block is removed, need to restart... */
142 __put_super(sb);
143 return 1;
144 }
145 /* can't be the last, since s_list is still in use */
146 sb->s_count--;
147 BUG_ON(sb->s_count == 0);
148 return 0;
149 }
150
151 /**
152 * put_super - drop a temporary reference to superblock
153 * @sb: superblock in question
154 *
155 * Drops a temporary reference, frees superblock if there's no
156 * references left.
157 */
158 static void put_super(struct super_block *sb)
159 {
160 spin_lock(&sb_lock);
161 __put_super(sb);
162 spin_unlock(&sb_lock);
163 }
164
165
166 /**
167 * deactivate_super - drop an active reference to superblock
168 * @s: superblock to deactivate
169 *
170 * Drops an active reference to superblock, acquiring a temprory one if
171 * there is no active references left. In that case we lock superblock,
172 * tell fs driver to shut it down and drop the temporary reference we
173 * had just acquired.
174 */
175 void deactivate_super(struct super_block *s)
176 {
177 struct file_system_type *fs = s->s_type;
178 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
179 s->s_count -= S_BIAS-1;
180 spin_unlock(&sb_lock);
181 DQUOT_OFF(s);
182 down_write(&s->s_umount);
183 fs->kill_sb(s);
184 put_filesystem(fs);
185 put_super(s);
186 }
187 }
188
189 EXPORT_SYMBOL(deactivate_super);
190
191 /**
192 * grab_super - acquire an active reference
193 * @s: reference we are trying to make active
194 *
195 * Tries to acquire an active reference. grab_super() is used when we
196 * had just found a superblock in super_blocks or fs_type->fs_supers
197 * and want to turn it into a full-blown active reference. grab_super()
198 * is called with sb_lock held and drops it. Returns 1 in case of
199 * success, 0 if we had failed (superblock contents was already dead or
200 * dying when grab_super() had been called).
201 */
202 static int grab_super(struct super_block *s) __releases(sb_lock)
203 {
204 s->s_count++;
205 spin_unlock(&sb_lock);
206 down_write(&s->s_umount);
207 if (s->s_root) {
208 spin_lock(&sb_lock);
209 if (s->s_count > S_BIAS) {
210 atomic_inc(&s->s_active);
211 s->s_count--;
212 spin_unlock(&sb_lock);
213 return 1;
214 }
215 spin_unlock(&sb_lock);
216 }
217 up_write(&s->s_umount);
218 put_super(s);
219 yield();
220 return 0;
221 }
222
223 /*
224 * Write out and wait upon all dirty data associated with this
225 * superblock. Filesystem data as well as the underlying block
226 * device. Takes the superblock lock. Requires a second blkdev
227 * flush by the caller to complete the operation.
228 */
229 void __fsync_super(struct super_block *sb)
230 {
231 sync_inodes_sb(sb, 0);
232 DQUOT_SYNC(sb);
233 lock_super(sb);
234 if (sb->s_dirt && sb->s_op->write_super)
235 sb->s_op->write_super(sb);
236 unlock_super(sb);
237 if (sb->s_op->sync_fs)
238 sb->s_op->sync_fs(sb, 1);
239 sync_blockdev(sb->s_bdev);
240 sync_inodes_sb(sb, 1);
241 }
242
243 /*
244 * Write out and wait upon all dirty data associated with this
245 * superblock. Filesystem data as well as the underlying block
246 * device. Takes the superblock lock.
247 */
248 int fsync_super(struct super_block *sb)
249 {
250 __fsync_super(sb);
251 return sync_blockdev(sb->s_bdev);
252 }
253
254 /**
255 * generic_shutdown_super - common helper for ->kill_sb()
256 * @sb: superblock to kill
257 *
258 * generic_shutdown_super() does all fs-independent work on superblock
259 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
260 * that need destruction out of superblock, call generic_shutdown_super()
261 * and release aforementioned objects. Note: dentries and inodes _are_
262 * taken care of and do not need specific handling.
263 */
264 void generic_shutdown_super(struct super_block *sb)
265 {
266 struct dentry *root = sb->s_root;
267 struct super_operations *sop = sb->s_op;
268
269 if (root) {
270 sb->s_root = NULL;
271 shrink_dcache_parent(root);
272 shrink_dcache_sb(sb);
273 dput(root);
274 fsync_super(sb);
275 lock_super(sb);
276 sb->s_flags &= ~MS_ACTIVE;
277 /* bad name - it should be evict_inodes() */
278 invalidate_inodes(sb);
279 lock_kernel();
280
281 if (sop->write_super && sb->s_dirt)
282 sop->write_super(sb);
283 if (sop->put_super)
284 sop->put_super(sb);
285
286 /* Forget any remaining inodes */
287 if (invalidate_inodes(sb)) {
288 printk("VFS: Busy inodes after unmount of %s. "
289 "Self-destruct in 5 seconds. Have a nice day...\n",
290 sb->s_id);
291 }
292
293 unlock_kernel();
294 unlock_super(sb);
295 }
296 spin_lock(&sb_lock);
297 /* should be initialized for __put_super_and_need_restart() */
298 list_del_init(&sb->s_list);
299 list_del(&sb->s_instances);
300 spin_unlock(&sb_lock);
301 up_write(&sb->s_umount);
302 }
303
304 EXPORT_SYMBOL(generic_shutdown_super);
305
306 /**
307 * sget - find or create a superblock
308 * @type: filesystem type superblock should belong to
309 * @test: comparison callback
310 * @set: setup callback
311 * @data: argument to each of them
312 */
313 struct super_block *sget(struct file_system_type *type,
314 int (*test)(struct super_block *,void *),
315 int (*set)(struct super_block *,void *),
316 void *data)
317 {
318 struct super_block *s = NULL;
319 struct list_head *p;
320 int err;
321
322 retry:
323 spin_lock(&sb_lock);
324 if (test) list_for_each(p, &type->fs_supers) {
325 struct super_block *old;
326 old = list_entry(p, struct super_block, s_instances);
327 if (!test(old, data))
328 continue;
329 if (!grab_super(old))
330 goto retry;
331 if (s)
332 destroy_super(s);
333 return old;
334 }
335 if (!s) {
336 spin_unlock(&sb_lock);
337 s = alloc_super(type);
338 if (!s)
339 return ERR_PTR(-ENOMEM);
340 goto retry;
341 }
342
343 err = set(s, data);
344 if (err) {
345 spin_unlock(&sb_lock);
346 destroy_super(s);
347 return ERR_PTR(err);
348 }
349 s->s_type = type;
350 strlcpy(s->s_id, type->name, sizeof(s->s_id));
351 list_add_tail(&s->s_list, &super_blocks);
352 list_add(&s->s_instances, &type->fs_supers);
353 spin_unlock(&sb_lock);
354 get_filesystem(type);
355 return s;
356 }
357
358 EXPORT_SYMBOL(sget);
359
360 void drop_super(struct super_block *sb)
361 {
362 up_read(&sb->s_umount);
363 put_super(sb);
364 }
365
366 EXPORT_SYMBOL(drop_super);
367
368 static inline void write_super(struct super_block *sb)
369 {
370 lock_super(sb);
371 if (sb->s_root && sb->s_dirt)
372 if (sb->s_op->write_super)
373 sb->s_op->write_super(sb);
374 unlock_super(sb);
375 }
376
377 /*
378 * Note: check the dirty flag before waiting, so we don't
379 * hold up the sync while mounting a device. (The newly
380 * mounted device won't need syncing.)
381 */
382 void sync_supers(void)
383 {
384 struct super_block *sb;
385
386 spin_lock(&sb_lock);
387 restart:
388 list_for_each_entry(sb, &super_blocks, s_list) {
389 if (sb->s_dirt) {
390 sb->s_count++;
391 spin_unlock(&sb_lock);
392 down_read(&sb->s_umount);
393 write_super(sb);
394 up_read(&sb->s_umount);
395 spin_lock(&sb_lock);
396 if (__put_super_and_need_restart(sb))
397 goto restart;
398 }
399 }
400 spin_unlock(&sb_lock);
401 }
402
403 /*
404 * Call the ->sync_fs super_op against all filesytems which are r/w and
405 * which implement it.
406 *
407 * This operation is careful to avoid the livelock which could easily happen
408 * if two or more filesystems are being continuously dirtied. s_need_sync_fs
409 * is used only here. We set it against all filesystems and then clear it as
410 * we sync them. So redirtied filesystems are skipped.
411 *
412 * But if process A is currently running sync_filesytems and then process B
413 * calls sync_filesystems as well, process B will set all the s_need_sync_fs
414 * flags again, which will cause process A to resync everything. Fix that with
415 * a local mutex.
416 *
417 * (Fabian) Avoid sync_fs with clean fs & wait mode 0
418 */
419 void sync_filesystems(int wait)
420 {
421 struct super_block *sb;
422 static DEFINE_MUTEX(mutex);
423
424 mutex_lock(&mutex); /* Could be down_interruptible */
425 spin_lock(&sb_lock);
426 list_for_each_entry(sb, &super_blocks, s_list) {
427 if (!sb->s_op->sync_fs)
428 continue;
429 if (sb->s_flags & MS_RDONLY)
430 continue;
431 sb->s_need_sync_fs = 1;
432 }
433
434 restart:
435 list_for_each_entry(sb, &super_blocks, s_list) {
436 if (!sb->s_need_sync_fs)
437 continue;
438 sb->s_need_sync_fs = 0;
439 if (sb->s_flags & MS_RDONLY)
440 continue; /* hm. Was remounted r/o meanwhile */
441 sb->s_count++;
442 spin_unlock(&sb_lock);
443 down_read(&sb->s_umount);
444 if (sb->s_root && (wait || sb->s_dirt))
445 sb->s_op->sync_fs(sb, wait);
446 up_read(&sb->s_umount);
447 /* restart only when sb is no longer on the list */
448 spin_lock(&sb_lock);
449 if (__put_super_and_need_restart(sb))
450 goto restart;
451 }
452 spin_unlock(&sb_lock);
453 mutex_unlock(&mutex);
454 }
455
456 /**
457 * get_super - get the superblock of a device
458 * @bdev: device to get the superblock for
459 *
460 * Scans the superblock list and finds the superblock of the file system
461 * mounted on the device given. %NULL is returned if no match is found.
462 */
463
464 struct super_block * get_super(struct block_device *bdev)
465 {
466 struct super_block *sb;
467
468 if (!bdev)
469 return NULL;
470
471 spin_lock(&sb_lock);
472 rescan:
473 list_for_each_entry(sb, &super_blocks, s_list) {
474 if (sb->s_bdev == bdev) {
475 sb->s_count++;
476 spin_unlock(&sb_lock);
477 down_read(&sb->s_umount);
478 if (sb->s_root)
479 return sb;
480 up_read(&sb->s_umount);
481 /* restart only when sb is no longer on the list */
482 spin_lock(&sb_lock);
483 if (__put_super_and_need_restart(sb))
484 goto rescan;
485 }
486 }
487 spin_unlock(&sb_lock);
488 return NULL;
489 }
490
491 EXPORT_SYMBOL(get_super);
492
493 struct super_block * user_get_super(dev_t dev)
494 {
495 struct super_block *sb;
496
497 spin_lock(&sb_lock);
498 rescan:
499 list_for_each_entry(sb, &super_blocks, s_list) {
500 if (sb->s_dev == dev) {
501 sb->s_count++;
502 spin_unlock(&sb_lock);
503 down_read(&sb->s_umount);
504 if (sb->s_root)
505 return sb;
506 up_read(&sb->s_umount);
507 /* restart only when sb is no longer on the list */
508 spin_lock(&sb_lock);
509 if (__put_super_and_need_restart(sb))
510 goto rescan;
511 }
512 }
513 spin_unlock(&sb_lock);
514 return NULL;
515 }
516
517 asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
518 {
519 struct super_block *s;
520 struct ustat tmp;
521 struct kstatfs sbuf;
522 int err = -EINVAL;
523
524 s = user_get_super(new_decode_dev(dev));
525 if (s == NULL)
526 goto out;
527 err = vfs_statfs(s->s_root, &sbuf);
528 drop_super(s);
529 if (err)
530 goto out;
531
532 memset(&tmp,0,sizeof(struct ustat));
533 tmp.f_tfree = sbuf.f_bfree;
534 tmp.f_tinode = sbuf.f_ffree;
535
536 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
537 out:
538 return err;
539 }
540
541 /**
542 * mark_files_ro
543 * @sb: superblock in question
544 *
545 * All files are marked read/only. We don't care about pending
546 * delete files so this should be used in 'force' mode only
547 */
548
549 static void mark_files_ro(struct super_block *sb)
550 {
551 struct file *f;
552
553 file_list_lock();
554 list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
555 if (S_ISREG(f->f_dentry->d_inode->i_mode) && file_count(f))
556 f->f_mode &= ~FMODE_WRITE;
557 }
558 file_list_unlock();
559 }
560
561 /**
562 * do_remount_sb - asks filesystem to change mount options.
563 * @sb: superblock in question
564 * @flags: numeric part of options
565 * @data: the rest of options
566 * @force: whether or not to force the change
567 *
568 * Alters the mount options of a mounted file system.
569 */
570 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
571 {
572 int retval;
573
574 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
575 return -EACCES;
576 if (flags & MS_RDONLY)
577 acct_auto_close(sb);
578 shrink_dcache_sb(sb);
579 fsync_super(sb);
580
581 /* If we are remounting RDONLY and current sb is read/write,
582 make sure there are no rw files opened */
583 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
584 if (force)
585 mark_files_ro(sb);
586 else if (!fs_may_remount_ro(sb))
587 return -EBUSY;
588 }
589
590 if (sb->s_op->remount_fs) {
591 lock_super(sb);
592 retval = sb->s_op->remount_fs(sb, &flags, data);
593 unlock_super(sb);
594 if (retval)
595 return retval;
596 }
597 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
598 return 0;
599 }
600
601 static void do_emergency_remount(unsigned long foo)
602 {
603 struct super_block *sb;
604
605 spin_lock(&sb_lock);
606 list_for_each_entry(sb, &super_blocks, s_list) {
607 sb->s_count++;
608 spin_unlock(&sb_lock);
609 down_read(&sb->s_umount);
610 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
611 /*
612 * ->remount_fs needs lock_kernel().
613 *
614 * What lock protects sb->s_flags??
615 */
616 lock_kernel();
617 do_remount_sb(sb, MS_RDONLY, NULL, 1);
618 unlock_kernel();
619 }
620 drop_super(sb);
621 spin_lock(&sb_lock);
622 }
623 spin_unlock(&sb_lock);
624 printk("Emergency Remount complete\n");
625 }
626
627 void emergency_remount(void)
628 {
629 pdflush_operation(do_emergency_remount, 0);
630 }
631
632 /*
633 * Unnamed block devices are dummy devices used by virtual
634 * filesystems which don't use real block-devices. -- jrs
635 */
636
637 static struct idr unnamed_dev_idr;
638 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
639
640 int set_anon_super(struct super_block *s, void *data)
641 {
642 int dev;
643 int error;
644
645 retry:
646 if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
647 return -ENOMEM;
648 spin_lock(&unnamed_dev_lock);
649 error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
650 spin_unlock(&unnamed_dev_lock);
651 if (error == -EAGAIN)
652 /* We raced and lost with another CPU. */
653 goto retry;
654 else if (error)
655 return -EAGAIN;
656
657 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
658 spin_lock(&unnamed_dev_lock);
659 idr_remove(&unnamed_dev_idr, dev);
660 spin_unlock(&unnamed_dev_lock);
661 return -EMFILE;
662 }
663 s->s_dev = MKDEV(0, dev & MINORMASK);
664 return 0;
665 }
666
667 EXPORT_SYMBOL(set_anon_super);
668
669 void kill_anon_super(struct super_block *sb)
670 {
671 int slot = MINOR(sb->s_dev);
672
673 generic_shutdown_super(sb);
674 spin_lock(&unnamed_dev_lock);
675 idr_remove(&unnamed_dev_idr, slot);
676 spin_unlock(&unnamed_dev_lock);
677 }
678
679 EXPORT_SYMBOL(kill_anon_super);
680
681 void __init unnamed_dev_init(void)
682 {
683 idr_init(&unnamed_dev_idr);
684 }
685
686 void kill_litter_super(struct super_block *sb)
687 {
688 if (sb->s_root)
689 d_genocide(sb->s_root);
690 kill_anon_super(sb);
691 }
692
693 EXPORT_SYMBOL(kill_litter_super);
694
695 static int set_bdev_super(struct super_block *s, void *data)
696 {
697 s->s_bdev = data;
698 s->s_dev = s->s_bdev->bd_dev;
699 return 0;
700 }
701
702 static int test_bdev_super(struct super_block *s, void *data)
703 {
704 return (void *)s->s_bdev == data;
705 }
706
707 static void bdev_uevent(struct block_device *bdev, enum kobject_action action)
708 {
709 if (bdev->bd_disk) {
710 if (bdev->bd_part)
711 kobject_uevent(&bdev->bd_part->kobj, action);
712 else
713 kobject_uevent(&bdev->bd_disk->kobj, action);
714 }
715 }
716
717 int get_sb_bdev(struct file_system_type *fs_type,
718 int flags, const char *dev_name, void *data,
719 int (*fill_super)(struct super_block *, void *, int),
720 struct vfsmount *mnt)
721 {
722 struct block_device *bdev;
723 struct super_block *s;
724 int error = 0;
725
726 bdev = open_bdev_excl(dev_name, flags, fs_type);
727 if (IS_ERR(bdev))
728 return PTR_ERR(bdev);
729
730 /*
731 * once the super is inserted into the list by sget, s_umount
732 * will protect the lockfs code from trying to start a snapshot
733 * while we are mounting
734 */
735 mutex_lock(&bdev->bd_mount_mutex);
736 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
737 mutex_unlock(&bdev->bd_mount_mutex);
738 if (IS_ERR(s))
739 goto error_s;
740
741 if (s->s_root) {
742 if ((flags ^ s->s_flags) & MS_RDONLY) {
743 up_write(&s->s_umount);
744 deactivate_super(s);
745 error = -EBUSY;
746 goto error_bdev;
747 }
748
749 close_bdev_excl(bdev);
750 } else {
751 char b[BDEVNAME_SIZE];
752
753 s->s_flags = flags;
754 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
755 sb_set_blocksize(s, block_size(bdev));
756 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
757 if (error) {
758 up_write(&s->s_umount);
759 deactivate_super(s);
760 goto error;
761 }
762
763 s->s_flags |= MS_ACTIVE;
764 bdev_uevent(bdev, KOBJ_MOUNT);
765 }
766
767 return simple_set_mnt(mnt, s);
768
769 error_s:
770 error = PTR_ERR(s);
771 error_bdev:
772 close_bdev_excl(bdev);
773 error:
774 return error;
775 }
776
777 EXPORT_SYMBOL(get_sb_bdev);
778
779 void kill_block_super(struct super_block *sb)
780 {
781 struct block_device *bdev = sb->s_bdev;
782
783 bdev_uevent(bdev, KOBJ_UMOUNT);
784 generic_shutdown_super(sb);
785 sync_blockdev(bdev);
786 close_bdev_excl(bdev);
787 }
788
789 EXPORT_SYMBOL(kill_block_super);
790
791 int get_sb_nodev(struct file_system_type *fs_type,
792 int flags, void *data,
793 int (*fill_super)(struct super_block *, void *, int),
794 struct vfsmount *mnt)
795 {
796 int error;
797 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
798
799 if (IS_ERR(s))
800 return PTR_ERR(s);
801
802 s->s_flags = flags;
803
804 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
805 if (error) {
806 up_write(&s->s_umount);
807 deactivate_super(s);
808 return error;
809 }
810 s->s_flags |= MS_ACTIVE;
811 return simple_set_mnt(mnt, s);
812 }
813
814 EXPORT_SYMBOL(get_sb_nodev);
815
816 static int compare_single(struct super_block *s, void *p)
817 {
818 return 1;
819 }
820
821 int get_sb_single(struct file_system_type *fs_type,
822 int flags, void *data,
823 int (*fill_super)(struct super_block *, void *, int),
824 struct vfsmount *mnt)
825 {
826 struct super_block *s;
827 int error;
828
829 s = sget(fs_type, compare_single, set_anon_super, NULL);
830 if (IS_ERR(s))
831 return PTR_ERR(s);
832 if (!s->s_root) {
833 s->s_flags = flags;
834 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
835 if (error) {
836 up_write(&s->s_umount);
837 deactivate_super(s);
838 return error;
839 }
840 s->s_flags |= MS_ACTIVE;
841 }
842 do_remount_sb(s, flags, data, 0);
843 return simple_set_mnt(mnt, s);
844 }
845
846 EXPORT_SYMBOL(get_sb_single);
847
848 struct vfsmount *
849 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
850 {
851 struct vfsmount *mnt;
852 char *secdata = NULL;
853 int error;
854
855 if (!type)
856 return ERR_PTR(-ENODEV);
857
858 error = -ENOMEM;
859 mnt = alloc_vfsmnt(name);
860 if (!mnt)
861 goto out;
862
863 if (data) {
864 secdata = alloc_secdata();
865 if (!secdata)
866 goto out_mnt;
867
868 error = security_sb_copy_data(type, data, secdata);
869 if (error)
870 goto out_free_secdata;
871 }
872
873 error = type->get_sb(type, flags, name, data, mnt);
874 if (error < 0)
875 goto out_free_secdata;
876
877 error = security_sb_kern_mount(mnt->mnt_sb, secdata);
878 if (error)
879 goto out_sb;
880
881 mnt->mnt_mountpoint = mnt->mnt_root;
882 mnt->mnt_parent = mnt;
883 up_write(&mnt->mnt_sb->s_umount);
884 free_secdata(secdata);
885 return mnt;
886 out_sb:
887 dput(mnt->mnt_root);
888 up_write(&mnt->mnt_sb->s_umount);
889 deactivate_super(mnt->mnt_sb);
890 out_free_secdata:
891 free_secdata(secdata);
892 out_mnt:
893 free_vfsmnt(mnt);
894 out:
895 return ERR_PTR(error);
896 }
897
898 EXPORT_SYMBOL_GPL(vfs_kern_mount);
899
900 struct vfsmount *
901 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
902 {
903 struct file_system_type *type = get_fs_type(fstype);
904 struct vfsmount *mnt;
905 if (!type)
906 return ERR_PTR(-ENODEV);
907 mnt = vfs_kern_mount(type, flags, name, data);
908 put_filesystem(type);
909 return mnt;
910 }
911
912 struct vfsmount *kern_mount(struct file_system_type *type)
913 {
914 return vfs_kern_mount(type, 0, type->name, NULL);
915 }
916
917 EXPORT_SYMBOL(kern_mount);
This page took 0.07257 seconds and 5 git commands to generate.