No need to do lock_super() for exclusion in generic_shutdown_super()
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/mount.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h> /* for the emergency remount stuff */
36 #include <linux/idr.h>
37 #include <linux/kobject.h>
38 #include <linux/mutex.h>
39 #include <linux/file.h>
40 #include <asm/uaccess.h>
41 #include "internal.h"
42
43
44 LIST_HEAD(super_blocks);
45 DEFINE_SPINLOCK(sb_lock);
46
47 /**
48 * alloc_super - create new superblock
49 * @type: filesystem type superblock should belong to
50 *
51 * Allocates and initializes a new &struct super_block. alloc_super()
52 * returns a pointer new superblock or %NULL if allocation had failed.
53 */
54 static struct super_block *alloc_super(struct file_system_type *type)
55 {
56 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
57 static struct super_operations default_op;
58
59 if (s) {
60 if (security_sb_alloc(s)) {
61 kfree(s);
62 s = NULL;
63 goto out;
64 }
65 INIT_LIST_HEAD(&s->s_dirty);
66 INIT_LIST_HEAD(&s->s_io);
67 INIT_LIST_HEAD(&s->s_more_io);
68 INIT_LIST_HEAD(&s->s_files);
69 INIT_LIST_HEAD(&s->s_instances);
70 INIT_HLIST_HEAD(&s->s_anon);
71 INIT_LIST_HEAD(&s->s_inodes);
72 INIT_LIST_HEAD(&s->s_dentry_lru);
73 init_rwsem(&s->s_umount);
74 mutex_init(&s->s_lock);
75 lockdep_set_class(&s->s_umount, &type->s_umount_key);
76 /*
77 * The locking rules for s_lock are up to the
78 * filesystem. For example ext3fs has different
79 * lock ordering than usbfs:
80 */
81 lockdep_set_class(&s->s_lock, &type->s_lock_key);
82 /*
83 * sget() can have s_umount recursion.
84 *
85 * When it cannot find a suitable sb, it allocates a new
86 * one (this one), and tries again to find a suitable old
87 * one.
88 *
89 * In case that succeeds, it will acquire the s_umount
90 * lock of the old one. Since these are clearly distrinct
91 * locks, and this object isn't exposed yet, there's no
92 * risk of deadlocks.
93 *
94 * Annotate this by putting this lock in a different
95 * subclass.
96 */
97 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
98 s->s_count = S_BIAS;
99 atomic_set(&s->s_active, 1);
100 mutex_init(&s->s_vfs_rename_mutex);
101 mutex_init(&s->s_dquot.dqio_mutex);
102 mutex_init(&s->s_dquot.dqonoff_mutex);
103 init_rwsem(&s->s_dquot.dqptr_sem);
104 init_waitqueue_head(&s->s_wait_unfrozen);
105 s->s_maxbytes = MAX_NON_LFS;
106 s->dq_op = sb_dquot_ops;
107 s->s_qcop = sb_quotactl_ops;
108 s->s_op = &default_op;
109 s->s_time_gran = 1000000000;
110 }
111 out:
112 return s;
113 }
114
115 /**
116 * destroy_super - frees a superblock
117 * @s: superblock to free
118 *
119 * Frees a superblock.
120 */
121 static inline void destroy_super(struct super_block *s)
122 {
123 security_sb_free(s);
124 kfree(s->s_subtype);
125 kfree(s->s_options);
126 kfree(s);
127 }
128
129 /* Superblock refcounting */
130
131 /*
132 * Drop a superblock's refcount. Returns non-zero if the superblock was
133 * destroyed. The caller must hold sb_lock.
134 */
135 static int __put_super(struct super_block *sb)
136 {
137 int ret = 0;
138
139 if (!--sb->s_count) {
140 destroy_super(sb);
141 ret = 1;
142 }
143 return ret;
144 }
145
146 /*
147 * Drop a superblock's refcount.
148 * Returns non-zero if the superblock is about to be destroyed and
149 * at least is already removed from super_blocks list, so if we are
150 * making a loop through super blocks then we need to restart.
151 * The caller must hold sb_lock.
152 */
153 int __put_super_and_need_restart(struct super_block *sb)
154 {
155 /* check for race with generic_shutdown_super() */
156 if (list_empty(&sb->s_list)) {
157 /* super block is removed, need to restart... */
158 __put_super(sb);
159 return 1;
160 }
161 /* can't be the last, since s_list is still in use */
162 sb->s_count--;
163 BUG_ON(sb->s_count == 0);
164 return 0;
165 }
166
167 /**
168 * put_super - drop a temporary reference to superblock
169 * @sb: superblock in question
170 *
171 * Drops a temporary reference, frees superblock if there's no
172 * references left.
173 */
174 static void put_super(struct super_block *sb)
175 {
176 spin_lock(&sb_lock);
177 __put_super(sb);
178 spin_unlock(&sb_lock);
179 }
180
181
182 /**
183 * deactivate_super - drop an active reference to superblock
184 * @s: superblock to deactivate
185 *
186 * Drops an active reference to superblock, acquiring a temprory one if
187 * there is no active references left. In that case we lock superblock,
188 * tell fs driver to shut it down and drop the temporary reference we
189 * had just acquired.
190 */
191 void deactivate_super(struct super_block *s)
192 {
193 struct file_system_type *fs = s->s_type;
194 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
195 s->s_count -= S_BIAS-1;
196 spin_unlock(&sb_lock);
197 vfs_dq_off(s, 0);
198 down_write(&s->s_umount);
199 fs->kill_sb(s);
200 put_filesystem(fs);
201 put_super(s);
202 }
203 }
204
205 EXPORT_SYMBOL(deactivate_super);
206
207 /**
208 * deactivate_locked_super - drop an active reference to superblock
209 * @s: superblock to deactivate
210 *
211 * Equivalent of up_write(&s->s_umount); deactivate_super(s);, except that
212 * it does not unlock it until it's all over. As the result, it's safe to
213 * use to dispose of new superblock on ->get_sb() failure exits - nobody
214 * will see the sucker until it's all over. Equivalent using up_write +
215 * deactivate_super is safe for that purpose only if superblock is either
216 * safe to use or has NULL ->s_root when we unlock.
217 */
218 void deactivate_locked_super(struct super_block *s)
219 {
220 struct file_system_type *fs = s->s_type;
221 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
222 s->s_count -= S_BIAS-1;
223 spin_unlock(&sb_lock);
224 vfs_dq_off(s, 0);
225 fs->kill_sb(s);
226 put_filesystem(fs);
227 put_super(s);
228 } else {
229 up_write(&s->s_umount);
230 }
231 }
232
233 EXPORT_SYMBOL(deactivate_locked_super);
234
235 /**
236 * grab_super - acquire an active reference
237 * @s: reference we are trying to make active
238 *
239 * Tries to acquire an active reference. grab_super() is used when we
240 * had just found a superblock in super_blocks or fs_type->fs_supers
241 * and want to turn it into a full-blown active reference. grab_super()
242 * is called with sb_lock held and drops it. Returns 1 in case of
243 * success, 0 if we had failed (superblock contents was already dead or
244 * dying when grab_super() had been called).
245 */
246 static int grab_super(struct super_block *s) __releases(sb_lock)
247 {
248 s->s_count++;
249 spin_unlock(&sb_lock);
250 down_write(&s->s_umount);
251 if (s->s_root) {
252 spin_lock(&sb_lock);
253 if (s->s_count > S_BIAS) {
254 atomic_inc(&s->s_active);
255 s->s_count--;
256 spin_unlock(&sb_lock);
257 return 1;
258 }
259 spin_unlock(&sb_lock);
260 }
261 up_write(&s->s_umount);
262 put_super(s);
263 yield();
264 return 0;
265 }
266
267 /*
268 * Superblock locking. We really ought to get rid of these two.
269 */
270 void lock_super(struct super_block * sb)
271 {
272 get_fs_excl();
273 mutex_lock(&sb->s_lock);
274 }
275
276 void unlock_super(struct super_block * sb)
277 {
278 put_fs_excl();
279 mutex_unlock(&sb->s_lock);
280 }
281
282 EXPORT_SYMBOL(lock_super);
283 EXPORT_SYMBOL(unlock_super);
284
285 /**
286 * generic_shutdown_super - common helper for ->kill_sb()
287 * @sb: superblock to kill
288 *
289 * generic_shutdown_super() does all fs-independent work on superblock
290 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
291 * that need destruction out of superblock, call generic_shutdown_super()
292 * and release aforementioned objects. Note: dentries and inodes _are_
293 * taken care of and do not need specific handling.
294 *
295 * Upon calling this function, the filesystem may no longer alter or
296 * rearrange the set of dentries belonging to this super_block, nor may it
297 * change the attachments of dentries to inodes.
298 */
299 void generic_shutdown_super(struct super_block *sb)
300 {
301 const struct super_operations *sop = sb->s_op;
302
303
304 if (sb->s_root) {
305 shrink_dcache_for_umount(sb);
306 sync_filesystem(sb);
307 get_fs_excl();
308 sb->s_flags &= ~MS_ACTIVE;
309
310 /* bad name - it should be evict_inodes() */
311 invalidate_inodes(sb);
312 lock_kernel();
313
314 if (sop->put_super)
315 sop->put_super(sb);
316
317 /* Forget any remaining inodes */
318 if (invalidate_inodes(sb)) {
319 printk("VFS: Busy inodes after unmount of %s. "
320 "Self-destruct in 5 seconds. Have a nice day...\n",
321 sb->s_id);
322 }
323
324 unlock_kernel();
325 put_fs_excl();
326 }
327 spin_lock(&sb_lock);
328 /* should be initialized for __put_super_and_need_restart() */
329 list_del_init(&sb->s_list);
330 list_del(&sb->s_instances);
331 spin_unlock(&sb_lock);
332 up_write(&sb->s_umount);
333 }
334
335 EXPORT_SYMBOL(generic_shutdown_super);
336
337 /**
338 * sget - find or create a superblock
339 * @type: filesystem type superblock should belong to
340 * @test: comparison callback
341 * @set: setup callback
342 * @data: argument to each of them
343 */
344 struct super_block *sget(struct file_system_type *type,
345 int (*test)(struct super_block *,void *),
346 int (*set)(struct super_block *,void *),
347 void *data)
348 {
349 struct super_block *s = NULL;
350 struct super_block *old;
351 int err;
352
353 retry:
354 spin_lock(&sb_lock);
355 if (test) {
356 list_for_each_entry(old, &type->fs_supers, s_instances) {
357 if (!test(old, data))
358 continue;
359 if (!grab_super(old))
360 goto retry;
361 if (s) {
362 up_write(&s->s_umount);
363 destroy_super(s);
364 }
365 return old;
366 }
367 }
368 if (!s) {
369 spin_unlock(&sb_lock);
370 s = alloc_super(type);
371 if (!s)
372 return ERR_PTR(-ENOMEM);
373 goto retry;
374 }
375
376 err = set(s, data);
377 if (err) {
378 spin_unlock(&sb_lock);
379 up_write(&s->s_umount);
380 destroy_super(s);
381 return ERR_PTR(err);
382 }
383 s->s_type = type;
384 strlcpy(s->s_id, type->name, sizeof(s->s_id));
385 list_add_tail(&s->s_list, &super_blocks);
386 list_add(&s->s_instances, &type->fs_supers);
387 spin_unlock(&sb_lock);
388 get_filesystem(type);
389 return s;
390 }
391
392 EXPORT_SYMBOL(sget);
393
394 void drop_super(struct super_block *sb)
395 {
396 up_read(&sb->s_umount);
397 put_super(sb);
398 }
399
400 EXPORT_SYMBOL(drop_super);
401
402 /**
403 * sync_supers - helper for periodic superblock writeback
404 *
405 * Call the write_super method if present on all dirty superblocks in
406 * the system. This is for the periodic writeback used by most older
407 * filesystems. For data integrity superblock writeback use
408 * sync_filesystems() instead.
409 *
410 * Note: check the dirty flag before waiting, so we don't
411 * hold up the sync while mounting a device. (The newly
412 * mounted device won't need syncing.)
413 */
414 void sync_supers(void)
415 {
416 struct super_block *sb;
417
418 spin_lock(&sb_lock);
419 restart:
420 list_for_each_entry(sb, &super_blocks, s_list) {
421 if (sb->s_op->write_super && sb->s_dirt) {
422 sb->s_count++;
423 spin_unlock(&sb_lock);
424
425 down_read(&sb->s_umount);
426 lock_super(sb);
427 if (sb->s_root && sb->s_dirt)
428 sb->s_op->write_super(sb);
429 unlock_super(sb);
430 up_read(&sb->s_umount);
431
432 spin_lock(&sb_lock);
433 if (__put_super_and_need_restart(sb))
434 goto restart;
435 }
436 }
437 spin_unlock(&sb_lock);
438 }
439
440 /**
441 * get_super - get the superblock of a device
442 * @bdev: device to get the superblock for
443 *
444 * Scans the superblock list and finds the superblock of the file system
445 * mounted on the device given. %NULL is returned if no match is found.
446 */
447
448 struct super_block * get_super(struct block_device *bdev)
449 {
450 struct super_block *sb;
451
452 if (!bdev)
453 return NULL;
454
455 spin_lock(&sb_lock);
456 rescan:
457 list_for_each_entry(sb, &super_blocks, s_list) {
458 if (sb->s_bdev == bdev) {
459 sb->s_count++;
460 spin_unlock(&sb_lock);
461 down_read(&sb->s_umount);
462 if (sb->s_root)
463 return sb;
464 up_read(&sb->s_umount);
465 /* restart only when sb is no longer on the list */
466 spin_lock(&sb_lock);
467 if (__put_super_and_need_restart(sb))
468 goto rescan;
469 }
470 }
471 spin_unlock(&sb_lock);
472 return NULL;
473 }
474
475 EXPORT_SYMBOL(get_super);
476
477 struct super_block * user_get_super(dev_t dev)
478 {
479 struct super_block *sb;
480
481 spin_lock(&sb_lock);
482 rescan:
483 list_for_each_entry(sb, &super_blocks, s_list) {
484 if (sb->s_dev == dev) {
485 sb->s_count++;
486 spin_unlock(&sb_lock);
487 down_read(&sb->s_umount);
488 if (sb->s_root)
489 return sb;
490 up_read(&sb->s_umount);
491 /* restart only when sb is no longer on the list */
492 spin_lock(&sb_lock);
493 if (__put_super_and_need_restart(sb))
494 goto rescan;
495 }
496 }
497 spin_unlock(&sb_lock);
498 return NULL;
499 }
500
501 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
502 {
503 struct super_block *s;
504 struct ustat tmp;
505 struct kstatfs sbuf;
506 int err = -EINVAL;
507
508 s = user_get_super(new_decode_dev(dev));
509 if (s == NULL)
510 goto out;
511 err = vfs_statfs(s->s_root, &sbuf);
512 drop_super(s);
513 if (err)
514 goto out;
515
516 memset(&tmp,0,sizeof(struct ustat));
517 tmp.f_tfree = sbuf.f_bfree;
518 tmp.f_tinode = sbuf.f_ffree;
519
520 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
521 out:
522 return err;
523 }
524
525 /**
526 * do_remount_sb - asks filesystem to change mount options.
527 * @sb: superblock in question
528 * @flags: numeric part of options
529 * @data: the rest of options
530 * @force: whether or not to force the change
531 *
532 * Alters the mount options of a mounted file system.
533 */
534 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
535 {
536 int retval;
537 int remount_rw;
538
539 #ifdef CONFIG_BLOCK
540 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
541 return -EACCES;
542 #endif
543 if (flags & MS_RDONLY)
544 acct_auto_close(sb);
545 shrink_dcache_sb(sb);
546 sync_filesystem(sb);
547
548 /* If we are remounting RDONLY and current sb is read/write,
549 make sure there are no rw files opened */
550 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
551 if (force)
552 mark_files_ro(sb);
553 else if (!fs_may_remount_ro(sb))
554 return -EBUSY;
555 retval = vfs_dq_off(sb, 1);
556 if (retval < 0 && retval != -ENOSYS)
557 return -EBUSY;
558 }
559 remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
560
561 if (sb->s_op->remount_fs) {
562 lock_super(sb);
563 retval = sb->s_op->remount_fs(sb, &flags, data);
564 unlock_super(sb);
565 if (retval)
566 return retval;
567 }
568 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
569 if (remount_rw)
570 vfs_dq_quota_on_remount(sb);
571 return 0;
572 }
573
574 static void do_emergency_remount(struct work_struct *work)
575 {
576 struct super_block *sb;
577
578 spin_lock(&sb_lock);
579 list_for_each_entry(sb, &super_blocks, s_list) {
580 sb->s_count++;
581 spin_unlock(&sb_lock);
582 down_write(&sb->s_umount);
583 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
584 /*
585 * ->remount_fs needs lock_kernel().
586 *
587 * What lock protects sb->s_flags??
588 */
589 lock_kernel();
590 do_remount_sb(sb, MS_RDONLY, NULL, 1);
591 unlock_kernel();
592 }
593 up_write(&sb->s_umount);
594 put_super(sb);
595 spin_lock(&sb_lock);
596 }
597 spin_unlock(&sb_lock);
598 kfree(work);
599 printk("Emergency Remount complete\n");
600 }
601
602 void emergency_remount(void)
603 {
604 struct work_struct *work;
605
606 work = kmalloc(sizeof(*work), GFP_ATOMIC);
607 if (work) {
608 INIT_WORK(work, do_emergency_remount);
609 schedule_work(work);
610 }
611 }
612
613 /*
614 * Unnamed block devices are dummy devices used by virtual
615 * filesystems which don't use real block-devices. -- jrs
616 */
617
618 static DEFINE_IDA(unnamed_dev_ida);
619 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
620
621 int set_anon_super(struct super_block *s, void *data)
622 {
623 int dev;
624 int error;
625
626 retry:
627 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
628 return -ENOMEM;
629 spin_lock(&unnamed_dev_lock);
630 error = ida_get_new(&unnamed_dev_ida, &dev);
631 spin_unlock(&unnamed_dev_lock);
632 if (error == -EAGAIN)
633 /* We raced and lost with another CPU. */
634 goto retry;
635 else if (error)
636 return -EAGAIN;
637
638 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
639 spin_lock(&unnamed_dev_lock);
640 ida_remove(&unnamed_dev_ida, dev);
641 spin_unlock(&unnamed_dev_lock);
642 return -EMFILE;
643 }
644 s->s_dev = MKDEV(0, dev & MINORMASK);
645 return 0;
646 }
647
648 EXPORT_SYMBOL(set_anon_super);
649
650 void kill_anon_super(struct super_block *sb)
651 {
652 int slot = MINOR(sb->s_dev);
653
654 generic_shutdown_super(sb);
655 spin_lock(&unnamed_dev_lock);
656 ida_remove(&unnamed_dev_ida, slot);
657 spin_unlock(&unnamed_dev_lock);
658 }
659
660 EXPORT_SYMBOL(kill_anon_super);
661
662 void kill_litter_super(struct super_block *sb)
663 {
664 if (sb->s_root)
665 d_genocide(sb->s_root);
666 kill_anon_super(sb);
667 }
668
669 EXPORT_SYMBOL(kill_litter_super);
670
671 static int ns_test_super(struct super_block *sb, void *data)
672 {
673 return sb->s_fs_info == data;
674 }
675
676 static int ns_set_super(struct super_block *sb, void *data)
677 {
678 sb->s_fs_info = data;
679 return set_anon_super(sb, NULL);
680 }
681
682 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
683 int (*fill_super)(struct super_block *, void *, int),
684 struct vfsmount *mnt)
685 {
686 struct super_block *sb;
687
688 sb = sget(fs_type, ns_test_super, ns_set_super, data);
689 if (IS_ERR(sb))
690 return PTR_ERR(sb);
691
692 if (!sb->s_root) {
693 int err;
694 sb->s_flags = flags;
695 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
696 if (err) {
697 deactivate_locked_super(sb);
698 return err;
699 }
700
701 sb->s_flags |= MS_ACTIVE;
702 }
703
704 simple_set_mnt(mnt, sb);
705 return 0;
706 }
707
708 EXPORT_SYMBOL(get_sb_ns);
709
710 #ifdef CONFIG_BLOCK
711 static int set_bdev_super(struct super_block *s, void *data)
712 {
713 s->s_bdev = data;
714 s->s_dev = s->s_bdev->bd_dev;
715 return 0;
716 }
717
718 static int test_bdev_super(struct super_block *s, void *data)
719 {
720 return (void *)s->s_bdev == data;
721 }
722
723 int get_sb_bdev(struct file_system_type *fs_type,
724 int flags, const char *dev_name, void *data,
725 int (*fill_super)(struct super_block *, void *, int),
726 struct vfsmount *mnt)
727 {
728 struct block_device *bdev;
729 struct super_block *s;
730 fmode_t mode = FMODE_READ;
731 int error = 0;
732
733 if (!(flags & MS_RDONLY))
734 mode |= FMODE_WRITE;
735
736 bdev = open_bdev_exclusive(dev_name, mode, fs_type);
737 if (IS_ERR(bdev))
738 return PTR_ERR(bdev);
739
740 /*
741 * once the super is inserted into the list by sget, s_umount
742 * will protect the lockfs code from trying to start a snapshot
743 * while we are mounting
744 */
745 down(&bdev->bd_mount_sem);
746 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
747 up(&bdev->bd_mount_sem);
748 if (IS_ERR(s))
749 goto error_s;
750
751 if (s->s_root) {
752 if ((flags ^ s->s_flags) & MS_RDONLY) {
753 deactivate_locked_super(s);
754 error = -EBUSY;
755 goto error_bdev;
756 }
757
758 close_bdev_exclusive(bdev, mode);
759 } else {
760 char b[BDEVNAME_SIZE];
761
762 s->s_flags = flags;
763 s->s_mode = mode;
764 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
765 sb_set_blocksize(s, block_size(bdev));
766 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
767 if (error) {
768 deactivate_locked_super(s);
769 goto error;
770 }
771
772 s->s_flags |= MS_ACTIVE;
773 bdev->bd_super = s;
774 }
775
776 simple_set_mnt(mnt, s);
777 return 0;
778
779 error_s:
780 error = PTR_ERR(s);
781 error_bdev:
782 close_bdev_exclusive(bdev, mode);
783 error:
784 return error;
785 }
786
787 EXPORT_SYMBOL(get_sb_bdev);
788
789 void kill_block_super(struct super_block *sb)
790 {
791 struct block_device *bdev = sb->s_bdev;
792 fmode_t mode = sb->s_mode;
793
794 bdev->bd_super = NULL;
795 generic_shutdown_super(sb);
796 sync_blockdev(bdev);
797 close_bdev_exclusive(bdev, mode);
798 }
799
800 EXPORT_SYMBOL(kill_block_super);
801 #endif
802
803 int get_sb_nodev(struct file_system_type *fs_type,
804 int flags, void *data,
805 int (*fill_super)(struct super_block *, void *, int),
806 struct vfsmount *mnt)
807 {
808 int error;
809 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
810
811 if (IS_ERR(s))
812 return PTR_ERR(s);
813
814 s->s_flags = flags;
815
816 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
817 if (error) {
818 deactivate_locked_super(s);
819 return error;
820 }
821 s->s_flags |= MS_ACTIVE;
822 simple_set_mnt(mnt, s);
823 return 0;
824 }
825
826 EXPORT_SYMBOL(get_sb_nodev);
827
828 static int compare_single(struct super_block *s, void *p)
829 {
830 return 1;
831 }
832
833 int get_sb_single(struct file_system_type *fs_type,
834 int flags, void *data,
835 int (*fill_super)(struct super_block *, void *, int),
836 struct vfsmount *mnt)
837 {
838 struct super_block *s;
839 int error;
840
841 s = sget(fs_type, compare_single, set_anon_super, NULL);
842 if (IS_ERR(s))
843 return PTR_ERR(s);
844 if (!s->s_root) {
845 s->s_flags = flags;
846 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
847 if (error) {
848 deactivate_locked_super(s);
849 return error;
850 }
851 s->s_flags |= MS_ACTIVE;
852 }
853 do_remount_sb(s, flags, data, 0);
854 simple_set_mnt(mnt, s);
855 return 0;
856 }
857
858 EXPORT_SYMBOL(get_sb_single);
859
860 struct vfsmount *
861 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
862 {
863 struct vfsmount *mnt;
864 char *secdata = NULL;
865 int error;
866
867 if (!type)
868 return ERR_PTR(-ENODEV);
869
870 error = -ENOMEM;
871 mnt = alloc_vfsmnt(name);
872 if (!mnt)
873 goto out;
874
875 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
876 secdata = alloc_secdata();
877 if (!secdata)
878 goto out_mnt;
879
880 error = security_sb_copy_data(data, secdata);
881 if (error)
882 goto out_free_secdata;
883 }
884
885 error = type->get_sb(type, flags, name, data, mnt);
886 if (error < 0)
887 goto out_free_secdata;
888 BUG_ON(!mnt->mnt_sb);
889
890 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
891 if (error)
892 goto out_sb;
893
894 mnt->mnt_mountpoint = mnt->mnt_root;
895 mnt->mnt_parent = mnt;
896 up_write(&mnt->mnt_sb->s_umount);
897 free_secdata(secdata);
898 return mnt;
899 out_sb:
900 dput(mnt->mnt_root);
901 deactivate_locked_super(mnt->mnt_sb);
902 out_free_secdata:
903 free_secdata(secdata);
904 out_mnt:
905 free_vfsmnt(mnt);
906 out:
907 return ERR_PTR(error);
908 }
909
910 EXPORT_SYMBOL_GPL(vfs_kern_mount);
911
912 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
913 {
914 int err;
915 const char *subtype = strchr(fstype, '.');
916 if (subtype) {
917 subtype++;
918 err = -EINVAL;
919 if (!subtype[0])
920 goto err;
921 } else
922 subtype = "";
923
924 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
925 err = -ENOMEM;
926 if (!mnt->mnt_sb->s_subtype)
927 goto err;
928 return mnt;
929
930 err:
931 mntput(mnt);
932 return ERR_PTR(err);
933 }
934
935 struct vfsmount *
936 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
937 {
938 struct file_system_type *type = get_fs_type(fstype);
939 struct vfsmount *mnt;
940 if (!type)
941 return ERR_PTR(-ENODEV);
942 mnt = vfs_kern_mount(type, flags, name, data);
943 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
944 !mnt->mnt_sb->s_subtype)
945 mnt = fs_set_subtype(mnt, fstype);
946 put_filesystem(type);
947 return mnt;
948 }
949 EXPORT_SYMBOL_GPL(do_kern_mount);
950
951 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
952 {
953 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
954 }
955
956 EXPORT_SYMBOL_GPL(kern_mount_data);
This page took 0.050396 seconds and 5 git commands to generate.