fs: move mark_files_ro into file_table.c
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h> /* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h> /* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <linux/file.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43 #include "internal.h"
44
45
46 LIST_HEAD(super_blocks);
47 DEFINE_SPINLOCK(sb_lock);
48
49 /**
50 * alloc_super - create new superblock
51 * @type: filesystem type superblock should belong to
52 *
53 * Allocates and initializes a new &struct super_block. alloc_super()
54 * returns a pointer new superblock or %NULL if allocation had failed.
55 */
56 static struct super_block *alloc_super(struct file_system_type *type)
57 {
58 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
59 static struct super_operations default_op;
60
61 if (s) {
62 if (security_sb_alloc(s)) {
63 kfree(s);
64 s = NULL;
65 goto out;
66 }
67 INIT_LIST_HEAD(&s->s_dirty);
68 INIT_LIST_HEAD(&s->s_io);
69 INIT_LIST_HEAD(&s->s_more_io);
70 INIT_LIST_HEAD(&s->s_files);
71 INIT_LIST_HEAD(&s->s_instances);
72 INIT_HLIST_HEAD(&s->s_anon);
73 INIT_LIST_HEAD(&s->s_inodes);
74 INIT_LIST_HEAD(&s->s_dentry_lru);
75 INIT_LIST_HEAD(&s->s_async_list);
76 init_rwsem(&s->s_umount);
77 mutex_init(&s->s_lock);
78 lockdep_set_class(&s->s_umount, &type->s_umount_key);
79 /*
80 * The locking rules for s_lock are up to the
81 * filesystem. For example ext3fs has different
82 * lock ordering than usbfs:
83 */
84 lockdep_set_class(&s->s_lock, &type->s_lock_key);
85 /*
86 * sget() can have s_umount recursion.
87 *
88 * When it cannot find a suitable sb, it allocates a new
89 * one (this one), and tries again to find a suitable old
90 * one.
91 *
92 * In case that succeeds, it will acquire the s_umount
93 * lock of the old one. Since these are clearly distrinct
94 * locks, and this object isn't exposed yet, there's no
95 * risk of deadlocks.
96 *
97 * Annotate this by putting this lock in a different
98 * subclass.
99 */
100 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
101 s->s_count = S_BIAS;
102 atomic_set(&s->s_active, 1);
103 mutex_init(&s->s_vfs_rename_mutex);
104 mutex_init(&s->s_dquot.dqio_mutex);
105 mutex_init(&s->s_dquot.dqonoff_mutex);
106 init_rwsem(&s->s_dquot.dqptr_sem);
107 init_waitqueue_head(&s->s_wait_unfrozen);
108 s->s_maxbytes = MAX_NON_LFS;
109 s->dq_op = sb_dquot_ops;
110 s->s_qcop = sb_quotactl_ops;
111 s->s_op = &default_op;
112 s->s_time_gran = 1000000000;
113 }
114 out:
115 return s;
116 }
117
118 /**
119 * destroy_super - frees a superblock
120 * @s: superblock to free
121 *
122 * Frees a superblock.
123 */
124 static inline void destroy_super(struct super_block *s)
125 {
126 security_sb_free(s);
127 kfree(s->s_subtype);
128 kfree(s->s_options);
129 kfree(s);
130 }
131
132 /* Superblock refcounting */
133
134 /*
135 * Drop a superblock's refcount. Returns non-zero if the superblock was
136 * destroyed. The caller must hold sb_lock.
137 */
138 static int __put_super(struct super_block *sb)
139 {
140 int ret = 0;
141
142 if (!--sb->s_count) {
143 destroy_super(sb);
144 ret = 1;
145 }
146 return ret;
147 }
148
149 /*
150 * Drop a superblock's refcount.
151 * Returns non-zero if the superblock is about to be destroyed and
152 * at least is already removed from super_blocks list, so if we are
153 * making a loop through super blocks then we need to restart.
154 * The caller must hold sb_lock.
155 */
156 int __put_super_and_need_restart(struct super_block *sb)
157 {
158 /* check for race with generic_shutdown_super() */
159 if (list_empty(&sb->s_list)) {
160 /* super block is removed, need to restart... */
161 __put_super(sb);
162 return 1;
163 }
164 /* can't be the last, since s_list is still in use */
165 sb->s_count--;
166 BUG_ON(sb->s_count == 0);
167 return 0;
168 }
169
170 /**
171 * put_super - drop a temporary reference to superblock
172 * @sb: superblock in question
173 *
174 * Drops a temporary reference, frees superblock if there's no
175 * references left.
176 */
177 static void put_super(struct super_block *sb)
178 {
179 spin_lock(&sb_lock);
180 __put_super(sb);
181 spin_unlock(&sb_lock);
182 }
183
184
185 /**
186 * deactivate_super - drop an active reference to superblock
187 * @s: superblock to deactivate
188 *
189 * Drops an active reference to superblock, acquiring a temprory one if
190 * there is no active references left. In that case we lock superblock,
191 * tell fs driver to shut it down and drop the temporary reference we
192 * had just acquired.
193 */
194 void deactivate_super(struct super_block *s)
195 {
196 struct file_system_type *fs = s->s_type;
197 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
198 s->s_count -= S_BIAS-1;
199 spin_unlock(&sb_lock);
200 vfs_dq_off(s, 0);
201 down_write(&s->s_umount);
202 fs->kill_sb(s);
203 put_filesystem(fs);
204 put_super(s);
205 }
206 }
207
208 EXPORT_SYMBOL(deactivate_super);
209
210 /**
211 * deactivate_locked_super - drop an active reference to superblock
212 * @s: superblock to deactivate
213 *
214 * Equivalent of up_write(&s->s_umount); deactivate_super(s);, except that
215 * it does not unlock it until it's all over. As the result, it's safe to
216 * use to dispose of new superblock on ->get_sb() failure exits - nobody
217 * will see the sucker until it's all over. Equivalent using up_write +
218 * deactivate_super is safe for that purpose only if superblock is either
219 * safe to use or has NULL ->s_root when we unlock.
220 */
221 void deactivate_locked_super(struct super_block *s)
222 {
223 struct file_system_type *fs = s->s_type;
224 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
225 s->s_count -= S_BIAS-1;
226 spin_unlock(&sb_lock);
227 vfs_dq_off(s, 0);
228 fs->kill_sb(s);
229 put_filesystem(fs);
230 put_super(s);
231 } else {
232 up_write(&s->s_umount);
233 }
234 }
235
236 EXPORT_SYMBOL(deactivate_locked_super);
237
238 /**
239 * grab_super - acquire an active reference
240 * @s: reference we are trying to make active
241 *
242 * Tries to acquire an active reference. grab_super() is used when we
243 * had just found a superblock in super_blocks or fs_type->fs_supers
244 * and want to turn it into a full-blown active reference. grab_super()
245 * is called with sb_lock held and drops it. Returns 1 in case of
246 * success, 0 if we had failed (superblock contents was already dead or
247 * dying when grab_super() had been called).
248 */
249 static int grab_super(struct super_block *s) __releases(sb_lock)
250 {
251 s->s_count++;
252 spin_unlock(&sb_lock);
253 down_write(&s->s_umount);
254 if (s->s_root) {
255 spin_lock(&sb_lock);
256 if (s->s_count > S_BIAS) {
257 atomic_inc(&s->s_active);
258 s->s_count--;
259 spin_unlock(&sb_lock);
260 return 1;
261 }
262 spin_unlock(&sb_lock);
263 }
264 up_write(&s->s_umount);
265 put_super(s);
266 yield();
267 return 0;
268 }
269
270 /*
271 * Superblock locking. We really ought to get rid of these two.
272 */
273 void lock_super(struct super_block * sb)
274 {
275 get_fs_excl();
276 mutex_lock(&sb->s_lock);
277 }
278
279 void unlock_super(struct super_block * sb)
280 {
281 put_fs_excl();
282 mutex_unlock(&sb->s_lock);
283 }
284
285 EXPORT_SYMBOL(lock_super);
286 EXPORT_SYMBOL(unlock_super);
287
288 /*
289 * Write out and wait upon all dirty data associated with this
290 * superblock. Filesystem data as well as the underlying block
291 * device. Takes the superblock lock. Requires a second blkdev
292 * flush by the caller to complete the operation.
293 */
294 void __fsync_super(struct super_block *sb)
295 {
296 sync_inodes_sb(sb, 0);
297 vfs_dq_sync(sb);
298 lock_super(sb);
299 if (sb->s_dirt && sb->s_op->write_super)
300 sb->s_op->write_super(sb);
301 unlock_super(sb);
302 if (sb->s_op->sync_fs)
303 sb->s_op->sync_fs(sb, 1);
304 sync_blockdev(sb->s_bdev);
305 sync_inodes_sb(sb, 1);
306 }
307
308 /*
309 * Write out and wait upon all dirty data associated with this
310 * superblock. Filesystem data as well as the underlying block
311 * device. Takes the superblock lock.
312 */
313 int fsync_super(struct super_block *sb)
314 {
315 __fsync_super(sb);
316 return sync_blockdev(sb->s_bdev);
317 }
318 EXPORT_SYMBOL_GPL(fsync_super);
319
320 /**
321 * generic_shutdown_super - common helper for ->kill_sb()
322 * @sb: superblock to kill
323 *
324 * generic_shutdown_super() does all fs-independent work on superblock
325 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
326 * that need destruction out of superblock, call generic_shutdown_super()
327 * and release aforementioned objects. Note: dentries and inodes _are_
328 * taken care of and do not need specific handling.
329 *
330 * Upon calling this function, the filesystem may no longer alter or
331 * rearrange the set of dentries belonging to this super_block, nor may it
332 * change the attachments of dentries to inodes.
333 */
334 void generic_shutdown_super(struct super_block *sb)
335 {
336 const struct super_operations *sop = sb->s_op;
337
338
339 if (sb->s_root) {
340 shrink_dcache_for_umount(sb);
341 fsync_super(sb);
342 lock_super(sb);
343 sb->s_flags &= ~MS_ACTIVE;
344
345 /*
346 * wait for asynchronous fs operations to finish before going further
347 */
348 async_synchronize_full_domain(&sb->s_async_list);
349
350 /* bad name - it should be evict_inodes() */
351 invalidate_inodes(sb);
352 lock_kernel();
353
354 if (sop->write_super && sb->s_dirt)
355 sop->write_super(sb);
356 if (sop->put_super)
357 sop->put_super(sb);
358
359 /* Forget any remaining inodes */
360 if (invalidate_inodes(sb)) {
361 printk("VFS: Busy inodes after unmount of %s. "
362 "Self-destruct in 5 seconds. Have a nice day...\n",
363 sb->s_id);
364 }
365
366 unlock_kernel();
367 unlock_super(sb);
368 }
369 spin_lock(&sb_lock);
370 /* should be initialized for __put_super_and_need_restart() */
371 list_del_init(&sb->s_list);
372 list_del(&sb->s_instances);
373 spin_unlock(&sb_lock);
374 up_write(&sb->s_umount);
375 }
376
377 EXPORT_SYMBOL(generic_shutdown_super);
378
379 /**
380 * sget - find or create a superblock
381 * @type: filesystem type superblock should belong to
382 * @test: comparison callback
383 * @set: setup callback
384 * @data: argument to each of them
385 */
386 struct super_block *sget(struct file_system_type *type,
387 int (*test)(struct super_block *,void *),
388 int (*set)(struct super_block *,void *),
389 void *data)
390 {
391 struct super_block *s = NULL;
392 struct super_block *old;
393 int err;
394
395 retry:
396 spin_lock(&sb_lock);
397 if (test) {
398 list_for_each_entry(old, &type->fs_supers, s_instances) {
399 if (!test(old, data))
400 continue;
401 if (!grab_super(old))
402 goto retry;
403 if (s) {
404 up_write(&s->s_umount);
405 destroy_super(s);
406 }
407 return old;
408 }
409 }
410 if (!s) {
411 spin_unlock(&sb_lock);
412 s = alloc_super(type);
413 if (!s)
414 return ERR_PTR(-ENOMEM);
415 goto retry;
416 }
417
418 err = set(s, data);
419 if (err) {
420 spin_unlock(&sb_lock);
421 up_write(&s->s_umount);
422 destroy_super(s);
423 return ERR_PTR(err);
424 }
425 s->s_type = type;
426 strlcpy(s->s_id, type->name, sizeof(s->s_id));
427 list_add_tail(&s->s_list, &super_blocks);
428 list_add(&s->s_instances, &type->fs_supers);
429 spin_unlock(&sb_lock);
430 get_filesystem(type);
431 return s;
432 }
433
434 EXPORT_SYMBOL(sget);
435
436 void drop_super(struct super_block *sb)
437 {
438 up_read(&sb->s_umount);
439 put_super(sb);
440 }
441
442 EXPORT_SYMBOL(drop_super);
443
444 static inline void write_super(struct super_block *sb)
445 {
446 lock_super(sb);
447 if (sb->s_root && sb->s_dirt)
448 if (sb->s_op->write_super)
449 sb->s_op->write_super(sb);
450 unlock_super(sb);
451 }
452
453 /*
454 * Note: check the dirty flag before waiting, so we don't
455 * hold up the sync while mounting a device. (The newly
456 * mounted device won't need syncing.)
457 */
458 void sync_supers(void)
459 {
460 struct super_block *sb;
461
462 spin_lock(&sb_lock);
463 restart:
464 list_for_each_entry(sb, &super_blocks, s_list) {
465 if (sb->s_dirt) {
466 sb->s_count++;
467 spin_unlock(&sb_lock);
468 down_read(&sb->s_umount);
469 write_super(sb);
470 up_read(&sb->s_umount);
471 spin_lock(&sb_lock);
472 if (__put_super_and_need_restart(sb))
473 goto restart;
474 }
475 }
476 spin_unlock(&sb_lock);
477 }
478
479 /*
480 * Call the ->sync_fs super_op against all filesystems which are r/w and
481 * which implement it.
482 *
483 * This operation is careful to avoid the livelock which could easily happen
484 * if two or more filesystems are being continuously dirtied. s_need_sync_fs
485 * is used only here. We set it against all filesystems and then clear it as
486 * we sync them. So redirtied filesystems are skipped.
487 *
488 * But if process A is currently running sync_filesystems and then process B
489 * calls sync_filesystems as well, process B will set all the s_need_sync_fs
490 * flags again, which will cause process A to resync everything. Fix that with
491 * a local mutex.
492 *
493 * (Fabian) Avoid sync_fs with clean fs & wait mode 0
494 */
495 void sync_filesystems(int wait)
496 {
497 struct super_block *sb;
498 static DEFINE_MUTEX(mutex);
499
500 mutex_lock(&mutex); /* Could be down_interruptible */
501 spin_lock(&sb_lock);
502 list_for_each_entry(sb, &super_blocks, s_list) {
503 if (!sb->s_op->sync_fs)
504 continue;
505 if (sb->s_flags & MS_RDONLY)
506 continue;
507 sb->s_need_sync_fs = 1;
508 }
509
510 restart:
511 list_for_each_entry(sb, &super_blocks, s_list) {
512 if (!sb->s_need_sync_fs)
513 continue;
514 sb->s_need_sync_fs = 0;
515 if (sb->s_flags & MS_RDONLY)
516 continue; /* hm. Was remounted r/o meanwhile */
517 sb->s_count++;
518 spin_unlock(&sb_lock);
519 down_read(&sb->s_umount);
520 async_synchronize_full_domain(&sb->s_async_list);
521 if (sb->s_root && (wait || sb->s_dirt))
522 sb->s_op->sync_fs(sb, wait);
523 up_read(&sb->s_umount);
524 /* restart only when sb is no longer on the list */
525 spin_lock(&sb_lock);
526 if (__put_super_and_need_restart(sb))
527 goto restart;
528 }
529 spin_unlock(&sb_lock);
530 mutex_unlock(&mutex);
531 }
532
533 /**
534 * get_super - get the superblock of a device
535 * @bdev: device to get the superblock for
536 *
537 * Scans the superblock list and finds the superblock of the file system
538 * mounted on the device given. %NULL is returned if no match is found.
539 */
540
541 struct super_block * get_super(struct block_device *bdev)
542 {
543 struct super_block *sb;
544
545 if (!bdev)
546 return NULL;
547
548 spin_lock(&sb_lock);
549 rescan:
550 list_for_each_entry(sb, &super_blocks, s_list) {
551 if (sb->s_bdev == bdev) {
552 sb->s_count++;
553 spin_unlock(&sb_lock);
554 down_read(&sb->s_umount);
555 if (sb->s_root)
556 return sb;
557 up_read(&sb->s_umount);
558 /* restart only when sb is no longer on the list */
559 spin_lock(&sb_lock);
560 if (__put_super_and_need_restart(sb))
561 goto rescan;
562 }
563 }
564 spin_unlock(&sb_lock);
565 return NULL;
566 }
567
568 EXPORT_SYMBOL(get_super);
569
570 struct super_block * user_get_super(dev_t dev)
571 {
572 struct super_block *sb;
573
574 spin_lock(&sb_lock);
575 rescan:
576 list_for_each_entry(sb, &super_blocks, s_list) {
577 if (sb->s_dev == dev) {
578 sb->s_count++;
579 spin_unlock(&sb_lock);
580 down_read(&sb->s_umount);
581 if (sb->s_root)
582 return sb;
583 up_read(&sb->s_umount);
584 /* restart only when sb is no longer on the list */
585 spin_lock(&sb_lock);
586 if (__put_super_and_need_restart(sb))
587 goto rescan;
588 }
589 }
590 spin_unlock(&sb_lock);
591 return NULL;
592 }
593
594 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
595 {
596 struct super_block *s;
597 struct ustat tmp;
598 struct kstatfs sbuf;
599 int err = -EINVAL;
600
601 s = user_get_super(new_decode_dev(dev));
602 if (s == NULL)
603 goto out;
604 err = vfs_statfs(s->s_root, &sbuf);
605 drop_super(s);
606 if (err)
607 goto out;
608
609 memset(&tmp,0,sizeof(struct ustat));
610 tmp.f_tfree = sbuf.f_bfree;
611 tmp.f_tinode = sbuf.f_ffree;
612
613 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
614 out:
615 return err;
616 }
617
618 /**
619 * do_remount_sb - asks filesystem to change mount options.
620 * @sb: superblock in question
621 * @flags: numeric part of options
622 * @data: the rest of options
623 * @force: whether or not to force the change
624 *
625 * Alters the mount options of a mounted file system.
626 */
627 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
628 {
629 int retval;
630 int remount_rw;
631
632 #ifdef CONFIG_BLOCK
633 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
634 return -EACCES;
635 #endif
636 if (flags & MS_RDONLY)
637 acct_auto_close(sb);
638 shrink_dcache_sb(sb);
639 fsync_super(sb);
640
641 /* If we are remounting RDONLY and current sb is read/write,
642 make sure there are no rw files opened */
643 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
644 if (force)
645 mark_files_ro(sb);
646 else if (!fs_may_remount_ro(sb))
647 return -EBUSY;
648 retval = vfs_dq_off(sb, 1);
649 if (retval < 0 && retval != -ENOSYS)
650 return -EBUSY;
651 }
652 remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
653
654 if (sb->s_op->remount_fs) {
655 lock_super(sb);
656 retval = sb->s_op->remount_fs(sb, &flags, data);
657 unlock_super(sb);
658 if (retval)
659 return retval;
660 }
661 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
662 if (remount_rw)
663 vfs_dq_quota_on_remount(sb);
664 return 0;
665 }
666
667 static void do_emergency_remount(struct work_struct *work)
668 {
669 struct super_block *sb;
670
671 spin_lock(&sb_lock);
672 list_for_each_entry(sb, &super_blocks, s_list) {
673 sb->s_count++;
674 spin_unlock(&sb_lock);
675 down_read(&sb->s_umount);
676 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
677 /*
678 * ->remount_fs needs lock_kernel().
679 *
680 * What lock protects sb->s_flags??
681 */
682 lock_kernel();
683 do_remount_sb(sb, MS_RDONLY, NULL, 1);
684 unlock_kernel();
685 }
686 drop_super(sb);
687 spin_lock(&sb_lock);
688 }
689 spin_unlock(&sb_lock);
690 kfree(work);
691 printk("Emergency Remount complete\n");
692 }
693
694 void emergency_remount(void)
695 {
696 struct work_struct *work;
697
698 work = kmalloc(sizeof(*work), GFP_ATOMIC);
699 if (work) {
700 INIT_WORK(work, do_emergency_remount);
701 schedule_work(work);
702 }
703 }
704
705 /*
706 * Unnamed block devices are dummy devices used by virtual
707 * filesystems which don't use real block-devices. -- jrs
708 */
709
710 static DEFINE_IDA(unnamed_dev_ida);
711 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
712
713 int set_anon_super(struct super_block *s, void *data)
714 {
715 int dev;
716 int error;
717
718 retry:
719 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
720 return -ENOMEM;
721 spin_lock(&unnamed_dev_lock);
722 error = ida_get_new(&unnamed_dev_ida, &dev);
723 spin_unlock(&unnamed_dev_lock);
724 if (error == -EAGAIN)
725 /* We raced and lost with another CPU. */
726 goto retry;
727 else if (error)
728 return -EAGAIN;
729
730 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
731 spin_lock(&unnamed_dev_lock);
732 ida_remove(&unnamed_dev_ida, dev);
733 spin_unlock(&unnamed_dev_lock);
734 return -EMFILE;
735 }
736 s->s_dev = MKDEV(0, dev & MINORMASK);
737 return 0;
738 }
739
740 EXPORT_SYMBOL(set_anon_super);
741
742 void kill_anon_super(struct super_block *sb)
743 {
744 int slot = MINOR(sb->s_dev);
745
746 generic_shutdown_super(sb);
747 spin_lock(&unnamed_dev_lock);
748 ida_remove(&unnamed_dev_ida, slot);
749 spin_unlock(&unnamed_dev_lock);
750 }
751
752 EXPORT_SYMBOL(kill_anon_super);
753
754 void kill_litter_super(struct super_block *sb)
755 {
756 if (sb->s_root)
757 d_genocide(sb->s_root);
758 kill_anon_super(sb);
759 }
760
761 EXPORT_SYMBOL(kill_litter_super);
762
763 static int ns_test_super(struct super_block *sb, void *data)
764 {
765 return sb->s_fs_info == data;
766 }
767
768 static int ns_set_super(struct super_block *sb, void *data)
769 {
770 sb->s_fs_info = data;
771 return set_anon_super(sb, NULL);
772 }
773
774 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
775 int (*fill_super)(struct super_block *, void *, int),
776 struct vfsmount *mnt)
777 {
778 struct super_block *sb;
779
780 sb = sget(fs_type, ns_test_super, ns_set_super, data);
781 if (IS_ERR(sb))
782 return PTR_ERR(sb);
783
784 if (!sb->s_root) {
785 int err;
786 sb->s_flags = flags;
787 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
788 if (err) {
789 deactivate_locked_super(sb);
790 return err;
791 }
792
793 sb->s_flags |= MS_ACTIVE;
794 }
795
796 simple_set_mnt(mnt, sb);
797 return 0;
798 }
799
800 EXPORT_SYMBOL(get_sb_ns);
801
802 #ifdef CONFIG_BLOCK
803 static int set_bdev_super(struct super_block *s, void *data)
804 {
805 s->s_bdev = data;
806 s->s_dev = s->s_bdev->bd_dev;
807 return 0;
808 }
809
810 static int test_bdev_super(struct super_block *s, void *data)
811 {
812 return (void *)s->s_bdev == data;
813 }
814
815 int get_sb_bdev(struct file_system_type *fs_type,
816 int flags, const char *dev_name, void *data,
817 int (*fill_super)(struct super_block *, void *, int),
818 struct vfsmount *mnt)
819 {
820 struct block_device *bdev;
821 struct super_block *s;
822 fmode_t mode = FMODE_READ;
823 int error = 0;
824
825 if (!(flags & MS_RDONLY))
826 mode |= FMODE_WRITE;
827
828 bdev = open_bdev_exclusive(dev_name, mode, fs_type);
829 if (IS_ERR(bdev))
830 return PTR_ERR(bdev);
831
832 /*
833 * once the super is inserted into the list by sget, s_umount
834 * will protect the lockfs code from trying to start a snapshot
835 * while we are mounting
836 */
837 down(&bdev->bd_mount_sem);
838 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
839 up(&bdev->bd_mount_sem);
840 if (IS_ERR(s))
841 goto error_s;
842
843 if (s->s_root) {
844 if ((flags ^ s->s_flags) & MS_RDONLY) {
845 deactivate_locked_super(s);
846 error = -EBUSY;
847 goto error_bdev;
848 }
849
850 close_bdev_exclusive(bdev, mode);
851 } else {
852 char b[BDEVNAME_SIZE];
853
854 s->s_flags = flags;
855 s->s_mode = mode;
856 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
857 sb_set_blocksize(s, block_size(bdev));
858 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
859 if (error) {
860 deactivate_locked_super(s);
861 goto error;
862 }
863
864 s->s_flags |= MS_ACTIVE;
865 bdev->bd_super = s;
866 }
867
868 simple_set_mnt(mnt, s);
869 return 0;
870
871 error_s:
872 error = PTR_ERR(s);
873 error_bdev:
874 close_bdev_exclusive(bdev, mode);
875 error:
876 return error;
877 }
878
879 EXPORT_SYMBOL(get_sb_bdev);
880
881 void kill_block_super(struct super_block *sb)
882 {
883 struct block_device *bdev = sb->s_bdev;
884 fmode_t mode = sb->s_mode;
885
886 bdev->bd_super = NULL;
887 generic_shutdown_super(sb);
888 sync_blockdev(bdev);
889 close_bdev_exclusive(bdev, mode);
890 }
891
892 EXPORT_SYMBOL(kill_block_super);
893 #endif
894
895 int get_sb_nodev(struct file_system_type *fs_type,
896 int flags, void *data,
897 int (*fill_super)(struct super_block *, void *, int),
898 struct vfsmount *mnt)
899 {
900 int error;
901 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
902
903 if (IS_ERR(s))
904 return PTR_ERR(s);
905
906 s->s_flags = flags;
907
908 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
909 if (error) {
910 deactivate_locked_super(s);
911 return error;
912 }
913 s->s_flags |= MS_ACTIVE;
914 simple_set_mnt(mnt, s);
915 return 0;
916 }
917
918 EXPORT_SYMBOL(get_sb_nodev);
919
920 static int compare_single(struct super_block *s, void *p)
921 {
922 return 1;
923 }
924
925 int get_sb_single(struct file_system_type *fs_type,
926 int flags, void *data,
927 int (*fill_super)(struct super_block *, void *, int),
928 struct vfsmount *mnt)
929 {
930 struct super_block *s;
931 int error;
932
933 s = sget(fs_type, compare_single, set_anon_super, NULL);
934 if (IS_ERR(s))
935 return PTR_ERR(s);
936 if (!s->s_root) {
937 s->s_flags = flags;
938 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
939 if (error) {
940 deactivate_locked_super(s);
941 return error;
942 }
943 s->s_flags |= MS_ACTIVE;
944 }
945 do_remount_sb(s, flags, data, 0);
946 simple_set_mnt(mnt, s);
947 return 0;
948 }
949
950 EXPORT_SYMBOL(get_sb_single);
951
952 struct vfsmount *
953 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
954 {
955 struct vfsmount *mnt;
956 char *secdata = NULL;
957 int error;
958
959 if (!type)
960 return ERR_PTR(-ENODEV);
961
962 error = -ENOMEM;
963 mnt = alloc_vfsmnt(name);
964 if (!mnt)
965 goto out;
966
967 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
968 secdata = alloc_secdata();
969 if (!secdata)
970 goto out_mnt;
971
972 error = security_sb_copy_data(data, secdata);
973 if (error)
974 goto out_free_secdata;
975 }
976
977 error = type->get_sb(type, flags, name, data, mnt);
978 if (error < 0)
979 goto out_free_secdata;
980 BUG_ON(!mnt->mnt_sb);
981
982 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
983 if (error)
984 goto out_sb;
985
986 mnt->mnt_mountpoint = mnt->mnt_root;
987 mnt->mnt_parent = mnt;
988 up_write(&mnt->mnt_sb->s_umount);
989 free_secdata(secdata);
990 return mnt;
991 out_sb:
992 dput(mnt->mnt_root);
993 deactivate_locked_super(mnt->mnt_sb);
994 out_free_secdata:
995 free_secdata(secdata);
996 out_mnt:
997 free_vfsmnt(mnt);
998 out:
999 return ERR_PTR(error);
1000 }
1001
1002 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1003
1004 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1005 {
1006 int err;
1007 const char *subtype = strchr(fstype, '.');
1008 if (subtype) {
1009 subtype++;
1010 err = -EINVAL;
1011 if (!subtype[0])
1012 goto err;
1013 } else
1014 subtype = "";
1015
1016 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1017 err = -ENOMEM;
1018 if (!mnt->mnt_sb->s_subtype)
1019 goto err;
1020 return mnt;
1021
1022 err:
1023 mntput(mnt);
1024 return ERR_PTR(err);
1025 }
1026
1027 struct vfsmount *
1028 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1029 {
1030 struct file_system_type *type = get_fs_type(fstype);
1031 struct vfsmount *mnt;
1032 if (!type)
1033 return ERR_PTR(-ENODEV);
1034 mnt = vfs_kern_mount(type, flags, name, data);
1035 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1036 !mnt->mnt_sb->s_subtype)
1037 mnt = fs_set_subtype(mnt, fstype);
1038 put_filesystem(type);
1039 return mnt;
1040 }
1041 EXPORT_SYMBOL_GPL(do_kern_mount);
1042
1043 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1044 {
1045 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1046 }
1047
1048 EXPORT_SYMBOL_GPL(kern_mount_data);
This page took 0.067022 seconds and 5 git commands to generate.