4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
8 * - filesystem drivers list
10 * - umount system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
40 LIST_HEAD(super_blocks
);
41 DEFINE_SPINLOCK(sb_lock
);
43 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
56 static unsigned long super_cache_scan(struct shrinker
*shrink
,
57 struct shrink_control
*sc
)
59 struct super_block
*sb
;
66 sb
= container_of(shrink
, struct super_block
, s_shrink
);
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
72 if (!(sc
->gfp_mask
& __GFP_FS
))
75 if (!grab_super_passive(sb
))
78 if (sb
->s_op
->nr_cached_objects
)
79 fs_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
->nid
);
81 inodes
= list_lru_count_node(&sb
->s_inode_lru
, sc
->nid
);
82 dentries
= list_lru_count_node(&sb
->s_dentry_lru
, sc
->nid
);
83 total_objects
= dentries
+ inodes
+ fs_objects
+ 1;
85 /* proportion the scan between the caches */
86 dentries
= mult_frac(sc
->nr_to_scan
, dentries
, total_objects
);
87 inodes
= mult_frac(sc
->nr_to_scan
, inodes
, total_objects
);
90 * prune the dcache first as the icache is pinned by it, then
91 * prune the icache, followed by the filesystem specific caches
93 freed
= prune_dcache_sb(sb
, dentries
, sc
->nid
);
94 freed
+= prune_icache_sb(sb
, inodes
, sc
->nid
);
97 fs_objects
= mult_frac(sc
->nr_to_scan
, fs_objects
,
99 freed
+= sb
->s_op
->free_cached_objects(sb
, fs_objects
,
107 static unsigned long super_cache_count(struct shrinker
*shrink
,
108 struct shrink_control
*sc
)
110 struct super_block
*sb
;
111 long total_objects
= 0;
113 sb
= container_of(shrink
, struct super_block
, s_shrink
);
116 * Don't call grab_super_passive as it is a potential
117 * scalability bottleneck. The counts could get updated
118 * between super_cache_count and super_cache_scan anyway.
119 * Call to super_cache_count with shrinker_rwsem held
120 * ensures the safety of call to list_lru_count_node() and
121 * s_op->nr_cached_objects().
123 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
124 total_objects
= sb
->s_op
->nr_cached_objects(sb
,
127 total_objects
+= list_lru_count_node(&sb
->s_dentry_lru
,
129 total_objects
+= list_lru_count_node(&sb
->s_inode_lru
,
132 total_objects
= vfs_pressure_ratio(total_objects
);
133 return total_objects
;
137 * destroy_super - frees a superblock
138 * @s: superblock to free
140 * Frees a superblock.
142 static void destroy_super(struct super_block
*s
)
145 list_lru_destroy(&s
->s_dentry_lru
);
146 list_lru_destroy(&s
->s_inode_lru
);
147 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
148 percpu_counter_destroy(&s
->s_writers
.counter
[i
]);
150 WARN_ON(!list_empty(&s
->s_mounts
));
157 * alloc_super - create new superblock
158 * @type: filesystem type superblock should belong to
159 * @flags: the mount flags
161 * Allocates and initializes a new &struct super_block. alloc_super()
162 * returns a pointer new superblock or %NULL if allocation had failed.
164 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
)
166 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
167 static const struct super_operations default_op
;
173 INIT_LIST_HEAD(&s
->s_mounts
);
175 if (security_sb_alloc(s
))
178 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
179 if (percpu_counter_init(&s
->s_writers
.counter
[i
], 0) < 0)
181 lockdep_init_map(&s
->s_writers
.lock_map
[i
], sb_writers_name
[i
],
182 &type
->s_writers_key
[i
], 0);
184 init_waitqueue_head(&s
->s_writers
.wait
);
185 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
187 s
->s_bdi
= &default_backing_dev_info
;
188 INIT_HLIST_NODE(&s
->s_instances
);
189 INIT_HLIST_BL_HEAD(&s
->s_anon
);
190 INIT_LIST_HEAD(&s
->s_inodes
);
192 if (list_lru_init(&s
->s_dentry_lru
))
194 if (list_lru_init(&s
->s_inode_lru
))
197 init_rwsem(&s
->s_umount
);
198 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
200 * sget() can have s_umount recursion.
202 * When it cannot find a suitable sb, it allocates a new
203 * one (this one), and tries again to find a suitable old
206 * In case that succeeds, it will acquire the s_umount
207 * lock of the old one. Since these are clearly distrinct
208 * locks, and this object isn't exposed yet, there's no
211 * Annotate this by putting this lock in a different
214 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
216 atomic_set(&s
->s_active
, 1);
217 mutex_init(&s
->s_vfs_rename_mutex
);
218 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
219 mutex_init(&s
->s_dquot
.dqio_mutex
);
220 mutex_init(&s
->s_dquot
.dqonoff_mutex
);
221 init_rwsem(&s
->s_dquot
.dqptr_sem
);
222 s
->s_maxbytes
= MAX_NON_LFS
;
223 s
->s_op
= &default_op
;
224 s
->s_time_gran
= 1000000000;
225 s
->cleancache_poolid
= -1;
227 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
228 s
->s_shrink
.scan_objects
= super_cache_scan
;
229 s
->s_shrink
.count_objects
= super_cache_count
;
230 s
->s_shrink
.batch
= 1024;
231 s
->s_shrink
.flags
= SHRINKER_NUMA_AWARE
;
239 /* Superblock refcounting */
242 * Drop a superblock's refcount. The caller must hold sb_lock.
244 static void __put_super(struct super_block
*sb
)
246 if (!--sb
->s_count
) {
247 list_del_init(&sb
->s_list
);
253 * put_super - drop a temporary reference to superblock
254 * @sb: superblock in question
256 * Drops a temporary reference, frees superblock if there's no
259 static void put_super(struct super_block
*sb
)
263 spin_unlock(&sb_lock
);
268 * deactivate_locked_super - drop an active reference to superblock
269 * @s: superblock to deactivate
271 * Drops an active reference to superblock, converting it into a temprory
272 * one if there is no other active references left. In that case we
273 * tell fs driver to shut it down and drop the temporary reference we
276 * Caller holds exclusive lock on superblock; that lock is released.
278 void deactivate_locked_super(struct super_block
*s
)
280 struct file_system_type
*fs
= s
->s_type
;
281 if (atomic_dec_and_test(&s
->s_active
)) {
282 cleancache_invalidate_fs(s
);
283 unregister_shrinker(&s
->s_shrink
);
289 up_write(&s
->s_umount
);
293 EXPORT_SYMBOL(deactivate_locked_super
);
296 * deactivate_super - drop an active reference to superblock
297 * @s: superblock to deactivate
299 * Variant of deactivate_locked_super(), except that superblock is *not*
300 * locked by caller. If we are going to drop the final active reference,
301 * lock will be acquired prior to that.
303 void deactivate_super(struct super_block
*s
)
305 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
306 down_write(&s
->s_umount
);
307 deactivate_locked_super(s
);
311 EXPORT_SYMBOL(deactivate_super
);
314 * grab_super - acquire an active reference
315 * @s: reference we are trying to make active
317 * Tries to acquire an active reference. grab_super() is used when we
318 * had just found a superblock in super_blocks or fs_type->fs_supers
319 * and want to turn it into a full-blown active reference. grab_super()
320 * is called with sb_lock held and drops it. Returns 1 in case of
321 * success, 0 if we had failed (superblock contents was already dead or
322 * dying when grab_super() had been called). Note that this is only
323 * called for superblocks not in rundown mode (== ones still on ->fs_supers
324 * of their type), so increment of ->s_count is OK here.
326 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
329 spin_unlock(&sb_lock
);
330 down_write(&s
->s_umount
);
331 if ((s
->s_flags
& MS_BORN
) && atomic_inc_not_zero(&s
->s_active
)) {
335 up_write(&s
->s_umount
);
341 * grab_super_passive - acquire a passive reference
342 * @sb: reference we are trying to grab
344 * Tries to acquire a passive reference. This is used in places where we
345 * cannot take an active reference but we need to ensure that the
346 * superblock does not go away while we are working on it. It returns
347 * false if a reference was not gained, and returns true with the s_umount
348 * lock held in read mode if a reference is gained. On successful return,
349 * the caller must drop the s_umount lock and the passive reference when
352 bool grab_super_passive(struct super_block
*sb
)
355 if (hlist_unhashed(&sb
->s_instances
)) {
356 spin_unlock(&sb_lock
);
361 spin_unlock(&sb_lock
);
363 if (down_read_trylock(&sb
->s_umount
)) {
364 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
366 up_read(&sb
->s_umount
);
374 * generic_shutdown_super - common helper for ->kill_sb()
375 * @sb: superblock to kill
377 * generic_shutdown_super() does all fs-independent work on superblock
378 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
379 * that need destruction out of superblock, call generic_shutdown_super()
380 * and release aforementioned objects. Note: dentries and inodes _are_
381 * taken care of and do not need specific handling.
383 * Upon calling this function, the filesystem may no longer alter or
384 * rearrange the set of dentries belonging to this super_block, nor may it
385 * change the attachments of dentries to inodes.
387 void generic_shutdown_super(struct super_block
*sb
)
389 const struct super_operations
*sop
= sb
->s_op
;
392 shrink_dcache_for_umount(sb
);
394 sb
->s_flags
&= ~MS_ACTIVE
;
396 fsnotify_unmount_inodes(&sb
->s_inodes
);
400 if (sb
->s_dio_done_wq
) {
401 destroy_workqueue(sb
->s_dio_done_wq
);
402 sb
->s_dio_done_wq
= NULL
;
408 if (!list_empty(&sb
->s_inodes
)) {
409 printk("VFS: Busy inodes after unmount of %s. "
410 "Self-destruct in 5 seconds. Have a nice day...\n",
415 /* should be initialized for __put_super_and_need_restart() */
416 hlist_del_init(&sb
->s_instances
);
417 spin_unlock(&sb_lock
);
418 up_write(&sb
->s_umount
);
421 EXPORT_SYMBOL(generic_shutdown_super
);
424 * sget - find or create a superblock
425 * @type: filesystem type superblock should belong to
426 * @test: comparison callback
427 * @set: setup callback
428 * @flags: mount flags
429 * @data: argument to each of them
431 struct super_block
*sget(struct file_system_type
*type
,
432 int (*test
)(struct super_block
*,void *),
433 int (*set
)(struct super_block
*,void *),
437 struct super_block
*s
= NULL
;
438 struct super_block
*old
;
444 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
445 if (!test(old
, data
))
447 if (!grab_super(old
))
450 up_write(&s
->s_umount
);
458 spin_unlock(&sb_lock
);
459 s
= alloc_super(type
, flags
);
461 return ERR_PTR(-ENOMEM
);
467 spin_unlock(&sb_lock
);
468 up_write(&s
->s_umount
);
473 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
474 list_add_tail(&s
->s_list
, &super_blocks
);
475 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
476 spin_unlock(&sb_lock
);
477 get_filesystem(type
);
478 register_shrinker(&s
->s_shrink
);
484 void drop_super(struct super_block
*sb
)
486 up_read(&sb
->s_umount
);
490 EXPORT_SYMBOL(drop_super
);
493 * iterate_supers - call function for all active superblocks
494 * @f: function to call
495 * @arg: argument to pass to it
497 * Scans the superblock list and calls given function, passing it
498 * locked superblock and given argument.
500 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
502 struct super_block
*sb
, *p
= NULL
;
505 list_for_each_entry(sb
, &super_blocks
, s_list
) {
506 if (hlist_unhashed(&sb
->s_instances
))
509 spin_unlock(&sb_lock
);
511 down_read(&sb
->s_umount
);
512 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
514 up_read(&sb
->s_umount
);
523 spin_unlock(&sb_lock
);
527 * iterate_supers_type - call function for superblocks of given type
529 * @f: function to call
530 * @arg: argument to pass to it
532 * Scans the superblock list and calls given function, passing it
533 * locked superblock and given argument.
535 void iterate_supers_type(struct file_system_type
*type
,
536 void (*f
)(struct super_block
*, void *), void *arg
)
538 struct super_block
*sb
, *p
= NULL
;
541 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
543 spin_unlock(&sb_lock
);
545 down_read(&sb
->s_umount
);
546 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
548 up_read(&sb
->s_umount
);
557 spin_unlock(&sb_lock
);
560 EXPORT_SYMBOL(iterate_supers_type
);
563 * get_super - get the superblock of a device
564 * @bdev: device to get the superblock for
566 * Scans the superblock list and finds the superblock of the file system
567 * mounted on the device given. %NULL is returned if no match is found.
570 struct super_block
*get_super(struct block_device
*bdev
)
572 struct super_block
*sb
;
579 list_for_each_entry(sb
, &super_blocks
, s_list
) {
580 if (hlist_unhashed(&sb
->s_instances
))
582 if (sb
->s_bdev
== bdev
) {
584 spin_unlock(&sb_lock
);
585 down_read(&sb
->s_umount
);
587 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
589 up_read(&sb
->s_umount
);
590 /* nope, got unmounted */
596 spin_unlock(&sb_lock
);
600 EXPORT_SYMBOL(get_super
);
603 * get_super_thawed - get thawed superblock of a device
604 * @bdev: device to get the superblock for
606 * Scans the superblock list and finds the superblock of the file system
607 * mounted on the device. The superblock is returned once it is thawed
608 * (or immediately if it was not frozen). %NULL is returned if no match
611 struct super_block
*get_super_thawed(struct block_device
*bdev
)
614 struct super_block
*s
= get_super(bdev
);
615 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
617 up_read(&s
->s_umount
);
618 wait_event(s
->s_writers
.wait_unfrozen
,
619 s
->s_writers
.frozen
== SB_UNFROZEN
);
623 EXPORT_SYMBOL(get_super_thawed
);
626 * get_active_super - get an active reference to the superblock of a device
627 * @bdev: device to get the superblock for
629 * Scans the superblock list and finds the superblock of the file system
630 * mounted on the device given. Returns the superblock with an active
631 * reference or %NULL if none was found.
633 struct super_block
*get_active_super(struct block_device
*bdev
)
635 struct super_block
*sb
;
642 list_for_each_entry(sb
, &super_blocks
, s_list
) {
643 if (hlist_unhashed(&sb
->s_instances
))
645 if (sb
->s_bdev
== bdev
) {
648 up_write(&sb
->s_umount
);
652 spin_unlock(&sb_lock
);
656 struct super_block
*user_get_super(dev_t dev
)
658 struct super_block
*sb
;
662 list_for_each_entry(sb
, &super_blocks
, s_list
) {
663 if (hlist_unhashed(&sb
->s_instances
))
665 if (sb
->s_dev
== dev
) {
667 spin_unlock(&sb_lock
);
668 down_read(&sb
->s_umount
);
670 if (sb
->s_root
&& (sb
->s_flags
& MS_BORN
))
672 up_read(&sb
->s_umount
);
673 /* nope, got unmounted */
679 spin_unlock(&sb_lock
);
684 * do_remount_sb - asks filesystem to change mount options.
685 * @sb: superblock in question
686 * @flags: numeric part of options
687 * @data: the rest of options
688 * @force: whether or not to force the change
690 * Alters the mount options of a mounted file system.
692 int do_remount_sb(struct super_block
*sb
, int flags
, void *data
, int force
)
697 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
701 if (!(flags
& MS_RDONLY
) && bdev_read_only(sb
->s_bdev
))
705 if (flags
& MS_RDONLY
)
707 shrink_dcache_sb(sb
);
709 remount_ro
= (flags
& MS_RDONLY
) && !(sb
->s_flags
& MS_RDONLY
);
711 /* If we are remounting RDONLY and current sb is read/write,
712 make sure there are no rw files opened */
715 sb
->s_readonly_remount
= 1;
718 retval
= sb_prepare_remount_readonly(sb
);
724 if (sb
->s_op
->remount_fs
) {
725 retval
= sb
->s_op
->remount_fs(sb
, &flags
, data
);
728 goto cancel_readonly
;
729 /* If forced remount, go ahead despite any errors */
730 WARN(1, "forced remount of a %s fs returned %i\n",
731 sb
->s_type
->name
, retval
);
734 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (flags
& MS_RMT_MASK
);
735 /* Needs to be ordered wrt mnt_is_readonly() */
737 sb
->s_readonly_remount
= 0;
740 * Some filesystems modify their metadata via some other path than the
741 * bdev buffer cache (eg. use a private mapping, or directories in
742 * pagecache, etc). Also file data modifications go via their own
743 * mappings. So If we try to mount readonly then copy the filesystem
744 * from bdev, we could get stale data, so invalidate it to give a best
745 * effort at coherency.
747 if (remount_ro
&& sb
->s_bdev
)
748 invalidate_bdev(sb
->s_bdev
);
752 sb
->s_readonly_remount
= 0;
756 static void do_emergency_remount(struct work_struct
*work
)
758 struct super_block
*sb
, *p
= NULL
;
761 list_for_each_entry(sb
, &super_blocks
, s_list
) {
762 if (hlist_unhashed(&sb
->s_instances
))
765 spin_unlock(&sb_lock
);
766 down_write(&sb
->s_umount
);
767 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& MS_BORN
) &&
768 !(sb
->s_flags
& MS_RDONLY
)) {
770 * What lock protects sb->s_flags??
772 do_remount_sb(sb
, MS_RDONLY
, NULL
, 1);
774 up_write(&sb
->s_umount
);
782 spin_unlock(&sb_lock
);
784 printk("Emergency Remount complete\n");
787 void emergency_remount(void)
789 struct work_struct
*work
;
791 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
793 INIT_WORK(work
, do_emergency_remount
);
799 * Unnamed block devices are dummy devices used by virtual
800 * filesystems which don't use real block-devices. -- jrs
803 static DEFINE_IDA(unnamed_dev_ida
);
804 static DEFINE_SPINLOCK(unnamed_dev_lock
);/* protects the above */
805 /* Many userspace utilities consider an FSID of 0 invalid.
806 * Always return at least 1 from get_anon_bdev.
808 static int unnamed_dev_start
= 1;
810 int get_anon_bdev(dev_t
*p
)
816 if (ida_pre_get(&unnamed_dev_ida
, GFP_ATOMIC
) == 0)
818 spin_lock(&unnamed_dev_lock
);
819 error
= ida_get_new_above(&unnamed_dev_ida
, unnamed_dev_start
, &dev
);
821 unnamed_dev_start
= dev
+ 1;
822 spin_unlock(&unnamed_dev_lock
);
823 if (error
== -EAGAIN
)
824 /* We raced and lost with another CPU. */
829 if (dev
== (1 << MINORBITS
)) {
830 spin_lock(&unnamed_dev_lock
);
831 ida_remove(&unnamed_dev_ida
, dev
);
832 if (unnamed_dev_start
> dev
)
833 unnamed_dev_start
= dev
;
834 spin_unlock(&unnamed_dev_lock
);
837 *p
= MKDEV(0, dev
& MINORMASK
);
840 EXPORT_SYMBOL(get_anon_bdev
);
842 void free_anon_bdev(dev_t dev
)
844 int slot
= MINOR(dev
);
845 spin_lock(&unnamed_dev_lock
);
846 ida_remove(&unnamed_dev_ida
, slot
);
847 if (slot
< unnamed_dev_start
)
848 unnamed_dev_start
= slot
;
849 spin_unlock(&unnamed_dev_lock
);
851 EXPORT_SYMBOL(free_anon_bdev
);
853 int set_anon_super(struct super_block
*s
, void *data
)
855 int error
= get_anon_bdev(&s
->s_dev
);
857 s
->s_bdi
= &noop_backing_dev_info
;
861 EXPORT_SYMBOL(set_anon_super
);
863 void kill_anon_super(struct super_block
*sb
)
865 dev_t dev
= sb
->s_dev
;
866 generic_shutdown_super(sb
);
870 EXPORT_SYMBOL(kill_anon_super
);
872 void kill_litter_super(struct super_block
*sb
)
875 d_genocide(sb
->s_root
);
879 EXPORT_SYMBOL(kill_litter_super
);
881 static int ns_test_super(struct super_block
*sb
, void *data
)
883 return sb
->s_fs_info
== data
;
886 static int ns_set_super(struct super_block
*sb
, void *data
)
888 sb
->s_fs_info
= data
;
889 return set_anon_super(sb
, NULL
);
892 struct dentry
*mount_ns(struct file_system_type
*fs_type
, int flags
,
893 void *data
, int (*fill_super
)(struct super_block
*, void *, int))
895 struct super_block
*sb
;
897 sb
= sget(fs_type
, ns_test_super
, ns_set_super
, flags
, data
);
903 err
= fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
905 deactivate_locked_super(sb
);
909 sb
->s_flags
|= MS_ACTIVE
;
912 return dget(sb
->s_root
);
915 EXPORT_SYMBOL(mount_ns
);
918 static int set_bdev_super(struct super_block
*s
, void *data
)
921 s
->s_dev
= s
->s_bdev
->bd_dev
;
924 * We set the bdi here to the queue backing, file systems can
925 * overwrite this in ->fill_super()
927 s
->s_bdi
= &bdev_get_queue(s
->s_bdev
)->backing_dev_info
;
931 static int test_bdev_super(struct super_block
*s
, void *data
)
933 return (void *)s
->s_bdev
== data
;
936 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
937 int flags
, const char *dev_name
, void *data
,
938 int (*fill_super
)(struct super_block
*, void *, int))
940 struct block_device
*bdev
;
941 struct super_block
*s
;
942 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
945 if (!(flags
& MS_RDONLY
))
948 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
950 return ERR_CAST(bdev
);
953 * once the super is inserted into the list by sget, s_umount
954 * will protect the lockfs code from trying to start a snapshot
955 * while we are mounting
957 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
958 if (bdev
->bd_fsfreeze_count
> 0) {
959 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
963 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| MS_NOSEC
,
965 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
970 if ((flags
^ s
->s_flags
) & MS_RDONLY
) {
971 deactivate_locked_super(s
);
977 * s_umount nests inside bd_mutex during
978 * __invalidate_device(). blkdev_put() acquires
979 * bd_mutex and can't be called under s_umount. Drop
980 * s_umount temporarily. This is safe as we're
981 * holding an active reference.
983 up_write(&s
->s_umount
);
984 blkdev_put(bdev
, mode
);
985 down_write(&s
->s_umount
);
987 char b
[BDEVNAME_SIZE
];
990 strlcpy(s
->s_id
, bdevname(bdev
, b
), sizeof(s
->s_id
));
991 sb_set_blocksize(s
, block_size(bdev
));
992 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
994 deactivate_locked_super(s
);
998 s
->s_flags
|= MS_ACTIVE
;
1002 return dget(s
->s_root
);
1007 blkdev_put(bdev
, mode
);
1009 return ERR_PTR(error
);
1011 EXPORT_SYMBOL(mount_bdev
);
1013 void kill_block_super(struct super_block
*sb
)
1015 struct block_device
*bdev
= sb
->s_bdev
;
1016 fmode_t mode
= sb
->s_mode
;
1018 bdev
->bd_super
= NULL
;
1019 generic_shutdown_super(sb
);
1020 sync_blockdev(bdev
);
1021 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1022 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1025 EXPORT_SYMBOL(kill_block_super
);
1028 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1029 int flags
, void *data
,
1030 int (*fill_super
)(struct super_block
*, void *, int))
1033 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1038 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1040 deactivate_locked_super(s
);
1041 return ERR_PTR(error
);
1043 s
->s_flags
|= MS_ACTIVE
;
1044 return dget(s
->s_root
);
1046 EXPORT_SYMBOL(mount_nodev
);
1048 static int compare_single(struct super_block
*s
, void *p
)
1053 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1054 int flags
, void *data
,
1055 int (*fill_super
)(struct super_block
*, void *, int))
1057 struct super_block
*s
;
1060 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1064 error
= fill_super(s
, data
, flags
& MS_SILENT
? 1 : 0);
1066 deactivate_locked_super(s
);
1067 return ERR_PTR(error
);
1069 s
->s_flags
|= MS_ACTIVE
;
1071 do_remount_sb(s
, flags
, data
, 0);
1073 return dget(s
->s_root
);
1075 EXPORT_SYMBOL(mount_single
);
1078 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1080 struct dentry
*root
;
1081 struct super_block
*sb
;
1082 char *secdata
= NULL
;
1083 int error
= -ENOMEM
;
1085 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1086 secdata
= alloc_secdata();
1090 error
= security_sb_copy_data(data
, secdata
);
1092 goto out_free_secdata
;
1095 root
= type
->mount(type
, flags
, name
, data
);
1097 error
= PTR_ERR(root
);
1098 goto out_free_secdata
;
1102 WARN_ON(!sb
->s_bdi
);
1103 WARN_ON(sb
->s_bdi
== &default_backing_dev_info
);
1104 sb
->s_flags
|= MS_BORN
;
1106 error
= security_sb_kern_mount(sb
, flags
, secdata
);
1111 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1112 * but s_maxbytes was an unsigned long long for many releases. Throw
1113 * this warning for a little while to try and catch filesystems that
1114 * violate this rule.
1116 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1117 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1119 up_write(&sb
->s_umount
);
1120 free_secdata(secdata
);
1124 deactivate_locked_super(sb
);
1126 free_secdata(secdata
);
1128 return ERR_PTR(error
);
1132 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1135 void __sb_end_write(struct super_block
*sb
, int level
)
1137 percpu_counter_dec(&sb
->s_writers
.counter
[level
-1]);
1139 * Make sure s_writers are updated before we wake up waiters in
1143 if (waitqueue_active(&sb
->s_writers
.wait
))
1144 wake_up(&sb
->s_writers
.wait
);
1145 rwsem_release(&sb
->s_writers
.lock_map
[level
-1], 1, _RET_IP_
);
1147 EXPORT_SYMBOL(__sb_end_write
);
1149 #ifdef CONFIG_LOCKDEP
1151 * We want lockdep to tell us about possible deadlocks with freezing but
1152 * it's it bit tricky to properly instrument it. Getting a freeze protection
1153 * works as getting a read lock but there are subtle problems. XFS for example
1154 * gets freeze protection on internal level twice in some cases, which is OK
1155 * only because we already hold a freeze protection also on higher level. Due
1156 * to these cases we have to tell lockdep we are doing trylock when we
1157 * already hold a freeze protection for a higher freeze level.
1159 static void acquire_freeze_lock(struct super_block
*sb
, int level
, bool trylock
,
1165 for (i
= 0; i
< level
- 1; i
++)
1166 if (lock_is_held(&sb
->s_writers
.lock_map
[i
])) {
1171 rwsem_acquire_read(&sb
->s_writers
.lock_map
[level
-1], 0, trylock
, ip
);
1176 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1179 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1182 if (unlikely(sb
->s_writers
.frozen
>= level
)) {
1185 wait_event(sb
->s_writers
.wait_unfrozen
,
1186 sb
->s_writers
.frozen
< level
);
1189 #ifdef CONFIG_LOCKDEP
1190 acquire_freeze_lock(sb
, level
, !wait
, _RET_IP_
);
1192 percpu_counter_inc(&sb
->s_writers
.counter
[level
-1]);
1194 * Make sure counter is updated before we check for frozen.
1195 * freeze_super() first sets frozen and then checks the counter.
1198 if (unlikely(sb
->s_writers
.frozen
>= level
)) {
1199 __sb_end_write(sb
, level
);
1204 EXPORT_SYMBOL(__sb_start_write
);
1207 * sb_wait_write - wait until all writers to given file system finish
1208 * @sb: the super for which we wait
1209 * @level: type of writers we wait for (normal vs page fault)
1211 * This function waits until there are no writers of given type to given file
1212 * system. Caller of this function should make sure there can be no new writers
1213 * of type @level before calling this function. Otherwise this function can
1216 static void sb_wait_write(struct super_block
*sb
, int level
)
1221 * We just cycle-through lockdep here so that it does not complain
1222 * about returning with lock to userspace
1224 rwsem_acquire(&sb
->s_writers
.lock_map
[level
-1], 0, 0, _THIS_IP_
);
1225 rwsem_release(&sb
->s_writers
.lock_map
[level
-1], 1, _THIS_IP_
);
1231 * We use a barrier in prepare_to_wait() to separate setting
1232 * of frozen and checking of the counter
1234 prepare_to_wait(&sb
->s_writers
.wait
, &wait
,
1235 TASK_UNINTERRUPTIBLE
);
1237 writers
= percpu_counter_sum(&sb
->s_writers
.counter
[level
-1]);
1241 finish_wait(&sb
->s_writers
.wait
, &wait
);
1246 * freeze_super - lock the filesystem and force it into a consistent state
1247 * @sb: the super to lock
1249 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1250 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1253 * During this function, sb->s_writers.frozen goes through these values:
1255 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1257 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1258 * writes should be blocked, though page faults are still allowed. We wait for
1259 * all writes to complete and then proceed to the next stage.
1261 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1262 * but internal fs threads can still modify the filesystem (although they
1263 * should not dirty new pages or inodes), writeback can run etc. After waiting
1264 * for all running page faults we sync the filesystem which will clean all
1265 * dirty pages and inodes (no new dirty pages or inodes can be created when
1268 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1269 * modification are blocked (e.g. XFS preallocation truncation on inode
1270 * reclaim). This is usually implemented by blocking new transactions for
1271 * filesystems that have them and need this additional guard. After all
1272 * internal writers are finished we call ->freeze_fs() to finish filesystem
1273 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1274 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1276 * sb->s_writers.frozen is protected by sb->s_umount.
1278 int freeze_super(struct super_block
*sb
)
1282 atomic_inc(&sb
->s_active
);
1283 down_write(&sb
->s_umount
);
1284 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1285 deactivate_locked_super(sb
);
1289 if (!(sb
->s_flags
& MS_BORN
)) {
1290 up_write(&sb
->s_umount
);
1291 return 0; /* sic - it's "nothing to do" */
1294 if (sb
->s_flags
& MS_RDONLY
) {
1295 /* Nothing to do really... */
1296 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1297 up_write(&sb
->s_umount
);
1301 /* From now on, no new normal writers can start */
1302 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1305 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1306 up_write(&sb
->s_umount
);
1308 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1310 /* Now we go and block page faults... */
1311 down_write(&sb
->s_umount
);
1312 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1315 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1317 /* All writers are done so after syncing there won't be dirty data */
1318 sync_filesystem(sb
);
1320 /* Now wait for internal filesystem counter */
1321 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1323 sb_wait_write(sb
, SB_FREEZE_FS
);
1325 if (sb
->s_op
->freeze_fs
) {
1326 ret
= sb
->s_op
->freeze_fs(sb
);
1329 "VFS:Filesystem freeze failed\n");
1330 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1332 wake_up(&sb
->s_writers
.wait_unfrozen
);
1333 deactivate_locked_super(sb
);
1338 * This is just for debugging purposes so that fs can warn if it
1339 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1341 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1342 up_write(&sb
->s_umount
);
1345 EXPORT_SYMBOL(freeze_super
);
1348 * thaw_super -- unlock filesystem
1349 * @sb: the super to thaw
1351 * Unlocks the filesystem and marks it writeable again after freeze_super().
1353 int thaw_super(struct super_block
*sb
)
1357 down_write(&sb
->s_umount
);
1358 if (sb
->s_writers
.frozen
== SB_UNFROZEN
) {
1359 up_write(&sb
->s_umount
);
1363 if (sb
->s_flags
& MS_RDONLY
)
1366 if (sb
->s_op
->unfreeze_fs
) {
1367 error
= sb
->s_op
->unfreeze_fs(sb
);
1370 "VFS:Filesystem thaw failed\n");
1371 up_write(&sb
->s_umount
);
1377 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1379 wake_up(&sb
->s_writers
.wait_unfrozen
);
1380 deactivate_locked_super(sb
);
1384 EXPORT_SYMBOL(thaw_super
);