fs: Use BUG_ON(!mnt) at dentry_open().
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include "internal.h"
35
36
37 LIST_HEAD(super_blocks);
38 DEFINE_SPINLOCK(sb_lock);
39
40 /**
41 * alloc_super - create new superblock
42 * @type: filesystem type superblock should belong to
43 *
44 * Allocates and initializes a new &struct super_block. alloc_super()
45 * returns a pointer new superblock or %NULL if allocation had failed.
46 */
47 static struct super_block *alloc_super(struct file_system_type *type)
48 {
49 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
50 static const struct super_operations default_op;
51
52 if (s) {
53 if (security_sb_alloc(s)) {
54 kfree(s);
55 s = NULL;
56 goto out;
57 }
58 #ifdef CONFIG_SMP
59 s->s_files = alloc_percpu(struct list_head);
60 if (!s->s_files) {
61 security_sb_free(s);
62 kfree(s);
63 s = NULL;
64 goto out;
65 } else {
66 int i;
67
68 for_each_possible_cpu(i)
69 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
70 }
71 #else
72 INIT_LIST_HEAD(&s->s_files);
73 #endif
74 INIT_LIST_HEAD(&s->s_instances);
75 INIT_HLIST_BL_HEAD(&s->s_anon);
76 INIT_LIST_HEAD(&s->s_inodes);
77 INIT_LIST_HEAD(&s->s_dentry_lru);
78 init_rwsem(&s->s_umount);
79 mutex_init(&s->s_lock);
80 lockdep_set_class(&s->s_umount, &type->s_umount_key);
81 /*
82 * The locking rules for s_lock are up to the
83 * filesystem. For example ext3fs has different
84 * lock ordering than usbfs:
85 */
86 lockdep_set_class(&s->s_lock, &type->s_lock_key);
87 /*
88 * sget() can have s_umount recursion.
89 *
90 * When it cannot find a suitable sb, it allocates a new
91 * one (this one), and tries again to find a suitable old
92 * one.
93 *
94 * In case that succeeds, it will acquire the s_umount
95 * lock of the old one. Since these are clearly distrinct
96 * locks, and this object isn't exposed yet, there's no
97 * risk of deadlocks.
98 *
99 * Annotate this by putting this lock in a different
100 * subclass.
101 */
102 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
103 s->s_count = 1;
104 atomic_set(&s->s_active, 1);
105 mutex_init(&s->s_vfs_rename_mutex);
106 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
107 mutex_init(&s->s_dquot.dqio_mutex);
108 mutex_init(&s->s_dquot.dqonoff_mutex);
109 init_rwsem(&s->s_dquot.dqptr_sem);
110 init_waitqueue_head(&s->s_wait_unfrozen);
111 s->s_maxbytes = MAX_NON_LFS;
112 s->s_op = &default_op;
113 s->s_time_gran = 1000000000;
114 }
115 out:
116 return s;
117 }
118
119 /**
120 * destroy_super - frees a superblock
121 * @s: superblock to free
122 *
123 * Frees a superblock.
124 */
125 static inline void destroy_super(struct super_block *s)
126 {
127 #ifdef CONFIG_SMP
128 free_percpu(s->s_files);
129 #endif
130 security_sb_free(s);
131 kfree(s->s_subtype);
132 kfree(s->s_options);
133 kfree(s);
134 }
135
136 /* Superblock refcounting */
137
138 /*
139 * Drop a superblock's refcount. The caller must hold sb_lock.
140 */
141 void __put_super(struct super_block *sb)
142 {
143 if (!--sb->s_count) {
144 list_del_init(&sb->s_list);
145 destroy_super(sb);
146 }
147 }
148
149 /**
150 * put_super - drop a temporary reference to superblock
151 * @sb: superblock in question
152 *
153 * Drops a temporary reference, frees superblock if there's no
154 * references left.
155 */
156 void put_super(struct super_block *sb)
157 {
158 spin_lock(&sb_lock);
159 __put_super(sb);
160 spin_unlock(&sb_lock);
161 }
162
163
164 /**
165 * deactivate_locked_super - drop an active reference to superblock
166 * @s: superblock to deactivate
167 *
168 * Drops an active reference to superblock, converting it into a temprory
169 * one if there is no other active references left. In that case we
170 * tell fs driver to shut it down and drop the temporary reference we
171 * had just acquired.
172 *
173 * Caller holds exclusive lock on superblock; that lock is released.
174 */
175 void deactivate_locked_super(struct super_block *s)
176 {
177 struct file_system_type *fs = s->s_type;
178 if (atomic_dec_and_test(&s->s_active)) {
179 fs->kill_sb(s);
180 /*
181 * We need to call rcu_barrier so all the delayed rcu free
182 * inodes are flushed before we release the fs module.
183 */
184 rcu_barrier();
185 put_filesystem(fs);
186 put_super(s);
187 } else {
188 up_write(&s->s_umount);
189 }
190 }
191
192 EXPORT_SYMBOL(deactivate_locked_super);
193
194 /**
195 * deactivate_super - drop an active reference to superblock
196 * @s: superblock to deactivate
197 *
198 * Variant of deactivate_locked_super(), except that superblock is *not*
199 * locked by caller. If we are going to drop the final active reference,
200 * lock will be acquired prior to that.
201 */
202 void deactivate_super(struct super_block *s)
203 {
204 if (!atomic_add_unless(&s->s_active, -1, 1)) {
205 down_write(&s->s_umount);
206 deactivate_locked_super(s);
207 }
208 }
209
210 EXPORT_SYMBOL(deactivate_super);
211
212 /**
213 * grab_super - acquire an active reference
214 * @s: reference we are trying to make active
215 *
216 * Tries to acquire an active reference. grab_super() is used when we
217 * had just found a superblock in super_blocks or fs_type->fs_supers
218 * and want to turn it into a full-blown active reference. grab_super()
219 * is called with sb_lock held and drops it. Returns 1 in case of
220 * success, 0 if we had failed (superblock contents was already dead or
221 * dying when grab_super() had been called).
222 */
223 static int grab_super(struct super_block *s) __releases(sb_lock)
224 {
225 if (atomic_inc_not_zero(&s->s_active)) {
226 spin_unlock(&sb_lock);
227 return 1;
228 }
229 /* it's going away */
230 s->s_count++;
231 spin_unlock(&sb_lock);
232 /* wait for it to die */
233 down_write(&s->s_umount);
234 up_write(&s->s_umount);
235 put_super(s);
236 return 0;
237 }
238
239 /*
240 * Superblock locking. We really ought to get rid of these two.
241 */
242 void lock_super(struct super_block * sb)
243 {
244 get_fs_excl();
245 mutex_lock(&sb->s_lock);
246 }
247
248 void unlock_super(struct super_block * sb)
249 {
250 put_fs_excl();
251 mutex_unlock(&sb->s_lock);
252 }
253
254 EXPORT_SYMBOL(lock_super);
255 EXPORT_SYMBOL(unlock_super);
256
257 /**
258 * generic_shutdown_super - common helper for ->kill_sb()
259 * @sb: superblock to kill
260 *
261 * generic_shutdown_super() does all fs-independent work on superblock
262 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
263 * that need destruction out of superblock, call generic_shutdown_super()
264 * and release aforementioned objects. Note: dentries and inodes _are_
265 * taken care of and do not need specific handling.
266 *
267 * Upon calling this function, the filesystem may no longer alter or
268 * rearrange the set of dentries belonging to this super_block, nor may it
269 * change the attachments of dentries to inodes.
270 */
271 void generic_shutdown_super(struct super_block *sb)
272 {
273 const struct super_operations *sop = sb->s_op;
274
275
276 if (sb->s_root) {
277 shrink_dcache_for_umount(sb);
278 sync_filesystem(sb);
279 get_fs_excl();
280 sb->s_flags &= ~MS_ACTIVE;
281
282 fsnotify_unmount_inodes(&sb->s_inodes);
283
284 evict_inodes(sb);
285
286 if (sop->put_super)
287 sop->put_super(sb);
288
289 if (!list_empty(&sb->s_inodes)) {
290 printk("VFS: Busy inodes after unmount of %s. "
291 "Self-destruct in 5 seconds. Have a nice day...\n",
292 sb->s_id);
293 }
294 put_fs_excl();
295 }
296 spin_lock(&sb_lock);
297 /* should be initialized for __put_super_and_need_restart() */
298 list_del_init(&sb->s_instances);
299 spin_unlock(&sb_lock);
300 up_write(&sb->s_umount);
301 }
302
303 EXPORT_SYMBOL(generic_shutdown_super);
304
305 /**
306 * sget - find or create a superblock
307 * @type: filesystem type superblock should belong to
308 * @test: comparison callback
309 * @set: setup callback
310 * @data: argument to each of them
311 */
312 struct super_block *sget(struct file_system_type *type,
313 int (*test)(struct super_block *,void *),
314 int (*set)(struct super_block *,void *),
315 void *data)
316 {
317 struct super_block *s = NULL;
318 struct super_block *old;
319 int err;
320
321 retry:
322 spin_lock(&sb_lock);
323 if (test) {
324 list_for_each_entry(old, &type->fs_supers, s_instances) {
325 if (!test(old, data))
326 continue;
327 if (!grab_super(old))
328 goto retry;
329 if (s) {
330 up_write(&s->s_umount);
331 destroy_super(s);
332 s = NULL;
333 }
334 down_write(&old->s_umount);
335 if (unlikely(!(old->s_flags & MS_BORN))) {
336 deactivate_locked_super(old);
337 goto retry;
338 }
339 return old;
340 }
341 }
342 if (!s) {
343 spin_unlock(&sb_lock);
344 s = alloc_super(type);
345 if (!s)
346 return ERR_PTR(-ENOMEM);
347 goto retry;
348 }
349
350 err = set(s, data);
351 if (err) {
352 spin_unlock(&sb_lock);
353 up_write(&s->s_umount);
354 destroy_super(s);
355 return ERR_PTR(err);
356 }
357 s->s_type = type;
358 strlcpy(s->s_id, type->name, sizeof(s->s_id));
359 list_add_tail(&s->s_list, &super_blocks);
360 list_add(&s->s_instances, &type->fs_supers);
361 spin_unlock(&sb_lock);
362 get_filesystem(type);
363 return s;
364 }
365
366 EXPORT_SYMBOL(sget);
367
368 void drop_super(struct super_block *sb)
369 {
370 up_read(&sb->s_umount);
371 put_super(sb);
372 }
373
374 EXPORT_SYMBOL(drop_super);
375
376 /**
377 * sync_supers - helper for periodic superblock writeback
378 *
379 * Call the write_super method if present on all dirty superblocks in
380 * the system. This is for the periodic writeback used by most older
381 * filesystems. For data integrity superblock writeback use
382 * sync_filesystems() instead.
383 *
384 * Note: check the dirty flag before waiting, so we don't
385 * hold up the sync while mounting a device. (The newly
386 * mounted device won't need syncing.)
387 */
388 void sync_supers(void)
389 {
390 struct super_block *sb, *p = NULL;
391
392 spin_lock(&sb_lock);
393 list_for_each_entry(sb, &super_blocks, s_list) {
394 if (list_empty(&sb->s_instances))
395 continue;
396 if (sb->s_op->write_super && sb->s_dirt) {
397 sb->s_count++;
398 spin_unlock(&sb_lock);
399
400 down_read(&sb->s_umount);
401 if (sb->s_root && sb->s_dirt)
402 sb->s_op->write_super(sb);
403 up_read(&sb->s_umount);
404
405 spin_lock(&sb_lock);
406 if (p)
407 __put_super(p);
408 p = sb;
409 }
410 }
411 if (p)
412 __put_super(p);
413 spin_unlock(&sb_lock);
414 }
415
416 /**
417 * iterate_supers - call function for all active superblocks
418 * @f: function to call
419 * @arg: argument to pass to it
420 *
421 * Scans the superblock list and calls given function, passing it
422 * locked superblock and given argument.
423 */
424 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
425 {
426 struct super_block *sb, *p = NULL;
427
428 spin_lock(&sb_lock);
429 list_for_each_entry(sb, &super_blocks, s_list) {
430 if (list_empty(&sb->s_instances))
431 continue;
432 sb->s_count++;
433 spin_unlock(&sb_lock);
434
435 down_read(&sb->s_umount);
436 if (sb->s_root)
437 f(sb, arg);
438 up_read(&sb->s_umount);
439
440 spin_lock(&sb_lock);
441 if (p)
442 __put_super(p);
443 p = sb;
444 }
445 if (p)
446 __put_super(p);
447 spin_unlock(&sb_lock);
448 }
449
450 /**
451 * get_super - get the superblock of a device
452 * @bdev: device to get the superblock for
453 *
454 * Scans the superblock list and finds the superblock of the file system
455 * mounted on the device given. %NULL is returned if no match is found.
456 */
457
458 struct super_block *get_super(struct block_device *bdev)
459 {
460 struct super_block *sb;
461
462 if (!bdev)
463 return NULL;
464
465 spin_lock(&sb_lock);
466 rescan:
467 list_for_each_entry(sb, &super_blocks, s_list) {
468 if (list_empty(&sb->s_instances))
469 continue;
470 if (sb->s_bdev == bdev) {
471 sb->s_count++;
472 spin_unlock(&sb_lock);
473 down_read(&sb->s_umount);
474 /* still alive? */
475 if (sb->s_root)
476 return sb;
477 up_read(&sb->s_umount);
478 /* nope, got unmounted */
479 spin_lock(&sb_lock);
480 __put_super(sb);
481 goto rescan;
482 }
483 }
484 spin_unlock(&sb_lock);
485 return NULL;
486 }
487
488 EXPORT_SYMBOL(get_super);
489
490 /**
491 * get_active_super - get an active reference to the superblock of a device
492 * @bdev: device to get the superblock for
493 *
494 * Scans the superblock list and finds the superblock of the file system
495 * mounted on the device given. Returns the superblock with an active
496 * reference or %NULL if none was found.
497 */
498 struct super_block *get_active_super(struct block_device *bdev)
499 {
500 struct super_block *sb;
501
502 if (!bdev)
503 return NULL;
504
505 restart:
506 spin_lock(&sb_lock);
507 list_for_each_entry(sb, &super_blocks, s_list) {
508 if (list_empty(&sb->s_instances))
509 continue;
510 if (sb->s_bdev == bdev) {
511 if (grab_super(sb)) /* drops sb_lock */
512 return sb;
513 else
514 goto restart;
515 }
516 }
517 spin_unlock(&sb_lock);
518 return NULL;
519 }
520
521 struct super_block *user_get_super(dev_t dev)
522 {
523 struct super_block *sb;
524
525 spin_lock(&sb_lock);
526 rescan:
527 list_for_each_entry(sb, &super_blocks, s_list) {
528 if (list_empty(&sb->s_instances))
529 continue;
530 if (sb->s_dev == dev) {
531 sb->s_count++;
532 spin_unlock(&sb_lock);
533 down_read(&sb->s_umount);
534 /* still alive? */
535 if (sb->s_root)
536 return sb;
537 up_read(&sb->s_umount);
538 /* nope, got unmounted */
539 spin_lock(&sb_lock);
540 __put_super(sb);
541 goto rescan;
542 }
543 }
544 spin_unlock(&sb_lock);
545 return NULL;
546 }
547
548 /**
549 * do_remount_sb - asks filesystem to change mount options.
550 * @sb: superblock in question
551 * @flags: numeric part of options
552 * @data: the rest of options
553 * @force: whether or not to force the change
554 *
555 * Alters the mount options of a mounted file system.
556 */
557 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
558 {
559 int retval;
560 int remount_ro;
561
562 if (sb->s_frozen != SB_UNFROZEN)
563 return -EBUSY;
564
565 #ifdef CONFIG_BLOCK
566 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
567 return -EACCES;
568 #endif
569
570 if (flags & MS_RDONLY)
571 acct_auto_close(sb);
572 shrink_dcache_sb(sb);
573 sync_filesystem(sb);
574
575 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
576
577 /* If we are remounting RDONLY and current sb is read/write,
578 make sure there are no rw files opened */
579 if (remount_ro) {
580 if (force)
581 mark_files_ro(sb);
582 else if (!fs_may_remount_ro(sb))
583 return -EBUSY;
584 }
585
586 if (sb->s_op->remount_fs) {
587 retval = sb->s_op->remount_fs(sb, &flags, data);
588 if (retval)
589 return retval;
590 }
591 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
592
593 /*
594 * Some filesystems modify their metadata via some other path than the
595 * bdev buffer cache (eg. use a private mapping, or directories in
596 * pagecache, etc). Also file data modifications go via their own
597 * mappings. So If we try to mount readonly then copy the filesystem
598 * from bdev, we could get stale data, so invalidate it to give a best
599 * effort at coherency.
600 */
601 if (remount_ro && sb->s_bdev)
602 invalidate_bdev(sb->s_bdev);
603 return 0;
604 }
605
606 static void do_emergency_remount(struct work_struct *work)
607 {
608 struct super_block *sb, *p = NULL;
609
610 spin_lock(&sb_lock);
611 list_for_each_entry(sb, &super_blocks, s_list) {
612 if (list_empty(&sb->s_instances))
613 continue;
614 sb->s_count++;
615 spin_unlock(&sb_lock);
616 down_write(&sb->s_umount);
617 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
618 /*
619 * What lock protects sb->s_flags??
620 */
621 do_remount_sb(sb, MS_RDONLY, NULL, 1);
622 }
623 up_write(&sb->s_umount);
624 spin_lock(&sb_lock);
625 if (p)
626 __put_super(p);
627 p = sb;
628 }
629 if (p)
630 __put_super(p);
631 spin_unlock(&sb_lock);
632 kfree(work);
633 printk("Emergency Remount complete\n");
634 }
635
636 void emergency_remount(void)
637 {
638 struct work_struct *work;
639
640 work = kmalloc(sizeof(*work), GFP_ATOMIC);
641 if (work) {
642 INIT_WORK(work, do_emergency_remount);
643 schedule_work(work);
644 }
645 }
646
647 /*
648 * Unnamed block devices are dummy devices used by virtual
649 * filesystems which don't use real block-devices. -- jrs
650 */
651
652 static DEFINE_IDA(unnamed_dev_ida);
653 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
654 static int unnamed_dev_start = 0; /* don't bother trying below it */
655
656 int set_anon_super(struct super_block *s, void *data)
657 {
658 int dev;
659 int error;
660
661 retry:
662 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
663 return -ENOMEM;
664 spin_lock(&unnamed_dev_lock);
665 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
666 if (!error)
667 unnamed_dev_start = dev + 1;
668 spin_unlock(&unnamed_dev_lock);
669 if (error == -EAGAIN)
670 /* We raced and lost with another CPU. */
671 goto retry;
672 else if (error)
673 return -EAGAIN;
674
675 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
676 spin_lock(&unnamed_dev_lock);
677 ida_remove(&unnamed_dev_ida, dev);
678 if (unnamed_dev_start > dev)
679 unnamed_dev_start = dev;
680 spin_unlock(&unnamed_dev_lock);
681 return -EMFILE;
682 }
683 s->s_dev = MKDEV(0, dev & MINORMASK);
684 s->s_bdi = &noop_backing_dev_info;
685 return 0;
686 }
687
688 EXPORT_SYMBOL(set_anon_super);
689
690 void kill_anon_super(struct super_block *sb)
691 {
692 int slot = MINOR(sb->s_dev);
693
694 generic_shutdown_super(sb);
695 spin_lock(&unnamed_dev_lock);
696 ida_remove(&unnamed_dev_ida, slot);
697 if (slot < unnamed_dev_start)
698 unnamed_dev_start = slot;
699 spin_unlock(&unnamed_dev_lock);
700 }
701
702 EXPORT_SYMBOL(kill_anon_super);
703
704 void kill_litter_super(struct super_block *sb)
705 {
706 if (sb->s_root)
707 d_genocide(sb->s_root);
708 kill_anon_super(sb);
709 }
710
711 EXPORT_SYMBOL(kill_litter_super);
712
713 static int ns_test_super(struct super_block *sb, void *data)
714 {
715 return sb->s_fs_info == data;
716 }
717
718 static int ns_set_super(struct super_block *sb, void *data)
719 {
720 sb->s_fs_info = data;
721 return set_anon_super(sb, NULL);
722 }
723
724 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
725 void *data, int (*fill_super)(struct super_block *, void *, int))
726 {
727 struct super_block *sb;
728
729 sb = sget(fs_type, ns_test_super, ns_set_super, data);
730 if (IS_ERR(sb))
731 return ERR_CAST(sb);
732
733 if (!sb->s_root) {
734 int err;
735 sb->s_flags = flags;
736 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
737 if (err) {
738 deactivate_locked_super(sb);
739 return ERR_PTR(err);
740 }
741
742 sb->s_flags |= MS_ACTIVE;
743 }
744
745 return dget(sb->s_root);
746 }
747
748 EXPORT_SYMBOL(mount_ns);
749
750 #ifdef CONFIG_BLOCK
751 static int set_bdev_super(struct super_block *s, void *data)
752 {
753 s->s_bdev = data;
754 s->s_dev = s->s_bdev->bd_dev;
755
756 /*
757 * We set the bdi here to the queue backing, file systems can
758 * overwrite this in ->fill_super()
759 */
760 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
761 return 0;
762 }
763
764 static int test_bdev_super(struct super_block *s, void *data)
765 {
766 return (void *)s->s_bdev == data;
767 }
768
769 struct dentry *mount_bdev(struct file_system_type *fs_type,
770 int flags, const char *dev_name, void *data,
771 int (*fill_super)(struct super_block *, void *, int))
772 {
773 struct block_device *bdev;
774 struct super_block *s;
775 fmode_t mode = FMODE_READ | FMODE_EXCL;
776 int error = 0;
777
778 if (!(flags & MS_RDONLY))
779 mode |= FMODE_WRITE;
780
781 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
782 if (IS_ERR(bdev))
783 return ERR_CAST(bdev);
784
785 /*
786 * once the super is inserted into the list by sget, s_umount
787 * will protect the lockfs code from trying to start a snapshot
788 * while we are mounting
789 */
790 mutex_lock(&bdev->bd_fsfreeze_mutex);
791 if (bdev->bd_fsfreeze_count > 0) {
792 mutex_unlock(&bdev->bd_fsfreeze_mutex);
793 error = -EBUSY;
794 goto error_bdev;
795 }
796 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
797 mutex_unlock(&bdev->bd_fsfreeze_mutex);
798 if (IS_ERR(s))
799 goto error_s;
800
801 if (s->s_root) {
802 if ((flags ^ s->s_flags) & MS_RDONLY) {
803 deactivate_locked_super(s);
804 error = -EBUSY;
805 goto error_bdev;
806 }
807
808 /*
809 * s_umount nests inside bd_mutex during
810 * __invalidate_device(). blkdev_put() acquires
811 * bd_mutex and can't be called under s_umount. Drop
812 * s_umount temporarily. This is safe as we're
813 * holding an active reference.
814 */
815 up_write(&s->s_umount);
816 blkdev_put(bdev, mode);
817 down_write(&s->s_umount);
818 } else {
819 char b[BDEVNAME_SIZE];
820
821 s->s_flags = flags;
822 s->s_mode = mode;
823 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
824 sb_set_blocksize(s, block_size(bdev));
825 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
826 if (error) {
827 deactivate_locked_super(s);
828 goto error;
829 }
830
831 s->s_flags |= MS_ACTIVE;
832 bdev->bd_super = s;
833 }
834
835 return dget(s->s_root);
836
837 error_s:
838 error = PTR_ERR(s);
839 error_bdev:
840 blkdev_put(bdev, mode);
841 error:
842 return ERR_PTR(error);
843 }
844 EXPORT_SYMBOL(mount_bdev);
845
846 void kill_block_super(struct super_block *sb)
847 {
848 struct block_device *bdev = sb->s_bdev;
849 fmode_t mode = sb->s_mode;
850
851 bdev->bd_super = NULL;
852 generic_shutdown_super(sb);
853 sync_blockdev(bdev);
854 WARN_ON_ONCE(!(mode & FMODE_EXCL));
855 blkdev_put(bdev, mode | FMODE_EXCL);
856 }
857
858 EXPORT_SYMBOL(kill_block_super);
859 #endif
860
861 struct dentry *mount_nodev(struct file_system_type *fs_type,
862 int flags, void *data,
863 int (*fill_super)(struct super_block *, void *, int))
864 {
865 int error;
866 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
867
868 if (IS_ERR(s))
869 return ERR_CAST(s);
870
871 s->s_flags = flags;
872
873 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
874 if (error) {
875 deactivate_locked_super(s);
876 return ERR_PTR(error);
877 }
878 s->s_flags |= MS_ACTIVE;
879 return dget(s->s_root);
880 }
881 EXPORT_SYMBOL(mount_nodev);
882
883 static int compare_single(struct super_block *s, void *p)
884 {
885 return 1;
886 }
887
888 struct dentry *mount_single(struct file_system_type *fs_type,
889 int flags, void *data,
890 int (*fill_super)(struct super_block *, void *, int))
891 {
892 struct super_block *s;
893 int error;
894
895 s = sget(fs_type, compare_single, set_anon_super, NULL);
896 if (IS_ERR(s))
897 return ERR_CAST(s);
898 if (!s->s_root) {
899 s->s_flags = flags;
900 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
901 if (error) {
902 deactivate_locked_super(s);
903 return ERR_PTR(error);
904 }
905 s->s_flags |= MS_ACTIVE;
906 } else {
907 do_remount_sb(s, flags, data, 0);
908 }
909 return dget(s->s_root);
910 }
911 EXPORT_SYMBOL(mount_single);
912
913 struct dentry *
914 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
915 {
916 struct dentry *root;
917 struct super_block *sb;
918 char *secdata = NULL;
919 int error = -ENOMEM;
920
921 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
922 secdata = alloc_secdata();
923 if (!secdata)
924 goto out;
925
926 error = security_sb_copy_data(data, secdata);
927 if (error)
928 goto out_free_secdata;
929 }
930
931 root = type->mount(type, flags, name, data);
932 if (IS_ERR(root)) {
933 error = PTR_ERR(root);
934 goto out_free_secdata;
935 }
936 sb = root->d_sb;
937 BUG_ON(!sb);
938 WARN_ON(!sb->s_bdi);
939 sb->s_flags |= MS_BORN;
940
941 error = security_sb_kern_mount(sb, flags, secdata);
942 if (error)
943 goto out_sb;
944
945 /*
946 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
947 * but s_maxbytes was an unsigned long long for many releases. Throw
948 * this warning for a little while to try and catch filesystems that
949 * violate this rule. This warning should be either removed or
950 * converted to a BUG() in 2.6.34.
951 */
952 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
953 "negative value (%lld)\n", type->name, sb->s_maxbytes);
954
955 up_write(&sb->s_umount);
956 free_secdata(secdata);
957 return root;
958 out_sb:
959 dput(root);
960 deactivate_locked_super(sb);
961 out_free_secdata:
962 free_secdata(secdata);
963 out:
964 return ERR_PTR(error);
965 }
966
967 /**
968 * freeze_super - lock the filesystem and force it into a consistent state
969 * @sb: the super to lock
970 *
971 * Syncs the super to make sure the filesystem is consistent and calls the fs's
972 * freeze_fs. Subsequent calls to this without first thawing the fs will return
973 * -EBUSY.
974 */
975 int freeze_super(struct super_block *sb)
976 {
977 int ret;
978
979 atomic_inc(&sb->s_active);
980 down_write(&sb->s_umount);
981 if (sb->s_frozen) {
982 deactivate_locked_super(sb);
983 return -EBUSY;
984 }
985
986 if (sb->s_flags & MS_RDONLY) {
987 sb->s_frozen = SB_FREEZE_TRANS;
988 smp_wmb();
989 up_write(&sb->s_umount);
990 return 0;
991 }
992
993 sb->s_frozen = SB_FREEZE_WRITE;
994 smp_wmb();
995
996 sync_filesystem(sb);
997
998 sb->s_frozen = SB_FREEZE_TRANS;
999 smp_wmb();
1000
1001 sync_blockdev(sb->s_bdev);
1002 if (sb->s_op->freeze_fs) {
1003 ret = sb->s_op->freeze_fs(sb);
1004 if (ret) {
1005 printk(KERN_ERR
1006 "VFS:Filesystem freeze failed\n");
1007 sb->s_frozen = SB_UNFROZEN;
1008 deactivate_locked_super(sb);
1009 return ret;
1010 }
1011 }
1012 up_write(&sb->s_umount);
1013 return 0;
1014 }
1015 EXPORT_SYMBOL(freeze_super);
1016
1017 /**
1018 * thaw_super -- unlock filesystem
1019 * @sb: the super to thaw
1020 *
1021 * Unlocks the filesystem and marks it writeable again after freeze_super().
1022 */
1023 int thaw_super(struct super_block *sb)
1024 {
1025 int error;
1026
1027 down_write(&sb->s_umount);
1028 if (sb->s_frozen == SB_UNFROZEN) {
1029 up_write(&sb->s_umount);
1030 return -EINVAL;
1031 }
1032
1033 if (sb->s_flags & MS_RDONLY)
1034 goto out;
1035
1036 if (sb->s_op->unfreeze_fs) {
1037 error = sb->s_op->unfreeze_fs(sb);
1038 if (error) {
1039 printk(KERN_ERR
1040 "VFS:Filesystem thaw failed\n");
1041 sb->s_frozen = SB_FREEZE_TRANS;
1042 up_write(&sb->s_umount);
1043 return error;
1044 }
1045 }
1046
1047 out:
1048 sb->s_frozen = SB_UNFROZEN;
1049 smp_wmb();
1050 wake_up(&sb->s_wait_unfrozen);
1051 deactivate_locked_super(sb);
1052
1053 return 0;
1054 }
1055 EXPORT_SYMBOL(thaw_super);
This page took 0.083296 seconds and 5 git commands to generate.