Merge tag 'freevxfs-for-4.8' of git://git.infradead.org/users/hch/freevxfs
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37
38
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
41
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 "sb_writers",
44 "sb_pagefaults",
45 "sb_internal",
46 };
47
48 /*
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
54 */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 long fs_objects = 0;
60 long total_objects;
61 long freed = 0;
62 long dentries;
63 long inodes;
64
65 sb = container_of(shrink, struct super_block, s_shrink);
66
67 /*
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
70 */
71 if (!(sc->gfp_mask & __GFP_FS))
72 return SHRINK_STOP;
73
74 if (!trylock_super(sb))
75 return SHRINK_STOP;
76
77 if (sb->s_op->nr_cached_objects)
78 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79
80 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 total_objects = dentries + inodes + fs_objects + 1;
83 if (!total_objects)
84 total_objects = 1;
85
86 /* proportion the scan between the caches */
87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90
91 /*
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
94 *
95 * Ensure that we always scan at least one object - memcg kmem
96 * accounting uses this to fully empty the caches.
97 */
98 sc->nr_to_scan = dentries + 1;
99 freed = prune_dcache_sb(sb, sc);
100 sc->nr_to_scan = inodes + 1;
101 freed += prune_icache_sb(sb, sc);
102
103 if (fs_objects) {
104 sc->nr_to_scan = fs_objects + 1;
105 freed += sb->s_op->free_cached_objects(sb, sc);
106 }
107
108 up_read(&sb->s_umount);
109 return freed;
110 }
111
112 static unsigned long super_cache_count(struct shrinker *shrink,
113 struct shrink_control *sc)
114 {
115 struct super_block *sb;
116 long total_objects = 0;
117
118 sb = container_of(shrink, struct super_block, s_shrink);
119
120 /*
121 * Don't call trylock_super as it is a potential
122 * scalability bottleneck. The counts could get updated
123 * between super_cache_count and super_cache_scan anyway.
124 * Call to super_cache_count with shrinker_rwsem held
125 * ensures the safety of call to list_lru_shrink_count() and
126 * s_op->nr_cached_objects().
127 */
128 if (sb->s_op && sb->s_op->nr_cached_objects)
129 total_objects = sb->s_op->nr_cached_objects(sb, sc);
130
131 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133
134 total_objects = vfs_pressure_ratio(total_objects);
135 return total_objects;
136 }
137
138 static void destroy_super_work(struct work_struct *work)
139 {
140 struct super_block *s = container_of(work, struct super_block,
141 destroy_work);
142 int i;
143
144 for (i = 0; i < SB_FREEZE_LEVELS; i++)
145 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
146 kfree(s);
147 }
148
149 static void destroy_super_rcu(struct rcu_head *head)
150 {
151 struct super_block *s = container_of(head, struct super_block, rcu);
152 INIT_WORK(&s->destroy_work, destroy_super_work);
153 schedule_work(&s->destroy_work);
154 }
155
156 /**
157 * destroy_super - frees a superblock
158 * @s: superblock to free
159 *
160 * Frees a superblock.
161 */
162 static void destroy_super(struct super_block *s)
163 {
164 list_lru_destroy(&s->s_dentry_lru);
165 list_lru_destroy(&s->s_inode_lru);
166 security_sb_free(s);
167 WARN_ON(!list_empty(&s->s_mounts));
168 kfree(s->s_subtype);
169 kfree(s->s_options);
170 call_rcu(&s->rcu, destroy_super_rcu);
171 }
172
173 /**
174 * alloc_super - create new superblock
175 * @type: filesystem type superblock should belong to
176 * @flags: the mount flags
177 *
178 * Allocates and initializes a new &struct super_block. alloc_super()
179 * returns a pointer new superblock or %NULL if allocation had failed.
180 */
181 static struct super_block *alloc_super(struct file_system_type *type, int flags)
182 {
183 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
184 static const struct super_operations default_op;
185 int i;
186
187 if (!s)
188 return NULL;
189
190 INIT_LIST_HEAD(&s->s_mounts);
191
192 if (security_sb_alloc(s))
193 goto fail;
194
195 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
196 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
197 sb_writers_name[i],
198 &type->s_writers_key[i]))
199 goto fail;
200 }
201 init_waitqueue_head(&s->s_writers.wait_unfrozen);
202 s->s_bdi = &noop_backing_dev_info;
203 s->s_flags = flags;
204 INIT_HLIST_NODE(&s->s_instances);
205 INIT_HLIST_BL_HEAD(&s->s_anon);
206 mutex_init(&s->s_sync_lock);
207 INIT_LIST_HEAD(&s->s_inodes);
208 spin_lock_init(&s->s_inode_list_lock);
209 INIT_LIST_HEAD(&s->s_inodes_wb);
210 spin_lock_init(&s->s_inode_wblist_lock);
211
212 if (list_lru_init_memcg(&s->s_dentry_lru))
213 goto fail;
214 if (list_lru_init_memcg(&s->s_inode_lru))
215 goto fail;
216
217 init_rwsem(&s->s_umount);
218 lockdep_set_class(&s->s_umount, &type->s_umount_key);
219 /*
220 * sget() can have s_umount recursion.
221 *
222 * When it cannot find a suitable sb, it allocates a new
223 * one (this one), and tries again to find a suitable old
224 * one.
225 *
226 * In case that succeeds, it will acquire the s_umount
227 * lock of the old one. Since these are clearly distrinct
228 * locks, and this object isn't exposed yet, there's no
229 * risk of deadlocks.
230 *
231 * Annotate this by putting this lock in a different
232 * subclass.
233 */
234 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
235 s->s_count = 1;
236 atomic_set(&s->s_active, 1);
237 mutex_init(&s->s_vfs_rename_mutex);
238 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
239 mutex_init(&s->s_dquot.dqio_mutex);
240 mutex_init(&s->s_dquot.dqonoff_mutex);
241 s->s_maxbytes = MAX_NON_LFS;
242 s->s_op = &default_op;
243 s->s_time_gran = 1000000000;
244 s->cleancache_poolid = CLEANCACHE_NO_POOL;
245
246 s->s_shrink.seeks = DEFAULT_SEEKS;
247 s->s_shrink.scan_objects = super_cache_scan;
248 s->s_shrink.count_objects = super_cache_count;
249 s->s_shrink.batch = 1024;
250 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
251 return s;
252
253 fail:
254 destroy_super(s);
255 return NULL;
256 }
257
258 /* Superblock refcounting */
259
260 /*
261 * Drop a superblock's refcount. The caller must hold sb_lock.
262 */
263 static void __put_super(struct super_block *sb)
264 {
265 if (!--sb->s_count) {
266 list_del_init(&sb->s_list);
267 destroy_super(sb);
268 }
269 }
270
271 /**
272 * put_super - drop a temporary reference to superblock
273 * @sb: superblock in question
274 *
275 * Drops a temporary reference, frees superblock if there's no
276 * references left.
277 */
278 static void put_super(struct super_block *sb)
279 {
280 spin_lock(&sb_lock);
281 __put_super(sb);
282 spin_unlock(&sb_lock);
283 }
284
285
286 /**
287 * deactivate_locked_super - drop an active reference to superblock
288 * @s: superblock to deactivate
289 *
290 * Drops an active reference to superblock, converting it into a temporary
291 * one if there is no other active references left. In that case we
292 * tell fs driver to shut it down and drop the temporary reference we
293 * had just acquired.
294 *
295 * Caller holds exclusive lock on superblock; that lock is released.
296 */
297 void deactivate_locked_super(struct super_block *s)
298 {
299 struct file_system_type *fs = s->s_type;
300 if (atomic_dec_and_test(&s->s_active)) {
301 cleancache_invalidate_fs(s);
302 unregister_shrinker(&s->s_shrink);
303 fs->kill_sb(s);
304
305 /*
306 * Since list_lru_destroy() may sleep, we cannot call it from
307 * put_super(), where we hold the sb_lock. Therefore we destroy
308 * the lru lists right now.
309 */
310 list_lru_destroy(&s->s_dentry_lru);
311 list_lru_destroy(&s->s_inode_lru);
312
313 put_filesystem(fs);
314 put_super(s);
315 } else {
316 up_write(&s->s_umount);
317 }
318 }
319
320 EXPORT_SYMBOL(deactivate_locked_super);
321
322 /**
323 * deactivate_super - drop an active reference to superblock
324 * @s: superblock to deactivate
325 *
326 * Variant of deactivate_locked_super(), except that superblock is *not*
327 * locked by caller. If we are going to drop the final active reference,
328 * lock will be acquired prior to that.
329 */
330 void deactivate_super(struct super_block *s)
331 {
332 if (!atomic_add_unless(&s->s_active, -1, 1)) {
333 down_write(&s->s_umount);
334 deactivate_locked_super(s);
335 }
336 }
337
338 EXPORT_SYMBOL(deactivate_super);
339
340 /**
341 * grab_super - acquire an active reference
342 * @s: reference we are trying to make active
343 *
344 * Tries to acquire an active reference. grab_super() is used when we
345 * had just found a superblock in super_blocks or fs_type->fs_supers
346 * and want to turn it into a full-blown active reference. grab_super()
347 * is called with sb_lock held and drops it. Returns 1 in case of
348 * success, 0 if we had failed (superblock contents was already dead or
349 * dying when grab_super() had been called). Note that this is only
350 * called for superblocks not in rundown mode (== ones still on ->fs_supers
351 * of their type), so increment of ->s_count is OK here.
352 */
353 static int grab_super(struct super_block *s) __releases(sb_lock)
354 {
355 s->s_count++;
356 spin_unlock(&sb_lock);
357 down_write(&s->s_umount);
358 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
359 put_super(s);
360 return 1;
361 }
362 up_write(&s->s_umount);
363 put_super(s);
364 return 0;
365 }
366
367 /*
368 * trylock_super - try to grab ->s_umount shared
369 * @sb: reference we are trying to grab
370 *
371 * Try to prevent fs shutdown. This is used in places where we
372 * cannot take an active reference but we need to ensure that the
373 * filesystem is not shut down while we are working on it. It returns
374 * false if we cannot acquire s_umount or if we lose the race and
375 * filesystem already got into shutdown, and returns true with the s_umount
376 * lock held in read mode in case of success. On successful return,
377 * the caller must drop the s_umount lock when done.
378 *
379 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
380 * The reason why it's safe is that we are OK with doing trylock instead
381 * of down_read(). There's a couple of places that are OK with that, but
382 * it's very much not a general-purpose interface.
383 */
384 bool trylock_super(struct super_block *sb)
385 {
386 if (down_read_trylock(&sb->s_umount)) {
387 if (!hlist_unhashed(&sb->s_instances) &&
388 sb->s_root && (sb->s_flags & MS_BORN))
389 return true;
390 up_read(&sb->s_umount);
391 }
392
393 return false;
394 }
395
396 /**
397 * generic_shutdown_super - common helper for ->kill_sb()
398 * @sb: superblock to kill
399 *
400 * generic_shutdown_super() does all fs-independent work on superblock
401 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
402 * that need destruction out of superblock, call generic_shutdown_super()
403 * and release aforementioned objects. Note: dentries and inodes _are_
404 * taken care of and do not need specific handling.
405 *
406 * Upon calling this function, the filesystem may no longer alter or
407 * rearrange the set of dentries belonging to this super_block, nor may it
408 * change the attachments of dentries to inodes.
409 */
410 void generic_shutdown_super(struct super_block *sb)
411 {
412 const struct super_operations *sop = sb->s_op;
413
414 if (sb->s_root) {
415 shrink_dcache_for_umount(sb);
416 sync_filesystem(sb);
417 sb->s_flags &= ~MS_ACTIVE;
418
419 fsnotify_unmount_inodes(sb);
420 cgroup_writeback_umount();
421
422 evict_inodes(sb);
423
424 if (sb->s_dio_done_wq) {
425 destroy_workqueue(sb->s_dio_done_wq);
426 sb->s_dio_done_wq = NULL;
427 }
428
429 if (sop->put_super)
430 sop->put_super(sb);
431
432 if (!list_empty(&sb->s_inodes)) {
433 printk("VFS: Busy inodes after unmount of %s. "
434 "Self-destruct in 5 seconds. Have a nice day...\n",
435 sb->s_id);
436 }
437 }
438 spin_lock(&sb_lock);
439 /* should be initialized for __put_super_and_need_restart() */
440 hlist_del_init(&sb->s_instances);
441 spin_unlock(&sb_lock);
442 up_write(&sb->s_umount);
443 }
444
445 EXPORT_SYMBOL(generic_shutdown_super);
446
447 /**
448 * sget - find or create a superblock
449 * @type: filesystem type superblock should belong to
450 * @test: comparison callback
451 * @set: setup callback
452 * @flags: mount flags
453 * @data: argument to each of them
454 */
455 struct super_block *sget(struct file_system_type *type,
456 int (*test)(struct super_block *,void *),
457 int (*set)(struct super_block *,void *),
458 int flags,
459 void *data)
460 {
461 struct super_block *s = NULL;
462 struct super_block *old;
463 int err;
464
465 retry:
466 spin_lock(&sb_lock);
467 if (test) {
468 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
469 if (!test(old, data))
470 continue;
471 if (!grab_super(old))
472 goto retry;
473 if (s) {
474 up_write(&s->s_umount);
475 destroy_super(s);
476 s = NULL;
477 }
478 return old;
479 }
480 }
481 if (!s) {
482 spin_unlock(&sb_lock);
483 s = alloc_super(type, flags);
484 if (!s)
485 return ERR_PTR(-ENOMEM);
486 goto retry;
487 }
488
489 err = set(s, data);
490 if (err) {
491 spin_unlock(&sb_lock);
492 up_write(&s->s_umount);
493 destroy_super(s);
494 return ERR_PTR(err);
495 }
496 s->s_type = type;
497 strlcpy(s->s_id, type->name, sizeof(s->s_id));
498 list_add_tail(&s->s_list, &super_blocks);
499 hlist_add_head(&s->s_instances, &type->fs_supers);
500 spin_unlock(&sb_lock);
501 get_filesystem(type);
502 register_shrinker(&s->s_shrink);
503 return s;
504 }
505
506 EXPORT_SYMBOL(sget);
507
508 void drop_super(struct super_block *sb)
509 {
510 up_read(&sb->s_umount);
511 put_super(sb);
512 }
513
514 EXPORT_SYMBOL(drop_super);
515
516 /**
517 * iterate_supers - call function for all active superblocks
518 * @f: function to call
519 * @arg: argument to pass to it
520 *
521 * Scans the superblock list and calls given function, passing it
522 * locked superblock and given argument.
523 */
524 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
525 {
526 struct super_block *sb, *p = NULL;
527
528 spin_lock(&sb_lock);
529 list_for_each_entry(sb, &super_blocks, s_list) {
530 if (hlist_unhashed(&sb->s_instances))
531 continue;
532 sb->s_count++;
533 spin_unlock(&sb_lock);
534
535 down_read(&sb->s_umount);
536 if (sb->s_root && (sb->s_flags & MS_BORN))
537 f(sb, arg);
538 up_read(&sb->s_umount);
539
540 spin_lock(&sb_lock);
541 if (p)
542 __put_super(p);
543 p = sb;
544 }
545 if (p)
546 __put_super(p);
547 spin_unlock(&sb_lock);
548 }
549
550 /**
551 * iterate_supers_type - call function for superblocks of given type
552 * @type: fs type
553 * @f: function to call
554 * @arg: argument to pass to it
555 *
556 * Scans the superblock list and calls given function, passing it
557 * locked superblock and given argument.
558 */
559 void iterate_supers_type(struct file_system_type *type,
560 void (*f)(struct super_block *, void *), void *arg)
561 {
562 struct super_block *sb, *p = NULL;
563
564 spin_lock(&sb_lock);
565 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
566 sb->s_count++;
567 spin_unlock(&sb_lock);
568
569 down_read(&sb->s_umount);
570 if (sb->s_root && (sb->s_flags & MS_BORN))
571 f(sb, arg);
572 up_read(&sb->s_umount);
573
574 spin_lock(&sb_lock);
575 if (p)
576 __put_super(p);
577 p = sb;
578 }
579 if (p)
580 __put_super(p);
581 spin_unlock(&sb_lock);
582 }
583
584 EXPORT_SYMBOL(iterate_supers_type);
585
586 /**
587 * get_super - get the superblock of a device
588 * @bdev: device to get the superblock for
589 *
590 * Scans the superblock list and finds the superblock of the file system
591 * mounted on the device given. %NULL is returned if no match is found.
592 */
593
594 struct super_block *get_super(struct block_device *bdev)
595 {
596 struct super_block *sb;
597
598 if (!bdev)
599 return NULL;
600
601 spin_lock(&sb_lock);
602 rescan:
603 list_for_each_entry(sb, &super_blocks, s_list) {
604 if (hlist_unhashed(&sb->s_instances))
605 continue;
606 if (sb->s_bdev == bdev) {
607 sb->s_count++;
608 spin_unlock(&sb_lock);
609 down_read(&sb->s_umount);
610 /* still alive? */
611 if (sb->s_root && (sb->s_flags & MS_BORN))
612 return sb;
613 up_read(&sb->s_umount);
614 /* nope, got unmounted */
615 spin_lock(&sb_lock);
616 __put_super(sb);
617 goto rescan;
618 }
619 }
620 spin_unlock(&sb_lock);
621 return NULL;
622 }
623
624 EXPORT_SYMBOL(get_super);
625
626 /**
627 * get_super_thawed - get thawed superblock of a device
628 * @bdev: device to get the superblock for
629 *
630 * Scans the superblock list and finds the superblock of the file system
631 * mounted on the device. The superblock is returned once it is thawed
632 * (or immediately if it was not frozen). %NULL is returned if no match
633 * is found.
634 */
635 struct super_block *get_super_thawed(struct block_device *bdev)
636 {
637 while (1) {
638 struct super_block *s = get_super(bdev);
639 if (!s || s->s_writers.frozen == SB_UNFROZEN)
640 return s;
641 up_read(&s->s_umount);
642 wait_event(s->s_writers.wait_unfrozen,
643 s->s_writers.frozen == SB_UNFROZEN);
644 put_super(s);
645 }
646 }
647 EXPORT_SYMBOL(get_super_thawed);
648
649 /**
650 * get_active_super - get an active reference to the superblock of a device
651 * @bdev: device to get the superblock for
652 *
653 * Scans the superblock list and finds the superblock of the file system
654 * mounted on the device given. Returns the superblock with an active
655 * reference or %NULL if none was found.
656 */
657 struct super_block *get_active_super(struct block_device *bdev)
658 {
659 struct super_block *sb;
660
661 if (!bdev)
662 return NULL;
663
664 restart:
665 spin_lock(&sb_lock);
666 list_for_each_entry(sb, &super_blocks, s_list) {
667 if (hlist_unhashed(&sb->s_instances))
668 continue;
669 if (sb->s_bdev == bdev) {
670 if (!grab_super(sb))
671 goto restart;
672 up_write(&sb->s_umount);
673 return sb;
674 }
675 }
676 spin_unlock(&sb_lock);
677 return NULL;
678 }
679
680 struct super_block *user_get_super(dev_t dev)
681 {
682 struct super_block *sb;
683
684 spin_lock(&sb_lock);
685 rescan:
686 list_for_each_entry(sb, &super_blocks, s_list) {
687 if (hlist_unhashed(&sb->s_instances))
688 continue;
689 if (sb->s_dev == dev) {
690 sb->s_count++;
691 spin_unlock(&sb_lock);
692 down_read(&sb->s_umount);
693 /* still alive? */
694 if (sb->s_root && (sb->s_flags & MS_BORN))
695 return sb;
696 up_read(&sb->s_umount);
697 /* nope, got unmounted */
698 spin_lock(&sb_lock);
699 __put_super(sb);
700 goto rescan;
701 }
702 }
703 spin_unlock(&sb_lock);
704 return NULL;
705 }
706
707 /**
708 * do_remount_sb - asks filesystem to change mount options.
709 * @sb: superblock in question
710 * @flags: numeric part of options
711 * @data: the rest of options
712 * @force: whether or not to force the change
713 *
714 * Alters the mount options of a mounted file system.
715 */
716 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
717 {
718 int retval;
719 int remount_ro;
720
721 if (sb->s_writers.frozen != SB_UNFROZEN)
722 return -EBUSY;
723
724 #ifdef CONFIG_BLOCK
725 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
726 return -EACCES;
727 #endif
728
729 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
730
731 if (remount_ro) {
732 if (!hlist_empty(&sb->s_pins)) {
733 up_write(&sb->s_umount);
734 group_pin_kill(&sb->s_pins);
735 down_write(&sb->s_umount);
736 if (!sb->s_root)
737 return 0;
738 if (sb->s_writers.frozen != SB_UNFROZEN)
739 return -EBUSY;
740 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
741 }
742 }
743 shrink_dcache_sb(sb);
744
745 /* If we are remounting RDONLY and current sb is read/write,
746 make sure there are no rw files opened */
747 if (remount_ro) {
748 if (force) {
749 sb->s_readonly_remount = 1;
750 smp_wmb();
751 } else {
752 retval = sb_prepare_remount_readonly(sb);
753 if (retval)
754 return retval;
755 }
756 }
757
758 if (sb->s_op->remount_fs) {
759 retval = sb->s_op->remount_fs(sb, &flags, data);
760 if (retval) {
761 if (!force)
762 goto cancel_readonly;
763 /* If forced remount, go ahead despite any errors */
764 WARN(1, "forced remount of a %s fs returned %i\n",
765 sb->s_type->name, retval);
766 }
767 }
768 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
769 /* Needs to be ordered wrt mnt_is_readonly() */
770 smp_wmb();
771 sb->s_readonly_remount = 0;
772
773 /*
774 * Some filesystems modify their metadata via some other path than the
775 * bdev buffer cache (eg. use a private mapping, or directories in
776 * pagecache, etc). Also file data modifications go via their own
777 * mappings. So If we try to mount readonly then copy the filesystem
778 * from bdev, we could get stale data, so invalidate it to give a best
779 * effort at coherency.
780 */
781 if (remount_ro && sb->s_bdev)
782 invalidate_bdev(sb->s_bdev);
783 return 0;
784
785 cancel_readonly:
786 sb->s_readonly_remount = 0;
787 return retval;
788 }
789
790 static void do_emergency_remount(struct work_struct *work)
791 {
792 struct super_block *sb, *p = NULL;
793
794 spin_lock(&sb_lock);
795 list_for_each_entry(sb, &super_blocks, s_list) {
796 if (hlist_unhashed(&sb->s_instances))
797 continue;
798 sb->s_count++;
799 spin_unlock(&sb_lock);
800 down_write(&sb->s_umount);
801 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
802 !(sb->s_flags & MS_RDONLY)) {
803 /*
804 * What lock protects sb->s_flags??
805 */
806 do_remount_sb(sb, MS_RDONLY, NULL, 1);
807 }
808 up_write(&sb->s_umount);
809 spin_lock(&sb_lock);
810 if (p)
811 __put_super(p);
812 p = sb;
813 }
814 if (p)
815 __put_super(p);
816 spin_unlock(&sb_lock);
817 kfree(work);
818 printk("Emergency Remount complete\n");
819 }
820
821 void emergency_remount(void)
822 {
823 struct work_struct *work;
824
825 work = kmalloc(sizeof(*work), GFP_ATOMIC);
826 if (work) {
827 INIT_WORK(work, do_emergency_remount);
828 schedule_work(work);
829 }
830 }
831
832 /*
833 * Unnamed block devices are dummy devices used by virtual
834 * filesystems which don't use real block-devices. -- jrs
835 */
836
837 static DEFINE_IDA(unnamed_dev_ida);
838 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
839 /* Many userspace utilities consider an FSID of 0 invalid.
840 * Always return at least 1 from get_anon_bdev.
841 */
842 static int unnamed_dev_start = 1;
843
844 int get_anon_bdev(dev_t *p)
845 {
846 int dev;
847 int error;
848
849 retry:
850 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
851 return -ENOMEM;
852 spin_lock(&unnamed_dev_lock);
853 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
854 if (!error)
855 unnamed_dev_start = dev + 1;
856 spin_unlock(&unnamed_dev_lock);
857 if (error == -EAGAIN)
858 /* We raced and lost with another CPU. */
859 goto retry;
860 else if (error)
861 return -EAGAIN;
862
863 if (dev >= (1 << MINORBITS)) {
864 spin_lock(&unnamed_dev_lock);
865 ida_remove(&unnamed_dev_ida, dev);
866 if (unnamed_dev_start > dev)
867 unnamed_dev_start = dev;
868 spin_unlock(&unnamed_dev_lock);
869 return -EMFILE;
870 }
871 *p = MKDEV(0, dev & MINORMASK);
872 return 0;
873 }
874 EXPORT_SYMBOL(get_anon_bdev);
875
876 void free_anon_bdev(dev_t dev)
877 {
878 int slot = MINOR(dev);
879 spin_lock(&unnamed_dev_lock);
880 ida_remove(&unnamed_dev_ida, slot);
881 if (slot < unnamed_dev_start)
882 unnamed_dev_start = slot;
883 spin_unlock(&unnamed_dev_lock);
884 }
885 EXPORT_SYMBOL(free_anon_bdev);
886
887 int set_anon_super(struct super_block *s, void *data)
888 {
889 return get_anon_bdev(&s->s_dev);
890 }
891
892 EXPORT_SYMBOL(set_anon_super);
893
894 void kill_anon_super(struct super_block *sb)
895 {
896 dev_t dev = sb->s_dev;
897 generic_shutdown_super(sb);
898 free_anon_bdev(dev);
899 }
900
901 EXPORT_SYMBOL(kill_anon_super);
902
903 void kill_litter_super(struct super_block *sb)
904 {
905 if (sb->s_root)
906 d_genocide(sb->s_root);
907 kill_anon_super(sb);
908 }
909
910 EXPORT_SYMBOL(kill_litter_super);
911
912 static int ns_test_super(struct super_block *sb, void *data)
913 {
914 return sb->s_fs_info == data;
915 }
916
917 static int ns_set_super(struct super_block *sb, void *data)
918 {
919 sb->s_fs_info = data;
920 return set_anon_super(sb, NULL);
921 }
922
923 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
924 void *data, int (*fill_super)(struct super_block *, void *, int))
925 {
926 struct super_block *sb;
927
928 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
929 if (IS_ERR(sb))
930 return ERR_CAST(sb);
931
932 if (!sb->s_root) {
933 int err;
934 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
935 if (err) {
936 deactivate_locked_super(sb);
937 return ERR_PTR(err);
938 }
939
940 sb->s_flags |= MS_ACTIVE;
941 }
942
943 return dget(sb->s_root);
944 }
945
946 EXPORT_SYMBOL(mount_ns);
947
948 #ifdef CONFIG_BLOCK
949 static int set_bdev_super(struct super_block *s, void *data)
950 {
951 s->s_bdev = data;
952 s->s_dev = s->s_bdev->bd_dev;
953
954 /*
955 * We set the bdi here to the queue backing, file systems can
956 * overwrite this in ->fill_super()
957 */
958 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
959 return 0;
960 }
961
962 static int test_bdev_super(struct super_block *s, void *data)
963 {
964 return (void *)s->s_bdev == data;
965 }
966
967 struct dentry *mount_bdev(struct file_system_type *fs_type,
968 int flags, const char *dev_name, void *data,
969 int (*fill_super)(struct super_block *, void *, int))
970 {
971 struct block_device *bdev;
972 struct super_block *s;
973 fmode_t mode = FMODE_READ | FMODE_EXCL;
974 int error = 0;
975
976 if (!(flags & MS_RDONLY))
977 mode |= FMODE_WRITE;
978
979 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
980 if (IS_ERR(bdev))
981 return ERR_CAST(bdev);
982
983 /*
984 * once the super is inserted into the list by sget, s_umount
985 * will protect the lockfs code from trying to start a snapshot
986 * while we are mounting
987 */
988 mutex_lock(&bdev->bd_fsfreeze_mutex);
989 if (bdev->bd_fsfreeze_count > 0) {
990 mutex_unlock(&bdev->bd_fsfreeze_mutex);
991 error = -EBUSY;
992 goto error_bdev;
993 }
994 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
995 bdev);
996 mutex_unlock(&bdev->bd_fsfreeze_mutex);
997 if (IS_ERR(s))
998 goto error_s;
999
1000 if (s->s_root) {
1001 if ((flags ^ s->s_flags) & MS_RDONLY) {
1002 deactivate_locked_super(s);
1003 error = -EBUSY;
1004 goto error_bdev;
1005 }
1006
1007 /*
1008 * s_umount nests inside bd_mutex during
1009 * __invalidate_device(). blkdev_put() acquires
1010 * bd_mutex and can't be called under s_umount. Drop
1011 * s_umount temporarily. This is safe as we're
1012 * holding an active reference.
1013 */
1014 up_write(&s->s_umount);
1015 blkdev_put(bdev, mode);
1016 down_write(&s->s_umount);
1017 } else {
1018 s->s_mode = mode;
1019 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1020 sb_set_blocksize(s, block_size(bdev));
1021 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1022 if (error) {
1023 deactivate_locked_super(s);
1024 goto error;
1025 }
1026
1027 s->s_flags |= MS_ACTIVE;
1028 bdev->bd_super = s;
1029 }
1030
1031 return dget(s->s_root);
1032
1033 error_s:
1034 error = PTR_ERR(s);
1035 error_bdev:
1036 blkdev_put(bdev, mode);
1037 error:
1038 return ERR_PTR(error);
1039 }
1040 EXPORT_SYMBOL(mount_bdev);
1041
1042 void kill_block_super(struct super_block *sb)
1043 {
1044 struct block_device *bdev = sb->s_bdev;
1045 fmode_t mode = sb->s_mode;
1046
1047 bdev->bd_super = NULL;
1048 generic_shutdown_super(sb);
1049 sync_blockdev(bdev);
1050 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1051 blkdev_put(bdev, mode | FMODE_EXCL);
1052 }
1053
1054 EXPORT_SYMBOL(kill_block_super);
1055 #endif
1056
1057 struct dentry *mount_nodev(struct file_system_type *fs_type,
1058 int flags, void *data,
1059 int (*fill_super)(struct super_block *, void *, int))
1060 {
1061 int error;
1062 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1063
1064 if (IS_ERR(s))
1065 return ERR_CAST(s);
1066
1067 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1068 if (error) {
1069 deactivate_locked_super(s);
1070 return ERR_PTR(error);
1071 }
1072 s->s_flags |= MS_ACTIVE;
1073 return dget(s->s_root);
1074 }
1075 EXPORT_SYMBOL(mount_nodev);
1076
1077 static int compare_single(struct super_block *s, void *p)
1078 {
1079 return 1;
1080 }
1081
1082 struct dentry *mount_single(struct file_system_type *fs_type,
1083 int flags, void *data,
1084 int (*fill_super)(struct super_block *, void *, int))
1085 {
1086 struct super_block *s;
1087 int error;
1088
1089 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1090 if (IS_ERR(s))
1091 return ERR_CAST(s);
1092 if (!s->s_root) {
1093 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1094 if (error) {
1095 deactivate_locked_super(s);
1096 return ERR_PTR(error);
1097 }
1098 s->s_flags |= MS_ACTIVE;
1099 } else {
1100 do_remount_sb(s, flags, data, 0);
1101 }
1102 return dget(s->s_root);
1103 }
1104 EXPORT_SYMBOL(mount_single);
1105
1106 struct dentry *
1107 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1108 {
1109 struct dentry *root;
1110 struct super_block *sb;
1111 char *secdata = NULL;
1112 int error = -ENOMEM;
1113
1114 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1115 secdata = alloc_secdata();
1116 if (!secdata)
1117 goto out;
1118
1119 error = security_sb_copy_data(data, secdata);
1120 if (error)
1121 goto out_free_secdata;
1122 }
1123
1124 root = type->mount(type, flags, name, data);
1125 if (IS_ERR(root)) {
1126 error = PTR_ERR(root);
1127 goto out_free_secdata;
1128 }
1129 sb = root->d_sb;
1130 BUG_ON(!sb);
1131 WARN_ON(!sb->s_bdi);
1132 sb->s_flags |= MS_BORN;
1133
1134 error = security_sb_kern_mount(sb, flags, secdata);
1135 if (error)
1136 goto out_sb;
1137
1138 /*
1139 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1140 * but s_maxbytes was an unsigned long long for many releases. Throw
1141 * this warning for a little while to try and catch filesystems that
1142 * violate this rule.
1143 */
1144 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1145 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1146
1147 up_write(&sb->s_umount);
1148 free_secdata(secdata);
1149 return root;
1150 out_sb:
1151 dput(root);
1152 deactivate_locked_super(sb);
1153 out_free_secdata:
1154 free_secdata(secdata);
1155 out:
1156 return ERR_PTR(error);
1157 }
1158
1159 /*
1160 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1161 * instead.
1162 */
1163 void __sb_end_write(struct super_block *sb, int level)
1164 {
1165 percpu_up_read(sb->s_writers.rw_sem + level-1);
1166 }
1167 EXPORT_SYMBOL(__sb_end_write);
1168
1169 /*
1170 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1171 * instead.
1172 */
1173 int __sb_start_write(struct super_block *sb, int level, bool wait)
1174 {
1175 bool force_trylock = false;
1176 int ret = 1;
1177
1178 #ifdef CONFIG_LOCKDEP
1179 /*
1180 * We want lockdep to tell us about possible deadlocks with freezing
1181 * but it's it bit tricky to properly instrument it. Getting a freeze
1182 * protection works as getting a read lock but there are subtle
1183 * problems. XFS for example gets freeze protection on internal level
1184 * twice in some cases, which is OK only because we already hold a
1185 * freeze protection also on higher level. Due to these cases we have
1186 * to use wait == F (trylock mode) which must not fail.
1187 */
1188 if (wait) {
1189 int i;
1190
1191 for (i = 0; i < level - 1; i++)
1192 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1193 force_trylock = true;
1194 break;
1195 }
1196 }
1197 #endif
1198 if (wait && !force_trylock)
1199 percpu_down_read(sb->s_writers.rw_sem + level-1);
1200 else
1201 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1202
1203 WARN_ON(force_trylock && !ret);
1204 return ret;
1205 }
1206 EXPORT_SYMBOL(__sb_start_write);
1207
1208 /**
1209 * sb_wait_write - wait until all writers to given file system finish
1210 * @sb: the super for which we wait
1211 * @level: type of writers we wait for (normal vs page fault)
1212 *
1213 * This function waits until there are no writers of given type to given file
1214 * system.
1215 */
1216 static void sb_wait_write(struct super_block *sb, int level)
1217 {
1218 percpu_down_write(sb->s_writers.rw_sem + level-1);
1219 /*
1220 * We are going to return to userspace and forget about this lock, the
1221 * ownership goes to the caller of thaw_super() which does unlock.
1222 *
1223 * FIXME: we should do this before return from freeze_super() after we
1224 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1225 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1226 * this leads to lockdep false-positives, so currently we do the early
1227 * release right after acquire.
1228 */
1229 percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1230 }
1231
1232 static void sb_freeze_unlock(struct super_block *sb)
1233 {
1234 int level;
1235
1236 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1237 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1238
1239 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1240 percpu_up_write(sb->s_writers.rw_sem + level);
1241 }
1242
1243 /**
1244 * freeze_super - lock the filesystem and force it into a consistent state
1245 * @sb: the super to lock
1246 *
1247 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1248 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1249 * -EBUSY.
1250 *
1251 * During this function, sb->s_writers.frozen goes through these values:
1252 *
1253 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1254 *
1255 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1256 * writes should be blocked, though page faults are still allowed. We wait for
1257 * all writes to complete and then proceed to the next stage.
1258 *
1259 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1260 * but internal fs threads can still modify the filesystem (although they
1261 * should not dirty new pages or inodes), writeback can run etc. After waiting
1262 * for all running page faults we sync the filesystem which will clean all
1263 * dirty pages and inodes (no new dirty pages or inodes can be created when
1264 * sync is running).
1265 *
1266 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1267 * modification are blocked (e.g. XFS preallocation truncation on inode
1268 * reclaim). This is usually implemented by blocking new transactions for
1269 * filesystems that have them and need this additional guard. After all
1270 * internal writers are finished we call ->freeze_fs() to finish filesystem
1271 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1272 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1273 *
1274 * sb->s_writers.frozen is protected by sb->s_umount.
1275 */
1276 int freeze_super(struct super_block *sb)
1277 {
1278 int ret;
1279
1280 atomic_inc(&sb->s_active);
1281 down_write(&sb->s_umount);
1282 if (sb->s_writers.frozen != SB_UNFROZEN) {
1283 deactivate_locked_super(sb);
1284 return -EBUSY;
1285 }
1286
1287 if (!(sb->s_flags & MS_BORN)) {
1288 up_write(&sb->s_umount);
1289 return 0; /* sic - it's "nothing to do" */
1290 }
1291
1292 if (sb->s_flags & MS_RDONLY) {
1293 /* Nothing to do really... */
1294 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1295 up_write(&sb->s_umount);
1296 return 0;
1297 }
1298
1299 sb->s_writers.frozen = SB_FREEZE_WRITE;
1300 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1301 up_write(&sb->s_umount);
1302 sb_wait_write(sb, SB_FREEZE_WRITE);
1303 down_write(&sb->s_umount);
1304
1305 /* Now we go and block page faults... */
1306 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1307 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1308
1309 /* All writers are done so after syncing there won't be dirty data */
1310 sync_filesystem(sb);
1311
1312 /* Now wait for internal filesystem counter */
1313 sb->s_writers.frozen = SB_FREEZE_FS;
1314 sb_wait_write(sb, SB_FREEZE_FS);
1315
1316 if (sb->s_op->freeze_fs) {
1317 ret = sb->s_op->freeze_fs(sb);
1318 if (ret) {
1319 printk(KERN_ERR
1320 "VFS:Filesystem freeze failed\n");
1321 sb->s_writers.frozen = SB_UNFROZEN;
1322 sb_freeze_unlock(sb);
1323 wake_up(&sb->s_writers.wait_unfrozen);
1324 deactivate_locked_super(sb);
1325 return ret;
1326 }
1327 }
1328 /*
1329 * This is just for debugging purposes so that fs can warn if it
1330 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1331 */
1332 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1333 up_write(&sb->s_umount);
1334 return 0;
1335 }
1336 EXPORT_SYMBOL(freeze_super);
1337
1338 /**
1339 * thaw_super -- unlock filesystem
1340 * @sb: the super to thaw
1341 *
1342 * Unlocks the filesystem and marks it writeable again after freeze_super().
1343 */
1344 int thaw_super(struct super_block *sb)
1345 {
1346 int error;
1347
1348 down_write(&sb->s_umount);
1349 if (sb->s_writers.frozen == SB_UNFROZEN) {
1350 up_write(&sb->s_umount);
1351 return -EINVAL;
1352 }
1353
1354 if (sb->s_flags & MS_RDONLY) {
1355 sb->s_writers.frozen = SB_UNFROZEN;
1356 goto out;
1357 }
1358
1359 if (sb->s_op->unfreeze_fs) {
1360 error = sb->s_op->unfreeze_fs(sb);
1361 if (error) {
1362 printk(KERN_ERR
1363 "VFS:Filesystem thaw failed\n");
1364 up_write(&sb->s_umount);
1365 return error;
1366 }
1367 }
1368
1369 sb->s_writers.frozen = SB_UNFROZEN;
1370 sb_freeze_unlock(sb);
1371 out:
1372 wake_up(&sb->s_writers.wait_unfrozen);
1373 deactivate_locked_super(sb);
1374 return 0;
1375 }
1376 EXPORT_SYMBOL(thaw_super);
This page took 0.057533 seconds and 6 git commands to generate.