drop ->s_umount around acct_auto_close()
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38
39
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47 };
48
49 /*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
58 {
59 struct super_block *sb;
60 long fs_objects = 0;
61 long total_objects;
62 long freed = 0;
63 long dentries;
64 long inodes;
65
66 sb = container_of(shrink, struct super_block, s_shrink);
67
68 /*
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
71 */
72 if (!(sc->gfp_mask & __GFP_FS))
73 return SHRINK_STOP;
74
75 if (!grab_super_passive(sb))
76 return SHRINK_STOP;
77
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
80
81 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
82 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
83 total_objects = dentries + inodes + fs_objects + 1;
84
85 /* proportion the scan between the caches */
86 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
87 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
88
89 /*
90 * prune the dcache first as the icache is pinned by it, then
91 * prune the icache, followed by the filesystem specific caches
92 */
93 freed = prune_dcache_sb(sb, dentries, sc->nid);
94 freed += prune_icache_sb(sb, inodes, sc->nid);
95
96 if (fs_objects) {
97 fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
98 total_objects);
99 freed += sb->s_op->free_cached_objects(sb, fs_objects,
100 sc->nid);
101 }
102
103 drop_super(sb);
104 return freed;
105 }
106
107 static unsigned long super_cache_count(struct shrinker *shrink,
108 struct shrink_control *sc)
109 {
110 struct super_block *sb;
111 long total_objects = 0;
112
113 sb = container_of(shrink, struct super_block, s_shrink);
114
115 /*
116 * Don't call grab_super_passive as it is a potential
117 * scalability bottleneck. The counts could get updated
118 * between super_cache_count and super_cache_scan anyway.
119 * Call to super_cache_count with shrinker_rwsem held
120 * ensures the safety of call to list_lru_count_node() and
121 * s_op->nr_cached_objects().
122 */
123 if (sb->s_op && sb->s_op->nr_cached_objects)
124 total_objects = sb->s_op->nr_cached_objects(sb,
125 sc->nid);
126
127 total_objects += list_lru_count_node(&sb->s_dentry_lru,
128 sc->nid);
129 total_objects += list_lru_count_node(&sb->s_inode_lru,
130 sc->nid);
131
132 total_objects = vfs_pressure_ratio(total_objects);
133 return total_objects;
134 }
135
136 /**
137 * destroy_super - frees a superblock
138 * @s: superblock to free
139 *
140 * Frees a superblock.
141 */
142 static void destroy_super(struct super_block *s)
143 {
144 int i;
145 list_lru_destroy(&s->s_dentry_lru);
146 list_lru_destroy(&s->s_inode_lru);
147 for (i = 0; i < SB_FREEZE_LEVELS; i++)
148 percpu_counter_destroy(&s->s_writers.counter[i]);
149 security_sb_free(s);
150 WARN_ON(!list_empty(&s->s_mounts));
151 kfree(s->s_subtype);
152 kfree(s->s_options);
153 kfree_rcu(s, rcu);
154 }
155
156 /**
157 * alloc_super - create new superblock
158 * @type: filesystem type superblock should belong to
159 * @flags: the mount flags
160 *
161 * Allocates and initializes a new &struct super_block. alloc_super()
162 * returns a pointer new superblock or %NULL if allocation had failed.
163 */
164 static struct super_block *alloc_super(struct file_system_type *type, int flags)
165 {
166 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
167 static const struct super_operations default_op;
168 int i;
169
170 if (!s)
171 return NULL;
172
173 INIT_LIST_HEAD(&s->s_mounts);
174
175 if (security_sb_alloc(s))
176 goto fail;
177
178 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
179 if (percpu_counter_init(&s->s_writers.counter[i], 0) < 0)
180 goto fail;
181 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
182 &type->s_writers_key[i], 0);
183 }
184 init_waitqueue_head(&s->s_writers.wait);
185 init_waitqueue_head(&s->s_writers.wait_unfrozen);
186 s->s_flags = flags;
187 s->s_bdi = &default_backing_dev_info;
188 INIT_HLIST_NODE(&s->s_instances);
189 INIT_HLIST_BL_HEAD(&s->s_anon);
190 INIT_LIST_HEAD(&s->s_inodes);
191
192 if (list_lru_init(&s->s_dentry_lru))
193 goto fail;
194 if (list_lru_init(&s->s_inode_lru))
195 goto fail;
196
197 init_rwsem(&s->s_umount);
198 lockdep_set_class(&s->s_umount, &type->s_umount_key);
199 /*
200 * sget() can have s_umount recursion.
201 *
202 * When it cannot find a suitable sb, it allocates a new
203 * one (this one), and tries again to find a suitable old
204 * one.
205 *
206 * In case that succeeds, it will acquire the s_umount
207 * lock of the old one. Since these are clearly distrinct
208 * locks, and this object isn't exposed yet, there's no
209 * risk of deadlocks.
210 *
211 * Annotate this by putting this lock in a different
212 * subclass.
213 */
214 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
215 s->s_count = 1;
216 atomic_set(&s->s_active, 1);
217 mutex_init(&s->s_vfs_rename_mutex);
218 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
219 mutex_init(&s->s_dquot.dqio_mutex);
220 mutex_init(&s->s_dquot.dqonoff_mutex);
221 init_rwsem(&s->s_dquot.dqptr_sem);
222 s->s_maxbytes = MAX_NON_LFS;
223 s->s_op = &default_op;
224 s->s_time_gran = 1000000000;
225 s->cleancache_poolid = -1;
226
227 s->s_shrink.seeks = DEFAULT_SEEKS;
228 s->s_shrink.scan_objects = super_cache_scan;
229 s->s_shrink.count_objects = super_cache_count;
230 s->s_shrink.batch = 1024;
231 s->s_shrink.flags = SHRINKER_NUMA_AWARE;
232 return s;
233
234 fail:
235 destroy_super(s);
236 return NULL;
237 }
238
239 /* Superblock refcounting */
240
241 /*
242 * Drop a superblock's refcount. The caller must hold sb_lock.
243 */
244 static void __put_super(struct super_block *sb)
245 {
246 if (!--sb->s_count) {
247 list_del_init(&sb->s_list);
248 destroy_super(sb);
249 }
250 }
251
252 /**
253 * put_super - drop a temporary reference to superblock
254 * @sb: superblock in question
255 *
256 * Drops a temporary reference, frees superblock if there's no
257 * references left.
258 */
259 static void put_super(struct super_block *sb)
260 {
261 spin_lock(&sb_lock);
262 __put_super(sb);
263 spin_unlock(&sb_lock);
264 }
265
266
267 /**
268 * deactivate_locked_super - drop an active reference to superblock
269 * @s: superblock to deactivate
270 *
271 * Drops an active reference to superblock, converting it into a temprory
272 * one if there is no other active references left. In that case we
273 * tell fs driver to shut it down and drop the temporary reference we
274 * had just acquired.
275 *
276 * Caller holds exclusive lock on superblock; that lock is released.
277 */
278 void deactivate_locked_super(struct super_block *s)
279 {
280 struct file_system_type *fs = s->s_type;
281 if (atomic_dec_and_test(&s->s_active)) {
282 cleancache_invalidate_fs(s);
283 unregister_shrinker(&s->s_shrink);
284 fs->kill_sb(s);
285
286 put_filesystem(fs);
287 put_super(s);
288 } else {
289 up_write(&s->s_umount);
290 }
291 }
292
293 EXPORT_SYMBOL(deactivate_locked_super);
294
295 /**
296 * deactivate_super - drop an active reference to superblock
297 * @s: superblock to deactivate
298 *
299 * Variant of deactivate_locked_super(), except that superblock is *not*
300 * locked by caller. If we are going to drop the final active reference,
301 * lock will be acquired prior to that.
302 */
303 void deactivate_super(struct super_block *s)
304 {
305 if (!atomic_add_unless(&s->s_active, -1, 1)) {
306 down_write(&s->s_umount);
307 deactivate_locked_super(s);
308 }
309 }
310
311 EXPORT_SYMBOL(deactivate_super);
312
313 /**
314 * grab_super - acquire an active reference
315 * @s: reference we are trying to make active
316 *
317 * Tries to acquire an active reference. grab_super() is used when we
318 * had just found a superblock in super_blocks or fs_type->fs_supers
319 * and want to turn it into a full-blown active reference. grab_super()
320 * is called with sb_lock held and drops it. Returns 1 in case of
321 * success, 0 if we had failed (superblock contents was already dead or
322 * dying when grab_super() had been called). Note that this is only
323 * called for superblocks not in rundown mode (== ones still on ->fs_supers
324 * of their type), so increment of ->s_count is OK here.
325 */
326 static int grab_super(struct super_block *s) __releases(sb_lock)
327 {
328 s->s_count++;
329 spin_unlock(&sb_lock);
330 down_write(&s->s_umount);
331 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
332 put_super(s);
333 return 1;
334 }
335 up_write(&s->s_umount);
336 put_super(s);
337 return 0;
338 }
339
340 /*
341 * grab_super_passive - acquire a passive reference
342 * @sb: reference we are trying to grab
343 *
344 * Tries to acquire a passive reference. This is used in places where we
345 * cannot take an active reference but we need to ensure that the
346 * superblock does not go away while we are working on it. It returns
347 * false if a reference was not gained, and returns true with the s_umount
348 * lock held in read mode if a reference is gained. On successful return,
349 * the caller must drop the s_umount lock and the passive reference when
350 * done.
351 */
352 bool grab_super_passive(struct super_block *sb)
353 {
354 spin_lock(&sb_lock);
355 if (hlist_unhashed(&sb->s_instances)) {
356 spin_unlock(&sb_lock);
357 return false;
358 }
359
360 sb->s_count++;
361 spin_unlock(&sb_lock);
362
363 if (down_read_trylock(&sb->s_umount)) {
364 if (sb->s_root && (sb->s_flags & MS_BORN))
365 return true;
366 up_read(&sb->s_umount);
367 }
368
369 put_super(sb);
370 return false;
371 }
372
373 /**
374 * generic_shutdown_super - common helper for ->kill_sb()
375 * @sb: superblock to kill
376 *
377 * generic_shutdown_super() does all fs-independent work on superblock
378 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
379 * that need destruction out of superblock, call generic_shutdown_super()
380 * and release aforementioned objects. Note: dentries and inodes _are_
381 * taken care of and do not need specific handling.
382 *
383 * Upon calling this function, the filesystem may no longer alter or
384 * rearrange the set of dentries belonging to this super_block, nor may it
385 * change the attachments of dentries to inodes.
386 */
387 void generic_shutdown_super(struct super_block *sb)
388 {
389 const struct super_operations *sop = sb->s_op;
390
391 if (sb->s_root) {
392 shrink_dcache_for_umount(sb);
393 sync_filesystem(sb);
394 sb->s_flags &= ~MS_ACTIVE;
395
396 fsnotify_unmount_inodes(&sb->s_inodes);
397
398 evict_inodes(sb);
399
400 if (sb->s_dio_done_wq) {
401 destroy_workqueue(sb->s_dio_done_wq);
402 sb->s_dio_done_wq = NULL;
403 }
404
405 if (sop->put_super)
406 sop->put_super(sb);
407
408 if (!list_empty(&sb->s_inodes)) {
409 printk("VFS: Busy inodes after unmount of %s. "
410 "Self-destruct in 5 seconds. Have a nice day...\n",
411 sb->s_id);
412 }
413 }
414 spin_lock(&sb_lock);
415 /* should be initialized for __put_super_and_need_restart() */
416 hlist_del_init(&sb->s_instances);
417 spin_unlock(&sb_lock);
418 up_write(&sb->s_umount);
419 }
420
421 EXPORT_SYMBOL(generic_shutdown_super);
422
423 /**
424 * sget - find or create a superblock
425 * @type: filesystem type superblock should belong to
426 * @test: comparison callback
427 * @set: setup callback
428 * @flags: mount flags
429 * @data: argument to each of them
430 */
431 struct super_block *sget(struct file_system_type *type,
432 int (*test)(struct super_block *,void *),
433 int (*set)(struct super_block *,void *),
434 int flags,
435 void *data)
436 {
437 struct super_block *s = NULL;
438 struct super_block *old;
439 int err;
440
441 retry:
442 spin_lock(&sb_lock);
443 if (test) {
444 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
445 if (!test(old, data))
446 continue;
447 if (!grab_super(old))
448 goto retry;
449 if (s) {
450 up_write(&s->s_umount);
451 destroy_super(s);
452 s = NULL;
453 }
454 return old;
455 }
456 }
457 if (!s) {
458 spin_unlock(&sb_lock);
459 s = alloc_super(type, flags);
460 if (!s)
461 return ERR_PTR(-ENOMEM);
462 goto retry;
463 }
464
465 err = set(s, data);
466 if (err) {
467 spin_unlock(&sb_lock);
468 up_write(&s->s_umount);
469 destroy_super(s);
470 return ERR_PTR(err);
471 }
472 s->s_type = type;
473 strlcpy(s->s_id, type->name, sizeof(s->s_id));
474 list_add_tail(&s->s_list, &super_blocks);
475 hlist_add_head(&s->s_instances, &type->fs_supers);
476 spin_unlock(&sb_lock);
477 get_filesystem(type);
478 register_shrinker(&s->s_shrink);
479 return s;
480 }
481
482 EXPORT_SYMBOL(sget);
483
484 void drop_super(struct super_block *sb)
485 {
486 up_read(&sb->s_umount);
487 put_super(sb);
488 }
489
490 EXPORT_SYMBOL(drop_super);
491
492 /**
493 * iterate_supers - call function for all active superblocks
494 * @f: function to call
495 * @arg: argument to pass to it
496 *
497 * Scans the superblock list and calls given function, passing it
498 * locked superblock and given argument.
499 */
500 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
501 {
502 struct super_block *sb, *p = NULL;
503
504 spin_lock(&sb_lock);
505 list_for_each_entry(sb, &super_blocks, s_list) {
506 if (hlist_unhashed(&sb->s_instances))
507 continue;
508 sb->s_count++;
509 spin_unlock(&sb_lock);
510
511 down_read(&sb->s_umount);
512 if (sb->s_root && (sb->s_flags & MS_BORN))
513 f(sb, arg);
514 up_read(&sb->s_umount);
515
516 spin_lock(&sb_lock);
517 if (p)
518 __put_super(p);
519 p = sb;
520 }
521 if (p)
522 __put_super(p);
523 spin_unlock(&sb_lock);
524 }
525
526 /**
527 * iterate_supers_type - call function for superblocks of given type
528 * @type: fs type
529 * @f: function to call
530 * @arg: argument to pass to it
531 *
532 * Scans the superblock list and calls given function, passing it
533 * locked superblock and given argument.
534 */
535 void iterate_supers_type(struct file_system_type *type,
536 void (*f)(struct super_block *, void *), void *arg)
537 {
538 struct super_block *sb, *p = NULL;
539
540 spin_lock(&sb_lock);
541 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
542 sb->s_count++;
543 spin_unlock(&sb_lock);
544
545 down_read(&sb->s_umount);
546 if (sb->s_root && (sb->s_flags & MS_BORN))
547 f(sb, arg);
548 up_read(&sb->s_umount);
549
550 spin_lock(&sb_lock);
551 if (p)
552 __put_super(p);
553 p = sb;
554 }
555 if (p)
556 __put_super(p);
557 spin_unlock(&sb_lock);
558 }
559
560 EXPORT_SYMBOL(iterate_supers_type);
561
562 /**
563 * get_super - get the superblock of a device
564 * @bdev: device to get the superblock for
565 *
566 * Scans the superblock list and finds the superblock of the file system
567 * mounted on the device given. %NULL is returned if no match is found.
568 */
569
570 struct super_block *get_super(struct block_device *bdev)
571 {
572 struct super_block *sb;
573
574 if (!bdev)
575 return NULL;
576
577 spin_lock(&sb_lock);
578 rescan:
579 list_for_each_entry(sb, &super_blocks, s_list) {
580 if (hlist_unhashed(&sb->s_instances))
581 continue;
582 if (sb->s_bdev == bdev) {
583 sb->s_count++;
584 spin_unlock(&sb_lock);
585 down_read(&sb->s_umount);
586 /* still alive? */
587 if (sb->s_root && (sb->s_flags & MS_BORN))
588 return sb;
589 up_read(&sb->s_umount);
590 /* nope, got unmounted */
591 spin_lock(&sb_lock);
592 __put_super(sb);
593 goto rescan;
594 }
595 }
596 spin_unlock(&sb_lock);
597 return NULL;
598 }
599
600 EXPORT_SYMBOL(get_super);
601
602 /**
603 * get_super_thawed - get thawed superblock of a device
604 * @bdev: device to get the superblock for
605 *
606 * Scans the superblock list and finds the superblock of the file system
607 * mounted on the device. The superblock is returned once it is thawed
608 * (or immediately if it was not frozen). %NULL is returned if no match
609 * is found.
610 */
611 struct super_block *get_super_thawed(struct block_device *bdev)
612 {
613 while (1) {
614 struct super_block *s = get_super(bdev);
615 if (!s || s->s_writers.frozen == SB_UNFROZEN)
616 return s;
617 up_read(&s->s_umount);
618 wait_event(s->s_writers.wait_unfrozen,
619 s->s_writers.frozen == SB_UNFROZEN);
620 put_super(s);
621 }
622 }
623 EXPORT_SYMBOL(get_super_thawed);
624
625 /**
626 * get_active_super - get an active reference to the superblock of a device
627 * @bdev: device to get the superblock for
628 *
629 * Scans the superblock list and finds the superblock of the file system
630 * mounted on the device given. Returns the superblock with an active
631 * reference or %NULL if none was found.
632 */
633 struct super_block *get_active_super(struct block_device *bdev)
634 {
635 struct super_block *sb;
636
637 if (!bdev)
638 return NULL;
639
640 restart:
641 spin_lock(&sb_lock);
642 list_for_each_entry(sb, &super_blocks, s_list) {
643 if (hlist_unhashed(&sb->s_instances))
644 continue;
645 if (sb->s_bdev == bdev) {
646 if (!grab_super(sb))
647 goto restart;
648 up_write(&sb->s_umount);
649 return sb;
650 }
651 }
652 spin_unlock(&sb_lock);
653 return NULL;
654 }
655
656 struct super_block *user_get_super(dev_t dev)
657 {
658 struct super_block *sb;
659
660 spin_lock(&sb_lock);
661 rescan:
662 list_for_each_entry(sb, &super_blocks, s_list) {
663 if (hlist_unhashed(&sb->s_instances))
664 continue;
665 if (sb->s_dev == dev) {
666 sb->s_count++;
667 spin_unlock(&sb_lock);
668 down_read(&sb->s_umount);
669 /* still alive? */
670 if (sb->s_root && (sb->s_flags & MS_BORN))
671 return sb;
672 up_read(&sb->s_umount);
673 /* nope, got unmounted */
674 spin_lock(&sb_lock);
675 __put_super(sb);
676 goto rescan;
677 }
678 }
679 spin_unlock(&sb_lock);
680 return NULL;
681 }
682
683 /**
684 * do_remount_sb - asks filesystem to change mount options.
685 * @sb: superblock in question
686 * @flags: numeric part of options
687 * @data: the rest of options
688 * @force: whether or not to force the change
689 *
690 * Alters the mount options of a mounted file system.
691 */
692 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
693 {
694 int retval;
695 int remount_ro;
696
697 if (sb->s_writers.frozen != SB_UNFROZEN)
698 return -EBUSY;
699
700 #ifdef CONFIG_BLOCK
701 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
702 return -EACCES;
703 #endif
704
705 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
706
707 if (remount_ro) {
708 if (sb->s_pins.first) {
709 up_write(&sb->s_umount);
710 acct_auto_close(&sb->s_pins);
711 down_write(&sb->s_umount);
712 if (!sb->s_root)
713 return 0;
714 if (sb->s_writers.frozen != SB_UNFROZEN)
715 return -EBUSY;
716 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
717 }
718 }
719 shrink_dcache_sb(sb);
720
721 /* If we are remounting RDONLY and current sb is read/write,
722 make sure there are no rw files opened */
723 if (remount_ro) {
724 if (force) {
725 sb->s_readonly_remount = 1;
726 smp_wmb();
727 } else {
728 retval = sb_prepare_remount_readonly(sb);
729 if (retval)
730 return retval;
731 }
732 }
733
734 if (sb->s_op->remount_fs) {
735 retval = sb->s_op->remount_fs(sb, &flags, data);
736 if (retval) {
737 if (!force)
738 goto cancel_readonly;
739 /* If forced remount, go ahead despite any errors */
740 WARN(1, "forced remount of a %s fs returned %i\n",
741 sb->s_type->name, retval);
742 }
743 }
744 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
745 /* Needs to be ordered wrt mnt_is_readonly() */
746 smp_wmb();
747 sb->s_readonly_remount = 0;
748
749 /*
750 * Some filesystems modify their metadata via some other path than the
751 * bdev buffer cache (eg. use a private mapping, or directories in
752 * pagecache, etc). Also file data modifications go via their own
753 * mappings. So If we try to mount readonly then copy the filesystem
754 * from bdev, we could get stale data, so invalidate it to give a best
755 * effort at coherency.
756 */
757 if (remount_ro && sb->s_bdev)
758 invalidate_bdev(sb->s_bdev);
759 return 0;
760
761 cancel_readonly:
762 sb->s_readonly_remount = 0;
763 return retval;
764 }
765
766 static void do_emergency_remount(struct work_struct *work)
767 {
768 struct super_block *sb, *p = NULL;
769
770 spin_lock(&sb_lock);
771 list_for_each_entry(sb, &super_blocks, s_list) {
772 if (hlist_unhashed(&sb->s_instances))
773 continue;
774 sb->s_count++;
775 spin_unlock(&sb_lock);
776 down_write(&sb->s_umount);
777 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
778 !(sb->s_flags & MS_RDONLY)) {
779 /*
780 * What lock protects sb->s_flags??
781 */
782 do_remount_sb(sb, MS_RDONLY, NULL, 1);
783 }
784 up_write(&sb->s_umount);
785 spin_lock(&sb_lock);
786 if (p)
787 __put_super(p);
788 p = sb;
789 }
790 if (p)
791 __put_super(p);
792 spin_unlock(&sb_lock);
793 kfree(work);
794 printk("Emergency Remount complete\n");
795 }
796
797 void emergency_remount(void)
798 {
799 struct work_struct *work;
800
801 work = kmalloc(sizeof(*work), GFP_ATOMIC);
802 if (work) {
803 INIT_WORK(work, do_emergency_remount);
804 schedule_work(work);
805 }
806 }
807
808 /*
809 * Unnamed block devices are dummy devices used by virtual
810 * filesystems which don't use real block-devices. -- jrs
811 */
812
813 static DEFINE_IDA(unnamed_dev_ida);
814 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
815 /* Many userspace utilities consider an FSID of 0 invalid.
816 * Always return at least 1 from get_anon_bdev.
817 */
818 static int unnamed_dev_start = 1;
819
820 int get_anon_bdev(dev_t *p)
821 {
822 int dev;
823 int error;
824
825 retry:
826 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
827 return -ENOMEM;
828 spin_lock(&unnamed_dev_lock);
829 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
830 if (!error)
831 unnamed_dev_start = dev + 1;
832 spin_unlock(&unnamed_dev_lock);
833 if (error == -EAGAIN)
834 /* We raced and lost with another CPU. */
835 goto retry;
836 else if (error)
837 return -EAGAIN;
838
839 if (dev == (1 << MINORBITS)) {
840 spin_lock(&unnamed_dev_lock);
841 ida_remove(&unnamed_dev_ida, dev);
842 if (unnamed_dev_start > dev)
843 unnamed_dev_start = dev;
844 spin_unlock(&unnamed_dev_lock);
845 return -EMFILE;
846 }
847 *p = MKDEV(0, dev & MINORMASK);
848 return 0;
849 }
850 EXPORT_SYMBOL(get_anon_bdev);
851
852 void free_anon_bdev(dev_t dev)
853 {
854 int slot = MINOR(dev);
855 spin_lock(&unnamed_dev_lock);
856 ida_remove(&unnamed_dev_ida, slot);
857 if (slot < unnamed_dev_start)
858 unnamed_dev_start = slot;
859 spin_unlock(&unnamed_dev_lock);
860 }
861 EXPORT_SYMBOL(free_anon_bdev);
862
863 int set_anon_super(struct super_block *s, void *data)
864 {
865 int error = get_anon_bdev(&s->s_dev);
866 if (!error)
867 s->s_bdi = &noop_backing_dev_info;
868 return error;
869 }
870
871 EXPORT_SYMBOL(set_anon_super);
872
873 void kill_anon_super(struct super_block *sb)
874 {
875 dev_t dev = sb->s_dev;
876 generic_shutdown_super(sb);
877 free_anon_bdev(dev);
878 }
879
880 EXPORT_SYMBOL(kill_anon_super);
881
882 void kill_litter_super(struct super_block *sb)
883 {
884 if (sb->s_root)
885 d_genocide(sb->s_root);
886 kill_anon_super(sb);
887 }
888
889 EXPORT_SYMBOL(kill_litter_super);
890
891 static int ns_test_super(struct super_block *sb, void *data)
892 {
893 return sb->s_fs_info == data;
894 }
895
896 static int ns_set_super(struct super_block *sb, void *data)
897 {
898 sb->s_fs_info = data;
899 return set_anon_super(sb, NULL);
900 }
901
902 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
903 void *data, int (*fill_super)(struct super_block *, void *, int))
904 {
905 struct super_block *sb;
906
907 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
908 if (IS_ERR(sb))
909 return ERR_CAST(sb);
910
911 if (!sb->s_root) {
912 int err;
913 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
914 if (err) {
915 deactivate_locked_super(sb);
916 return ERR_PTR(err);
917 }
918
919 sb->s_flags |= MS_ACTIVE;
920 }
921
922 return dget(sb->s_root);
923 }
924
925 EXPORT_SYMBOL(mount_ns);
926
927 #ifdef CONFIG_BLOCK
928 static int set_bdev_super(struct super_block *s, void *data)
929 {
930 s->s_bdev = data;
931 s->s_dev = s->s_bdev->bd_dev;
932
933 /*
934 * We set the bdi here to the queue backing, file systems can
935 * overwrite this in ->fill_super()
936 */
937 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
938 return 0;
939 }
940
941 static int test_bdev_super(struct super_block *s, void *data)
942 {
943 return (void *)s->s_bdev == data;
944 }
945
946 struct dentry *mount_bdev(struct file_system_type *fs_type,
947 int flags, const char *dev_name, void *data,
948 int (*fill_super)(struct super_block *, void *, int))
949 {
950 struct block_device *bdev;
951 struct super_block *s;
952 fmode_t mode = FMODE_READ | FMODE_EXCL;
953 int error = 0;
954
955 if (!(flags & MS_RDONLY))
956 mode |= FMODE_WRITE;
957
958 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
959 if (IS_ERR(bdev))
960 return ERR_CAST(bdev);
961
962 /*
963 * once the super is inserted into the list by sget, s_umount
964 * will protect the lockfs code from trying to start a snapshot
965 * while we are mounting
966 */
967 mutex_lock(&bdev->bd_fsfreeze_mutex);
968 if (bdev->bd_fsfreeze_count > 0) {
969 mutex_unlock(&bdev->bd_fsfreeze_mutex);
970 error = -EBUSY;
971 goto error_bdev;
972 }
973 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
974 bdev);
975 mutex_unlock(&bdev->bd_fsfreeze_mutex);
976 if (IS_ERR(s))
977 goto error_s;
978
979 if (s->s_root) {
980 if ((flags ^ s->s_flags) & MS_RDONLY) {
981 deactivate_locked_super(s);
982 error = -EBUSY;
983 goto error_bdev;
984 }
985
986 /*
987 * s_umount nests inside bd_mutex during
988 * __invalidate_device(). blkdev_put() acquires
989 * bd_mutex and can't be called under s_umount. Drop
990 * s_umount temporarily. This is safe as we're
991 * holding an active reference.
992 */
993 up_write(&s->s_umount);
994 blkdev_put(bdev, mode);
995 down_write(&s->s_umount);
996 } else {
997 char b[BDEVNAME_SIZE];
998
999 s->s_mode = mode;
1000 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1001 sb_set_blocksize(s, block_size(bdev));
1002 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1003 if (error) {
1004 deactivate_locked_super(s);
1005 goto error;
1006 }
1007
1008 s->s_flags |= MS_ACTIVE;
1009 bdev->bd_super = s;
1010 }
1011
1012 return dget(s->s_root);
1013
1014 error_s:
1015 error = PTR_ERR(s);
1016 error_bdev:
1017 blkdev_put(bdev, mode);
1018 error:
1019 return ERR_PTR(error);
1020 }
1021 EXPORT_SYMBOL(mount_bdev);
1022
1023 void kill_block_super(struct super_block *sb)
1024 {
1025 struct block_device *bdev = sb->s_bdev;
1026 fmode_t mode = sb->s_mode;
1027
1028 bdev->bd_super = NULL;
1029 generic_shutdown_super(sb);
1030 sync_blockdev(bdev);
1031 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1032 blkdev_put(bdev, mode | FMODE_EXCL);
1033 }
1034
1035 EXPORT_SYMBOL(kill_block_super);
1036 #endif
1037
1038 struct dentry *mount_nodev(struct file_system_type *fs_type,
1039 int flags, void *data,
1040 int (*fill_super)(struct super_block *, void *, int))
1041 {
1042 int error;
1043 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1044
1045 if (IS_ERR(s))
1046 return ERR_CAST(s);
1047
1048 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1049 if (error) {
1050 deactivate_locked_super(s);
1051 return ERR_PTR(error);
1052 }
1053 s->s_flags |= MS_ACTIVE;
1054 return dget(s->s_root);
1055 }
1056 EXPORT_SYMBOL(mount_nodev);
1057
1058 static int compare_single(struct super_block *s, void *p)
1059 {
1060 return 1;
1061 }
1062
1063 struct dentry *mount_single(struct file_system_type *fs_type,
1064 int flags, void *data,
1065 int (*fill_super)(struct super_block *, void *, int))
1066 {
1067 struct super_block *s;
1068 int error;
1069
1070 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1071 if (IS_ERR(s))
1072 return ERR_CAST(s);
1073 if (!s->s_root) {
1074 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1075 if (error) {
1076 deactivate_locked_super(s);
1077 return ERR_PTR(error);
1078 }
1079 s->s_flags |= MS_ACTIVE;
1080 } else {
1081 do_remount_sb(s, flags, data, 0);
1082 }
1083 return dget(s->s_root);
1084 }
1085 EXPORT_SYMBOL(mount_single);
1086
1087 struct dentry *
1088 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1089 {
1090 struct dentry *root;
1091 struct super_block *sb;
1092 char *secdata = NULL;
1093 int error = -ENOMEM;
1094
1095 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1096 secdata = alloc_secdata();
1097 if (!secdata)
1098 goto out;
1099
1100 error = security_sb_copy_data(data, secdata);
1101 if (error)
1102 goto out_free_secdata;
1103 }
1104
1105 root = type->mount(type, flags, name, data);
1106 if (IS_ERR(root)) {
1107 error = PTR_ERR(root);
1108 goto out_free_secdata;
1109 }
1110 sb = root->d_sb;
1111 BUG_ON(!sb);
1112 WARN_ON(!sb->s_bdi);
1113 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1114 sb->s_flags |= MS_BORN;
1115
1116 error = security_sb_kern_mount(sb, flags, secdata);
1117 if (error)
1118 goto out_sb;
1119
1120 /*
1121 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1122 * but s_maxbytes was an unsigned long long for many releases. Throw
1123 * this warning for a little while to try and catch filesystems that
1124 * violate this rule.
1125 */
1126 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1127 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1128
1129 up_write(&sb->s_umount);
1130 free_secdata(secdata);
1131 return root;
1132 out_sb:
1133 dput(root);
1134 deactivate_locked_super(sb);
1135 out_free_secdata:
1136 free_secdata(secdata);
1137 out:
1138 return ERR_PTR(error);
1139 }
1140
1141 /*
1142 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1143 * instead.
1144 */
1145 void __sb_end_write(struct super_block *sb, int level)
1146 {
1147 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1148 /*
1149 * Make sure s_writers are updated before we wake up waiters in
1150 * freeze_super().
1151 */
1152 smp_mb();
1153 if (waitqueue_active(&sb->s_writers.wait))
1154 wake_up(&sb->s_writers.wait);
1155 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1156 }
1157 EXPORT_SYMBOL(__sb_end_write);
1158
1159 #ifdef CONFIG_LOCKDEP
1160 /*
1161 * We want lockdep to tell us about possible deadlocks with freezing but
1162 * it's it bit tricky to properly instrument it. Getting a freeze protection
1163 * works as getting a read lock but there are subtle problems. XFS for example
1164 * gets freeze protection on internal level twice in some cases, which is OK
1165 * only because we already hold a freeze protection also on higher level. Due
1166 * to these cases we have to tell lockdep we are doing trylock when we
1167 * already hold a freeze protection for a higher freeze level.
1168 */
1169 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1170 unsigned long ip)
1171 {
1172 int i;
1173
1174 if (!trylock) {
1175 for (i = 0; i < level - 1; i++)
1176 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1177 trylock = true;
1178 break;
1179 }
1180 }
1181 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1182 }
1183 #endif
1184
1185 /*
1186 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1187 * instead.
1188 */
1189 int __sb_start_write(struct super_block *sb, int level, bool wait)
1190 {
1191 retry:
1192 if (unlikely(sb->s_writers.frozen >= level)) {
1193 if (!wait)
1194 return 0;
1195 wait_event(sb->s_writers.wait_unfrozen,
1196 sb->s_writers.frozen < level);
1197 }
1198
1199 #ifdef CONFIG_LOCKDEP
1200 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1201 #endif
1202 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1203 /*
1204 * Make sure counter is updated before we check for frozen.
1205 * freeze_super() first sets frozen and then checks the counter.
1206 */
1207 smp_mb();
1208 if (unlikely(sb->s_writers.frozen >= level)) {
1209 __sb_end_write(sb, level);
1210 goto retry;
1211 }
1212 return 1;
1213 }
1214 EXPORT_SYMBOL(__sb_start_write);
1215
1216 /**
1217 * sb_wait_write - wait until all writers to given file system finish
1218 * @sb: the super for which we wait
1219 * @level: type of writers we wait for (normal vs page fault)
1220 *
1221 * This function waits until there are no writers of given type to given file
1222 * system. Caller of this function should make sure there can be no new writers
1223 * of type @level before calling this function. Otherwise this function can
1224 * livelock.
1225 */
1226 static void sb_wait_write(struct super_block *sb, int level)
1227 {
1228 s64 writers;
1229
1230 /*
1231 * We just cycle-through lockdep here so that it does not complain
1232 * about returning with lock to userspace
1233 */
1234 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1235 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1236
1237 do {
1238 DEFINE_WAIT(wait);
1239
1240 /*
1241 * We use a barrier in prepare_to_wait() to separate setting
1242 * of frozen and checking of the counter
1243 */
1244 prepare_to_wait(&sb->s_writers.wait, &wait,
1245 TASK_UNINTERRUPTIBLE);
1246
1247 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1248 if (writers)
1249 schedule();
1250
1251 finish_wait(&sb->s_writers.wait, &wait);
1252 } while (writers);
1253 }
1254
1255 /**
1256 * freeze_super - lock the filesystem and force it into a consistent state
1257 * @sb: the super to lock
1258 *
1259 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1260 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1261 * -EBUSY.
1262 *
1263 * During this function, sb->s_writers.frozen goes through these values:
1264 *
1265 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1266 *
1267 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1268 * writes should be blocked, though page faults are still allowed. We wait for
1269 * all writes to complete and then proceed to the next stage.
1270 *
1271 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1272 * but internal fs threads can still modify the filesystem (although they
1273 * should not dirty new pages or inodes), writeback can run etc. After waiting
1274 * for all running page faults we sync the filesystem which will clean all
1275 * dirty pages and inodes (no new dirty pages or inodes can be created when
1276 * sync is running).
1277 *
1278 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1279 * modification are blocked (e.g. XFS preallocation truncation on inode
1280 * reclaim). This is usually implemented by blocking new transactions for
1281 * filesystems that have them and need this additional guard. After all
1282 * internal writers are finished we call ->freeze_fs() to finish filesystem
1283 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1284 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1285 *
1286 * sb->s_writers.frozen is protected by sb->s_umount.
1287 */
1288 int freeze_super(struct super_block *sb)
1289 {
1290 int ret;
1291
1292 atomic_inc(&sb->s_active);
1293 down_write(&sb->s_umount);
1294 if (sb->s_writers.frozen != SB_UNFROZEN) {
1295 deactivate_locked_super(sb);
1296 return -EBUSY;
1297 }
1298
1299 if (!(sb->s_flags & MS_BORN)) {
1300 up_write(&sb->s_umount);
1301 return 0; /* sic - it's "nothing to do" */
1302 }
1303
1304 if (sb->s_flags & MS_RDONLY) {
1305 /* Nothing to do really... */
1306 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1307 up_write(&sb->s_umount);
1308 return 0;
1309 }
1310
1311 /* From now on, no new normal writers can start */
1312 sb->s_writers.frozen = SB_FREEZE_WRITE;
1313 smp_wmb();
1314
1315 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1316 up_write(&sb->s_umount);
1317
1318 sb_wait_write(sb, SB_FREEZE_WRITE);
1319
1320 /* Now we go and block page faults... */
1321 down_write(&sb->s_umount);
1322 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1323 smp_wmb();
1324
1325 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1326
1327 /* All writers are done so after syncing there won't be dirty data */
1328 sync_filesystem(sb);
1329
1330 /* Now wait for internal filesystem counter */
1331 sb->s_writers.frozen = SB_FREEZE_FS;
1332 smp_wmb();
1333 sb_wait_write(sb, SB_FREEZE_FS);
1334
1335 if (sb->s_op->freeze_fs) {
1336 ret = sb->s_op->freeze_fs(sb);
1337 if (ret) {
1338 printk(KERN_ERR
1339 "VFS:Filesystem freeze failed\n");
1340 sb->s_writers.frozen = SB_UNFROZEN;
1341 smp_wmb();
1342 wake_up(&sb->s_writers.wait_unfrozen);
1343 deactivate_locked_super(sb);
1344 return ret;
1345 }
1346 }
1347 /*
1348 * This is just for debugging purposes so that fs can warn if it
1349 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1350 */
1351 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1352 up_write(&sb->s_umount);
1353 return 0;
1354 }
1355 EXPORT_SYMBOL(freeze_super);
1356
1357 /**
1358 * thaw_super -- unlock filesystem
1359 * @sb: the super to thaw
1360 *
1361 * Unlocks the filesystem and marks it writeable again after freeze_super().
1362 */
1363 int thaw_super(struct super_block *sb)
1364 {
1365 int error;
1366
1367 down_write(&sb->s_umount);
1368 if (sb->s_writers.frozen == SB_UNFROZEN) {
1369 up_write(&sb->s_umount);
1370 return -EINVAL;
1371 }
1372
1373 if (sb->s_flags & MS_RDONLY)
1374 goto out;
1375
1376 if (sb->s_op->unfreeze_fs) {
1377 error = sb->s_op->unfreeze_fs(sb);
1378 if (error) {
1379 printk(KERN_ERR
1380 "VFS:Filesystem thaw failed\n");
1381 up_write(&sb->s_umount);
1382 return error;
1383 }
1384 }
1385
1386 out:
1387 sb->s_writers.frozen = SB_UNFROZEN;
1388 smp_wmb();
1389 wake_up(&sb->s_writers.wait_unfrozen);
1390 deactivate_locked_super(sb);
1391
1392 return 0;
1393 }
1394 EXPORT_SYMBOL(thaw_super);
This page took 0.111748 seconds and 6 git commands to generate.