Merge branch 'message-callback' into kbuild/kconfig
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include "internal.h"
34
35
36 LIST_HEAD(super_blocks);
37 DEFINE_SPINLOCK(sb_lock);
38
39 /**
40 * alloc_super - create new superblock
41 * @type: filesystem type superblock should belong to
42 *
43 * Allocates and initializes a new &struct super_block. alloc_super()
44 * returns a pointer new superblock or %NULL if allocation had failed.
45 */
46 static struct super_block *alloc_super(struct file_system_type *type)
47 {
48 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
49 static const struct super_operations default_op;
50
51 if (s) {
52 if (security_sb_alloc(s)) {
53 kfree(s);
54 s = NULL;
55 goto out;
56 }
57 INIT_LIST_HEAD(&s->s_files);
58 INIT_LIST_HEAD(&s->s_instances);
59 INIT_HLIST_HEAD(&s->s_anon);
60 INIT_LIST_HEAD(&s->s_inodes);
61 INIT_LIST_HEAD(&s->s_dentry_lru);
62 init_rwsem(&s->s_umount);
63 mutex_init(&s->s_lock);
64 lockdep_set_class(&s->s_umount, &type->s_umount_key);
65 /*
66 * The locking rules for s_lock are up to the
67 * filesystem. For example ext3fs has different
68 * lock ordering than usbfs:
69 */
70 lockdep_set_class(&s->s_lock, &type->s_lock_key);
71 /*
72 * sget() can have s_umount recursion.
73 *
74 * When it cannot find a suitable sb, it allocates a new
75 * one (this one), and tries again to find a suitable old
76 * one.
77 *
78 * In case that succeeds, it will acquire the s_umount
79 * lock of the old one. Since these are clearly distrinct
80 * locks, and this object isn't exposed yet, there's no
81 * risk of deadlocks.
82 *
83 * Annotate this by putting this lock in a different
84 * subclass.
85 */
86 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
87 s->s_count = 1;
88 atomic_set(&s->s_active, 1);
89 mutex_init(&s->s_vfs_rename_mutex);
90 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
91 mutex_init(&s->s_dquot.dqio_mutex);
92 mutex_init(&s->s_dquot.dqonoff_mutex);
93 init_rwsem(&s->s_dquot.dqptr_sem);
94 init_waitqueue_head(&s->s_wait_unfrozen);
95 s->s_maxbytes = MAX_NON_LFS;
96 s->s_op = &default_op;
97 s->s_time_gran = 1000000000;
98 }
99 out:
100 return s;
101 }
102
103 /**
104 * destroy_super - frees a superblock
105 * @s: superblock to free
106 *
107 * Frees a superblock.
108 */
109 static inline void destroy_super(struct super_block *s)
110 {
111 security_sb_free(s);
112 kfree(s->s_subtype);
113 kfree(s->s_options);
114 kfree(s);
115 }
116
117 /* Superblock refcounting */
118
119 /*
120 * Drop a superblock's refcount. The caller must hold sb_lock.
121 */
122 void __put_super(struct super_block *sb)
123 {
124 if (!--sb->s_count) {
125 list_del_init(&sb->s_list);
126 destroy_super(sb);
127 }
128 }
129
130 /**
131 * put_super - drop a temporary reference to superblock
132 * @sb: superblock in question
133 *
134 * Drops a temporary reference, frees superblock if there's no
135 * references left.
136 */
137 void put_super(struct super_block *sb)
138 {
139 spin_lock(&sb_lock);
140 __put_super(sb);
141 spin_unlock(&sb_lock);
142 }
143
144
145 /**
146 * deactivate_locked_super - drop an active reference to superblock
147 * @s: superblock to deactivate
148 *
149 * Drops an active reference to superblock, converting it into a temprory
150 * one if there is no other active references left. In that case we
151 * tell fs driver to shut it down and drop the temporary reference we
152 * had just acquired.
153 *
154 * Caller holds exclusive lock on superblock; that lock is released.
155 */
156 void deactivate_locked_super(struct super_block *s)
157 {
158 struct file_system_type *fs = s->s_type;
159 if (atomic_dec_and_test(&s->s_active)) {
160 fs->kill_sb(s);
161 put_filesystem(fs);
162 put_super(s);
163 } else {
164 up_write(&s->s_umount);
165 }
166 }
167
168 EXPORT_SYMBOL(deactivate_locked_super);
169
170 /**
171 * deactivate_super - drop an active reference to superblock
172 * @s: superblock to deactivate
173 *
174 * Variant of deactivate_locked_super(), except that superblock is *not*
175 * locked by caller. If we are going to drop the final active reference,
176 * lock will be acquired prior to that.
177 */
178 void deactivate_super(struct super_block *s)
179 {
180 if (!atomic_add_unless(&s->s_active, -1, 1)) {
181 down_write(&s->s_umount);
182 deactivate_locked_super(s);
183 }
184 }
185
186 EXPORT_SYMBOL(deactivate_super);
187
188 /**
189 * grab_super - acquire an active reference
190 * @s: reference we are trying to make active
191 *
192 * Tries to acquire an active reference. grab_super() is used when we
193 * had just found a superblock in super_blocks or fs_type->fs_supers
194 * and want to turn it into a full-blown active reference. grab_super()
195 * is called with sb_lock held and drops it. Returns 1 in case of
196 * success, 0 if we had failed (superblock contents was already dead or
197 * dying when grab_super() had been called).
198 */
199 static int grab_super(struct super_block *s) __releases(sb_lock)
200 {
201 if (atomic_inc_not_zero(&s->s_active)) {
202 spin_unlock(&sb_lock);
203 return 1;
204 }
205 /* it's going away */
206 s->s_count++;
207 spin_unlock(&sb_lock);
208 /* wait for it to die */
209 down_write(&s->s_umount);
210 up_write(&s->s_umount);
211 put_super(s);
212 return 0;
213 }
214
215 /*
216 * Superblock locking. We really ought to get rid of these two.
217 */
218 void lock_super(struct super_block * sb)
219 {
220 get_fs_excl();
221 mutex_lock(&sb->s_lock);
222 }
223
224 void unlock_super(struct super_block * sb)
225 {
226 put_fs_excl();
227 mutex_unlock(&sb->s_lock);
228 }
229
230 EXPORT_SYMBOL(lock_super);
231 EXPORT_SYMBOL(unlock_super);
232
233 /**
234 * generic_shutdown_super - common helper for ->kill_sb()
235 * @sb: superblock to kill
236 *
237 * generic_shutdown_super() does all fs-independent work on superblock
238 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
239 * that need destruction out of superblock, call generic_shutdown_super()
240 * and release aforementioned objects. Note: dentries and inodes _are_
241 * taken care of and do not need specific handling.
242 *
243 * Upon calling this function, the filesystem may no longer alter or
244 * rearrange the set of dentries belonging to this super_block, nor may it
245 * change the attachments of dentries to inodes.
246 */
247 void generic_shutdown_super(struct super_block *sb)
248 {
249 const struct super_operations *sop = sb->s_op;
250
251
252 if (sb->s_root) {
253 shrink_dcache_for_umount(sb);
254 sync_filesystem(sb);
255 get_fs_excl();
256 sb->s_flags &= ~MS_ACTIVE;
257
258 /* bad name - it should be evict_inodes() */
259 invalidate_inodes(sb);
260
261 if (sop->put_super)
262 sop->put_super(sb);
263
264 /* Forget any remaining inodes */
265 if (invalidate_inodes(sb)) {
266 printk("VFS: Busy inodes after unmount of %s. "
267 "Self-destruct in 5 seconds. Have a nice day...\n",
268 sb->s_id);
269 }
270 put_fs_excl();
271 }
272 spin_lock(&sb_lock);
273 /* should be initialized for __put_super_and_need_restart() */
274 list_del_init(&sb->s_instances);
275 spin_unlock(&sb_lock);
276 up_write(&sb->s_umount);
277 }
278
279 EXPORT_SYMBOL(generic_shutdown_super);
280
281 /**
282 * sget - find or create a superblock
283 * @type: filesystem type superblock should belong to
284 * @test: comparison callback
285 * @set: setup callback
286 * @data: argument to each of them
287 */
288 struct super_block *sget(struct file_system_type *type,
289 int (*test)(struct super_block *,void *),
290 int (*set)(struct super_block *,void *),
291 void *data)
292 {
293 struct super_block *s = NULL;
294 struct super_block *old;
295 int err;
296
297 retry:
298 spin_lock(&sb_lock);
299 if (test) {
300 list_for_each_entry(old, &type->fs_supers, s_instances) {
301 if (!test(old, data))
302 continue;
303 if (!grab_super(old))
304 goto retry;
305 if (s) {
306 up_write(&s->s_umount);
307 destroy_super(s);
308 s = NULL;
309 }
310 down_write(&old->s_umount);
311 if (unlikely(!(old->s_flags & MS_BORN))) {
312 deactivate_locked_super(old);
313 goto retry;
314 }
315 return old;
316 }
317 }
318 if (!s) {
319 spin_unlock(&sb_lock);
320 s = alloc_super(type);
321 if (!s)
322 return ERR_PTR(-ENOMEM);
323 goto retry;
324 }
325
326 err = set(s, data);
327 if (err) {
328 spin_unlock(&sb_lock);
329 up_write(&s->s_umount);
330 destroy_super(s);
331 return ERR_PTR(err);
332 }
333 s->s_type = type;
334 strlcpy(s->s_id, type->name, sizeof(s->s_id));
335 list_add_tail(&s->s_list, &super_blocks);
336 list_add(&s->s_instances, &type->fs_supers);
337 spin_unlock(&sb_lock);
338 get_filesystem(type);
339 return s;
340 }
341
342 EXPORT_SYMBOL(sget);
343
344 void drop_super(struct super_block *sb)
345 {
346 up_read(&sb->s_umount);
347 put_super(sb);
348 }
349
350 EXPORT_SYMBOL(drop_super);
351
352 /**
353 * sync_supers - helper for periodic superblock writeback
354 *
355 * Call the write_super method if present on all dirty superblocks in
356 * the system. This is for the periodic writeback used by most older
357 * filesystems. For data integrity superblock writeback use
358 * sync_filesystems() instead.
359 *
360 * Note: check the dirty flag before waiting, so we don't
361 * hold up the sync while mounting a device. (The newly
362 * mounted device won't need syncing.)
363 */
364 void sync_supers(void)
365 {
366 struct super_block *sb, *p = NULL;
367
368 spin_lock(&sb_lock);
369 list_for_each_entry(sb, &super_blocks, s_list) {
370 if (list_empty(&sb->s_instances))
371 continue;
372 if (sb->s_op->write_super && sb->s_dirt) {
373 sb->s_count++;
374 spin_unlock(&sb_lock);
375
376 down_read(&sb->s_umount);
377 if (sb->s_root && sb->s_dirt)
378 sb->s_op->write_super(sb);
379 up_read(&sb->s_umount);
380
381 spin_lock(&sb_lock);
382 if (p)
383 __put_super(p);
384 p = sb;
385 }
386 }
387 if (p)
388 __put_super(p);
389 spin_unlock(&sb_lock);
390 }
391
392 /**
393 * iterate_supers - call function for all active superblocks
394 * @f: function to call
395 * @arg: argument to pass to it
396 *
397 * Scans the superblock list and calls given function, passing it
398 * locked superblock and given argument.
399 */
400 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
401 {
402 struct super_block *sb, *p = NULL;
403
404 spin_lock(&sb_lock);
405 list_for_each_entry(sb, &super_blocks, s_list) {
406 if (list_empty(&sb->s_instances))
407 continue;
408 sb->s_count++;
409 spin_unlock(&sb_lock);
410
411 down_read(&sb->s_umount);
412 if (sb->s_root)
413 f(sb, arg);
414 up_read(&sb->s_umount);
415
416 spin_lock(&sb_lock);
417 if (p)
418 __put_super(p);
419 p = sb;
420 }
421 if (p)
422 __put_super(p);
423 spin_unlock(&sb_lock);
424 }
425
426 /**
427 * get_super - get the superblock of a device
428 * @bdev: device to get the superblock for
429 *
430 * Scans the superblock list and finds the superblock of the file system
431 * mounted on the device given. %NULL is returned if no match is found.
432 */
433
434 struct super_block *get_super(struct block_device *bdev)
435 {
436 struct super_block *sb;
437
438 if (!bdev)
439 return NULL;
440
441 spin_lock(&sb_lock);
442 rescan:
443 list_for_each_entry(sb, &super_blocks, s_list) {
444 if (list_empty(&sb->s_instances))
445 continue;
446 if (sb->s_bdev == bdev) {
447 sb->s_count++;
448 spin_unlock(&sb_lock);
449 down_read(&sb->s_umount);
450 /* still alive? */
451 if (sb->s_root)
452 return sb;
453 up_read(&sb->s_umount);
454 /* nope, got unmounted */
455 spin_lock(&sb_lock);
456 __put_super(sb);
457 goto rescan;
458 }
459 }
460 spin_unlock(&sb_lock);
461 return NULL;
462 }
463
464 EXPORT_SYMBOL(get_super);
465
466 /**
467 * get_active_super - get an active reference to the superblock of a device
468 * @bdev: device to get the superblock for
469 *
470 * Scans the superblock list and finds the superblock of the file system
471 * mounted on the device given. Returns the superblock with an active
472 * reference or %NULL if none was found.
473 */
474 struct super_block *get_active_super(struct block_device *bdev)
475 {
476 struct super_block *sb;
477
478 if (!bdev)
479 return NULL;
480
481 restart:
482 spin_lock(&sb_lock);
483 list_for_each_entry(sb, &super_blocks, s_list) {
484 if (list_empty(&sb->s_instances))
485 continue;
486 if (sb->s_bdev == bdev) {
487 if (grab_super(sb)) /* drops sb_lock */
488 return sb;
489 else
490 goto restart;
491 }
492 }
493 spin_unlock(&sb_lock);
494 return NULL;
495 }
496
497 struct super_block *user_get_super(dev_t dev)
498 {
499 struct super_block *sb;
500
501 spin_lock(&sb_lock);
502 rescan:
503 list_for_each_entry(sb, &super_blocks, s_list) {
504 if (list_empty(&sb->s_instances))
505 continue;
506 if (sb->s_dev == dev) {
507 sb->s_count++;
508 spin_unlock(&sb_lock);
509 down_read(&sb->s_umount);
510 /* still alive? */
511 if (sb->s_root)
512 return sb;
513 up_read(&sb->s_umount);
514 /* nope, got unmounted */
515 spin_lock(&sb_lock);
516 __put_super(sb);
517 goto rescan;
518 }
519 }
520 spin_unlock(&sb_lock);
521 return NULL;
522 }
523
524 /**
525 * do_remount_sb - asks filesystem to change mount options.
526 * @sb: superblock in question
527 * @flags: numeric part of options
528 * @data: the rest of options
529 * @force: whether or not to force the change
530 *
531 * Alters the mount options of a mounted file system.
532 */
533 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
534 {
535 int retval;
536 int remount_ro;
537
538 if (sb->s_frozen != SB_UNFROZEN)
539 return -EBUSY;
540
541 #ifdef CONFIG_BLOCK
542 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
543 return -EACCES;
544 #endif
545
546 if (flags & MS_RDONLY)
547 acct_auto_close(sb);
548 shrink_dcache_sb(sb);
549 sync_filesystem(sb);
550
551 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
552
553 /* If we are remounting RDONLY and current sb is read/write,
554 make sure there are no rw files opened */
555 if (remount_ro) {
556 if (force)
557 mark_files_ro(sb);
558 else if (!fs_may_remount_ro(sb))
559 return -EBUSY;
560 }
561
562 if (sb->s_op->remount_fs) {
563 retval = sb->s_op->remount_fs(sb, &flags, data);
564 if (retval)
565 return retval;
566 }
567 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
568
569 /*
570 * Some filesystems modify their metadata via some other path than the
571 * bdev buffer cache (eg. use a private mapping, or directories in
572 * pagecache, etc). Also file data modifications go via their own
573 * mappings. So If we try to mount readonly then copy the filesystem
574 * from bdev, we could get stale data, so invalidate it to give a best
575 * effort at coherency.
576 */
577 if (remount_ro && sb->s_bdev)
578 invalidate_bdev(sb->s_bdev);
579 return 0;
580 }
581
582 static void do_emergency_remount(struct work_struct *work)
583 {
584 struct super_block *sb, *p = NULL;
585
586 spin_lock(&sb_lock);
587 list_for_each_entry(sb, &super_blocks, s_list) {
588 if (list_empty(&sb->s_instances))
589 continue;
590 sb->s_count++;
591 spin_unlock(&sb_lock);
592 down_write(&sb->s_umount);
593 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
594 /*
595 * What lock protects sb->s_flags??
596 */
597 do_remount_sb(sb, MS_RDONLY, NULL, 1);
598 }
599 up_write(&sb->s_umount);
600 spin_lock(&sb_lock);
601 if (p)
602 __put_super(p);
603 p = sb;
604 }
605 if (p)
606 __put_super(p);
607 spin_unlock(&sb_lock);
608 kfree(work);
609 printk("Emergency Remount complete\n");
610 }
611
612 void emergency_remount(void)
613 {
614 struct work_struct *work;
615
616 work = kmalloc(sizeof(*work), GFP_ATOMIC);
617 if (work) {
618 INIT_WORK(work, do_emergency_remount);
619 schedule_work(work);
620 }
621 }
622
623 /*
624 * Unnamed block devices are dummy devices used by virtual
625 * filesystems which don't use real block-devices. -- jrs
626 */
627
628 static DEFINE_IDA(unnamed_dev_ida);
629 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
630 static int unnamed_dev_start = 0; /* don't bother trying below it */
631
632 int set_anon_super(struct super_block *s, void *data)
633 {
634 int dev;
635 int error;
636
637 retry:
638 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
639 return -ENOMEM;
640 spin_lock(&unnamed_dev_lock);
641 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
642 if (!error)
643 unnamed_dev_start = dev + 1;
644 spin_unlock(&unnamed_dev_lock);
645 if (error == -EAGAIN)
646 /* We raced and lost with another CPU. */
647 goto retry;
648 else if (error)
649 return -EAGAIN;
650
651 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
652 spin_lock(&unnamed_dev_lock);
653 ida_remove(&unnamed_dev_ida, dev);
654 if (unnamed_dev_start > dev)
655 unnamed_dev_start = dev;
656 spin_unlock(&unnamed_dev_lock);
657 return -EMFILE;
658 }
659 s->s_dev = MKDEV(0, dev & MINORMASK);
660 s->s_bdi = &noop_backing_dev_info;
661 return 0;
662 }
663
664 EXPORT_SYMBOL(set_anon_super);
665
666 void kill_anon_super(struct super_block *sb)
667 {
668 int slot = MINOR(sb->s_dev);
669
670 generic_shutdown_super(sb);
671 spin_lock(&unnamed_dev_lock);
672 ida_remove(&unnamed_dev_ida, slot);
673 if (slot < unnamed_dev_start)
674 unnamed_dev_start = slot;
675 spin_unlock(&unnamed_dev_lock);
676 }
677
678 EXPORT_SYMBOL(kill_anon_super);
679
680 void kill_litter_super(struct super_block *sb)
681 {
682 if (sb->s_root)
683 d_genocide(sb->s_root);
684 kill_anon_super(sb);
685 }
686
687 EXPORT_SYMBOL(kill_litter_super);
688
689 static int ns_test_super(struct super_block *sb, void *data)
690 {
691 return sb->s_fs_info == data;
692 }
693
694 static int ns_set_super(struct super_block *sb, void *data)
695 {
696 sb->s_fs_info = data;
697 return set_anon_super(sb, NULL);
698 }
699
700 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
701 int (*fill_super)(struct super_block *, void *, int),
702 struct vfsmount *mnt)
703 {
704 struct super_block *sb;
705
706 sb = sget(fs_type, ns_test_super, ns_set_super, data);
707 if (IS_ERR(sb))
708 return PTR_ERR(sb);
709
710 if (!sb->s_root) {
711 int err;
712 sb->s_flags = flags;
713 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
714 if (err) {
715 deactivate_locked_super(sb);
716 return err;
717 }
718
719 sb->s_flags |= MS_ACTIVE;
720 }
721
722 simple_set_mnt(mnt, sb);
723 return 0;
724 }
725
726 EXPORT_SYMBOL(get_sb_ns);
727
728 #ifdef CONFIG_BLOCK
729 static int set_bdev_super(struct super_block *s, void *data)
730 {
731 s->s_bdev = data;
732 s->s_dev = s->s_bdev->bd_dev;
733
734 /*
735 * We set the bdi here to the queue backing, file systems can
736 * overwrite this in ->fill_super()
737 */
738 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
739 return 0;
740 }
741
742 static int test_bdev_super(struct super_block *s, void *data)
743 {
744 return (void *)s->s_bdev == data;
745 }
746
747 int get_sb_bdev(struct file_system_type *fs_type,
748 int flags, const char *dev_name, void *data,
749 int (*fill_super)(struct super_block *, void *, int),
750 struct vfsmount *mnt)
751 {
752 struct block_device *bdev;
753 struct super_block *s;
754 fmode_t mode = FMODE_READ;
755 int error = 0;
756
757 if (!(flags & MS_RDONLY))
758 mode |= FMODE_WRITE;
759
760 bdev = open_bdev_exclusive(dev_name, mode, fs_type);
761 if (IS_ERR(bdev))
762 return PTR_ERR(bdev);
763
764 /*
765 * once the super is inserted into the list by sget, s_umount
766 * will protect the lockfs code from trying to start a snapshot
767 * while we are mounting
768 */
769 mutex_lock(&bdev->bd_fsfreeze_mutex);
770 if (bdev->bd_fsfreeze_count > 0) {
771 mutex_unlock(&bdev->bd_fsfreeze_mutex);
772 error = -EBUSY;
773 goto error_bdev;
774 }
775 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
776 mutex_unlock(&bdev->bd_fsfreeze_mutex);
777 if (IS_ERR(s))
778 goto error_s;
779
780 if (s->s_root) {
781 if ((flags ^ s->s_flags) & MS_RDONLY) {
782 deactivate_locked_super(s);
783 error = -EBUSY;
784 goto error_bdev;
785 }
786
787 /*
788 * s_umount nests inside bd_mutex during
789 * __invalidate_device(). close_bdev_exclusive()
790 * acquires bd_mutex and can't be called under
791 * s_umount. Drop s_umount temporarily. This is safe
792 * as we're holding an active reference.
793 */
794 up_write(&s->s_umount);
795 close_bdev_exclusive(bdev, mode);
796 down_write(&s->s_umount);
797 } else {
798 char b[BDEVNAME_SIZE];
799
800 s->s_flags = flags;
801 s->s_mode = mode;
802 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
803 sb_set_blocksize(s, block_size(bdev));
804 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
805 if (error) {
806 deactivate_locked_super(s);
807 goto error;
808 }
809
810 s->s_flags |= MS_ACTIVE;
811 bdev->bd_super = s;
812 }
813
814 simple_set_mnt(mnt, s);
815 return 0;
816
817 error_s:
818 error = PTR_ERR(s);
819 error_bdev:
820 close_bdev_exclusive(bdev, mode);
821 error:
822 return error;
823 }
824
825 EXPORT_SYMBOL(get_sb_bdev);
826
827 void kill_block_super(struct super_block *sb)
828 {
829 struct block_device *bdev = sb->s_bdev;
830 fmode_t mode = sb->s_mode;
831
832 bdev->bd_super = NULL;
833 generic_shutdown_super(sb);
834 sync_blockdev(bdev);
835 close_bdev_exclusive(bdev, mode);
836 }
837
838 EXPORT_SYMBOL(kill_block_super);
839 #endif
840
841 int get_sb_nodev(struct file_system_type *fs_type,
842 int flags, void *data,
843 int (*fill_super)(struct super_block *, void *, int),
844 struct vfsmount *mnt)
845 {
846 int error;
847 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
848
849 if (IS_ERR(s))
850 return PTR_ERR(s);
851
852 s->s_flags = flags;
853
854 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
855 if (error) {
856 deactivate_locked_super(s);
857 return error;
858 }
859 s->s_flags |= MS_ACTIVE;
860 simple_set_mnt(mnt, s);
861 return 0;
862 }
863
864 EXPORT_SYMBOL(get_sb_nodev);
865
866 static int compare_single(struct super_block *s, void *p)
867 {
868 return 1;
869 }
870
871 int get_sb_single(struct file_system_type *fs_type,
872 int flags, void *data,
873 int (*fill_super)(struct super_block *, void *, int),
874 struct vfsmount *mnt)
875 {
876 struct super_block *s;
877 int error;
878
879 s = sget(fs_type, compare_single, set_anon_super, NULL);
880 if (IS_ERR(s))
881 return PTR_ERR(s);
882 if (!s->s_root) {
883 s->s_flags = flags;
884 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
885 if (error) {
886 deactivate_locked_super(s);
887 return error;
888 }
889 s->s_flags |= MS_ACTIVE;
890 } else {
891 do_remount_sb(s, flags, data, 0);
892 }
893 simple_set_mnt(mnt, s);
894 return 0;
895 }
896
897 EXPORT_SYMBOL(get_sb_single);
898
899 struct vfsmount *
900 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
901 {
902 struct vfsmount *mnt;
903 char *secdata = NULL;
904 int error;
905
906 if (!type)
907 return ERR_PTR(-ENODEV);
908
909 error = -ENOMEM;
910 mnt = alloc_vfsmnt(name);
911 if (!mnt)
912 goto out;
913
914 if (flags & MS_KERNMOUNT)
915 mnt->mnt_flags = MNT_INTERNAL;
916
917 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
918 secdata = alloc_secdata();
919 if (!secdata)
920 goto out_mnt;
921
922 error = security_sb_copy_data(data, secdata);
923 if (error)
924 goto out_free_secdata;
925 }
926
927 error = type->get_sb(type, flags, name, data, mnt);
928 if (error < 0)
929 goto out_free_secdata;
930 BUG_ON(!mnt->mnt_sb);
931 WARN_ON(!mnt->mnt_sb->s_bdi);
932 mnt->mnt_sb->s_flags |= MS_BORN;
933
934 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
935 if (error)
936 goto out_sb;
937
938 /*
939 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
940 * but s_maxbytes was an unsigned long long for many releases. Throw
941 * this warning for a little while to try and catch filesystems that
942 * violate this rule. This warning should be either removed or
943 * converted to a BUG() in 2.6.34.
944 */
945 WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
946 "negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
947
948 mnt->mnt_mountpoint = mnt->mnt_root;
949 mnt->mnt_parent = mnt;
950 up_write(&mnt->mnt_sb->s_umount);
951 free_secdata(secdata);
952 return mnt;
953 out_sb:
954 dput(mnt->mnt_root);
955 deactivate_locked_super(mnt->mnt_sb);
956 out_free_secdata:
957 free_secdata(secdata);
958 out_mnt:
959 free_vfsmnt(mnt);
960 out:
961 return ERR_PTR(error);
962 }
963
964 EXPORT_SYMBOL_GPL(vfs_kern_mount);
965
966 /**
967 * freeze_super - lock the filesystem and force it into a consistent state
968 * @sb: the super to lock
969 *
970 * Syncs the super to make sure the filesystem is consistent and calls the fs's
971 * freeze_fs. Subsequent calls to this without first thawing the fs will return
972 * -EBUSY.
973 */
974 int freeze_super(struct super_block *sb)
975 {
976 int ret;
977
978 atomic_inc(&sb->s_active);
979 down_write(&sb->s_umount);
980 if (sb->s_frozen) {
981 deactivate_locked_super(sb);
982 return -EBUSY;
983 }
984
985 if (sb->s_flags & MS_RDONLY) {
986 sb->s_frozen = SB_FREEZE_TRANS;
987 smp_wmb();
988 up_write(&sb->s_umount);
989 return 0;
990 }
991
992 sb->s_frozen = SB_FREEZE_WRITE;
993 smp_wmb();
994
995 sync_filesystem(sb);
996
997 sb->s_frozen = SB_FREEZE_TRANS;
998 smp_wmb();
999
1000 sync_blockdev(sb->s_bdev);
1001 if (sb->s_op->freeze_fs) {
1002 ret = sb->s_op->freeze_fs(sb);
1003 if (ret) {
1004 printk(KERN_ERR
1005 "VFS:Filesystem freeze failed\n");
1006 sb->s_frozen = SB_UNFROZEN;
1007 deactivate_locked_super(sb);
1008 return ret;
1009 }
1010 }
1011 up_write(&sb->s_umount);
1012 return 0;
1013 }
1014 EXPORT_SYMBOL(freeze_super);
1015
1016 /**
1017 * thaw_super -- unlock filesystem
1018 * @sb: the super to thaw
1019 *
1020 * Unlocks the filesystem and marks it writeable again after freeze_super().
1021 */
1022 int thaw_super(struct super_block *sb)
1023 {
1024 int error;
1025
1026 down_write(&sb->s_umount);
1027 if (sb->s_frozen == SB_UNFROZEN) {
1028 up_write(&sb->s_umount);
1029 return -EINVAL;
1030 }
1031
1032 if (sb->s_flags & MS_RDONLY)
1033 goto out;
1034
1035 if (sb->s_op->unfreeze_fs) {
1036 error = sb->s_op->unfreeze_fs(sb);
1037 if (error) {
1038 printk(KERN_ERR
1039 "VFS:Filesystem thaw failed\n");
1040 sb->s_frozen = SB_FREEZE_TRANS;
1041 up_write(&sb->s_umount);
1042 return error;
1043 }
1044 }
1045
1046 out:
1047 sb->s_frozen = SB_UNFROZEN;
1048 smp_wmb();
1049 wake_up(&sb->s_wait_unfrozen);
1050 deactivate_locked_super(sb);
1051
1052 return 0;
1053 }
1054 EXPORT_SYMBOL(thaw_super);
1055
1056 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1057 {
1058 int err;
1059 const char *subtype = strchr(fstype, '.');
1060 if (subtype) {
1061 subtype++;
1062 err = -EINVAL;
1063 if (!subtype[0])
1064 goto err;
1065 } else
1066 subtype = "";
1067
1068 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1069 err = -ENOMEM;
1070 if (!mnt->mnt_sb->s_subtype)
1071 goto err;
1072 return mnt;
1073
1074 err:
1075 mntput(mnt);
1076 return ERR_PTR(err);
1077 }
1078
1079 struct vfsmount *
1080 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1081 {
1082 struct file_system_type *type = get_fs_type(fstype);
1083 struct vfsmount *mnt;
1084 if (!type)
1085 return ERR_PTR(-ENODEV);
1086 mnt = vfs_kern_mount(type, flags, name, data);
1087 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1088 !mnt->mnt_sb->s_subtype)
1089 mnt = fs_set_subtype(mnt, fstype);
1090 put_filesystem(type);
1091 return mnt;
1092 }
1093 EXPORT_SYMBOL_GPL(do_kern_mount);
1094
1095 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1096 {
1097 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1098 }
1099
1100 EXPORT_SYMBOL_GPL(kern_mount_data);
This page took 0.05513 seconds and 6 git commands to generate.