inode: convert inode_sb_list_lock to per-sb
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37
38
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
41
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 "sb_writers",
44 "sb_pagefaults",
45 "sb_internal",
46 };
47
48 /*
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
54 */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 long fs_objects = 0;
60 long total_objects;
61 long freed = 0;
62 long dentries;
63 long inodes;
64
65 sb = container_of(shrink, struct super_block, s_shrink);
66
67 /*
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
70 */
71 if (!(sc->gfp_mask & __GFP_FS))
72 return SHRINK_STOP;
73
74 if (!trylock_super(sb))
75 return SHRINK_STOP;
76
77 if (sb->s_op->nr_cached_objects)
78 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79
80 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 total_objects = dentries + inodes + fs_objects + 1;
83 if (!total_objects)
84 total_objects = 1;
85
86 /* proportion the scan between the caches */
87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90
91 /*
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
94 *
95 * Ensure that we always scan at least one object - memcg kmem
96 * accounting uses this to fully empty the caches.
97 */
98 sc->nr_to_scan = dentries + 1;
99 freed = prune_dcache_sb(sb, sc);
100 sc->nr_to_scan = inodes + 1;
101 freed += prune_icache_sb(sb, sc);
102
103 if (fs_objects) {
104 sc->nr_to_scan = fs_objects + 1;
105 freed += sb->s_op->free_cached_objects(sb, sc);
106 }
107
108 up_read(&sb->s_umount);
109 return freed;
110 }
111
112 static unsigned long super_cache_count(struct shrinker *shrink,
113 struct shrink_control *sc)
114 {
115 struct super_block *sb;
116 long total_objects = 0;
117
118 sb = container_of(shrink, struct super_block, s_shrink);
119
120 /*
121 * Don't call trylock_super as it is a potential
122 * scalability bottleneck. The counts could get updated
123 * between super_cache_count and super_cache_scan anyway.
124 * Call to super_cache_count with shrinker_rwsem held
125 * ensures the safety of call to list_lru_shrink_count() and
126 * s_op->nr_cached_objects().
127 */
128 if (sb->s_op && sb->s_op->nr_cached_objects)
129 total_objects = sb->s_op->nr_cached_objects(sb, sc);
130
131 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133
134 total_objects = vfs_pressure_ratio(total_objects);
135 return total_objects;
136 }
137
138 /**
139 * destroy_super - frees a superblock
140 * @s: superblock to free
141 *
142 * Frees a superblock.
143 */
144 static void destroy_super(struct super_block *s)
145 {
146 int i;
147 list_lru_destroy(&s->s_dentry_lru);
148 list_lru_destroy(&s->s_inode_lru);
149 for (i = 0; i < SB_FREEZE_LEVELS; i++)
150 percpu_counter_destroy(&s->s_writers.counter[i]);
151 security_sb_free(s);
152 WARN_ON(!list_empty(&s->s_mounts));
153 kfree(s->s_subtype);
154 kfree(s->s_options);
155 kfree_rcu(s, rcu);
156 }
157
158 /**
159 * alloc_super - create new superblock
160 * @type: filesystem type superblock should belong to
161 * @flags: the mount flags
162 *
163 * Allocates and initializes a new &struct super_block. alloc_super()
164 * returns a pointer new superblock or %NULL if allocation had failed.
165 */
166 static struct super_block *alloc_super(struct file_system_type *type, int flags)
167 {
168 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
169 static const struct super_operations default_op;
170 int i;
171
172 if (!s)
173 return NULL;
174
175 INIT_LIST_HEAD(&s->s_mounts);
176
177 if (security_sb_alloc(s))
178 goto fail;
179
180 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
181 if (percpu_counter_init(&s->s_writers.counter[i], 0,
182 GFP_KERNEL) < 0)
183 goto fail;
184 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
185 &type->s_writers_key[i], 0);
186 }
187 init_waitqueue_head(&s->s_writers.wait);
188 init_waitqueue_head(&s->s_writers.wait_unfrozen);
189 s->s_bdi = &noop_backing_dev_info;
190 s->s_flags = flags;
191 INIT_HLIST_NODE(&s->s_instances);
192 INIT_HLIST_BL_HEAD(&s->s_anon);
193 INIT_LIST_HEAD(&s->s_inodes);
194 spin_lock_init(&s->s_inode_list_lock);
195
196 if (list_lru_init_memcg(&s->s_dentry_lru))
197 goto fail;
198 if (list_lru_init_memcg(&s->s_inode_lru))
199 goto fail;
200
201 init_rwsem(&s->s_umount);
202 lockdep_set_class(&s->s_umount, &type->s_umount_key);
203 /*
204 * sget() can have s_umount recursion.
205 *
206 * When it cannot find a suitable sb, it allocates a new
207 * one (this one), and tries again to find a suitable old
208 * one.
209 *
210 * In case that succeeds, it will acquire the s_umount
211 * lock of the old one. Since these are clearly distrinct
212 * locks, and this object isn't exposed yet, there's no
213 * risk of deadlocks.
214 *
215 * Annotate this by putting this lock in a different
216 * subclass.
217 */
218 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
219 s->s_count = 1;
220 atomic_set(&s->s_active, 1);
221 mutex_init(&s->s_vfs_rename_mutex);
222 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
223 mutex_init(&s->s_dquot.dqio_mutex);
224 mutex_init(&s->s_dquot.dqonoff_mutex);
225 s->s_maxbytes = MAX_NON_LFS;
226 s->s_op = &default_op;
227 s->s_time_gran = 1000000000;
228 s->cleancache_poolid = CLEANCACHE_NO_POOL;
229
230 s->s_shrink.seeks = DEFAULT_SEEKS;
231 s->s_shrink.scan_objects = super_cache_scan;
232 s->s_shrink.count_objects = super_cache_count;
233 s->s_shrink.batch = 1024;
234 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
235 return s;
236
237 fail:
238 destroy_super(s);
239 return NULL;
240 }
241
242 /* Superblock refcounting */
243
244 /*
245 * Drop a superblock's refcount. The caller must hold sb_lock.
246 */
247 static void __put_super(struct super_block *sb)
248 {
249 if (!--sb->s_count) {
250 list_del_init(&sb->s_list);
251 destroy_super(sb);
252 }
253 }
254
255 /**
256 * put_super - drop a temporary reference to superblock
257 * @sb: superblock in question
258 *
259 * Drops a temporary reference, frees superblock if there's no
260 * references left.
261 */
262 static void put_super(struct super_block *sb)
263 {
264 spin_lock(&sb_lock);
265 __put_super(sb);
266 spin_unlock(&sb_lock);
267 }
268
269
270 /**
271 * deactivate_locked_super - drop an active reference to superblock
272 * @s: superblock to deactivate
273 *
274 * Drops an active reference to superblock, converting it into a temprory
275 * one if there is no other active references left. In that case we
276 * tell fs driver to shut it down and drop the temporary reference we
277 * had just acquired.
278 *
279 * Caller holds exclusive lock on superblock; that lock is released.
280 */
281 void deactivate_locked_super(struct super_block *s)
282 {
283 struct file_system_type *fs = s->s_type;
284 if (atomic_dec_and_test(&s->s_active)) {
285 cleancache_invalidate_fs(s);
286 unregister_shrinker(&s->s_shrink);
287 fs->kill_sb(s);
288
289 /*
290 * Since list_lru_destroy() may sleep, we cannot call it from
291 * put_super(), where we hold the sb_lock. Therefore we destroy
292 * the lru lists right now.
293 */
294 list_lru_destroy(&s->s_dentry_lru);
295 list_lru_destroy(&s->s_inode_lru);
296
297 put_filesystem(fs);
298 put_super(s);
299 } else {
300 up_write(&s->s_umount);
301 }
302 }
303
304 EXPORT_SYMBOL(deactivate_locked_super);
305
306 /**
307 * deactivate_super - drop an active reference to superblock
308 * @s: superblock to deactivate
309 *
310 * Variant of deactivate_locked_super(), except that superblock is *not*
311 * locked by caller. If we are going to drop the final active reference,
312 * lock will be acquired prior to that.
313 */
314 void deactivate_super(struct super_block *s)
315 {
316 if (!atomic_add_unless(&s->s_active, -1, 1)) {
317 down_write(&s->s_umount);
318 deactivate_locked_super(s);
319 }
320 }
321
322 EXPORT_SYMBOL(deactivate_super);
323
324 /**
325 * grab_super - acquire an active reference
326 * @s: reference we are trying to make active
327 *
328 * Tries to acquire an active reference. grab_super() is used when we
329 * had just found a superblock in super_blocks or fs_type->fs_supers
330 * and want to turn it into a full-blown active reference. grab_super()
331 * is called with sb_lock held and drops it. Returns 1 in case of
332 * success, 0 if we had failed (superblock contents was already dead or
333 * dying when grab_super() had been called). Note that this is only
334 * called for superblocks not in rundown mode (== ones still on ->fs_supers
335 * of their type), so increment of ->s_count is OK here.
336 */
337 static int grab_super(struct super_block *s) __releases(sb_lock)
338 {
339 s->s_count++;
340 spin_unlock(&sb_lock);
341 down_write(&s->s_umount);
342 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
343 put_super(s);
344 return 1;
345 }
346 up_write(&s->s_umount);
347 put_super(s);
348 return 0;
349 }
350
351 /*
352 * trylock_super - try to grab ->s_umount shared
353 * @sb: reference we are trying to grab
354 *
355 * Try to prevent fs shutdown. This is used in places where we
356 * cannot take an active reference but we need to ensure that the
357 * filesystem is not shut down while we are working on it. It returns
358 * false if we cannot acquire s_umount or if we lose the race and
359 * filesystem already got into shutdown, and returns true with the s_umount
360 * lock held in read mode in case of success. On successful return,
361 * the caller must drop the s_umount lock when done.
362 *
363 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
364 * The reason why it's safe is that we are OK with doing trylock instead
365 * of down_read(). There's a couple of places that are OK with that, but
366 * it's very much not a general-purpose interface.
367 */
368 bool trylock_super(struct super_block *sb)
369 {
370 if (down_read_trylock(&sb->s_umount)) {
371 if (!hlist_unhashed(&sb->s_instances) &&
372 sb->s_root && (sb->s_flags & MS_BORN))
373 return true;
374 up_read(&sb->s_umount);
375 }
376
377 return false;
378 }
379
380 /**
381 * generic_shutdown_super - common helper for ->kill_sb()
382 * @sb: superblock to kill
383 *
384 * generic_shutdown_super() does all fs-independent work on superblock
385 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
386 * that need destruction out of superblock, call generic_shutdown_super()
387 * and release aforementioned objects. Note: dentries and inodes _are_
388 * taken care of and do not need specific handling.
389 *
390 * Upon calling this function, the filesystem may no longer alter or
391 * rearrange the set of dentries belonging to this super_block, nor may it
392 * change the attachments of dentries to inodes.
393 */
394 void generic_shutdown_super(struct super_block *sb)
395 {
396 const struct super_operations *sop = sb->s_op;
397
398 if (sb->s_root) {
399 shrink_dcache_for_umount(sb);
400 sync_filesystem(sb);
401 sb->s_flags &= ~MS_ACTIVE;
402
403 fsnotify_unmount_inodes(sb);
404
405 evict_inodes(sb);
406
407 if (sb->s_dio_done_wq) {
408 destroy_workqueue(sb->s_dio_done_wq);
409 sb->s_dio_done_wq = NULL;
410 }
411
412 if (sop->put_super)
413 sop->put_super(sb);
414
415 if (!list_empty(&sb->s_inodes)) {
416 printk("VFS: Busy inodes after unmount of %s. "
417 "Self-destruct in 5 seconds. Have a nice day...\n",
418 sb->s_id);
419 }
420 }
421 spin_lock(&sb_lock);
422 /* should be initialized for __put_super_and_need_restart() */
423 hlist_del_init(&sb->s_instances);
424 spin_unlock(&sb_lock);
425 up_write(&sb->s_umount);
426 }
427
428 EXPORT_SYMBOL(generic_shutdown_super);
429
430 /**
431 * sget - find or create a superblock
432 * @type: filesystem type superblock should belong to
433 * @test: comparison callback
434 * @set: setup callback
435 * @flags: mount flags
436 * @data: argument to each of them
437 */
438 struct super_block *sget(struct file_system_type *type,
439 int (*test)(struct super_block *,void *),
440 int (*set)(struct super_block *,void *),
441 int flags,
442 void *data)
443 {
444 struct super_block *s = NULL;
445 struct super_block *old;
446 int err;
447
448 retry:
449 spin_lock(&sb_lock);
450 if (test) {
451 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
452 if (!test(old, data))
453 continue;
454 if (!grab_super(old))
455 goto retry;
456 if (s) {
457 up_write(&s->s_umount);
458 destroy_super(s);
459 s = NULL;
460 }
461 return old;
462 }
463 }
464 if (!s) {
465 spin_unlock(&sb_lock);
466 s = alloc_super(type, flags);
467 if (!s)
468 return ERR_PTR(-ENOMEM);
469 goto retry;
470 }
471
472 err = set(s, data);
473 if (err) {
474 spin_unlock(&sb_lock);
475 up_write(&s->s_umount);
476 destroy_super(s);
477 return ERR_PTR(err);
478 }
479 s->s_type = type;
480 strlcpy(s->s_id, type->name, sizeof(s->s_id));
481 list_add_tail(&s->s_list, &super_blocks);
482 hlist_add_head(&s->s_instances, &type->fs_supers);
483 spin_unlock(&sb_lock);
484 get_filesystem(type);
485 register_shrinker(&s->s_shrink);
486 return s;
487 }
488
489 EXPORT_SYMBOL(sget);
490
491 void drop_super(struct super_block *sb)
492 {
493 up_read(&sb->s_umount);
494 put_super(sb);
495 }
496
497 EXPORT_SYMBOL(drop_super);
498
499 /**
500 * iterate_supers - call function for all active superblocks
501 * @f: function to call
502 * @arg: argument to pass to it
503 *
504 * Scans the superblock list and calls given function, passing it
505 * locked superblock and given argument.
506 */
507 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
508 {
509 struct super_block *sb, *p = NULL;
510
511 spin_lock(&sb_lock);
512 list_for_each_entry(sb, &super_blocks, s_list) {
513 if (hlist_unhashed(&sb->s_instances))
514 continue;
515 sb->s_count++;
516 spin_unlock(&sb_lock);
517
518 down_read(&sb->s_umount);
519 if (sb->s_root && (sb->s_flags & MS_BORN))
520 f(sb, arg);
521 up_read(&sb->s_umount);
522
523 spin_lock(&sb_lock);
524 if (p)
525 __put_super(p);
526 p = sb;
527 }
528 if (p)
529 __put_super(p);
530 spin_unlock(&sb_lock);
531 }
532
533 /**
534 * iterate_supers_type - call function for superblocks of given type
535 * @type: fs type
536 * @f: function to call
537 * @arg: argument to pass to it
538 *
539 * Scans the superblock list and calls given function, passing it
540 * locked superblock and given argument.
541 */
542 void iterate_supers_type(struct file_system_type *type,
543 void (*f)(struct super_block *, void *), void *arg)
544 {
545 struct super_block *sb, *p = NULL;
546
547 spin_lock(&sb_lock);
548 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
549 sb->s_count++;
550 spin_unlock(&sb_lock);
551
552 down_read(&sb->s_umount);
553 if (sb->s_root && (sb->s_flags & MS_BORN))
554 f(sb, arg);
555 up_read(&sb->s_umount);
556
557 spin_lock(&sb_lock);
558 if (p)
559 __put_super(p);
560 p = sb;
561 }
562 if (p)
563 __put_super(p);
564 spin_unlock(&sb_lock);
565 }
566
567 EXPORT_SYMBOL(iterate_supers_type);
568
569 /**
570 * get_super - get the superblock of a device
571 * @bdev: device to get the superblock for
572 *
573 * Scans the superblock list and finds the superblock of the file system
574 * mounted on the device given. %NULL is returned if no match is found.
575 */
576
577 struct super_block *get_super(struct block_device *bdev)
578 {
579 struct super_block *sb;
580
581 if (!bdev)
582 return NULL;
583
584 spin_lock(&sb_lock);
585 rescan:
586 list_for_each_entry(sb, &super_blocks, s_list) {
587 if (hlist_unhashed(&sb->s_instances))
588 continue;
589 if (sb->s_bdev == bdev) {
590 sb->s_count++;
591 spin_unlock(&sb_lock);
592 down_read(&sb->s_umount);
593 /* still alive? */
594 if (sb->s_root && (sb->s_flags & MS_BORN))
595 return sb;
596 up_read(&sb->s_umount);
597 /* nope, got unmounted */
598 spin_lock(&sb_lock);
599 __put_super(sb);
600 goto rescan;
601 }
602 }
603 spin_unlock(&sb_lock);
604 return NULL;
605 }
606
607 EXPORT_SYMBOL(get_super);
608
609 /**
610 * get_super_thawed - get thawed superblock of a device
611 * @bdev: device to get the superblock for
612 *
613 * Scans the superblock list and finds the superblock of the file system
614 * mounted on the device. The superblock is returned once it is thawed
615 * (or immediately if it was not frozen). %NULL is returned if no match
616 * is found.
617 */
618 struct super_block *get_super_thawed(struct block_device *bdev)
619 {
620 while (1) {
621 struct super_block *s = get_super(bdev);
622 if (!s || s->s_writers.frozen == SB_UNFROZEN)
623 return s;
624 up_read(&s->s_umount);
625 wait_event(s->s_writers.wait_unfrozen,
626 s->s_writers.frozen == SB_UNFROZEN);
627 put_super(s);
628 }
629 }
630 EXPORT_SYMBOL(get_super_thawed);
631
632 /**
633 * get_active_super - get an active reference to the superblock of a device
634 * @bdev: device to get the superblock for
635 *
636 * Scans the superblock list and finds the superblock of the file system
637 * mounted on the device given. Returns the superblock with an active
638 * reference or %NULL if none was found.
639 */
640 struct super_block *get_active_super(struct block_device *bdev)
641 {
642 struct super_block *sb;
643
644 if (!bdev)
645 return NULL;
646
647 restart:
648 spin_lock(&sb_lock);
649 list_for_each_entry(sb, &super_blocks, s_list) {
650 if (hlist_unhashed(&sb->s_instances))
651 continue;
652 if (sb->s_bdev == bdev) {
653 if (!grab_super(sb))
654 goto restart;
655 up_write(&sb->s_umount);
656 return sb;
657 }
658 }
659 spin_unlock(&sb_lock);
660 return NULL;
661 }
662
663 struct super_block *user_get_super(dev_t dev)
664 {
665 struct super_block *sb;
666
667 spin_lock(&sb_lock);
668 rescan:
669 list_for_each_entry(sb, &super_blocks, s_list) {
670 if (hlist_unhashed(&sb->s_instances))
671 continue;
672 if (sb->s_dev == dev) {
673 sb->s_count++;
674 spin_unlock(&sb_lock);
675 down_read(&sb->s_umount);
676 /* still alive? */
677 if (sb->s_root && (sb->s_flags & MS_BORN))
678 return sb;
679 up_read(&sb->s_umount);
680 /* nope, got unmounted */
681 spin_lock(&sb_lock);
682 __put_super(sb);
683 goto rescan;
684 }
685 }
686 spin_unlock(&sb_lock);
687 return NULL;
688 }
689
690 /**
691 * do_remount_sb - asks filesystem to change mount options.
692 * @sb: superblock in question
693 * @flags: numeric part of options
694 * @data: the rest of options
695 * @force: whether or not to force the change
696 *
697 * Alters the mount options of a mounted file system.
698 */
699 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
700 {
701 int retval;
702 int remount_ro;
703
704 if (sb->s_writers.frozen != SB_UNFROZEN)
705 return -EBUSY;
706
707 #ifdef CONFIG_BLOCK
708 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
709 return -EACCES;
710 #endif
711
712 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
713
714 if (remount_ro) {
715 if (!hlist_empty(&sb->s_pins)) {
716 up_write(&sb->s_umount);
717 group_pin_kill(&sb->s_pins);
718 down_write(&sb->s_umount);
719 if (!sb->s_root)
720 return 0;
721 if (sb->s_writers.frozen != SB_UNFROZEN)
722 return -EBUSY;
723 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
724 }
725 }
726 shrink_dcache_sb(sb);
727
728 /* If we are remounting RDONLY and current sb is read/write,
729 make sure there are no rw files opened */
730 if (remount_ro) {
731 if (force) {
732 sb->s_readonly_remount = 1;
733 smp_wmb();
734 } else {
735 retval = sb_prepare_remount_readonly(sb);
736 if (retval)
737 return retval;
738 }
739 }
740
741 if (sb->s_op->remount_fs) {
742 retval = sb->s_op->remount_fs(sb, &flags, data);
743 if (retval) {
744 if (!force)
745 goto cancel_readonly;
746 /* If forced remount, go ahead despite any errors */
747 WARN(1, "forced remount of a %s fs returned %i\n",
748 sb->s_type->name, retval);
749 }
750 }
751 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
752 /* Needs to be ordered wrt mnt_is_readonly() */
753 smp_wmb();
754 sb->s_readonly_remount = 0;
755
756 /*
757 * Some filesystems modify their metadata via some other path than the
758 * bdev buffer cache (eg. use a private mapping, or directories in
759 * pagecache, etc). Also file data modifications go via their own
760 * mappings. So If we try to mount readonly then copy the filesystem
761 * from bdev, we could get stale data, so invalidate it to give a best
762 * effort at coherency.
763 */
764 if (remount_ro && sb->s_bdev)
765 invalidate_bdev(sb->s_bdev);
766 return 0;
767
768 cancel_readonly:
769 sb->s_readonly_remount = 0;
770 return retval;
771 }
772
773 static void do_emergency_remount(struct work_struct *work)
774 {
775 struct super_block *sb, *p = NULL;
776
777 spin_lock(&sb_lock);
778 list_for_each_entry(sb, &super_blocks, s_list) {
779 if (hlist_unhashed(&sb->s_instances))
780 continue;
781 sb->s_count++;
782 spin_unlock(&sb_lock);
783 down_write(&sb->s_umount);
784 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
785 !(sb->s_flags & MS_RDONLY)) {
786 /*
787 * What lock protects sb->s_flags??
788 */
789 do_remount_sb(sb, MS_RDONLY, NULL, 1);
790 }
791 up_write(&sb->s_umount);
792 spin_lock(&sb_lock);
793 if (p)
794 __put_super(p);
795 p = sb;
796 }
797 if (p)
798 __put_super(p);
799 spin_unlock(&sb_lock);
800 kfree(work);
801 printk("Emergency Remount complete\n");
802 }
803
804 void emergency_remount(void)
805 {
806 struct work_struct *work;
807
808 work = kmalloc(sizeof(*work), GFP_ATOMIC);
809 if (work) {
810 INIT_WORK(work, do_emergency_remount);
811 schedule_work(work);
812 }
813 }
814
815 /*
816 * Unnamed block devices are dummy devices used by virtual
817 * filesystems which don't use real block-devices. -- jrs
818 */
819
820 static DEFINE_IDA(unnamed_dev_ida);
821 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
822 /* Many userspace utilities consider an FSID of 0 invalid.
823 * Always return at least 1 from get_anon_bdev.
824 */
825 static int unnamed_dev_start = 1;
826
827 int get_anon_bdev(dev_t *p)
828 {
829 int dev;
830 int error;
831
832 retry:
833 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
834 return -ENOMEM;
835 spin_lock(&unnamed_dev_lock);
836 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
837 if (!error)
838 unnamed_dev_start = dev + 1;
839 spin_unlock(&unnamed_dev_lock);
840 if (error == -EAGAIN)
841 /* We raced and lost with another CPU. */
842 goto retry;
843 else if (error)
844 return -EAGAIN;
845
846 if (dev >= (1 << MINORBITS)) {
847 spin_lock(&unnamed_dev_lock);
848 ida_remove(&unnamed_dev_ida, dev);
849 if (unnamed_dev_start > dev)
850 unnamed_dev_start = dev;
851 spin_unlock(&unnamed_dev_lock);
852 return -EMFILE;
853 }
854 *p = MKDEV(0, dev & MINORMASK);
855 return 0;
856 }
857 EXPORT_SYMBOL(get_anon_bdev);
858
859 void free_anon_bdev(dev_t dev)
860 {
861 int slot = MINOR(dev);
862 spin_lock(&unnamed_dev_lock);
863 ida_remove(&unnamed_dev_ida, slot);
864 if (slot < unnamed_dev_start)
865 unnamed_dev_start = slot;
866 spin_unlock(&unnamed_dev_lock);
867 }
868 EXPORT_SYMBOL(free_anon_bdev);
869
870 int set_anon_super(struct super_block *s, void *data)
871 {
872 return get_anon_bdev(&s->s_dev);
873 }
874
875 EXPORT_SYMBOL(set_anon_super);
876
877 void kill_anon_super(struct super_block *sb)
878 {
879 dev_t dev = sb->s_dev;
880 generic_shutdown_super(sb);
881 free_anon_bdev(dev);
882 }
883
884 EXPORT_SYMBOL(kill_anon_super);
885
886 void kill_litter_super(struct super_block *sb)
887 {
888 if (sb->s_root)
889 d_genocide(sb->s_root);
890 kill_anon_super(sb);
891 }
892
893 EXPORT_SYMBOL(kill_litter_super);
894
895 static int ns_test_super(struct super_block *sb, void *data)
896 {
897 return sb->s_fs_info == data;
898 }
899
900 static int ns_set_super(struct super_block *sb, void *data)
901 {
902 sb->s_fs_info = data;
903 return set_anon_super(sb, NULL);
904 }
905
906 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
907 void *data, int (*fill_super)(struct super_block *, void *, int))
908 {
909 struct super_block *sb;
910
911 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
912 if (IS_ERR(sb))
913 return ERR_CAST(sb);
914
915 if (!sb->s_root) {
916 int err;
917 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
918 if (err) {
919 deactivate_locked_super(sb);
920 return ERR_PTR(err);
921 }
922
923 sb->s_flags |= MS_ACTIVE;
924 }
925
926 return dget(sb->s_root);
927 }
928
929 EXPORT_SYMBOL(mount_ns);
930
931 #ifdef CONFIG_BLOCK
932 static int set_bdev_super(struct super_block *s, void *data)
933 {
934 s->s_bdev = data;
935 s->s_dev = s->s_bdev->bd_dev;
936
937 /*
938 * We set the bdi here to the queue backing, file systems can
939 * overwrite this in ->fill_super()
940 */
941 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
942 return 0;
943 }
944
945 static int test_bdev_super(struct super_block *s, void *data)
946 {
947 return (void *)s->s_bdev == data;
948 }
949
950 struct dentry *mount_bdev(struct file_system_type *fs_type,
951 int flags, const char *dev_name, void *data,
952 int (*fill_super)(struct super_block *, void *, int))
953 {
954 struct block_device *bdev;
955 struct super_block *s;
956 fmode_t mode = FMODE_READ | FMODE_EXCL;
957 int error = 0;
958
959 if (!(flags & MS_RDONLY))
960 mode |= FMODE_WRITE;
961
962 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
963 if (IS_ERR(bdev))
964 return ERR_CAST(bdev);
965
966 /*
967 * once the super is inserted into the list by sget, s_umount
968 * will protect the lockfs code from trying to start a snapshot
969 * while we are mounting
970 */
971 mutex_lock(&bdev->bd_fsfreeze_mutex);
972 if (bdev->bd_fsfreeze_count > 0) {
973 mutex_unlock(&bdev->bd_fsfreeze_mutex);
974 error = -EBUSY;
975 goto error_bdev;
976 }
977 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
978 bdev);
979 mutex_unlock(&bdev->bd_fsfreeze_mutex);
980 if (IS_ERR(s))
981 goto error_s;
982
983 if (s->s_root) {
984 if ((flags ^ s->s_flags) & MS_RDONLY) {
985 deactivate_locked_super(s);
986 error = -EBUSY;
987 goto error_bdev;
988 }
989
990 /*
991 * s_umount nests inside bd_mutex during
992 * __invalidate_device(). blkdev_put() acquires
993 * bd_mutex and can't be called under s_umount. Drop
994 * s_umount temporarily. This is safe as we're
995 * holding an active reference.
996 */
997 up_write(&s->s_umount);
998 blkdev_put(bdev, mode);
999 down_write(&s->s_umount);
1000 } else {
1001 char b[BDEVNAME_SIZE];
1002
1003 s->s_mode = mode;
1004 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1005 sb_set_blocksize(s, block_size(bdev));
1006 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1007 if (error) {
1008 deactivate_locked_super(s);
1009 goto error;
1010 }
1011
1012 s->s_flags |= MS_ACTIVE;
1013 bdev->bd_super = s;
1014 }
1015
1016 return dget(s->s_root);
1017
1018 error_s:
1019 error = PTR_ERR(s);
1020 error_bdev:
1021 blkdev_put(bdev, mode);
1022 error:
1023 return ERR_PTR(error);
1024 }
1025 EXPORT_SYMBOL(mount_bdev);
1026
1027 void kill_block_super(struct super_block *sb)
1028 {
1029 struct block_device *bdev = sb->s_bdev;
1030 fmode_t mode = sb->s_mode;
1031
1032 bdev->bd_super = NULL;
1033 generic_shutdown_super(sb);
1034 sync_blockdev(bdev);
1035 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1036 blkdev_put(bdev, mode | FMODE_EXCL);
1037 }
1038
1039 EXPORT_SYMBOL(kill_block_super);
1040 #endif
1041
1042 struct dentry *mount_nodev(struct file_system_type *fs_type,
1043 int flags, void *data,
1044 int (*fill_super)(struct super_block *, void *, int))
1045 {
1046 int error;
1047 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1048
1049 if (IS_ERR(s))
1050 return ERR_CAST(s);
1051
1052 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1053 if (error) {
1054 deactivate_locked_super(s);
1055 return ERR_PTR(error);
1056 }
1057 s->s_flags |= MS_ACTIVE;
1058 return dget(s->s_root);
1059 }
1060 EXPORT_SYMBOL(mount_nodev);
1061
1062 static int compare_single(struct super_block *s, void *p)
1063 {
1064 return 1;
1065 }
1066
1067 struct dentry *mount_single(struct file_system_type *fs_type,
1068 int flags, void *data,
1069 int (*fill_super)(struct super_block *, void *, int))
1070 {
1071 struct super_block *s;
1072 int error;
1073
1074 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1075 if (IS_ERR(s))
1076 return ERR_CAST(s);
1077 if (!s->s_root) {
1078 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1079 if (error) {
1080 deactivate_locked_super(s);
1081 return ERR_PTR(error);
1082 }
1083 s->s_flags |= MS_ACTIVE;
1084 } else {
1085 do_remount_sb(s, flags, data, 0);
1086 }
1087 return dget(s->s_root);
1088 }
1089 EXPORT_SYMBOL(mount_single);
1090
1091 struct dentry *
1092 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1093 {
1094 struct dentry *root;
1095 struct super_block *sb;
1096 char *secdata = NULL;
1097 int error = -ENOMEM;
1098
1099 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1100 secdata = alloc_secdata();
1101 if (!secdata)
1102 goto out;
1103
1104 error = security_sb_copy_data(data, secdata);
1105 if (error)
1106 goto out_free_secdata;
1107 }
1108
1109 root = type->mount(type, flags, name, data);
1110 if (IS_ERR(root)) {
1111 error = PTR_ERR(root);
1112 goto out_free_secdata;
1113 }
1114 sb = root->d_sb;
1115 BUG_ON(!sb);
1116 WARN_ON(!sb->s_bdi);
1117 sb->s_flags |= MS_BORN;
1118
1119 error = security_sb_kern_mount(sb, flags, secdata);
1120 if (error)
1121 goto out_sb;
1122
1123 /*
1124 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1125 * but s_maxbytes was an unsigned long long for many releases. Throw
1126 * this warning for a little while to try and catch filesystems that
1127 * violate this rule.
1128 */
1129 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1130 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1131
1132 up_write(&sb->s_umount);
1133 free_secdata(secdata);
1134 return root;
1135 out_sb:
1136 dput(root);
1137 deactivate_locked_super(sb);
1138 out_free_secdata:
1139 free_secdata(secdata);
1140 out:
1141 return ERR_PTR(error);
1142 }
1143
1144 /*
1145 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1146 * instead.
1147 */
1148 void __sb_end_write(struct super_block *sb, int level)
1149 {
1150 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1151 /*
1152 * Make sure s_writers are updated before we wake up waiters in
1153 * freeze_super().
1154 */
1155 smp_mb();
1156 if (waitqueue_active(&sb->s_writers.wait))
1157 wake_up(&sb->s_writers.wait);
1158 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1159 }
1160 EXPORT_SYMBOL(__sb_end_write);
1161
1162 #ifdef CONFIG_LOCKDEP
1163 /*
1164 * We want lockdep to tell us about possible deadlocks with freezing but
1165 * it's it bit tricky to properly instrument it. Getting a freeze protection
1166 * works as getting a read lock but there are subtle problems. XFS for example
1167 * gets freeze protection on internal level twice in some cases, which is OK
1168 * only because we already hold a freeze protection also on higher level. Due
1169 * to these cases we have to tell lockdep we are doing trylock when we
1170 * already hold a freeze protection for a higher freeze level.
1171 */
1172 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1173 unsigned long ip)
1174 {
1175 int i;
1176
1177 if (!trylock) {
1178 for (i = 0; i < level - 1; i++)
1179 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1180 trylock = true;
1181 break;
1182 }
1183 }
1184 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1185 }
1186 #endif
1187
1188 /*
1189 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1190 * instead.
1191 */
1192 int __sb_start_write(struct super_block *sb, int level, bool wait)
1193 {
1194 retry:
1195 if (unlikely(sb->s_writers.frozen >= level)) {
1196 if (!wait)
1197 return 0;
1198 wait_event(sb->s_writers.wait_unfrozen,
1199 sb->s_writers.frozen < level);
1200 }
1201
1202 #ifdef CONFIG_LOCKDEP
1203 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1204 #endif
1205 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1206 /*
1207 * Make sure counter is updated before we check for frozen.
1208 * freeze_super() first sets frozen and then checks the counter.
1209 */
1210 smp_mb();
1211 if (unlikely(sb->s_writers.frozen >= level)) {
1212 __sb_end_write(sb, level);
1213 goto retry;
1214 }
1215 return 1;
1216 }
1217 EXPORT_SYMBOL(__sb_start_write);
1218
1219 /**
1220 * sb_wait_write - wait until all writers to given file system finish
1221 * @sb: the super for which we wait
1222 * @level: type of writers we wait for (normal vs page fault)
1223 *
1224 * This function waits until there are no writers of given type to given file
1225 * system. Caller of this function should make sure there can be no new writers
1226 * of type @level before calling this function. Otherwise this function can
1227 * livelock.
1228 */
1229 static void sb_wait_write(struct super_block *sb, int level)
1230 {
1231 s64 writers;
1232
1233 /*
1234 * We just cycle-through lockdep here so that it does not complain
1235 * about returning with lock to userspace
1236 */
1237 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1238 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1239
1240 do {
1241 DEFINE_WAIT(wait);
1242
1243 /*
1244 * We use a barrier in prepare_to_wait() to separate setting
1245 * of frozen and checking of the counter
1246 */
1247 prepare_to_wait(&sb->s_writers.wait, &wait,
1248 TASK_UNINTERRUPTIBLE);
1249
1250 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1251 if (writers)
1252 schedule();
1253
1254 finish_wait(&sb->s_writers.wait, &wait);
1255 } while (writers);
1256 }
1257
1258 /**
1259 * freeze_super - lock the filesystem and force it into a consistent state
1260 * @sb: the super to lock
1261 *
1262 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1263 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1264 * -EBUSY.
1265 *
1266 * During this function, sb->s_writers.frozen goes through these values:
1267 *
1268 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1269 *
1270 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1271 * writes should be blocked, though page faults are still allowed. We wait for
1272 * all writes to complete and then proceed to the next stage.
1273 *
1274 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1275 * but internal fs threads can still modify the filesystem (although they
1276 * should not dirty new pages or inodes), writeback can run etc. After waiting
1277 * for all running page faults we sync the filesystem which will clean all
1278 * dirty pages and inodes (no new dirty pages or inodes can be created when
1279 * sync is running).
1280 *
1281 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1282 * modification are blocked (e.g. XFS preallocation truncation on inode
1283 * reclaim). This is usually implemented by blocking new transactions for
1284 * filesystems that have them and need this additional guard. After all
1285 * internal writers are finished we call ->freeze_fs() to finish filesystem
1286 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1287 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1288 *
1289 * sb->s_writers.frozen is protected by sb->s_umount.
1290 */
1291 int freeze_super(struct super_block *sb)
1292 {
1293 int ret;
1294
1295 atomic_inc(&sb->s_active);
1296 down_write(&sb->s_umount);
1297 if (sb->s_writers.frozen != SB_UNFROZEN) {
1298 deactivate_locked_super(sb);
1299 return -EBUSY;
1300 }
1301
1302 if (!(sb->s_flags & MS_BORN)) {
1303 up_write(&sb->s_umount);
1304 return 0; /* sic - it's "nothing to do" */
1305 }
1306
1307 if (sb->s_flags & MS_RDONLY) {
1308 /* Nothing to do really... */
1309 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1310 up_write(&sb->s_umount);
1311 return 0;
1312 }
1313
1314 /* From now on, no new normal writers can start */
1315 sb->s_writers.frozen = SB_FREEZE_WRITE;
1316 smp_wmb();
1317
1318 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1319 up_write(&sb->s_umount);
1320
1321 sb_wait_write(sb, SB_FREEZE_WRITE);
1322
1323 /* Now we go and block page faults... */
1324 down_write(&sb->s_umount);
1325 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1326 smp_wmb();
1327
1328 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1329
1330 /* All writers are done so after syncing there won't be dirty data */
1331 sync_filesystem(sb);
1332
1333 /* Now wait for internal filesystem counter */
1334 sb->s_writers.frozen = SB_FREEZE_FS;
1335 smp_wmb();
1336 sb_wait_write(sb, SB_FREEZE_FS);
1337
1338 if (sb->s_op->freeze_fs) {
1339 ret = sb->s_op->freeze_fs(sb);
1340 if (ret) {
1341 printk(KERN_ERR
1342 "VFS:Filesystem freeze failed\n");
1343 sb->s_writers.frozen = SB_UNFROZEN;
1344 smp_wmb();
1345 wake_up(&sb->s_writers.wait_unfrozen);
1346 deactivate_locked_super(sb);
1347 return ret;
1348 }
1349 }
1350 /*
1351 * This is just for debugging purposes so that fs can warn if it
1352 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1353 */
1354 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1355 up_write(&sb->s_umount);
1356 return 0;
1357 }
1358 EXPORT_SYMBOL(freeze_super);
1359
1360 /**
1361 * thaw_super -- unlock filesystem
1362 * @sb: the super to thaw
1363 *
1364 * Unlocks the filesystem and marks it writeable again after freeze_super().
1365 */
1366 int thaw_super(struct super_block *sb)
1367 {
1368 int error;
1369
1370 down_write(&sb->s_umount);
1371 if (sb->s_writers.frozen == SB_UNFROZEN) {
1372 up_write(&sb->s_umount);
1373 return -EINVAL;
1374 }
1375
1376 if (sb->s_flags & MS_RDONLY)
1377 goto out;
1378
1379 if (sb->s_op->unfreeze_fs) {
1380 error = sb->s_op->unfreeze_fs(sb);
1381 if (error) {
1382 printk(KERN_ERR
1383 "VFS:Filesystem thaw failed\n");
1384 up_write(&sb->s_umount);
1385 return error;
1386 }
1387 }
1388
1389 out:
1390 sb->s_writers.frozen = SB_UNFROZEN;
1391 smp_wmb();
1392 wake_up(&sb->s_writers.wait_unfrozen);
1393 deactivate_locked_super(sb);
1394
1395 return 0;
1396 }
1397 EXPORT_SYMBOL(thaw_super);
This page took 0.057087 seconds and 6 git commands to generate.