Merge branch 'ufs' into for-next
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37
38
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
41
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 "sb_writers",
44 "sb_pagefaults",
45 "sb_internal",
46 };
47
48 /*
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
54 */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 long fs_objects = 0;
60 long total_objects;
61 long freed = 0;
62 long dentries;
63 long inodes;
64
65 sb = container_of(shrink, struct super_block, s_shrink);
66
67 /*
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
70 */
71 if (!(sc->gfp_mask & __GFP_FS))
72 return SHRINK_STOP;
73
74 if (!trylock_super(sb))
75 return SHRINK_STOP;
76
77 if (sb->s_op->nr_cached_objects)
78 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79
80 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 total_objects = dentries + inodes + fs_objects + 1;
83 if (!total_objects)
84 total_objects = 1;
85
86 /* proportion the scan between the caches */
87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90
91 /*
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
94 *
95 * Ensure that we always scan at least one object - memcg kmem
96 * accounting uses this to fully empty the caches.
97 */
98 sc->nr_to_scan = dentries + 1;
99 freed = prune_dcache_sb(sb, sc);
100 sc->nr_to_scan = inodes + 1;
101 freed += prune_icache_sb(sb, sc);
102
103 if (fs_objects) {
104 sc->nr_to_scan = fs_objects + 1;
105 freed += sb->s_op->free_cached_objects(sb, sc);
106 }
107
108 up_read(&sb->s_umount);
109 return freed;
110 }
111
112 static unsigned long super_cache_count(struct shrinker *shrink,
113 struct shrink_control *sc)
114 {
115 struct super_block *sb;
116 long total_objects = 0;
117
118 sb = container_of(shrink, struct super_block, s_shrink);
119
120 /*
121 * Don't call trylock_super as it is a potential
122 * scalability bottleneck. The counts could get updated
123 * between super_cache_count and super_cache_scan anyway.
124 * Call to super_cache_count with shrinker_rwsem held
125 * ensures the safety of call to list_lru_shrink_count() and
126 * s_op->nr_cached_objects().
127 */
128 if (sb->s_op && sb->s_op->nr_cached_objects)
129 total_objects = sb->s_op->nr_cached_objects(sb, sc);
130
131 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133
134 total_objects = vfs_pressure_ratio(total_objects);
135 return total_objects;
136 }
137
138 static void destroy_super_work(struct work_struct *work)
139 {
140 struct super_block *s = container_of(work, struct super_block,
141 destroy_work);
142 int i;
143
144 for (i = 0; i < SB_FREEZE_LEVELS; i++)
145 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
146 kfree(s);
147 }
148
149 static void destroy_super_rcu(struct rcu_head *head)
150 {
151 struct super_block *s = container_of(head, struct super_block, rcu);
152 INIT_WORK(&s->destroy_work, destroy_super_work);
153 schedule_work(&s->destroy_work);
154 }
155
156 /**
157 * destroy_super - frees a superblock
158 * @s: superblock to free
159 *
160 * Frees a superblock.
161 */
162 static void destroy_super(struct super_block *s)
163 {
164 list_lru_destroy(&s->s_dentry_lru);
165 list_lru_destroy(&s->s_inode_lru);
166 security_sb_free(s);
167 WARN_ON(!list_empty(&s->s_mounts));
168 kfree(s->s_subtype);
169 kfree(s->s_options);
170 call_rcu(&s->rcu, destroy_super_rcu);
171 }
172
173 /**
174 * alloc_super - create new superblock
175 * @type: filesystem type superblock should belong to
176 * @flags: the mount flags
177 *
178 * Allocates and initializes a new &struct super_block. alloc_super()
179 * returns a pointer new superblock or %NULL if allocation had failed.
180 */
181 static struct super_block *alloc_super(struct file_system_type *type, int flags)
182 {
183 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
184 static const struct super_operations default_op;
185 int i;
186
187 if (!s)
188 return NULL;
189
190 INIT_LIST_HEAD(&s->s_mounts);
191
192 if (security_sb_alloc(s))
193 goto fail;
194
195 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
196 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
197 sb_writers_name[i],
198 &type->s_writers_key[i]))
199 goto fail;
200 }
201 init_waitqueue_head(&s->s_writers.wait_unfrozen);
202 s->s_bdi = &noop_backing_dev_info;
203 s->s_flags = flags;
204 INIT_HLIST_NODE(&s->s_instances);
205 INIT_HLIST_BL_HEAD(&s->s_anon);
206 INIT_LIST_HEAD(&s->s_inodes);
207
208 if (list_lru_init_memcg(&s->s_dentry_lru))
209 goto fail;
210 if (list_lru_init_memcg(&s->s_inode_lru))
211 goto fail;
212
213 init_rwsem(&s->s_umount);
214 lockdep_set_class(&s->s_umount, &type->s_umount_key);
215 /*
216 * sget() can have s_umount recursion.
217 *
218 * When it cannot find a suitable sb, it allocates a new
219 * one (this one), and tries again to find a suitable old
220 * one.
221 *
222 * In case that succeeds, it will acquire the s_umount
223 * lock of the old one. Since these are clearly distrinct
224 * locks, and this object isn't exposed yet, there's no
225 * risk of deadlocks.
226 *
227 * Annotate this by putting this lock in a different
228 * subclass.
229 */
230 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
231 s->s_count = 1;
232 atomic_set(&s->s_active, 1);
233 mutex_init(&s->s_vfs_rename_mutex);
234 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
235 mutex_init(&s->s_dquot.dqio_mutex);
236 mutex_init(&s->s_dquot.dqonoff_mutex);
237 s->s_maxbytes = MAX_NON_LFS;
238 s->s_op = &default_op;
239 s->s_time_gran = 1000000000;
240 s->cleancache_poolid = CLEANCACHE_NO_POOL;
241
242 s->s_shrink.seeks = DEFAULT_SEEKS;
243 s->s_shrink.scan_objects = super_cache_scan;
244 s->s_shrink.count_objects = super_cache_count;
245 s->s_shrink.batch = 1024;
246 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
247 return s;
248
249 fail:
250 destroy_super(s);
251 return NULL;
252 }
253
254 /* Superblock refcounting */
255
256 /*
257 * Drop a superblock's refcount. The caller must hold sb_lock.
258 */
259 static void __put_super(struct super_block *sb)
260 {
261 if (!--sb->s_count) {
262 list_del_init(&sb->s_list);
263 destroy_super(sb);
264 }
265 }
266
267 /**
268 * put_super - drop a temporary reference to superblock
269 * @sb: superblock in question
270 *
271 * Drops a temporary reference, frees superblock if there's no
272 * references left.
273 */
274 static void put_super(struct super_block *sb)
275 {
276 spin_lock(&sb_lock);
277 __put_super(sb);
278 spin_unlock(&sb_lock);
279 }
280
281
282 /**
283 * deactivate_locked_super - drop an active reference to superblock
284 * @s: superblock to deactivate
285 *
286 * Drops an active reference to superblock, converting it into a temprory
287 * one if there is no other active references left. In that case we
288 * tell fs driver to shut it down and drop the temporary reference we
289 * had just acquired.
290 *
291 * Caller holds exclusive lock on superblock; that lock is released.
292 */
293 void deactivate_locked_super(struct super_block *s)
294 {
295 struct file_system_type *fs = s->s_type;
296 if (atomic_dec_and_test(&s->s_active)) {
297 cleancache_invalidate_fs(s);
298 unregister_shrinker(&s->s_shrink);
299 fs->kill_sb(s);
300
301 /*
302 * Since list_lru_destroy() may sleep, we cannot call it from
303 * put_super(), where we hold the sb_lock. Therefore we destroy
304 * the lru lists right now.
305 */
306 list_lru_destroy(&s->s_dentry_lru);
307 list_lru_destroy(&s->s_inode_lru);
308
309 put_filesystem(fs);
310 put_super(s);
311 } else {
312 up_write(&s->s_umount);
313 }
314 }
315
316 EXPORT_SYMBOL(deactivate_locked_super);
317
318 /**
319 * deactivate_super - drop an active reference to superblock
320 * @s: superblock to deactivate
321 *
322 * Variant of deactivate_locked_super(), except that superblock is *not*
323 * locked by caller. If we are going to drop the final active reference,
324 * lock will be acquired prior to that.
325 */
326 void deactivate_super(struct super_block *s)
327 {
328 if (!atomic_add_unless(&s->s_active, -1, 1)) {
329 down_write(&s->s_umount);
330 deactivate_locked_super(s);
331 }
332 }
333
334 EXPORT_SYMBOL(deactivate_super);
335
336 /**
337 * grab_super - acquire an active reference
338 * @s: reference we are trying to make active
339 *
340 * Tries to acquire an active reference. grab_super() is used when we
341 * had just found a superblock in super_blocks or fs_type->fs_supers
342 * and want to turn it into a full-blown active reference. grab_super()
343 * is called with sb_lock held and drops it. Returns 1 in case of
344 * success, 0 if we had failed (superblock contents was already dead or
345 * dying when grab_super() had been called). Note that this is only
346 * called for superblocks not in rundown mode (== ones still on ->fs_supers
347 * of their type), so increment of ->s_count is OK here.
348 */
349 static int grab_super(struct super_block *s) __releases(sb_lock)
350 {
351 s->s_count++;
352 spin_unlock(&sb_lock);
353 down_write(&s->s_umount);
354 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
355 put_super(s);
356 return 1;
357 }
358 up_write(&s->s_umount);
359 put_super(s);
360 return 0;
361 }
362
363 /*
364 * trylock_super - try to grab ->s_umount shared
365 * @sb: reference we are trying to grab
366 *
367 * Try to prevent fs shutdown. This is used in places where we
368 * cannot take an active reference but we need to ensure that the
369 * filesystem is not shut down while we are working on it. It returns
370 * false if we cannot acquire s_umount or if we lose the race and
371 * filesystem already got into shutdown, and returns true with the s_umount
372 * lock held in read mode in case of success. On successful return,
373 * the caller must drop the s_umount lock when done.
374 *
375 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
376 * The reason why it's safe is that we are OK with doing trylock instead
377 * of down_read(). There's a couple of places that are OK with that, but
378 * it's very much not a general-purpose interface.
379 */
380 bool trylock_super(struct super_block *sb)
381 {
382 if (down_read_trylock(&sb->s_umount)) {
383 if (!hlist_unhashed(&sb->s_instances) &&
384 sb->s_root && (sb->s_flags & MS_BORN))
385 return true;
386 up_read(&sb->s_umount);
387 }
388
389 return false;
390 }
391
392 /**
393 * generic_shutdown_super - common helper for ->kill_sb()
394 * @sb: superblock to kill
395 *
396 * generic_shutdown_super() does all fs-independent work on superblock
397 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
398 * that need destruction out of superblock, call generic_shutdown_super()
399 * and release aforementioned objects. Note: dentries and inodes _are_
400 * taken care of and do not need specific handling.
401 *
402 * Upon calling this function, the filesystem may no longer alter or
403 * rearrange the set of dentries belonging to this super_block, nor may it
404 * change the attachments of dentries to inodes.
405 */
406 void generic_shutdown_super(struct super_block *sb)
407 {
408 const struct super_operations *sop = sb->s_op;
409
410 if (sb->s_root) {
411 shrink_dcache_for_umount(sb);
412 sync_filesystem(sb);
413 sb->s_flags &= ~MS_ACTIVE;
414
415 fsnotify_unmount_inodes(&sb->s_inodes);
416
417 evict_inodes(sb);
418
419 if (sb->s_dio_done_wq) {
420 destroy_workqueue(sb->s_dio_done_wq);
421 sb->s_dio_done_wq = NULL;
422 }
423
424 if (sop->put_super)
425 sop->put_super(sb);
426
427 if (!list_empty(&sb->s_inodes)) {
428 printk("VFS: Busy inodes after unmount of %s. "
429 "Self-destruct in 5 seconds. Have a nice day...\n",
430 sb->s_id);
431 }
432 }
433 spin_lock(&sb_lock);
434 /* should be initialized for __put_super_and_need_restart() */
435 hlist_del_init(&sb->s_instances);
436 spin_unlock(&sb_lock);
437 up_write(&sb->s_umount);
438 }
439
440 EXPORT_SYMBOL(generic_shutdown_super);
441
442 /**
443 * sget - find or create a superblock
444 * @type: filesystem type superblock should belong to
445 * @test: comparison callback
446 * @set: setup callback
447 * @flags: mount flags
448 * @data: argument to each of them
449 */
450 struct super_block *sget(struct file_system_type *type,
451 int (*test)(struct super_block *,void *),
452 int (*set)(struct super_block *,void *),
453 int flags,
454 void *data)
455 {
456 struct super_block *s = NULL;
457 struct super_block *old;
458 int err;
459
460 retry:
461 spin_lock(&sb_lock);
462 if (test) {
463 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
464 if (!test(old, data))
465 continue;
466 if (!grab_super(old))
467 goto retry;
468 if (s) {
469 up_write(&s->s_umount);
470 destroy_super(s);
471 s = NULL;
472 }
473 return old;
474 }
475 }
476 if (!s) {
477 spin_unlock(&sb_lock);
478 s = alloc_super(type, flags);
479 if (!s)
480 return ERR_PTR(-ENOMEM);
481 goto retry;
482 }
483
484 err = set(s, data);
485 if (err) {
486 spin_unlock(&sb_lock);
487 up_write(&s->s_umount);
488 destroy_super(s);
489 return ERR_PTR(err);
490 }
491 s->s_type = type;
492 strlcpy(s->s_id, type->name, sizeof(s->s_id));
493 list_add_tail(&s->s_list, &super_blocks);
494 hlist_add_head(&s->s_instances, &type->fs_supers);
495 spin_unlock(&sb_lock);
496 get_filesystem(type);
497 register_shrinker(&s->s_shrink);
498 return s;
499 }
500
501 EXPORT_SYMBOL(sget);
502
503 void drop_super(struct super_block *sb)
504 {
505 up_read(&sb->s_umount);
506 put_super(sb);
507 }
508
509 EXPORT_SYMBOL(drop_super);
510
511 /**
512 * iterate_supers - call function for all active superblocks
513 * @f: function to call
514 * @arg: argument to pass to it
515 *
516 * Scans the superblock list and calls given function, passing it
517 * locked superblock and given argument.
518 */
519 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
520 {
521 struct super_block *sb, *p = NULL;
522
523 spin_lock(&sb_lock);
524 list_for_each_entry(sb, &super_blocks, s_list) {
525 if (hlist_unhashed(&sb->s_instances))
526 continue;
527 sb->s_count++;
528 spin_unlock(&sb_lock);
529
530 down_read(&sb->s_umount);
531 if (sb->s_root && (sb->s_flags & MS_BORN))
532 f(sb, arg);
533 up_read(&sb->s_umount);
534
535 spin_lock(&sb_lock);
536 if (p)
537 __put_super(p);
538 p = sb;
539 }
540 if (p)
541 __put_super(p);
542 spin_unlock(&sb_lock);
543 }
544
545 /**
546 * iterate_supers_type - call function for superblocks of given type
547 * @type: fs type
548 * @f: function to call
549 * @arg: argument to pass to it
550 *
551 * Scans the superblock list and calls given function, passing it
552 * locked superblock and given argument.
553 */
554 void iterate_supers_type(struct file_system_type *type,
555 void (*f)(struct super_block *, void *), void *arg)
556 {
557 struct super_block *sb, *p = NULL;
558
559 spin_lock(&sb_lock);
560 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
561 sb->s_count++;
562 spin_unlock(&sb_lock);
563
564 down_read(&sb->s_umount);
565 if (sb->s_root && (sb->s_flags & MS_BORN))
566 f(sb, arg);
567 up_read(&sb->s_umount);
568
569 spin_lock(&sb_lock);
570 if (p)
571 __put_super(p);
572 p = sb;
573 }
574 if (p)
575 __put_super(p);
576 spin_unlock(&sb_lock);
577 }
578
579 EXPORT_SYMBOL(iterate_supers_type);
580
581 /**
582 * get_super - get the superblock of a device
583 * @bdev: device to get the superblock for
584 *
585 * Scans the superblock list and finds the superblock of the file system
586 * mounted on the device given. %NULL is returned if no match is found.
587 */
588
589 struct super_block *get_super(struct block_device *bdev)
590 {
591 struct super_block *sb;
592
593 if (!bdev)
594 return NULL;
595
596 spin_lock(&sb_lock);
597 rescan:
598 list_for_each_entry(sb, &super_blocks, s_list) {
599 if (hlist_unhashed(&sb->s_instances))
600 continue;
601 if (sb->s_bdev == bdev) {
602 sb->s_count++;
603 spin_unlock(&sb_lock);
604 down_read(&sb->s_umount);
605 /* still alive? */
606 if (sb->s_root && (sb->s_flags & MS_BORN))
607 return sb;
608 up_read(&sb->s_umount);
609 /* nope, got unmounted */
610 spin_lock(&sb_lock);
611 __put_super(sb);
612 goto rescan;
613 }
614 }
615 spin_unlock(&sb_lock);
616 return NULL;
617 }
618
619 EXPORT_SYMBOL(get_super);
620
621 /**
622 * get_super_thawed - get thawed superblock of a device
623 * @bdev: device to get the superblock for
624 *
625 * Scans the superblock list and finds the superblock of the file system
626 * mounted on the device. The superblock is returned once it is thawed
627 * (or immediately if it was not frozen). %NULL is returned if no match
628 * is found.
629 */
630 struct super_block *get_super_thawed(struct block_device *bdev)
631 {
632 while (1) {
633 struct super_block *s = get_super(bdev);
634 if (!s || s->s_writers.frozen == SB_UNFROZEN)
635 return s;
636 up_read(&s->s_umount);
637 wait_event(s->s_writers.wait_unfrozen,
638 s->s_writers.frozen == SB_UNFROZEN);
639 put_super(s);
640 }
641 }
642 EXPORT_SYMBOL(get_super_thawed);
643
644 /**
645 * get_active_super - get an active reference to the superblock of a device
646 * @bdev: device to get the superblock for
647 *
648 * Scans the superblock list and finds the superblock of the file system
649 * mounted on the device given. Returns the superblock with an active
650 * reference or %NULL if none was found.
651 */
652 struct super_block *get_active_super(struct block_device *bdev)
653 {
654 struct super_block *sb;
655
656 if (!bdev)
657 return NULL;
658
659 restart:
660 spin_lock(&sb_lock);
661 list_for_each_entry(sb, &super_blocks, s_list) {
662 if (hlist_unhashed(&sb->s_instances))
663 continue;
664 if (sb->s_bdev == bdev) {
665 if (!grab_super(sb))
666 goto restart;
667 up_write(&sb->s_umount);
668 return sb;
669 }
670 }
671 spin_unlock(&sb_lock);
672 return NULL;
673 }
674
675 struct super_block *user_get_super(dev_t dev)
676 {
677 struct super_block *sb;
678
679 spin_lock(&sb_lock);
680 rescan:
681 list_for_each_entry(sb, &super_blocks, s_list) {
682 if (hlist_unhashed(&sb->s_instances))
683 continue;
684 if (sb->s_dev == dev) {
685 sb->s_count++;
686 spin_unlock(&sb_lock);
687 down_read(&sb->s_umount);
688 /* still alive? */
689 if (sb->s_root && (sb->s_flags & MS_BORN))
690 return sb;
691 up_read(&sb->s_umount);
692 /* nope, got unmounted */
693 spin_lock(&sb_lock);
694 __put_super(sb);
695 goto rescan;
696 }
697 }
698 spin_unlock(&sb_lock);
699 return NULL;
700 }
701
702 /**
703 * do_remount_sb - asks filesystem to change mount options.
704 * @sb: superblock in question
705 * @flags: numeric part of options
706 * @data: the rest of options
707 * @force: whether or not to force the change
708 *
709 * Alters the mount options of a mounted file system.
710 */
711 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
712 {
713 int retval;
714 int remount_ro;
715
716 if (sb->s_writers.frozen != SB_UNFROZEN)
717 return -EBUSY;
718
719 #ifdef CONFIG_BLOCK
720 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
721 return -EACCES;
722 #endif
723
724 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
725
726 if (remount_ro) {
727 if (!hlist_empty(&sb->s_pins)) {
728 up_write(&sb->s_umount);
729 group_pin_kill(&sb->s_pins);
730 down_write(&sb->s_umount);
731 if (!sb->s_root)
732 return 0;
733 if (sb->s_writers.frozen != SB_UNFROZEN)
734 return -EBUSY;
735 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
736 }
737 }
738 shrink_dcache_sb(sb);
739
740 /* If we are remounting RDONLY and current sb is read/write,
741 make sure there are no rw files opened */
742 if (remount_ro) {
743 if (force) {
744 sb->s_readonly_remount = 1;
745 smp_wmb();
746 } else {
747 retval = sb_prepare_remount_readonly(sb);
748 if (retval)
749 return retval;
750 }
751 }
752
753 if (sb->s_op->remount_fs) {
754 retval = sb->s_op->remount_fs(sb, &flags, data);
755 if (retval) {
756 if (!force)
757 goto cancel_readonly;
758 /* If forced remount, go ahead despite any errors */
759 WARN(1, "forced remount of a %s fs returned %i\n",
760 sb->s_type->name, retval);
761 }
762 }
763 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
764 /* Needs to be ordered wrt mnt_is_readonly() */
765 smp_wmb();
766 sb->s_readonly_remount = 0;
767
768 /*
769 * Some filesystems modify their metadata via some other path than the
770 * bdev buffer cache (eg. use a private mapping, or directories in
771 * pagecache, etc). Also file data modifications go via their own
772 * mappings. So If we try to mount readonly then copy the filesystem
773 * from bdev, we could get stale data, so invalidate it to give a best
774 * effort at coherency.
775 */
776 if (remount_ro && sb->s_bdev)
777 invalidate_bdev(sb->s_bdev);
778 return 0;
779
780 cancel_readonly:
781 sb->s_readonly_remount = 0;
782 return retval;
783 }
784
785 static void do_emergency_remount(struct work_struct *work)
786 {
787 struct super_block *sb, *p = NULL;
788
789 spin_lock(&sb_lock);
790 list_for_each_entry(sb, &super_blocks, s_list) {
791 if (hlist_unhashed(&sb->s_instances))
792 continue;
793 sb->s_count++;
794 spin_unlock(&sb_lock);
795 down_write(&sb->s_umount);
796 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
797 !(sb->s_flags & MS_RDONLY)) {
798 /*
799 * What lock protects sb->s_flags??
800 */
801 do_remount_sb(sb, MS_RDONLY, NULL, 1);
802 }
803 up_write(&sb->s_umount);
804 spin_lock(&sb_lock);
805 if (p)
806 __put_super(p);
807 p = sb;
808 }
809 if (p)
810 __put_super(p);
811 spin_unlock(&sb_lock);
812 kfree(work);
813 printk("Emergency Remount complete\n");
814 }
815
816 void emergency_remount(void)
817 {
818 struct work_struct *work;
819
820 work = kmalloc(sizeof(*work), GFP_ATOMIC);
821 if (work) {
822 INIT_WORK(work, do_emergency_remount);
823 schedule_work(work);
824 }
825 }
826
827 /*
828 * Unnamed block devices are dummy devices used by virtual
829 * filesystems which don't use real block-devices. -- jrs
830 */
831
832 static DEFINE_IDA(unnamed_dev_ida);
833 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
834 /* Many userspace utilities consider an FSID of 0 invalid.
835 * Always return at least 1 from get_anon_bdev.
836 */
837 static int unnamed_dev_start = 1;
838
839 int get_anon_bdev(dev_t *p)
840 {
841 int dev;
842 int error;
843
844 retry:
845 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
846 return -ENOMEM;
847 spin_lock(&unnamed_dev_lock);
848 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
849 if (!error)
850 unnamed_dev_start = dev + 1;
851 spin_unlock(&unnamed_dev_lock);
852 if (error == -EAGAIN)
853 /* We raced and lost with another CPU. */
854 goto retry;
855 else if (error)
856 return -EAGAIN;
857
858 if (dev >= (1 << MINORBITS)) {
859 spin_lock(&unnamed_dev_lock);
860 ida_remove(&unnamed_dev_ida, dev);
861 if (unnamed_dev_start > dev)
862 unnamed_dev_start = dev;
863 spin_unlock(&unnamed_dev_lock);
864 return -EMFILE;
865 }
866 *p = MKDEV(0, dev & MINORMASK);
867 return 0;
868 }
869 EXPORT_SYMBOL(get_anon_bdev);
870
871 void free_anon_bdev(dev_t dev)
872 {
873 int slot = MINOR(dev);
874 spin_lock(&unnamed_dev_lock);
875 ida_remove(&unnamed_dev_ida, slot);
876 if (slot < unnamed_dev_start)
877 unnamed_dev_start = slot;
878 spin_unlock(&unnamed_dev_lock);
879 }
880 EXPORT_SYMBOL(free_anon_bdev);
881
882 int set_anon_super(struct super_block *s, void *data)
883 {
884 return get_anon_bdev(&s->s_dev);
885 }
886
887 EXPORT_SYMBOL(set_anon_super);
888
889 void kill_anon_super(struct super_block *sb)
890 {
891 dev_t dev = sb->s_dev;
892 generic_shutdown_super(sb);
893 free_anon_bdev(dev);
894 }
895
896 EXPORT_SYMBOL(kill_anon_super);
897
898 void kill_litter_super(struct super_block *sb)
899 {
900 if (sb->s_root)
901 d_genocide(sb->s_root);
902 kill_anon_super(sb);
903 }
904
905 EXPORT_SYMBOL(kill_litter_super);
906
907 static int ns_test_super(struct super_block *sb, void *data)
908 {
909 return sb->s_fs_info == data;
910 }
911
912 static int ns_set_super(struct super_block *sb, void *data)
913 {
914 sb->s_fs_info = data;
915 return set_anon_super(sb, NULL);
916 }
917
918 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
919 void *data, int (*fill_super)(struct super_block *, void *, int))
920 {
921 struct super_block *sb;
922
923 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
924 if (IS_ERR(sb))
925 return ERR_CAST(sb);
926
927 if (!sb->s_root) {
928 int err;
929 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
930 if (err) {
931 deactivate_locked_super(sb);
932 return ERR_PTR(err);
933 }
934
935 sb->s_flags |= MS_ACTIVE;
936 }
937
938 return dget(sb->s_root);
939 }
940
941 EXPORT_SYMBOL(mount_ns);
942
943 #ifdef CONFIG_BLOCK
944 static int set_bdev_super(struct super_block *s, void *data)
945 {
946 s->s_bdev = data;
947 s->s_dev = s->s_bdev->bd_dev;
948
949 /*
950 * We set the bdi here to the queue backing, file systems can
951 * overwrite this in ->fill_super()
952 */
953 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
954 return 0;
955 }
956
957 static int test_bdev_super(struct super_block *s, void *data)
958 {
959 return (void *)s->s_bdev == data;
960 }
961
962 struct dentry *mount_bdev(struct file_system_type *fs_type,
963 int flags, const char *dev_name, void *data,
964 int (*fill_super)(struct super_block *, void *, int))
965 {
966 struct block_device *bdev;
967 struct super_block *s;
968 fmode_t mode = FMODE_READ | FMODE_EXCL;
969 int error = 0;
970
971 if (!(flags & MS_RDONLY))
972 mode |= FMODE_WRITE;
973
974 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
975 if (IS_ERR(bdev))
976 return ERR_CAST(bdev);
977
978 /*
979 * once the super is inserted into the list by sget, s_umount
980 * will protect the lockfs code from trying to start a snapshot
981 * while we are mounting
982 */
983 mutex_lock(&bdev->bd_fsfreeze_mutex);
984 if (bdev->bd_fsfreeze_count > 0) {
985 mutex_unlock(&bdev->bd_fsfreeze_mutex);
986 error = -EBUSY;
987 goto error_bdev;
988 }
989 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
990 bdev);
991 mutex_unlock(&bdev->bd_fsfreeze_mutex);
992 if (IS_ERR(s))
993 goto error_s;
994
995 if (s->s_root) {
996 if ((flags ^ s->s_flags) & MS_RDONLY) {
997 deactivate_locked_super(s);
998 error = -EBUSY;
999 goto error_bdev;
1000 }
1001
1002 /*
1003 * s_umount nests inside bd_mutex during
1004 * __invalidate_device(). blkdev_put() acquires
1005 * bd_mutex and can't be called under s_umount. Drop
1006 * s_umount temporarily. This is safe as we're
1007 * holding an active reference.
1008 */
1009 up_write(&s->s_umount);
1010 blkdev_put(bdev, mode);
1011 down_write(&s->s_umount);
1012 } else {
1013 char b[BDEVNAME_SIZE];
1014
1015 s->s_mode = mode;
1016 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1017 sb_set_blocksize(s, block_size(bdev));
1018 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1019 if (error) {
1020 deactivate_locked_super(s);
1021 goto error;
1022 }
1023
1024 s->s_flags |= MS_ACTIVE;
1025 bdev->bd_super = s;
1026 }
1027
1028 return dget(s->s_root);
1029
1030 error_s:
1031 error = PTR_ERR(s);
1032 error_bdev:
1033 blkdev_put(bdev, mode);
1034 error:
1035 return ERR_PTR(error);
1036 }
1037 EXPORT_SYMBOL(mount_bdev);
1038
1039 void kill_block_super(struct super_block *sb)
1040 {
1041 struct block_device *bdev = sb->s_bdev;
1042 fmode_t mode = sb->s_mode;
1043
1044 bdev->bd_super = NULL;
1045 generic_shutdown_super(sb);
1046 sync_blockdev(bdev);
1047 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1048 blkdev_put(bdev, mode | FMODE_EXCL);
1049 }
1050
1051 EXPORT_SYMBOL(kill_block_super);
1052 #endif
1053
1054 struct dentry *mount_nodev(struct file_system_type *fs_type,
1055 int flags, void *data,
1056 int (*fill_super)(struct super_block *, void *, int))
1057 {
1058 int error;
1059 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1060
1061 if (IS_ERR(s))
1062 return ERR_CAST(s);
1063
1064 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1065 if (error) {
1066 deactivate_locked_super(s);
1067 return ERR_PTR(error);
1068 }
1069 s->s_flags |= MS_ACTIVE;
1070 return dget(s->s_root);
1071 }
1072 EXPORT_SYMBOL(mount_nodev);
1073
1074 static int compare_single(struct super_block *s, void *p)
1075 {
1076 return 1;
1077 }
1078
1079 struct dentry *mount_single(struct file_system_type *fs_type,
1080 int flags, void *data,
1081 int (*fill_super)(struct super_block *, void *, int))
1082 {
1083 struct super_block *s;
1084 int error;
1085
1086 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1087 if (IS_ERR(s))
1088 return ERR_CAST(s);
1089 if (!s->s_root) {
1090 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1091 if (error) {
1092 deactivate_locked_super(s);
1093 return ERR_PTR(error);
1094 }
1095 s->s_flags |= MS_ACTIVE;
1096 } else {
1097 do_remount_sb(s, flags, data, 0);
1098 }
1099 return dget(s->s_root);
1100 }
1101 EXPORT_SYMBOL(mount_single);
1102
1103 struct dentry *
1104 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1105 {
1106 struct dentry *root;
1107 struct super_block *sb;
1108 char *secdata = NULL;
1109 int error = -ENOMEM;
1110
1111 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1112 secdata = alloc_secdata();
1113 if (!secdata)
1114 goto out;
1115
1116 error = security_sb_copy_data(data, secdata);
1117 if (error)
1118 goto out_free_secdata;
1119 }
1120
1121 root = type->mount(type, flags, name, data);
1122 if (IS_ERR(root)) {
1123 error = PTR_ERR(root);
1124 goto out_free_secdata;
1125 }
1126 sb = root->d_sb;
1127 BUG_ON(!sb);
1128 WARN_ON(!sb->s_bdi);
1129 sb->s_flags |= MS_BORN;
1130
1131 error = security_sb_kern_mount(sb, flags, secdata);
1132 if (error)
1133 goto out_sb;
1134
1135 /*
1136 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1137 * but s_maxbytes was an unsigned long long for many releases. Throw
1138 * this warning for a little while to try and catch filesystems that
1139 * violate this rule.
1140 */
1141 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1142 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1143
1144 up_write(&sb->s_umount);
1145 free_secdata(secdata);
1146 return root;
1147 out_sb:
1148 dput(root);
1149 deactivate_locked_super(sb);
1150 out_free_secdata:
1151 free_secdata(secdata);
1152 out:
1153 return ERR_PTR(error);
1154 }
1155
1156 /*
1157 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1158 * instead.
1159 */
1160 void __sb_end_write(struct super_block *sb, int level)
1161 {
1162 percpu_up_read(sb->s_writers.rw_sem + level-1);
1163 }
1164 EXPORT_SYMBOL(__sb_end_write);
1165
1166 /*
1167 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1168 * instead.
1169 */
1170 int __sb_start_write(struct super_block *sb, int level, bool wait)
1171 {
1172 bool force_trylock = false;
1173 int ret = 1;
1174
1175 #ifdef CONFIG_LOCKDEP
1176 /*
1177 * We want lockdep to tell us about possible deadlocks with freezing
1178 * but it's it bit tricky to properly instrument it. Getting a freeze
1179 * protection works as getting a read lock but there are subtle
1180 * problems. XFS for example gets freeze protection on internal level
1181 * twice in some cases, which is OK only because we already hold a
1182 * freeze protection also on higher level. Due to these cases we have
1183 * to use wait == F (trylock mode) which must not fail.
1184 */
1185 if (wait) {
1186 int i;
1187
1188 for (i = 0; i < level - 1; i++)
1189 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1190 force_trylock = true;
1191 break;
1192 }
1193 }
1194 #endif
1195 if (wait && !force_trylock)
1196 percpu_down_read(sb->s_writers.rw_sem + level-1);
1197 else
1198 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1199
1200 WARN_ON(force_trylock & !ret);
1201 return ret;
1202 }
1203 EXPORT_SYMBOL(__sb_start_write);
1204
1205 /**
1206 * sb_wait_write - wait until all writers to given file system finish
1207 * @sb: the super for which we wait
1208 * @level: type of writers we wait for (normal vs page fault)
1209 *
1210 * This function waits until there are no writers of given type to given file
1211 * system.
1212 */
1213 static void sb_wait_write(struct super_block *sb, int level)
1214 {
1215 percpu_down_write(sb->s_writers.rw_sem + level-1);
1216 /*
1217 * We are going to return to userspace and forget about this lock, the
1218 * ownership goes to the caller of thaw_super() which does unlock.
1219 *
1220 * FIXME: we should do this before return from freeze_super() after we
1221 * called sync_filesystem(sb) and s_op->freeze_fs(sb), and thaw_super()
1222 * should re-acquire these locks before s_op->unfreeze_fs(sb). However
1223 * this leads to lockdep false-positives, so currently we do the early
1224 * release right after acquire.
1225 */
1226 percpu_rwsem_release(sb->s_writers.rw_sem + level-1, 0, _THIS_IP_);
1227 }
1228
1229 static void sb_freeze_unlock(struct super_block *sb)
1230 {
1231 int level;
1232
1233 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1234 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1235
1236 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1237 percpu_up_write(sb->s_writers.rw_sem + level);
1238 }
1239
1240 /**
1241 * freeze_super - lock the filesystem and force it into a consistent state
1242 * @sb: the super to lock
1243 *
1244 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1245 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1246 * -EBUSY.
1247 *
1248 * During this function, sb->s_writers.frozen goes through these values:
1249 *
1250 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1251 *
1252 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1253 * writes should be blocked, though page faults are still allowed. We wait for
1254 * all writes to complete and then proceed to the next stage.
1255 *
1256 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1257 * but internal fs threads can still modify the filesystem (although they
1258 * should not dirty new pages or inodes), writeback can run etc. After waiting
1259 * for all running page faults we sync the filesystem which will clean all
1260 * dirty pages and inodes (no new dirty pages or inodes can be created when
1261 * sync is running).
1262 *
1263 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1264 * modification are blocked (e.g. XFS preallocation truncation on inode
1265 * reclaim). This is usually implemented by blocking new transactions for
1266 * filesystems that have them and need this additional guard. After all
1267 * internal writers are finished we call ->freeze_fs() to finish filesystem
1268 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1269 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1270 *
1271 * sb->s_writers.frozen is protected by sb->s_umount.
1272 */
1273 int freeze_super(struct super_block *sb)
1274 {
1275 int ret;
1276
1277 atomic_inc(&sb->s_active);
1278 down_write(&sb->s_umount);
1279 if (sb->s_writers.frozen != SB_UNFROZEN) {
1280 deactivate_locked_super(sb);
1281 return -EBUSY;
1282 }
1283
1284 if (!(sb->s_flags & MS_BORN)) {
1285 up_write(&sb->s_umount);
1286 return 0; /* sic - it's "nothing to do" */
1287 }
1288
1289 if (sb->s_flags & MS_RDONLY) {
1290 /* Nothing to do really... */
1291 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1292 up_write(&sb->s_umount);
1293 return 0;
1294 }
1295
1296 sb->s_writers.frozen = SB_FREEZE_WRITE;
1297 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1298 up_write(&sb->s_umount);
1299 sb_wait_write(sb, SB_FREEZE_WRITE);
1300 down_write(&sb->s_umount);
1301
1302 /* Now we go and block page faults... */
1303 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1304 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1305
1306 /* All writers are done so after syncing there won't be dirty data */
1307 sync_filesystem(sb);
1308
1309 /* Now wait for internal filesystem counter */
1310 sb->s_writers.frozen = SB_FREEZE_FS;
1311 sb_wait_write(sb, SB_FREEZE_FS);
1312
1313 if (sb->s_op->freeze_fs) {
1314 ret = sb->s_op->freeze_fs(sb);
1315 if (ret) {
1316 printk(KERN_ERR
1317 "VFS:Filesystem freeze failed\n");
1318 sb->s_writers.frozen = SB_UNFROZEN;
1319 sb_freeze_unlock(sb);
1320 wake_up(&sb->s_writers.wait_unfrozen);
1321 deactivate_locked_super(sb);
1322 return ret;
1323 }
1324 }
1325 /*
1326 * This is just for debugging purposes so that fs can warn if it
1327 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1328 */
1329 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1330 up_write(&sb->s_umount);
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(freeze_super);
1334
1335 /**
1336 * thaw_super -- unlock filesystem
1337 * @sb: the super to thaw
1338 *
1339 * Unlocks the filesystem and marks it writeable again after freeze_super().
1340 */
1341 int thaw_super(struct super_block *sb)
1342 {
1343 int error;
1344
1345 down_write(&sb->s_umount);
1346 if (sb->s_writers.frozen == SB_UNFROZEN) {
1347 up_write(&sb->s_umount);
1348 return -EINVAL;
1349 }
1350
1351 if (sb->s_flags & MS_RDONLY) {
1352 sb->s_writers.frozen = SB_UNFROZEN;
1353 goto out;
1354 }
1355
1356 if (sb->s_op->unfreeze_fs) {
1357 error = sb->s_op->unfreeze_fs(sb);
1358 if (error) {
1359 printk(KERN_ERR
1360 "VFS:Filesystem thaw failed\n");
1361 up_write(&sb->s_umount);
1362 return error;
1363 }
1364 }
1365
1366 sb->s_writers.frozen = SB_UNFROZEN;
1367 sb_freeze_unlock(sb);
1368 out:
1369 wake_up(&sb->s_writers.wait_unfrozen);
1370 deactivate_locked_super(sb);
1371 return 0;
1372 }
1373 EXPORT_SYMBOL(thaw_super);
This page took 0.056684 seconds and 6 git commands to generate.